4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
24 static int l2_line_sz
;
26 volatile int slc_enable
= 1, ioc_enable
= 1;
28 void (*_cache_line_loop_ic_fn
)(phys_addr_t paddr
, unsigned long vaddr
,
29 unsigned long sz
, const int cacheop
);
31 void (*__dma_cache_wback_inv
)(unsigned long start
, unsigned long sz
);
32 void (*__dma_cache_inv
)(unsigned long start
, unsigned long sz
);
33 void (*__dma_cache_wback
)(unsigned long start
, unsigned long sz
);
35 char *arc_cache_mumbojumbo(int c
, char *buf
, int len
)
38 struct cpuinfo_arc_cache
*p
;
40 #define PR_CACHE(p, cfg, str) \
42 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \
44 n += scnprintf(buf + n, len - n, \
45 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \
46 (p)->sz_k, (p)->assoc, (p)->line_len, \
47 (p)->vipt ? "VIPT" : "PIPT", \
48 (p)->alias ? " aliasing" : "", \
51 PR_CACHE(&cpuinfo_arc700
[c
].icache
, CONFIG_ARC_HAS_ICACHE
, "I-Cache");
52 PR_CACHE(&cpuinfo_arc700
[c
].dcache
, CONFIG_ARC_HAS_DCACHE
, "D-Cache");
57 p
= &cpuinfo_arc700
[c
].slc
;
59 n
+= scnprintf(buf
+ n
, len
- n
,
60 "SLC\t\t: %uK, %uB Line%s\n",
61 p
->sz_k
, p
->line_len
, IS_USED_RUN(slc_enable
));
64 n
+= scnprintf(buf
+ n
, len
- n
, "IOC\t\t:%s\n",
65 IS_DISABLED_RUN(ioc_enable
));
71 * Read the Cache Build Confuration Registers, Decode them and save into
72 * the cpuinfo structure for later use.
73 * No Validation done here, simply read/convert the BCRs
75 static void read_decode_cache_bcr_arcv2(int cpu
)
77 struct cpuinfo_arc_cache
*p_slc
= &cpuinfo_arc700
[cpu
].slc
;
78 struct bcr_generic sbcr
;
81 #ifdef CONFIG_CPU_BIG_ENDIAN
82 unsigned int pad
:24, way
:2, lsz
:2, sz
:4;
84 unsigned int sz
:4, lsz
:2, way
:2, pad
:24;
88 struct bcr_clust_cfg
{
89 #ifdef CONFIG_CPU_BIG_ENDIAN
90 unsigned int pad
:7, c
:1, num_entries
:8, num_cores
:8, ver
:8;
92 unsigned int ver
:8, num_cores
:8, num_entries
:8, c
:1, pad
:7;
96 READ_BCR(ARC_REG_SLC_BCR
, sbcr
);
98 READ_BCR(ARC_REG_SLC_CFG
, slc_cfg
);
99 p_slc
->ver
= sbcr
.ver
;
100 p_slc
->sz_k
= 128 << slc_cfg
.sz
;
101 l2_line_sz
= p_slc
->line_len
= (slc_cfg
.lsz
== 0) ? 128 : 64;
104 READ_BCR(ARC_REG_CLUSTER_BCR
, cbcr
);
105 if (cbcr
.c
&& ioc_enable
)
109 void read_decode_cache_bcr(void)
111 struct cpuinfo_arc_cache
*p_ic
, *p_dc
;
112 unsigned int cpu
= smp_processor_id();
114 #ifdef CONFIG_CPU_BIG_ENDIAN
115 unsigned int pad
:12, line_len
:4, sz
:4, config
:4, ver
:8;
117 unsigned int ver
:8, config
:4, sz
:4, line_len
:4, pad
:12;
121 p_ic
= &cpuinfo_arc700
[cpu
].icache
;
122 READ_BCR(ARC_REG_IC_BCR
, ibcr
);
128 BUG_ON(ibcr
.config
!= 3);
129 p_ic
->assoc
= 2; /* Fixed to 2w set assoc */
130 } else if (ibcr
.ver
>= 4) {
131 p_ic
->assoc
= 1 << ibcr
.config
; /* 1,2,4,8 */
134 p_ic
->line_len
= 8 << ibcr
.line_len
;
135 p_ic
->sz_k
= 1 << (ibcr
.sz
- 1);
136 p_ic
->ver
= ibcr
.ver
;
138 p_ic
->alias
= p_ic
->sz_k
/p_ic
->assoc
/TO_KB(PAGE_SIZE
) > 1;
141 p_dc
= &cpuinfo_arc700
[cpu
].dcache
;
142 READ_BCR(ARC_REG_DC_BCR
