irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / arch / mips / kernel / traps.c
blob886cb1976e90f682dafac7a958043d68bc4b6473
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
40 #include <asm/addrspace.h>
41 #include <asm/bootinfo.h>
42 #include <asm/branch.h>
43 #include <asm/break.h>
44 #include <asm/cop2.h>
45 #include <asm/cpu.h>
46 #include <asm/cpu-type.h>
47 #include <asm/dsp.h>
48 #include <asm/fpu.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/idle.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 #include <asm/mipsregs.h>
53 #include <asm/mipsmtregs.h>
54 #include <asm/module.h>
55 #include <asm/msa.h>
56 #include <asm/pgtable.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/tlbdebug.h>
60 #include <asm/traps.h>
61 #include <asm/uaccess.h>
62 #include <asm/watch.h>
63 #include <asm/mmu_context.h>
64 #include <asm/types.h>
65 #include <asm/stacktrace.h>
66 #include <asm/uasm.h>
68 extern void check_wait(void);
69 extern asmlinkage void rollback_handle_int(void);
70 extern asmlinkage void handle_int(void);
71 extern u32 handle_tlbl[];
72 extern u32 handle_tlbs[];
73 extern u32 handle_tlbm[];
74 extern asmlinkage void handle_adel(void);
75 extern asmlinkage void handle_ades(void);
76 extern asmlinkage void handle_ibe(void);
77 extern asmlinkage void handle_dbe(void);
78 extern asmlinkage void handle_sys(void);
79 extern asmlinkage void handle_bp(void);
80 extern asmlinkage void handle_ri(void);
81 extern asmlinkage void handle_ri_rdhwr_vivt(void);
82 extern asmlinkage void handle_ri_rdhwr(void);
83 extern asmlinkage void handle_cpu(void);
84 extern asmlinkage void handle_ov(void);
85 extern asmlinkage void handle_tr(void);
86 extern asmlinkage void handle_msa_fpe(void);
87 extern asmlinkage void handle_fpe(void);
88 extern asmlinkage void handle_ftlb(void);
89 extern asmlinkage void handle_msa(void);
90 extern asmlinkage void handle_mdmx(void);
91 extern asmlinkage void handle_watch(void);
92 extern asmlinkage void handle_mt(void);
93 extern asmlinkage void handle_dsp(void);
94 extern asmlinkage void handle_mcheck(void);
95 extern asmlinkage void handle_reserved(void);
96 extern void tlb_do_page_fault_0(void);
98 void (*board_be_init)(void);
99 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
100 void (*board_nmi_handler_setup)(void);
101 void (*board_ejtag_handler_setup)(void);
102 void (*board_bind_eic_interrupt)(int irq, int regset);
103 void (*board_ebase_setup)(void);
104 void(*board_cache_error_setup)(void);
106 static void show_raw_backtrace(unsigned long reg29)
108 unsigned long *sp = (unsigned long *)(reg29 & ~3);
109 unsigned long addr;
111 printk("Call Trace:");
112 #ifdef CONFIG_KALLSYMS
113 printk("\n");
114 #endif
115 while (!kstack_end(sp)) {
116 unsigned long __user *p =
117 (unsigned long __user *)(unsigned long)sp++;
118 if (__get_user(addr, p)) {
119 printk(" (Bad stack address)");
120 break;
122 if (__kernel_text_address(addr))
123 print_ip_sym(addr);
125 printk("\n");
128 #ifdef CONFIG_KALLSYMS
129 int raw_show_trace;
130 static int __init set_raw_show_trace(char *str)
132 raw_show_trace = 1;
133 return 1;
135 __setup("raw_show_trace", set_raw_show_trace);
136 #endif
138 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
140 unsigned long sp = regs->regs[29];
141 unsigned long ra = regs->regs[31];
142 unsigned long pc = regs->cp0_epc;
144 if (!task)
145 task = current;
147 if (raw_show_trace || !__kernel_text_address(pc)) {
148 show_raw_backtrace(sp);
149 return;
151 printk("Call Trace:\n");
152 do {
153 print_ip_sym(pc);
154 pc = unwind_stack(task, &sp, pc, &ra);
155 } while (pc);
156 printk("\n");
160 * This routine abuses get_user()/put_user() to reference pointers
161 * with at least a bit of error checking ...
