irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / arch / mips / kernel / kprobes.c
blob212f46f2014e06b36aed708b26215457be72ece7
1 /*
2 * Kernel Probes (KProbes)
3 * arch/mips/kernel/kprobes.c
5 * Copyright 2006 Sony Corp.
6 * Copyright 2010 Cavium Networks
8 * Some portions copied from the powerpc version.
10 * Copyright (C) IBM Corporation, 2002, 2004
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35 #include <asm/inst.h>
37 static const union mips_instruction breakpoint_insn = {
38 .b_format = {
39 .opcode = spec_op,
40 .code = BRK_KPROBE_BP,
41 .func = break_op
45 static const union mips_instruction breakpoint2_insn = {
46 .b_format = {
47 .opcode = spec_op,
48 .code = BRK_KPROBE_SSTEPBP,
49 .func = break_op
53 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
54 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
56 static int __kprobes insn_has_delayslot(union mips_instruction insn)
58 switch (insn.i_format.opcode) {
61 * This group contains:
62 * jr and jalr are in r_format format.
64 case spec_op:
65 switch (insn.r_format.func) {
66 case jr_op:
67 case jalr_op:
68 break;
69 default:
70 goto insn_ok;
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
78 case bcond_op:
81 * These are unconditional and in j_format.
83 case jal_op:
84 case j_op:
87 * These are conditional and in i_format.
89 case beq_op:
90 case beql_op:
91 case bne_op:
92 case bnel_op:
93 case blez_op:
94 case blezl_op:
95 case bgtz_op:
96 case bgtzl_op:
99 * These are the FPA/cp1 branch instructions.
101 case cop1_op:
103 #ifdef CONFIG_CPU_CAVIUM_OCTEON
104 case lwc2_op: /* This is bbit0 on Octeon */
105 case ldc2_op: /* This is bbit032 on Octeon */
106 case swc2_op: /* This is bbit1 on Octeon */
107 case sdc2_op: /* This is bbit132 on Octeon */
108 #endif
109 return 1;
110 default:
111 break;
113 insn_ok:
114 return 0;
118 * insn_has_ll_or_sc function checks whether instruction is ll or sc
119 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
120 * so we need to prevent it and refuse kprobes insertion for such
121 * instructions; cannot do much about breakpoint in the middle of
122 * ll/sc pair; it is upto user to avoid those places
124 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
126 int ret = 0;
128 switch (insn.i_format.opcode) {
129 case ll_op:
130 case lld_op:
131 case sc_op:
132 case scd_op:
133 ret = 1;
134 break;
135 default:
136 break;
138 return ret;
141 int __kprobes arch_prepare_kprobe(struct kprobe *p)
143 union mips_instruction insn;
144 union mips_instruction prev_insn;
145 int ret = 0;
147 insn = p->addr[0];
149 if (insn_has_ll_or_sc(insn)) {
150 pr_notice("Kprobes for ll and sc instructions are not"
151 "supported\n");
152 ret = -EINVAL;
153 goto out;
156 if ((probe_kernel_read(&prev_insn, p->addr - 1,
157 sizeof(mips_instruction)) == 0) &&
158 insn_has_delayslot(prev_insn)) {
159 pr_notice("Kprobes for branch delayslot are not supported\n");
160 ret = -EINVAL;
161 goto out;
164 /* insn: must be on special executable page on mips. */
165 p->ainsn.insn = get_insn_slot();
166 if (!p->ainsn.insn) {
167 ret = -ENOMEM;
168 goto out;
172 * In the kprobe->ainsn.insn[] array we store the original
173 * instruction at index zero and a break trap instruction at
174 * index one.
176 * On MIPS arch if the instruction at probed address is a
177 * branch instruction, we need to execute the instruction at
178 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179 * doesn't have single stepping support, the BD instruction can
180 * not be executed in-line and it would be executed on SSOL slot
181 * using a normal breakpoint instruction in the next slot.
182 * So, read the instruction and save it for later execution.