, dbcr
);
148 BUG_ON(dbcr
.config
!= 2);
149 p_dc
->assoc
= 4; /* Fixed to 4w set assoc */
151 p_dc
->alias
= p_dc
->sz_k
/p_dc
->assoc
/TO_KB(PAGE_SIZE
) > 1;
152 } else if (dbcr
.ver
>= 4) {
153 p_dc
->assoc
= 1 << dbcr
.config
; /* 1,2,4,8 */
155 p_dc
->alias
= 0; /* PIPT so can't VIPT alias */
158 p_dc
->line_len
= 16 << dbcr
.line_len
;
159 p_dc
->sz_k
= 1 << (dbcr
.sz
- 1);
160 p_dc
->ver
= dbcr
.ver
;
164 read_decode_cache_bcr_arcv2(cpu
);
168 * Line Operation on {I,D}-Cache
173 #define OP_FLUSH_N_INV 0x3
174 #define OP_INV_IC 0x4
177 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
179 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
180 * The orig Cache Management Module "CDU" only required paddr to invalidate a
181 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
182 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
183 * the exact same line.
185 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
186 * paddr alone could not be used to correctly index the cache.
189 * MMU v1/v2 (Fixed Page Size 8k)
191 * The solution was to provide CDU with these additonal vaddr bits. These
192 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
193 * standard page size of 8k.
194 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
195 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
196 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
197 * represent the offset within cache-line. The adv of using this "clumsy"
198 * interface for additional info was no new reg was needed in CDU programming
201 * 17:13 represented the max num of bits passable, actual bits needed were
202 * fewer, based on the num-of-aliases possible.
203 * -for 2 alias possibility, only bit 13 needed (32K cache)
204 * -for 4 alias possibility, bits 14:13 needed (64K cache)
209 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
210 * only support 8k (default), 16k and 4k.
211 * However from hardware perspective, smaller page sizes aggrevate aliasing
212 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
213 * the existing scheme of piggybacking won't work for certain configurations.
214 * Two new registers IC_PTAG and DC_PTAG inttoduced.
215 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
219 void __cache_line_loop_v2(phys_addr_t paddr
, unsigned long vaddr
,
220 unsigned long sz
, const int op
)
222 unsigned int aux_cmd
;
224 const int full_page
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
226 if (op
== OP_INV_IC
) {
227 aux_cmd
= ARC_REG_IC_IVIL
;
229 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
230 aux_cmd
= op
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
233 /* Ensure we properly floor/ceil the non-line aligned/sized requests
234 * and have @paddr - aligned to cache line and integral @num_lines.
235 * This however can be avoided for page sized since:
236 * -@paddr will be cache-line aligned already (being page aligned)
237 * -@sz will be integral multiple of line size (being page sized).