163 static void show_stacktrace(struct task_struct *task,
164 const struct pt_regs *regs)
166 const int field = 2 * sizeof(unsigned long);
167 long stackdata;
168 int i;
169 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
171 printk("Stack :");
172 i = 0;
173 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
174 if (i && ((i % (64 / field)) == 0))
175 printk("\n ");
176 if (i > 39) {
177 printk(" ...");
178 break;
181 if (__get_user(stackdata, sp++)) {
182 printk(" (Bad stack address)");
183 break;
186 printk(" %0*lx", field, stackdata);
187 i++;
189 printk("\n");
190 show_backtrace(task, regs);
193 void show_stack(struct task_struct *task, unsigned long *sp)
195 struct pt_regs regs;
196 mm_segment_t old_fs = get_fs();
197 if (sp) {
198 regs.regs[29] = (unsigned long)sp;
199 regs.regs[31] = 0;
200 regs.cp0_epc = 0;
201 } else {
202 if (task && task != current) {
203 regs.regs[29] = task->thread.reg29;
204 regs.regs[31] = 0;
205 regs.cp0_epc = task->thread.reg31;
206 #ifdef CONFIG_KGDB_KDB
207 } else if (atomic_read(&kgdb_active) != -1 &&
208 kdb_current_regs) {
209 memcpy(&regs, kdb_current_regs, sizeof(regs));
210 #endif /* CONFIG_KGDB_KDB */
211 } else {
212 prepare_frametrace(&regs);
216 * show_stack() deals exclusively with kernel mode, so be sure to access
217 * the stack in the kernel (not user) address space.
219 set_fs(KERNEL_DS);
220 show_stacktrace(task, &regs);
221 set_fs(old_fs);
224 static void show_code(unsigned int __user *pc)
226 long i;
227 unsigned short __user *pc16 = NULL;
229 printk("\nCode:");
231 if ((unsigned long)pc & 1)
232 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
233 for(i = -3 ; i < 6 ; i++) {
234 unsigned int insn;
235 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
236 printk(" (Bad address in epc)\n");
237 break;
239 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
243 static void __show_regs(const struct pt_regs *regs)
245 const int field = 2 * sizeof(unsigned long);
246 unsigned int cause = regs->cp0_cause;
247 unsigned int exccode;
248 int i;
250 show_regs_print_info(KERN_DEFAULT);
253 * Saved main processor registers
255 for (i = 0; i < 32; ) {
256 if ((i % 4) == 0)
257 printk("$%2d :", i);
258 if (i == 0)
259 printk(" %0*lx", field, 0UL);
260 else if (i == 26 || i == 27)
261 printk(" %*s", field, "");
262 else
263 printk(" %0*lx", field, regs->regs[i]);
265 i++;
266 if ((i % 4) == 0)
267 printk("\n");
270 #ifdef CONFIG_CPU_HAS_SMARTMIPS
271 printk("Acx : %0*lx\n", field, regs->acx);
272 #endif
273 printk("Hi : %0*lx\n", field, regs->hi);
274 printk("Lo : %0*lx\n", field, regs->lo);
277 * Saved cp0 registers
279 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
280 (void *) regs->cp0_epc);
281 printk("ra : %0*lx %pS\n", field, regs->regs[31],
282 (void *) regs->regs[31]);
284 printk("Status: %08x ", (uint32_t) regs->cp0_status);
286 if (cpu_has_3kex) {
287 if (regs->cp0_status & ST0_KUO)
288 printk("KUo ");
289 if (regs->cp0_status & ST0_IEO)
290 printk("IEo ");
291 if (regs->cp0_status & ST0_KUP)
292 printk("KUp ");
293 if (regs->cp0_status & ST0_IEP)
294 printk("IEp ");
295 if (regs->cp0_status & ST0_KUC)
296 printk("KUc ");
297 if (regs->cp0_status & ST0_IEC)
298 printk("IEc ");
299 } else if (cpu_has_4kex) {
300 if (regs->cp0_status & ST0_KX)
301 printk("KX ");
302 if (regs->cp0_status & ST0_SX)
303 printk("SX ");
304 if (regs->cp0_status & ST0_UX)
305 printk("UX ");
306 switch (regs->cp0_status & ST0_KSU) {
307 case KSU_USER:
308 printk("USER ");
309 break;
310 case KSU_SUPERVISOR:
311 printk("SUPERVISOR ");
312 break;
313 case KSU_KERNEL:
314 printk("KERNEL ");
315 break;
316 default:
317 printk("BAD_MODE ");
318 break;
320 if (regs->cp0_status & ST0_ERL)
321 printk("ERL ");
322 if (regs->cp0_status & ST0_EXL)
323 printk("EXL ");
324 if (regs->cp0_status & ST0_IE)
325 printk("IE ");
327 printk("\n");
329 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
330 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
332 if (1 <= exccode && exccode <= 5)
333 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
335 printk("PrId : %08x (%s)\n", read_c0_prid(),
336 cpu_name_string());
340 * FIXME: really the generic show_regs should take a const pointer argument.
342 void show_regs(struct pt_regs *regs)
344 __show_regs((struct pt_regs *)regs);
347 void show_registers(struct pt_regs *regs)
349 const int field = 2 * sizeof(unsigned long);
350 mm_segment_t old_fs = get_fs();
352 __show_regs(regs);
353 print_modules();
354 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
355 current->comm, current->pid, current_thread_info(), current,
356 field, current_thread_info()->tp_value);
357 if (cpu_has_userlocal) {
358 unsigned long tls;
360 tls = read_c0_userlocal();
361 if (tls != current_thread_info()->tp_value)
362 printk("*HwTLS: %0*lx\n", field, tls);
365 if (!user_mode(regs))
366 /* Necessary for getting the correct stack content */
367 set_fs(KERNEL_DS);
368 show_stacktrace(current, regs);
369 show_code((unsigned int __user *) regs->cp0_epc);
370 printk("\n");
371 set_fs(old_fs);
374 static DEFINE_RAW_SPINLOCK(die_lock);
376 void __noreturn die(const char *str, struct pt_regs *regs)
378 static int die_counter;
379 int sig = SIGSEGV;
381 oops_enter();
383 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
384 SIGSEGV) == NOTIFY_STOP)
385 sig = 0;
387 console_verbose();
388 raw_spin_lock_irq(&die_lock);
389 bust_spinlocks(1);
391 printk("%s[#%d]:\n", str, ++die_counter);
392 show_registers(regs);
393 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
394 raw_spin_unlock_irq(&die_lock);
396 oops_exit();
398 if (in_interrupt())
399 panic("Fatal exception in interrupt");
401 if (panic_on_oops) {
402 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
403 ssleep(5);
404 panic("Fatal exception");
407 if (regs && kexec_should_crash(current))
408 crash_kexec(regs);
410 do_exit(sig);
413 extern struct exception_table_entry __start___dbe_table[];
414 extern struct exception_table_entry __stop___dbe_table[];
416 __asm__(
417 " .section __dbe_table, \"a\"\n"
418 " .previous \n");
420 /* Given an address, look for it in the exception tables. */
421 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
423 const struct exception_table_entry *e;
425 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
426 if (!e)
427 e = search_module_dbetables(addr);
428 return e;
431 asmlinkage void do_be(struct pt_regs *regs)
433 const int field = 2 * sizeof(unsigned long);
434 const struct exception_table_entry *fixup = NULL;
435 int data = regs->cp0_cause & 4;
436 int action = MIPS_BE_FATAL;
437 enum ctx_state prev_state;
439 prev_state = exception_enter();
440 /* XXX For now. Fixme, this searches the wrong table ... */
441 if (data && !user_mode(regs))
442 fixup = search_dbe_tables(exception_epc(regs));
444 if (fixup)
445 action = MIPS_BE_FIXUP;
447 if (board_be_handler)
448 action = board_be_handler(regs, fixup != NULL);
450 switch (action) {
451 case MIPS_BE_DISCARD:
452 goto out;
453 case MIPS_BE_FIXUP:
454 if (fixup) {
455 regs->cp0_epc = fixup->nextinsn;
456 goto out;
458 break;
459 default:
460 break;
464 * Assume it would be too dangerous to continue ...
