irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / arch / mips / kernel / pm-cps.c
blobf63a289977cc5f34d5ee52daf61f1065153166a1
1 /*
2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
11 #include <linux/init.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
15 #include <asm/asm-offsets.h>
16 #include <asm/cacheflush.h>
17 #include <asm/cacheops.h>
18 #include <asm/idle.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
28 * cps_nc_entry_fn - type of a generated non-coherent state entry function
29 * @online: the count of online coupled VPEs
30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
32 * The code entering & exiting non-coherent states is generated at runtime
33 * using uasm, in order to ensure that the compiler cannot insert a stray
34 * memory access at an unfortunate time and to allow the generation of optimal
35 * core-specific code particularly for cache routines. If coupled_coherence
36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37 * returns the number of VPEs that were in the wait state at the point this
38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39 * the entry function for CPS_PM_NC_WAIT.
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
44 * The entry point of the generated non-coherent idle state entry/exit
45 * functions. Actually per-core rather than per-CPU.
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 nc_asm_enter);
50 /* Bitmap indicating which states are supported by the system */
51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
54 * Indicates the number of coupled VPEs ready to operate in a non-coherent
55 * state. Actually per-core rather than per-CPU.
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
64 * Used to synchronize entry to deep idle states. Actually per-core rather
65 * than per-CPU.
67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels[32] __initdata;
74 static struct uasm_reloc relocs[32] __initdata;
76 /* CPU dependant sync types */
77 static unsigned stype_intervention;
78 static unsigned stype_memory;
79 static unsigned stype_ordering;
81 enum mips_reg {
82 zero, at, v0, v1, a0, a1, a2, a3,
83 t0, t1, t2, t3, t4, t5, t6, t7,
84 s0, s1, s2, s3, s4, s5, s6, s7,
85 t8, t9, k0, k1, gp, sp, fp, ra,
88 bool cps_pm_support_state(enum cps_pm_state state)
90 return test_bit(state, state_support);
93 static void coupled_barrier(atomic_t *a, unsigned online)
96 * This function is effectively the same as
97 * cpuidle_coupled_parallel_barrier, which can't be used here since
98 * there's no cpuidle device.
101 if (!coupled_coherence)
102 return;
104 smp_mb__before_atomic();
105 atomic_inc(a);
107 while (atomic_read(a) < online)
108 cpu_relax();
110 if (atomic_inc_return(a) == online * 2) {
111 atomic_set(a, 0);
112 return;
115 while (atomic_read(a) > online)
116 cpu_relax();
119 int cps_pm_enter_state(enum cps_pm_state state)
121 unsigned cpu = smp_processor_id();
122 unsigned core = current_cpu_data.core;
123 unsigned online, left;
124 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
125 u32 *core_ready_count, *nc_core_ready_count;
126 void *nc_addr;
127 cps_nc_entry_fn entry;
128 struct core_boot_config *core_cfg;
129 struct vpe_boot_config *vpe_cfg;
131 /* Check that there is an entry function for this state */
132 entry = per_cpu(nc_asm_enter, core)[state];
133 if (!entry)
134 return -EINVAL;
136 /* Calculate which coupled CPUs (VPEs) are online */
137 #ifdef CONFIG_MIPS_MT
138 if (cpu_online(cpu)) {
139 cpumask_and(coupled_mask, cpu_online_mask,
140 &cpu_sibling_map[cpu]);
141 online = cpumask_weight(coupled_mask);
142 cpumask_clear_cpu(cpu, coupled_mask);
143 } else
144 #endif
146 cpumask_clear(coupled_mask);
147 online = 1;
150 /* Setup the VPE to run mips_cps_pm_restore when started again */
151 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
152 /* Power gating relies upon CPS SMP */
153 if (!mips_cps_smp_in_use())
154 return -EINVAL;
156 core_cfg = &mips_cps_core_bootcfg[core];
157 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
158 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
159 vpe_cfg->gp = (unsigned long)current_thread_info();
160 vpe_cfg->sp = 0;
163 /* Indicate that this CPU might not be coherent */
164 cpumask_clear_cpu(cpu, &cpu_coherent_mask);
165 smp_mb__after_atomic();
167 /* Create a non-coherent mapping of the core ready_count */
168 core_ready_count = per_cpu(ready_count, core);
169 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
170 (unsigned long)core_ready_count);
171 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
172 nc_core_ready_count = nc_addr;
174 /* Ensure ready_count is zero-initialised before the assembly runs */
175 ACCESS_ONCE(*nc_core_ready_count) = 0;
176 coupled_barrier(&per_cpu(pm_barrier, core), online);
178 /* Run the generated entry code */
179 left = entry(online, nc_core_ready_count);
181 /* Remove the non-coherent mapping of ready_count */
182 kunmap_noncoherent();
184 /* Indicate that this CPU is definitely coherent */
185 cpumask_set_cpu(cpu, &cpu_coherent_mask);
188 * If this VPE is the first to leave the non-coherent wait state then
189 * it needs to wake up any coupled VPEs still running their wait
190 * instruction so that they return to cpuidle, which can then complete
191 * coordination between the coupled VPEs & provide the governor with
192 * a chance to reflect on the length of time the VPEs were in the
193 * idle state.