240 sz
+= paddr
& ~CACHE_LINE_MASK
;
241 paddr
&= CACHE_LINE_MASK
;
242 vaddr
&= CACHE_LINE_MASK
;
245 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
247 /* MMUv2 and before: paddr contains stuffed vaddrs bits */
248 paddr
|= (vaddr
>> PAGE_SHIFT
) & 0x1F;
250 while (num_lines
-- > 0) {
251 write_aux_reg(aux_cmd
, paddr
);
252 paddr
+= L1_CACHE_BYTES
;
257 * For ARC700 MMUv3 I-cache and D-cache flushes
258 * Also reused for HS38 aliasing I-cache configuration
261 void __cache_line_loop_v3(phys_addr_t paddr
, unsigned long vaddr
,
262 unsigned long sz
, const int op
)
264 unsigned int aux_cmd
, aux_tag
;
266 const int full_page
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
268 if (op
== OP_INV_IC
) {
269 aux_cmd
= ARC_REG_IC_IVIL
;
270 aux_tag
= ARC_REG_IC_PTAG
;
272 aux_cmd
= op
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
273 aux_tag
= ARC_REG_DC_PTAG
;
276 /* Ensure we properly floor/ceil the non-line aligned/sized requests
277 * and have @paddr - aligned to cache line and integral @num_lines.
278 * This however can be avoided for page sized since:
279 * -@paddr will be cache-line aligned already (being page aligned)
280 * -@sz will be integral multiple of line size (being page sized).
283 sz
+= paddr
& ~CACHE_LINE_MASK
;
284 paddr
&= CACHE_LINE_MASK
;
285 vaddr
&= CACHE_LINE_MASK
;
287 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
290 * MMUv3, cache ops require paddr in PTAG reg
291 * if V-P const for loop, PTAG can be written once outside loop
294 write_aux_reg(aux_tag
, paddr
);
297 * This is technically for MMU v4, using the MMU v3 programming model
298 * Special work for HS38 aliasing I-cache configuratino with PAE40
299 * - upper 8 bits of paddr need to be written into PTAG_HI
300 * - (and needs to be written before the lower 32 bits)
301 * Note that PTAG_HI is hoisted outside the line loop
303 if (is_pae40_enabled() && op
== OP_INV_IC
)
304 write_aux_reg(ARC_REG_IC_PTAG_HI
, (u64
)paddr
>> 32);
306 while (num_lines
-- > 0) {
308 write_aux_reg(aux_tag
, paddr
);
309 paddr
+= L1_CACHE_BYTES
;
312 write_aux_reg(aux_cmd
, vaddr
);
313 vaddr
+= L1_CACHE_BYTES
;
318 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
319 * Here's how cache ops are implemented
321 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
322 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
323 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
324 * respectively, similar to MMU v3 programming model, hence
325 * __cache_line_loop_v3() is used)
327 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
328 * needs to be written into PTAG_HI
331 void __cache_line_loop_v4(phys_addr_t paddr
, unsigned long vaddr
,
332 unsigned long sz
, const int cacheop
)
334 unsigned int aux_cmd
;
336 const int full_page_op
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
338 if (cacheop
== OP_INV_IC
) {
339 aux_cmd
= ARC_REG_IC_IVIL
;
341 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
342 aux_cmd
= cacheop
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
345 /* Ensure we properly floor/ceil the non-line aligned/sized requests
346 * and have @paddr - aligned to cache line and integral @num_lines.
347 * This however can be avoided for page sized since:
348 * -@paddr will be cache-line aligned already (being page aligned)
349 * -@sz will be integral multiple of line size (being page sized).