466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
467 data ? "Data" : "Instruction",
468 field, regs->cp0_epc, field, regs->regs[31]);
469 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
470 SIGBUS) == NOTIFY_STOP)
471 goto out;
473 die_if_kernel("Oops", regs);
474 force_sig(SIGBUS, current);
476 out:
477 exception_exit(prev_state);
481 * ll/sc, rdhwr, sync emulation
484 #define OPCODE 0xfc000000
485 #define BASE 0x03e00000
486 #define RT 0x001f0000
487 #define OFFSET 0x0000ffff
488 #define LL 0xc0000000
489 #define SC 0xe0000000
490 #define SPEC0 0x00000000
491 #define SPEC3 0x7c000000
492 #define RD 0x0000f800
493 #define FUNC 0x0000003f
494 #define SYNC 0x0000000f
495 #define RDHWR 0x0000003b
497 /* microMIPS definitions */
498 #define MM_POOL32A_FUNC 0xfc00ffff
499 #define MM_RDHWR 0x00006b3c
500 #define MM_RS 0x001f0000
501 #define MM_RT 0x03e00000
504 * The ll_bit is cleared by r*_switch.S
507 unsigned int ll_bit;
508 struct task_struct *ll_task;
510 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
512 unsigned long value, __user *vaddr;
513 long offset;
516 * analyse the ll instruction that just caused a ri exception
517 * and put the referenced address to addr.
520 /* sign extend offset */
521 offset = opcode & OFFSET;
522 offset <<= 16;
523 offset >>= 16;
525 vaddr = (unsigned long __user *)
526 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
528 if ((unsigned long)vaddr & 3)
529 return SIGBUS;
530 if (get_user(value, vaddr))
531 return SIGSEGV;
533 preempt_disable();
535 if (ll_task == NULL || ll_task == current) {
536 ll_bit = 1;
537 } else {
538 ll_bit = 0;
540 ll_task = current;
542 preempt_enable();
544 regs->regs[(opcode & RT) >> 16] = value;
546 return 0;
549 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
551 unsigned long __user *vaddr;
552 unsigned long reg;
553 long offset;
556 * analyse the sc instruction that just caused a ri exception
557 * and put the referenced address to addr.
560 /* sign extend offset */
561 offset = opcode & OFFSET;
562 offset <<= 16;
563 offset >>= 16;
565 vaddr = (unsigned long __user *)
566 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
567 reg = (opcode & RT) >> 16;
569 if ((unsigned long)vaddr & 3)
570 return SIGBUS;
572 preempt_disable();
574 if (ll_bit == 0 || ll_task != current) {
575 regs->regs[reg] = 0;
576 preempt_enable();
577 return 0;
580 preempt_enable();
582 if (put_user(regs->regs[reg], vaddr))
583 return SIGSEGV;
585 regs->regs[reg] = 1;
587 return 0;
591 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
592 * opcodes are supposed to result in coprocessor unusable exceptions if
593 * executed on ll/sc-less processors. That's the theory. In practice a
594 * few processors such as NEC's VR4100 throw reserved instruction exceptions
595 * instead, so we're doing the emulation thing in both exception handlers.