195 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
196 arch_send_call_function_ipi_mask(coupled_mask);
198 return 0;
201 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
202 struct uasm_reloc **pr,
203 const struct cache_desc *cache,
204 unsigned op, int lbl)
206 unsigned cache_size = cache->ways << cache->waybit;
207 unsigned i;
208 const unsigned unroll_lines = 32;
210 /* If the cache isn't present this function has it easy */
211 if (cache->flags & MIPS_CACHE_NOT_PRESENT)
212 return;
214 /* Load base address */
215 UASM_i_LA(pp, t0, (long)CKSEG0);
217 /* Calculate end address */
218 if (cache_size < 0x8000)
219 uasm_i_addiu(pp, t1, t0, cache_size);
220 else
221 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
223 /* Start of cache op loop */
224 uasm_build_label(pl, *pp, lbl);
226 /* Generate the cache ops */
227 for (i = 0; i < unroll_lines; i++)
228 uasm_i_cache(pp, op, i * cache->linesz, t0);
230 /* Update the base address */
231 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
233 /* Loop if we haven't reached the end address yet */
234 uasm_il_bne(pp, pr, t0, t1, lbl);
235 uasm_i_nop(pp);
238 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
239 struct uasm_reloc **pr,
240 const struct cpuinfo_mips *cpu_info,
241 int lbl)
243 unsigned i, fsb_size = 8;
244 unsigned num_loads = (fsb_size * 3) / 2;
245 unsigned line_stride = 2;
246 unsigned line_size = cpu_info->dcache.linesz;
247 unsigned perf_counter, perf_event;
248 unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
251 * Determine whether this CPU requires an FSB flush, and if so which
252 * performance counter/event reflect stalls due to a full FSB.
254 switch (__get_cpu_type(cpu_info->cputype)) {
255 case CPU_INTERAPTIV:
256 perf_counter = 1;
257 perf_event = 51;
258 break;
260 case CPU_PROAPTIV:
261 /* Newer proAptiv cores don't require this workaround */
262 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
263 return 0;
265 /* On older ones it's unavailable */
266 return -1;
268 /* CPUs which do not require the workaround */
269 case CPU_P5600:
270 case CPU_I6400:
271 return 0;
273 default:
274 WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
275 return -1;
279 * Ensure that the fill/store buffer (FSB) is not holding the results
280 * of a prefetch, since if it is then the CPC sequencer may become
281 * stuck in the D3 (ClrBus) state whilst entering a low power state.
284 /* Preserve perf counter setup */
285 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
286 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
288 /* Setup perf counter to count FSB full pipeline stalls */
289 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
290 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
291 uasm_i_ehb(pp);
292 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
293 uasm_i_ehb(pp);
295 /* Base address for loads */
296 UASM_i_LA(pp, t0, (long)CKSEG0);
298 /* Start of clear loop */
299 uasm_build_label(pl, *pp, lbl);
301 /* Perform some loads to fill the FSB */
302 for (i = 0; i < num_loads; i++)
303 uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
306 * Invalidate the new D-cache entries so that the cache will need
307 * refilling (via the FSB) if the loop is executed again.