352 sz
+= paddr
& ~CACHE_LINE_MASK
;
353 paddr
&= CACHE_LINE_MASK
;
356 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
359 * For HS38 PAE40 configuration
360 * - upper 8 bits of paddr need to be written into PTAG_HI
361 * - (and needs to be written before the lower 32 bits)
363 if (is_pae40_enabled()) {
364 if (cacheop
== OP_INV_IC
)
366 * Non aliasing I-cache in HS38,
367 * aliasing I-cache handled in __cache_line_loop_v3()
369 write_aux_reg(ARC_REG_IC_PTAG_HI
, (u64
)paddr
>> 32);
371 write_aux_reg(ARC_REG_DC_PTAG_HI
, (u64
)paddr
>> 32);
374 while (num_lines
-- > 0) {
375 write_aux_reg(aux_cmd
, paddr
);
376 paddr
+= L1_CACHE_BYTES
;
380 #if (CONFIG_ARC_MMU_VER < 3)
381 #define __cache_line_loop __cache_line_loop_v2
382 #elif (CONFIG_ARC_MMU_VER == 3)
383 #define __cache_line_loop __cache_line_loop_v3
384 #elif (CONFIG_ARC_MMU_VER > 3)
385 #define __cache_line_loop __cache_line_loop_v4
388 #ifdef CONFIG_ARC_HAS_DCACHE
390 /***************************************************************
391 * Machine specific helpers for Entire D-Cache or Per Line ops
394 static inline void __before_dc_op(const int op
)
396 if (op
== OP_FLUSH_N_INV
) {
397 /* Dcache provides 2 cmd: FLUSH or INV
398 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
399 * flush-n-inv is achieved by INV cmd but with IM=1
400 * So toggle INV sub-mode depending on op request and default
402 const unsigned int ctl
= ARC_REG_DC_CTRL
;
403 write_aux_reg(ctl
, read_aux_reg(ctl
) | DC_CTRL_INV_MODE_FLUSH
);
407 static inline void __after_dc_op(const int op
)
410 const unsigned int ctl
= ARC_REG_DC_CTRL
;
413 /* flush / flush-n-inv both wait */
414 while ((reg
= read_aux_reg(ctl
)) & DC_CTRL_FLUSH_STATUS
)
417 /* Switch back to default Invalidate mode */
418 if (op
== OP_FLUSH_N_INV
)
419 write_aux_reg(ctl
, reg
& ~DC_CTRL_INV_MODE_FLUSH
);
424 * Operation on Entire D-Cache
425 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
426 * Note that constant propagation ensures all the checks are gone
429 static inline void __dc_entire_op(const int op
)
435 if (op
& OP_INV
) /* Inv or flush-n-inv use same cmd reg */
436 aux
= ARC_REG_DC_IVDC
;
438 aux
= ARC_REG_DC_FLSH
;
440 write_aux_reg(aux
, 0x1);
445 /* For kernel mappings cache operation: index is same as paddr */
446 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op)
449 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
451 static inline void __dc_line_op(phys_addr_t paddr
, unsigned long vaddr
,
452 unsigned long sz
, const int op
)
456 local_irq_save(flags
);
460 __cache_line_loop(paddr
, vaddr
, sz
, op
);
464 local_irq_restore(flags
);
469 #define __dc_entire_op(op)
470 #define __dc_line_op(paddr, vaddr, sz, op)
471 #define __dc_line_op_k(paddr, sz, op)
473 #endif /* CONFIG_ARC_HAS_DCACHE */
475 #ifdef CONFIG_ARC_HAS_ICACHE
477 static inline void __ic_entire_inv(void)
479 write_aux_reg(ARC_REG_IC_IVIC
, 1);
480 read_aux_reg(ARC_REG_IC_CTRL
); /* blocks */
484 __ic_line_inv_vaddr_local(phys_addr_t paddr
, unsigned long vaddr
,
489 local_irq_save(flags
);
490 (*_cache_line_loop_ic_fn
)(paddr
, vaddr
, sz
, OP_INV_IC
);
491 local_irq_restore(flags
);
496 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s)
501 phys_addr_t paddr
, vaddr
;
505 static void __ic_line_inv_vaddr_helper(void *info
)
507 struct ic_inv_args
*ic_inv
= info
;
509 __ic_line_inv_vaddr_local(ic_inv
->paddr
, ic_inv
->vaddr
, ic_inv
->sz
);
512 static void __ic_line_inv_vaddr(phys_addr_t paddr
, unsigned long vaddr
,