597 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
599 if ((opcode & OPCODE) == LL) {
600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
601 1, regs, 0);
602 return simulate_ll(regs, opcode);
604 if ((opcode & OPCODE) == SC) {
605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 1, regs, 0);
607 return simulate_sc(regs, opcode);
610 return -1; /* Must be something else ... */
614 * Simulate trapping 'rdhwr' instructions to provide user accessible
615 * registers not implemented in hardware.
617 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
619 struct thread_info *ti = task_thread_info(current);
621 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
622 1, regs, 0);
623 switch (rd) {
624 case 0: /* CPU number */
625 regs->regs[rt] = smp_processor_id();
626 return 0;
627 case 1: /* SYNCI length */
628 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
629 current_cpu_data.icache.linesz);
630 return 0;
631 case 2: /* Read count register */
632 regs->regs[rt] = read_c0_count();
633 return 0;
634 case 3: /* Count register resolution */
635 switch (current_cpu_type()) {
636 case CPU_20KC:
637 case CPU_25KF:
638 regs->regs[rt] = 1;
639 break;
640 default:
641 regs->regs[rt] = 2;
643 return 0;
644 case 29:
645 regs->regs[rt] = ti->tp_value;
646 return 0;
647 default:
648 return -1;
652 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
654 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
655 int rd = (opcode & RD) >> 11;
656 int rt = (opcode & RT) >> 16;
658 simulate_rdhwr(regs, rd, rt);
659 return 0;
662 /* Not ours. */
663 return -1;
666 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
668 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
669 int rd = (opcode & MM_RS) >> 16;
670 int rt = (opcode & MM_RT) >> 21;
671 simulate_rdhwr(regs, rd, rt);
672 return 0;
675 /* Not ours. */
676 return -1;
679 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
681 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
682 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
683 1, regs, 0);
684 return 0;
687 return -1; /* Must be something else ... */
690 asmlinkage void do_ov(struct pt_regs *regs)
692 enum ctx_state prev_state;
693 siginfo_t info;
695 prev_state = exception_enter();
696 die_if_kernel("Integer overflow", regs);
698 info.si_code = FPE_INTOVF;
699 info.si_signo = SIGFPE;
700 info.si_errno = 0;
701 info.si_addr = (void __user *) regs->cp0_epc;
702 force_sig_info(SIGFPE, &info, current);
703 exception_exit(prev_state);
706 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
708 struct siginfo si = { 0 };
710 switch (sig) {
711 case 0:
712 return 0;
714 case SIGFPE:
715 si.si_addr = fault_addr;
716 si.si_signo = sig;
718 * Inexact can happen together with Overflow or Underflow.
719 * Respect the mask to deliver the correct exception.
721 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
722 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
723 if (fcr31 & FPU_CSR_INV_X)
724 si.si_code = FPE_FLTINV;
725 else if (fcr31 & FPU_CSR_DIV_X)
726 si.si_code = FPE_FLTDIV;
727 else if (fcr31 & FPU_CSR_OVF_X)
728 si.si_code = FPE_FLTOVF;
729 else if (fcr31 & FPU_CSR_UDF_X)
730 si.si_code = FPE_FLTUND;
731 else if (fcr31 & FPU_CSR_INE_X)
732 si.si_code = FPE_FLTRES;
733 else
734 si.si_code = __SI_FAULT;
735 force_sig_info(sig, &si, current);
736 return 1;
738 case SIGBUS:
739 si.si_addr = fault_addr;
740 si.si_signo = sig;
741 si.si_code = BUS_ADRERR;
742 force_sig_info(sig, &si, current);
743 return 1;
745 case SIGSEGV:
746 si.si_addr = fault_addr;
747 si.si_signo = sig;
748 down_read(&current->mm->mmap_sem);
749 if (find_vma(current->mm, (unsigned long)fault_addr))
750 si.si_code = SEGV_ACCERR;
751 else
752 si.si_code = SEGV_MAPERR;
753 up_read(&current->mm->mmap_sem);
754 force_sig_info(sig, &si, current);
755 return 1;
757 default:
758 force_sig(sig, current);
759 return 1;
763 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
764 unsigned long old_epc, unsigned long old_ra)
766 union mips_instruction inst = { .word = opcode };
767 void __user *fault_addr;
768 unsigned long fcr31;
769 int sig;
771 /* If it's obviously not an FP instruction, skip it */
772 switch (inst.i_format.opcode) {
773 case cop1_op:
774 case cop1x_op:
775 case lwc1_op:
776 case ldc1_op:
777 case swc1_op:
778 case sdc1_op:
779 break;
781 default:
782 return -1;
786 * do_ri skipped over the instruction via compute_return_epc, undo
787 * that for the FPU emulator.