309 for (i = 0; i < num_loads; i++) {
310 uasm_i_cache(pp, Hit_Invalidate_D,
311 i * line_size * line_stride, t0);
312 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
313 i * line_size * line_stride, t0);
316 /* Completion barrier */
317 uasm_i_sync(pp, stype_memory);
318 uasm_i_ehb(pp);
320 /* Check whether the pipeline stalled due to the FSB being full */
321 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
323 /* Loop if it didn't */
324 uasm_il_beqz(pp, pr, t1, lbl);
325 uasm_i_nop(pp);
327 /* Restore perf counter 1. The count may well now be wrong... */
328 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
329 uasm_i_ehb(pp);
330 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
331 uasm_i_ehb(pp);
333 return 0;
336 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
337 struct uasm_reloc **pr,
338 unsigned r_addr, int lbl)
340 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
341 uasm_build_label(pl, *pp, lbl);
342 uasm_i_ll(pp, t1, 0, r_addr);
343 uasm_i_or(pp, t1, t1, t0);
344 uasm_i_sc(pp, t1, 0, r_addr);
345 uasm_il_beqz(pp, pr, t1, lbl);
346 uasm_i_nop(pp);
349 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
351 struct uasm_label *l = labels;
352 struct uasm_reloc *r = relocs;
353 u32 *buf, *p;
354 const unsigned r_online = a0;
355 const unsigned r_nc_count = a1;
356 const unsigned r_pcohctl = t7;
357 const unsigned max_instrs = 256;
358 unsigned cpc_cmd;
359 int err;
360 enum {
361 lbl_incready = 1,
362 lbl_poll_cont,
363 lbl_secondary_hang,
364 lbl_disable_coherence,
365 lbl_flush_fsb,
366 lbl_invicache,
367 lbl_flushdcache,
368 lbl_hang,
369 lbl_set_cont,
370 lbl_secondary_cont,
371 lbl_decready,
374 /* Allocate a buffer to hold the generated code */
375 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
376 if (!buf)
377 return NULL;
379 /* Clear labels & relocs ready for (re)use */
380 memset(labels, 0, sizeof(labels));
381 memset(relocs, 0, sizeof(relocs));
383 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
384 /* Power gating relies upon CPS SMP */
385 if (!mips_cps_smp_in_use())
386 goto out_err;
389 * Save CPU state. Note the non-standard calling convention
390 * with the return address placed in v0 to avoid clobbering
391 * the ra register before it is saved.
393 UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
394 uasm_i_jalr(&p, v0, t0);
395 uasm_i_nop(&p);
399 * Load addresses of required CM & CPC registers. This is done early
400 * because they're needed in both the enable & disable coherence steps
401 * but in the coupled case the enable step will only run on one VPE.
403 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
405 if (coupled_coherence) {
406 /* Increment ready_count */
407 uasm_i_sync(&p, stype_ordering);
408 uasm_build_label(&l, p, lbl_incready);
409 uasm_i_ll(&p, t1, 0, r_nc_count);
410 uasm_i_addiu(&p, t2, t1, 1);
411 uasm_i_sc(&p, t2, 0, r_nc_count);
412 uasm_il_beqz(&p, &r, t2, lbl_incready);
413 uasm_i_addiu(&p, t1, t1, 1);
415 /* Ordering barrier */
416 uasm_i_sync(&p, stype_ordering);
419 * If this is the last VPE to become ready for non-coherence
420 * then it should branch below.
422 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
423 uasm_i_nop(&p);
425 if (state < CPS_PM_POWER_GATED) {
427 * Otherwise this is not the last VPE to become ready
428 * for non-coherence. It needs to wait until coherence
429 * has been disabled before proceeding, which it will do
430 * by polling for the top bit of ready_count being set.
432 uasm_i_addiu(&p, t1, zero, -1);
433 uasm_build_label(&l, p, lbl_poll_cont);
434 uasm_i_lw(&p, t0, 0, r_nc_count);
435 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
436 uasm_i_ehb(&p);
437 uasm_i_yield(&p, zero, t1);
438 uasm_il_b(&p, &r, lbl_poll_cont);
439 uasm_i_nop(&p);
440 } else {
442 * The core will lose power & this VPE will not continue
443 * so it can simply halt here.