515 struct ic_inv_args ic_inv
= {
521 on_each_cpu(__ic_line_inv_vaddr_helper
, &ic_inv
, 1);
524 #endif /* CONFIG_SMP */
526 #else /* !CONFIG_ARC_HAS_ICACHE */
528 #define __ic_entire_inv()
529 #define __ic_line_inv_vaddr(pstart, vstart, sz)
531 #endif /* CONFIG_ARC_HAS_ICACHE */
533 noinline
void slc_op(phys_addr_t paddr
, unsigned long sz
, const int op
)
535 #ifdef CONFIG_ISA_ARCV2
537 * SLC is shared between all cores and concurrent aux operations from
538 * multiple cores need to be serialized using a spinlock
539 * A concurrent operation can be silently ignored and/or the old/new
540 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
543 static DEFINE_SPINLOCK(lock
);
547 spin_lock_irqsave(&lock
, flags
);
550 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
551 * - b'000 (default) is Flush,
552 * - b'001 is Invalidate if CTRL.IM == 0
553 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1
555 ctrl
= read_aux_reg(ARC_REG_SLC_CTRL
);
557 /* Don't rely on default value of IM bit */
558 if (!(op
& OP_FLUSH
)) /* i.e. OP_INV */
559 ctrl
&= ~SLC_CTRL_IM
; /* clear IM: Disable flush before Inv */
564 ctrl
|= SLC_CTRL_RGN_OP_INV
; /* Inv or flush-n-inv */
566 ctrl
&= ~SLC_CTRL_RGN_OP_INV
;
568 write_aux_reg(ARC_REG_SLC_CTRL
, ctrl
);
571 * Lower bits are ignored, no need to clip
572 * END needs to be setup before START (latter triggers the operation)
573 * END can't be same as START, so add (l2_line_sz - 1) to sz
575 write_aux_reg(ARC_REG_SLC_RGN_END
, (paddr
+ sz
+ l2_line_sz
- 1));
576 write_aux_reg(ARC_REG_SLC_RGN_START
, paddr
);
578 while (read_aux_reg(ARC_REG_SLC_CTRL
) & SLC_CTRL_BUSY
);
580 spin_unlock_irqrestore(&lock
, flags
);
584 /***********************************************************
589 * Handle cache congruency of kernel and userspace mappings of page when kernel
590 * writes-to/reads-from
592 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
593 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
594 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
595 * -In SMP, if hardware caches are coherent
597 * There's a corollary case, where kernel READs from a userspace mapped page.
598 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
600 void flush_dcache_page(struct page
*page
)
602 struct address_space
*mapping
;
604 if (!cache_is_vipt_aliasing()) {
605 clear_bit(PG_dc_clean
, &page
->flags
);
609 /* don't handle anon pages here */
610 mapping
= page_mapping(page
);
615 * pagecache page, file not yet mapped to userspace
616 * Make a note that K-mapping is dirty
618 if (!mapping_mapped(mapping
)) {
619 clear_bit(PG_dc_clean
, &page
->flags
);
620 } else if (page_mapped(page
)) {
622 /* kernel reading from page with U-mapping */
623 phys_addr_t paddr
= (unsigned long)page_address(page
);
624 unsigned long vaddr
= page
->index
<< PAGE_CACHE_SHIFT
;
626 if (addr_not_cache_congruent(paddr
, vaddr
))
627 __flush_dcache_page(paddr
, vaddr
);
630 EXPORT_SYMBOL(flush_dcache_page
);
633 * DMA ops for systems with L1 cache only
634 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
636 static void __dma_cache_wback_inv_l1(unsigned long start
, unsigned long sz
)
638 __dc_line_op_k(start
, sz
, OP_FLUSH_N_INV
);
641 static void __dma_cache_inv_l1(unsigned long start
, unsigned long sz
)
643 __dc_line_op_k(start
, sz
, OP_INV
);
646 static void __dma_cache_wback_l1(unsigned long start
, unsigned long sz
)
648 __dc_line_op_k(start
, sz
, OP_FLUSH
);
652 * DMA ops for systems with both L1 and L2 caches, but without IOC