184 if (insn_has_delayslot(insn))
185 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186 else
187 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
189 p->ainsn.insn[1] = breakpoint2_insn;
190 p->opcode = *p->addr;
192 out:
193 return ret;
196 void __kprobes arch_arm_kprobe(struct kprobe *p)
198 *p->addr = breakpoint_insn;
199 flush_insn_slot(p);
202 void __kprobes arch_disarm_kprobe(struct kprobe *p)
204 *p->addr = p->opcode;
205 flush_insn_slot(p);
208 void __kprobes arch_remove_kprobe(struct kprobe *p)
210 if (p->ainsn.insn) {
211 free_insn_slot(p->ainsn.insn, 0);
212 p->ainsn.insn = NULL;
216 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
218 kcb->prev_kprobe.kp = kprobe_running();
219 kcb->prev_kprobe.status = kcb->kprobe_status;
220 kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
221 kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
222 kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
225 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
227 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
228 kcb->kprobe_status = kcb->prev_kprobe.status;
229 kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
230 kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
231 kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
234 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
235 struct kprobe_ctlblk *kcb)
237 __this_cpu_write(current_kprobe, p);
238 kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
239 kcb->kprobe_saved_epc = regs->cp0_epc;
243 * evaluate_branch_instrucion -
245 * Evaluate the branch instruction at probed address during probe hit. The
246 * result of evaluation would be the updated epc. The insturction in delayslot
247 * would actually be single stepped using a normal breakpoint) on SSOL slot.
249 * The result is also saved in the kprobe control block for later use,
250 * in case we need to execute the delayslot instruction. The latter will be
251 * false for NOP instruction in dealyslot and the branch-likely instructions
252 * when the branch is taken. And for those cases we set a flag as
253 * SKIP_DELAYSLOT in the kprobe control block
255 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
256 struct kprobe_ctlblk *kcb)
258 union mips_instruction insn = p->opcode;
259 long epc;
260 int ret = 0;
262 epc = regs->cp0_epc;
263 if (epc & 3)
264 goto unaligned;
266 if (p->ainsn.insn->word == 0)
267 kcb->flags |= SKIP_DELAYSLOT;
268 else
269 kcb->flags &= ~SKIP_DELAYSLOT;
271 ret = __compute_return_epc_for_insn(regs, insn);
272 if (ret < 0)
273 return ret;
275 if (ret == BRANCH_LIKELY_TAKEN)
276 kcb->flags |= SKIP_DELAYSLOT;
278 kcb->target_epc = regs->cp0_epc;
280 return 0;
282 unaligned:
283 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
284 force_sig(SIGBUS, current);
285 return -EFAULT;
289 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
290 struct kprobe_ctlblk *kcb)
292 int ret = 0;
294 regs->cp0_status &= ~ST0_IE;
296 /* single step inline if the instruction is a break */
297 if (p->opcode.word == breakpoint_insn.word ||
298 p->opcode.word == breakpoint2_insn.word)
299 regs->cp0_epc = (unsigned long)p->addr;
300 else if (insn_has_delayslot(p->opcode)) {
301 ret = evaluate_branch_instruction(p, regs, kcb);
302 if (ret < 0) {
303 pr_notice("Kprobes: Error in evaluating branch\n");
304 return;
307 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
311 * Called after single-stepping. p->addr is the address of the
312 * instruction whose first byte has been replaced by the "break 0"
313 * instruction. To avoid the SMP problems that can occur when we
314 * temporarily put back the original opcode to single-step, we
315 * single-stepped a copy of the instruction. The address of this
316 * copy is p->ainsn.insn.
318 * This function prepares to return from the post-single-step
319 * breakpoint trap. In case of branch instructions, the target
320 * epc to be restored.
322 static void __kprobes resume_execution(struct kprobe *p,
323 struct pt_regs *regs,
324 struct kprobe_ctlblk *kcb)
326 if (insn_has_delayslot(p->opcode))
327 regs->cp0_epc = kcb->target_epc;
328 else {
329 unsigned long orig_epc = kcb->kprobe_saved_epc;
330 regs->cp0_epc = orig_epc + 4;
334 static int __kprobes kprobe_handler(struct pt_regs *regs)
336 struct kprobe *p;
337 int ret = 0;
338 kprobe_opcode_t *addr;
339 struct kprobe_ctlblk *kcb;
341 addr = (kprobe_opcode_t *) regs->cp0_epc;
344 * We don't want to be preempted for the entire
345 * duration of kprobe processing
347 preempt_disable();
348 kcb = get_kprobe_ctlblk();
350 /* Check we're not actually recursing */
351 if (kprobe_running()) {
352 p = get_kprobe(addr);
353 if (p) {
354 if (kcb->kprobe_status == KPROBE_HIT_SS &&
355 p->ainsn.insn->word == breakpoint_insn.word) {
356 regs->cp0_status &= ~ST0_IE;
357 regs->cp0_status |= kcb->kprobe_saved_SR;
358 goto no_kprobe;
361 * We have reentered the kprobe_handler(), since
362 * another probe was hit while within the handler.