445 uasm_i_addiu(&p, t0, zero, TCHALT_H);
446 uasm_i_mtc0(&p, t0, 2, 4);
447 uasm_build_label(&l, p, lbl_secondary_hang);
448 uasm_il_b(&p, &r, lbl_secondary_hang);
449 uasm_i_nop(&p);
454 * This is the point of no return - this VPE will now proceed to
455 * disable coherence. At this point we *must* be sure that no other
456 * VPE within the core will interfere with the L1 dcache.
458 uasm_build_label(&l, p, lbl_disable_coherence);
460 /* Invalidate the L1 icache */
461 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
462 Index_Invalidate_I, lbl_invicache);
464 /* Writeback & invalidate the L1 dcache */
465 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
466 Index_Writeback_Inv_D, lbl_flushdcache);
468 /* Completion barrier */
469 uasm_i_sync(&p, stype_memory);
470 uasm_i_ehb(&p);
473 * Disable all but self interventions. The load from COHCTL is defined
474 * by the interAptiv & proAptiv SUMs as ensuring that the operation
475 * resulting from the preceeding store is complete.
477 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
478 uasm_i_sw(&p, t0, 0, r_pcohctl);
479 uasm_i_lw(&p, t0, 0, r_pcohctl);
481 /* Sync to ensure previous interventions are complete */
482 uasm_i_sync(&p, stype_intervention);
483 uasm_i_ehb(&p);
485 /* Disable coherence */
486 uasm_i_sw(&p, zero, 0, r_pcohctl);
487 uasm_i_lw(&p, t0, 0, r_pcohctl);
489 if (state >= CPS_PM_CLOCK_GATED) {
490 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
491 lbl_flush_fsb);
492 if (err)
493 goto out_err;
495 /* Determine the CPC command to issue */
496 switch (state) {
497 case CPS_PM_CLOCK_GATED:
498 cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
499 break;
500 case CPS_PM_POWER_GATED:
501 cpc_cmd = CPC_Cx_CMD_PWRDOWN;
502 break;
503 default:
504 BUG();
505 goto out_err;
508 /* Issue the CPC command */
509 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
510 uasm_i_addiu(&p, t1, zero, cpc_cmd);
511 uasm_i_sw(&p, t1, 0, t0);
513 if (state == CPS_PM_POWER_GATED) {
514 /* If anything goes wrong just hang */
515 uasm_build_label(&l, p, lbl_hang);
516 uasm_il_b(&p, &r, lbl_hang);
517 uasm_i_nop(&p);
520 * There's no point generating more code, the core is
521 * powered down & if powered back up will run from the
522 * reset vector not from here.
524 goto gen_done;
527 /* Completion barrier */
528 uasm_i_sync(&p, stype_memory);
529 uasm_i_ehb(&p);
532 if (state == CPS_PM_NC_WAIT) {
534 * At this point it is safe for all VPEs to proceed with
535 * execution. This VPE will set the top bit of ready_count
536 * to indicate to the other VPEs that they may continue.
538 if (coupled_coherence)
539 cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
540 lbl_set_cont);
543 * VPEs which did not disable coherence will continue
544 * executing, after coherence has been disabled, from this
545 * point.
547 uasm_build_label(&l, p, lbl_secondary_cont);
549 /* Now perform our wait */
550 uasm_i_wait(&p, 0);
554 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
555 * will run this. The first will actually re-enable coherence & the
556 * rest will just be performing a rather unusual nop.
558 uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
559 uasm_i_sw(&p, t0, 0, r_pcohctl);
560 uasm_i_lw(&p, t0, 0, r_pcohctl);
562 /* Completion barrier */
563 uasm_i_sync(&p, stype_memory);
564 uasm_i_ehb(&p);
566 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
567 /* Decrement ready_count */
568 uasm_build_label(&l, p, lbl_decready);
569 uasm_i_sync(&p, stype_ordering);
570 uasm_i_ll(&p, t1, 0, r_nc_count);
571 uasm_i_addiu(&p, t2, t1, -1);
572 uasm_i_sc(&p, t2, 0, r_nc_count);
573 uasm_il_beqz(&p, &r, t2, lbl_decready);
574 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
576 /* Ordering barrier */
577 uasm_i_sync(&p, stype_ordering);
580 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
582 * At this point it is safe for all VPEs to proceed with
583 * execution. This VPE will set the top bit of ready_count
584 * to indicate to the other VPEs that they may continue.