653 * Both L1 and L2 lines need to be explicity flushed/invalidated
655 static void __dma_cache_wback_inv_slc(unsigned long start
, unsigned long sz
)
657 __dc_line_op_k(start
, sz
, OP_FLUSH_N_INV
);
658 slc_op(start
, sz
, OP_FLUSH_N_INV
);
661 static void __dma_cache_inv_slc(unsigned long start
, unsigned long sz
)
663 __dc_line_op_k(start
, sz
, OP_INV
);
664 slc_op(start
, sz
, OP_INV
);
667 static void __dma_cache_wback_slc(unsigned long start
, unsigned long sz
)
669 __dc_line_op_k(start
, sz
, OP_FLUSH
);
670 slc_op(start
, sz
, OP_FLUSH
);
674 * DMA ops for systems with IOC
675 * IOC hardware snoops all DMA traffic keeping the caches consistent with
676 * memory - eliding need for any explicit cache maintenance of DMA buffers
678 static void __dma_cache_wback_inv_ioc(unsigned long start
, unsigned long sz
) {}
679 static void __dma_cache_inv_ioc(unsigned long start
, unsigned long sz
) {}
680 static void __dma_cache_wback_ioc(unsigned long start
, unsigned long sz
) {}
685 void dma_cache_wback_inv(unsigned long start
, unsigned long sz
)
687 __dma_cache_wback_inv(start
, sz
);
689 EXPORT_SYMBOL(dma_cache_wback_inv
);
691 void dma_cache_inv(unsigned long start
, unsigned long sz
)
693 __dma_cache_inv(start
, sz
);
695 EXPORT_SYMBOL(dma_cache_inv
);
697 void dma_cache_wback(unsigned long start
, unsigned long sz
)
699 __dma_cache_wback(start
, sz
);
701 EXPORT_SYMBOL(dma_cache_wback
);
704 * This is API for making I/D Caches consistent when modifying
705 * kernel code (loadable modules, kprobes, kgdb...)
706 * This is called on insmod, with kernel virtual address for CODE of
707 * the module. ARC cache maintenance ops require PHY address thus we
708 * need to convert vmalloc addr to PHY addr
710 void flush_icache_range(unsigned long kstart
, unsigned long kend
)
714 WARN(kstart
< TASK_SIZE
, "%s() can't handle user vaddr", __func__
);
716 /* Shortcut for bigger flush ranges.
717 * Here we don't care if this was kernel virtual or phy addr
719 tot_sz
= kend
- kstart
;
720 if (tot_sz
> PAGE_SIZE
) {
725 /* Case: Kernel Phy addr (0x8000_0000 onwards) */
726 if (likely(kstart
> PAGE_OFFSET
)) {
728 * The 2nd arg despite being paddr will be used to index icache
729 * This is OK since no alternate virtual mappings will exist
730 * given the callers for this case: kprobe/kgdb in built-in
733 __sync_icache_dcache(kstart
, kstart
, kend
- kstart
);
738 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
739 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
740 * handling of kernel vaddr.
742 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
743 * it still needs to handle a 2 page scenario, where the range
744 * straddles across 2 virtual pages and hence need for loop
747 unsigned int off
, sz
;
748 unsigned long phy
, pfn
;
750 off
= kstart
% PAGE_SIZE
;
751 pfn
= vmalloc_to_pfn((void *)kstart
);
752 phy
= (pfn
<< PAGE_SHIFT
) + off
;
753 sz
= min_t(unsigned int, tot_sz
, PAGE_SIZE
- off
);
754 __sync_icache_dcache(phy
, kstart
, sz
);
759 EXPORT_SYMBOL(flush_icache_range
);
762 * General purpose helper to make I and D cache lines consistent.
763 * @paddr is phy addr of region
764 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
765 * However in one instance, when called by kprobe (for a breakpt in
766 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
767 * use a paddr to index the cache (despite VIPT). This is fine since since a
768 * builtin kernel page will not have any virtual mappings.