363 * We here save the original kprobes variables and
364 * just single step on the instruction of the new probe
365 * without calling any user handlers.
367 save_previous_kprobe(kcb);
368 set_current_kprobe(p, regs, kcb);
369 kprobes_inc_nmissed_count(p);
370 prepare_singlestep(p, regs, kcb);
371 kcb->kprobe_status = KPROBE_REENTER;
372 if (kcb->flags & SKIP_DELAYSLOT) {
373 resume_execution(p, regs, kcb);
374 restore_previous_kprobe(kcb);
375 preempt_enable_no_resched();
377 return 1;
378 } else {
379 if (addr->word != breakpoint_insn.word) {
381 * The breakpoint instruction was removed by
382 * another cpu right after we hit, no further
383 * handling of this interrupt is appropriate
385 ret = 1;
386 goto no_kprobe;
388 p = __this_cpu_read(current_kprobe);
389 if (p->break_handler && p->break_handler(p, regs))
390 goto ss_probe;
392 goto no_kprobe;
395 p = get_kprobe(addr);
396 if (!p) {
397 if (addr->word != breakpoint_insn.word) {
399 * The breakpoint instruction was removed right
400 * after we hit it. Another cpu has removed
401 * either a probepoint or a debugger breakpoint
402 * at this address. In either case, no further
403 * handling of this interrupt is appropriate.
405 ret = 1;
407 /* Not one of ours: let kernel handle it */
408 goto no_kprobe;
411 set_current_kprobe(p, regs, kcb);
412 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
414 if (p->pre_handler && p->pre_handler(p, regs)) {
415 /* handler has already set things up, so skip ss setup */
416 return 1;
419 ss_probe:
420 prepare_singlestep(p, regs, kcb);
421 if (kcb->flags & SKIP_DELAYSLOT) {
422 kcb->kprobe_status = KPROBE_HIT_SSDONE;
423 if (p->post_handler)
424 p->post_handler(p, regs, 0);
425 resume_execution(p, regs, kcb);
426 preempt_enable_no_resched();
427 } else
428 kcb->kprobe_status = KPROBE_HIT_SS;
430 return 1;
432 no_kprobe:
433 preempt_enable_no_resched();
434 return ret;
438 static inline int post_kprobe_handler(struct pt_regs *regs)
440 struct kprobe *cur = kprobe_running();
441 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443 if (!cur)
444 return 0;
446 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
447 kcb->kprobe_status = KPROBE_HIT_SSDONE;
448 cur->post_handler(cur, regs, 0);
451 resume_execution(cur, regs, kcb);
453 regs->cp0_status |= kcb->kprobe_saved_SR;
455 /* Restore back the original saved kprobes variables and continue. */
456 if (kcb->kprobe_status == KPROBE_REENTER) {
457 restore_previous_kprobe(kcb);
458 goto out;
460 reset_current_kprobe();
461 out:
462 preempt_enable_no_resched();
464 return 1;
467 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
469 struct kprobe *cur = kprobe_running();
470 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
472 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
473 return 1;
475 if (kcb->kprobe_status & KPROBE_HIT_SS) {
476 resume_execution(cur, regs, kcb);
477 regs->cp0_status |= kcb->kprobe_old_SR;
479 reset_current_kprobe();
480 preempt_enable_no_resched();
482 return 0;
486 * Wrapper routine for handling exceptions.