586 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
589 * This core will be reliant upon another core sending a
590 * power-up command to the CPC in order to resume operation.
591 * Thus an arbitrary VPE can't trigger the core leaving the
592 * idle state and the one that disables coherence might as well
593 * be the one to re-enable it. The rest will continue from here
594 * after that has been done.
596 uasm_build_label(&l, p, lbl_secondary_cont);
598 /* Ordering barrier */
599 uasm_i_sync(&p, stype_ordering);
602 /* The core is coherent, time to return to C code */
603 uasm_i_jr(&p, ra);
604 uasm_i_nop(&p);
606 gen_done:
607 /* Ensure the code didn't exceed the resources allocated for it */
608 BUG_ON((p - buf) > max_instrs);
609 BUG_ON((l - labels) > ARRAY_SIZE(labels));
610 BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
612 /* Patch branch offsets */
613 uasm_resolve_relocs(relocs, labels);
615 /* Flush the icache */
616 local_flush_icache_range((unsigned long)buf, (unsigned long)p);
618 return buf;
619 out_err:
620 kfree(buf);
621 return NULL;
624 static int __init cps_gen_core_entries(unsigned cpu)
626 enum cps_pm_state state;
627 unsigned core = cpu_data[cpu].core;
628 unsigned dlinesz = cpu_data[cpu].dcache.linesz;
629 void *entry_fn, *core_rc;
631 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
632 if (per_cpu(nc_asm_enter, core)[state])
633 continue;
634 if (!test_bit(state, state_support))
635 continue;
637 entry_fn = cps_gen_entry_code(cpu, state);
638 if (!entry_fn) {
639 pr_err("Failed to generate core %u state %u entry\n",
640 core, state);
641 clear_bit(state, state_support);
644 per_cpu(nc_asm_enter, core)[state] = entry_fn;
647 if (!per_cpu(ready_count, core)) {
648 core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
649 if (!core_rc) {
650 pr_err("Failed allocate core %u ready_count\n", core);
651 return -ENOMEM;
653 per_cpu(ready_count_alloc, core) = core_rc;
655 /* Ensure ready_count is aligned to a cacheline boundary */
656 core_rc += dlinesz - 1;
657 core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
658 per_cpu(ready_count, core) = core_rc;
661 return 0;
664 static int __init cps_pm_init(void)
666 unsigned cpu;
667 int err;
669 /* Detect appropriate sync types for the system */
670 switch (current_cpu_data.cputype) {
671 case CPU_INTERAPTIV:
672 case CPU_PROAPTIV:
673 case CPU_M5150:
674 case CPU_P5600:
675 case CPU_I6400:
676 stype_intervention = 0x2;
677 stype_memory = 0x3;
678 stype_ordering = 0x10;
679 break;
681 default:
682 pr_warn("Power management is using heavyweight sync 0\n");
685 /* A CM is required for all non-coherent states */
686 if (!mips_cm_present()) {
687 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
688 goto out;
692 * If interrupts were enabled whilst running a wait instruction on a
693 * non-coherent core then the VPE may end up processing interrupts
694 * whilst non-coherent. That would be bad.
696 if (cpu_wait == r4k_wait_irqoff)
697 set_bit(CPS_PM_NC_WAIT, state_support);
698 else
699 pr_warn("pm-cps: non-coherent wait unavailable\n");
701 /* Detect whether a CPC is present */
702 if (mips_cpc_present()) {
703 /* Detect whether clock gating is implemented */
704 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
705 set_bit(CPS_PM_CLOCK_GATED, state_support);
706 else
707 pr_warn("pm-cps: CPC does not support clock gating\n");
709 /* Power gating is available with CPS SMP & any CPC */
710 if (mips_cps_smp_in_use())
711 set_bit(CPS_PM_POWER_GATED, state_support);
712 else
713 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
714 } else {
715 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
718 for_each_present_cpu(cpu) {
719 err = cps_gen_core_entries(cpu);
720 if (err)
721 return err;
723 out:
724 return 0;
726 arch_initcall(cps_pm_init);