769 * kprobe on loadable module will be kernel vaddr.
771 void __sync_icache_dcache(phys_addr_t paddr
, unsigned long vaddr
, int len
)
773 __dc_line_op(paddr
, vaddr
, len
, OP_FLUSH_N_INV
);
774 __ic_line_inv_vaddr(paddr
, vaddr
, len
);
777 /* wrapper to compile time eliminate alignment checks in flush loop */
778 void __inv_icache_page(phys_addr_t paddr
, unsigned long vaddr
)
780 __ic_line_inv_vaddr(paddr
, vaddr
, PAGE_SIZE
);
784 * wrapper to clearout kernel or userspace mappings of a page
785 * For kernel mappings @vaddr == @paddr
787 void __flush_dcache_page(phys_addr_t paddr
, unsigned long vaddr
)
789 __dc_line_op(paddr
, vaddr
& PAGE_MASK
, PAGE_SIZE
, OP_FLUSH_N_INV
);
792 noinline
void flush_cache_all(void)
796 local_irq_save(flags
);
799 __dc_entire_op(OP_FLUSH_N_INV
);
801 local_irq_restore(flags
);
805 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
807 void flush_cache_mm(struct mm_struct
*mm
)
812 void flush_cache_page(struct vm_area_struct
*vma
, unsigned long u_vaddr
,
815 unsigned int paddr
= pfn
<< PAGE_SHIFT
;
817 u_vaddr
&= PAGE_MASK
;
819 __flush_dcache_page(paddr
, u_vaddr
);
821 if (vma
->vm_flags
& VM_EXEC
)
822 __inv_icache_page(paddr
, u_vaddr
);
825 void flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
831 void flush_anon_page(struct vm_area_struct
*vma
, struct page
*page
,
832 unsigned long u_vaddr
)
834 /* TBD: do we really need to clear the kernel mapping */
835 __flush_dcache_page(page_address(page
), u_vaddr
);
836 __flush_dcache_page(page_address(page
), page_address(page
));
842 void copy_user_highpage(struct page
*to
, struct page
*from
,
843 unsigned long u_vaddr
, struct vm_area_struct
*vma
)
845 void *kfrom
= kmap_atomic(from
);
846 void *kto
= kmap_atomic(to
);
847 int clean_src_k_mappings
= 0;
850 * If SRC page was already mapped in userspace AND it's U-mapping is
851 * not congruent with K-mapping, sync former to physical page so that
852 * K-mapping in memcpy below, sees the right data
854 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
855 * equally valid for SRC page as well
857 * For !VIPT cache, all of this gets compiled out as
858 * addr_not_cache_congruent() is 0
860 if (page_mapped(from
) && addr_not_cache_congruent(kfrom
, u_vaddr
)) {
861 __flush_dcache_page((unsigned long)kfrom
, u_vaddr
);
862 clean_src_k_mappings
= 1;
865 copy_page(kto
, kfrom
);
868 * Mark DST page K-mapping as dirty for a later finalization by
869 * update_mmu_cache(). Although the finalization could have been done
870 * here as well (given that both vaddr/paddr are available).