488 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
489 unsigned long val, void *data)
492 struct die_args *args = (struct die_args *)data;
493 int ret = NOTIFY_DONE;
495 switch (val) {
496 case DIE_BREAK:
497 if (kprobe_handler(args->regs))
498 ret = NOTIFY_STOP;
499 break;
500 case DIE_SSTEPBP:
501 if (post_kprobe_handler(args->regs))
502 ret = NOTIFY_STOP;
503 break;
505 case DIE_PAGE_FAULT:
506 /* kprobe_running() needs smp_processor_id() */
507 preempt_disable();
509 if (kprobe_running()
510 && kprobe_fault_handler(args->regs, args->trapnr))
511 ret = NOTIFY_STOP;
512 preempt_enable();
513 break;
514 default:
515 break;
517 return ret;
520 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
522 struct jprobe *jp = container_of(p, struct jprobe, kp);
523 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
525 kcb->jprobe_saved_regs = *regs;
526 kcb->jprobe_saved_sp = regs->regs[29];
528 memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
529 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
531 regs->cp0_epc = (unsigned long)(jp->entry);
533 return 1;
536 /* Defined in the inline asm below. */
537 void jprobe_return_end(void);
539 void __kprobes jprobe_return(void)
541 /* Assembler quirk necessitates this '0,code' business. */
542 asm volatile(
543 "break 0,%0\n\t"
544 ".globl jprobe_return_end\n"
545 "jprobe_return_end:\n"
546 : : "n" (BRK_KPROBE_BP) : "memory");
549 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
551 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
553 if (regs->cp0_epc >= (unsigned long)jprobe_return &&
554 regs->cp0_epc <= (unsigned long)jprobe_return_end) {
555 *regs = kcb->jprobe_saved_regs;
556 memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
557 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
558 preempt_enable_no_resched();
560 return 1;
562 return 0;
566 * Function return probe trampoline:
567 * - init_kprobes() establishes a probepoint here
568 * - When the probed function returns, this probe causes the
569 * handlers to fire
571 static void __used kretprobe_trampoline_holder(void)
573 asm volatile(
574 ".set push\n\t"
575 /* Keep the assembler from reordering and placing JR here. */
576 ".set noreorder\n\t"
577 "nop\n\t"
578 ".global kretprobe_trampoline\n"
579 "kretprobe_trampoline:\n\t"
580 "nop\n\t"
581 ".set pop"
582 : : : "memory");
585 void kretprobe_trampoline(void);
587 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
588 struct pt_regs *regs)
590 ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
592 /* Replace the return addr with trampoline addr */
593 regs->regs[31] = (unsigned long)kretprobe_trampoline;
597 * Called when the probe at kretprobe trampoline is hit
599 static int __kprobes trampoline_probe_handler(struct kprobe *p,
600 struct pt_regs *regs)
602 struct kretprobe_instance *ri = NULL;
603 struct hlist_head *head, empty_rp;
604 struct hlist_node *tmp;
605 unsigned long flags, orig_ret_address = 0;
606 unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
608 INIT_HLIST_HEAD(&empty_rp);
609 kretprobe_hash_lock(current, &head, &flags);
612 * It is possible to have multiple instances associated with a given
613 * task either because an multiple functions in the call path
614 * have a return probe installed on them, and/or more than one return
615 * return probe was registered for a target function.
617 * We can handle this because:
618 * - instances are always inserted at the head of the list
619 * - when multiple return probes are registered for the same
620 * function, the first instance's ret_addr will point to the
621 * real return address, and all the rest will point to
622 * kretprobe_trampoline
624 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
625 if (ri->task != current)
626 /* another task is sharing our hash bucket */
627 continue;
629 if (ri->rp && ri->rp->handler)
630 ri->rp->handler(ri, regs);
632 orig_ret_address = (unsigned long)ri->ret_addr;
633 recycle_rp_inst(ri, &empty_rp);
635 if (orig_ret_address != trampoline_address)
637 * This is the real return address. Any other
638 * instances associated with this task are for
639 * other calls deeper on the call stack
641 break;
644 kretprobe_assert(ri, orig_ret_address, trampoline_address);
645 instruction_pointer(regs) = orig_ret_address;
647 reset_current_kprobe();
648 kretprobe_hash_unlock(current, &flags);
649 preempt_enable_no_resched();
651 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
652 hlist_del(&ri->hlist);
653 kfree(ri);
656 * By returning a non-zero value, we are telling
657 * kprobe_handler() that we don't want the post_handler
658 * to run (and have re-enabled preemption)
660 return 1;
663 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
665 if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
666 return 1;
668 return 0;
671 static struct kprobe trampoline_p = {
672 .addr = (kprobe_opcode_t *)kretprobe_trampoline,
673 .pre_handler = trampoline_probe_handler
676 int __init arch_init_kprobes(void)
678 return register_kprobe(&trampoline_p);