871 * But update_mmu_cache() already has code to do that for other
872 * non copied user pages (e.g. read faults which wire in pagecache page
875 clear_bit(PG_dc_clean
, &to
->flags
);
878 * if SRC was already usermapped and non-congruent to kernel mapping
879 * sync the kernel mapping back to physical page
881 if (clean_src_k_mappings
) {
882 __flush_dcache_page((unsigned long)kfrom
, (unsigned long)kfrom
);
883 set_bit(PG_dc_clean
, &from
->flags
);
885 clear_bit(PG_dc_clean
, &from
->flags
);
889 kunmap_atomic(kfrom
);
892 void clear_user_page(void *to
, unsigned long u_vaddr
, struct page
*page
)
895 clear_bit(PG_dc_clean
, &page
->flags
);
899 /**********************************************************************
900 * Explicit Cache flush request from user space via syscall
901 * Needed for JITs which generate code on the fly
903 SYSCALL_DEFINE3(cacheflush
, uint32_t, start
, uint32_t, sz
, uint32_t, flags
)
905 /* TBD: optimize this */
910 void arc_cache_init(void)
912 unsigned int __maybe_unused cpu
= smp_processor_id();
915 printk(arc_cache_mumbojumbo(0, str
, sizeof(str
)));
917 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE
)) {
918 struct cpuinfo_arc_cache
*ic
= &cpuinfo_arc700
[cpu
].icache
;
921 panic("cache support enabled but non-existent cache\n");
923 if (ic
->line_len
!= L1_CACHE_BYTES
)
924 panic("ICache line [%d] != kernel Config [%d]",
925 ic
->line_len
, L1_CACHE_BYTES
);
927 if (ic
->ver
!= CONFIG_ARC_MMU_VER
)
928 panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
929 ic
->ver
, CONFIG_ARC_MMU_VER
);
932 * In MMU v4 (HS38x) the alising icache config uses IVIL/PTAG
933 * pair to provide vaddr/paddr respectively, just as in MMU v3
935 if (is_isa_arcv2() && ic
->alias
)
936 _cache_line_loop_ic_fn
= __cache_line_loop_v3
;
938 _cache_line_loop_ic_fn
= __cache_line_loop
;
941 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE
)) {
942 struct cpuinfo_arc_cache
*dc
= &cpuinfo_arc700
[cpu
].dcache
;
945 panic("cache support enabled but non-existent cache\n");
947 if (dc
->line_len
!= L1_CACHE_BYTES
)
948 panic("DCache line [%d] != kernel Config [%d]",
949 dc
->line_len
, L1_CACHE_BYTES
);
951 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
952 if (is_isa_arcompact()) {
953 int handled
= IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING
);
955 if (dc
->alias
&& !handled
)
956 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
957 else if (!dc
->alias
&& handled
)
958 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
962 if (is_isa_arcv2() && l2_line_sz
&& !slc_enable
) {
964 /* IM set : flush before invalidate */
965 write_aux_reg(ARC_REG_SLC_CTRL
,
966 read_aux_reg(ARC_REG_SLC_CTRL
) | SLC_CTRL_IM
);
968 write_aux_reg(ARC_REG_SLC_INVALIDATE
, 1);
970 /* Important to wait for flush to complete */
971 while (read_aux_reg(ARC_REG_SLC_CTRL
) & SLC_CTRL_BUSY
);
972 write_aux_reg(ARC_REG_SLC_CTRL
,
973 read_aux_reg(ARC_REG_SLC_CTRL
) | SLC_CTRL_DISABLE
);
976 if (is_isa_arcv2() && ioc_exists
) {
977 /* IO coherency base - 0x8z */
978 write_aux_reg(ARC_REG_IO_COH_AP0_BASE
, 0x80000);
979 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */
980 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE
, 0x11);
981 /* Enable partial writes */
982 write_aux_reg(ARC_REG_IO_COH_PARTIAL
, 1);
983 /* Enable IO coherency */
984 write_aux_reg(ARC_REG_IO_COH_ENABLE
, 1);
986 __dma_cache_wback_inv
= __dma_cache_wback_inv_ioc
;
987 __dma_cache_inv
= __dma_cache_inv_ioc
;
988 __dma_cache_wback
= __dma_cache_wback_ioc
;
989 } else if (is_isa_arcv2() && l2_line_sz
&& slc_enable
) {
990 __dma_cache_wback_inv
= __dma_cache_wback_inv_slc
;
991 __dma_cache_inv
= __dma_cache_inv_slc
;
992 __dma_cache_wback
= __dma_cache_wback_slc
;
994 __dma_cache_wback_inv
= __dma_cache_wback_inv_l1
;
995 __dma_cache_inv
= __dma_cache_inv_l1
;
996 __dma_cache_wback
= __dma_cache_wback_l1
;