789 regs->cp0_epc = old_epc;
790 regs->regs[31] = old_ra;
792 /* Save the FP context to struct thread_struct */
793 lose_fpu(1);
795 /* Run the emulator */
796 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
797 &fault_addr);
798 fcr31 = current->thread.fpu.fcr31;
801 * We can't allow the emulated instruction to leave any of
802 * the cause bits set in $fcr31.
804 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
806 /* Restore the hardware register state */
807 own_fpu(1);
809 /* Send a signal if required. */
810 process_fpemu_return(sig, fault_addr, fcr31);
812 return 0;
816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
818 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
820 enum ctx_state prev_state;
821 void __user *fault_addr;
822 int sig;
824 prev_state = exception_enter();
825 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
826 SIGFPE) == NOTIFY_STOP)
827 goto out;
829 /* Clear FCSR.Cause before enabling interrupts */
830 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
831 local_irq_enable();
833 die_if_kernel("FP exception in kernel code", regs);
835 if (fcr31 & FPU_CSR_UNI_X) {
837 * Unimplemented operation exception. If we've got the full
838 * software emulator on-board, let's use it...
840 * Force FPU to dump state into task/thread context. We're
841 * moving a lot of data here for what is probably a single
842 * instruction, but the alternative is to pre-decode the FP
843 * register operands before invoking the emulator, which seems
844 * a bit extreme for what should be an infrequent event.
846 /* Ensure 'resume' not overwrite saved fp context again. */
847 lose_fpu(1);
849 /* Run the emulator */
850 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
851 &fault_addr);
852 fcr31 = current->thread.fpu.fcr31;
855 * We can't allow the emulated instruction to leave any of
856 * the cause bits set in $fcr31.
858 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
860 /* Restore the hardware register state */
861 own_fpu(1); /* Using the FPU again. */
862 } else {
863 sig = SIGFPE;
864 fault_addr = (void __user *) regs->cp0_epc;
867 /* Send a signal if required. */
868 process_fpemu_return(sig, fault_addr, fcr31);
870 out:
871 exception_exit(prev_state);
874 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
875 const char *str)
877 siginfo_t info;
878 char b[40];
880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
881 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
882 SIGTRAP) == NOTIFY_STOP)
883 return;
884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
886 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
887 SIGTRAP) == NOTIFY_STOP)
888 return;
891 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
892 * insns, even for trap and break codes that indicate arithmetic
893 * failures. Weird ...
894 * But should we continue the brokenness??? --macro
896 switch (code) {
897 case BRK_OVERFLOW:
898 case BRK_DIVZERO:
899 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
900 die_if_kernel(b, regs);
901 if (code == BRK_DIVZERO)
902 info.si_code = FPE_INTDIV;
903 else
904 info.si_code = FPE_INTOVF;
905 info.si_signo = SIGFPE;
906 info.si_errno = 0;
907 info.si_addr = (void __user *) regs->cp0_epc;
908 force_sig_info(SIGFPE, &info, current);
909 break;
910 case BRK_BUG:
911 die_if_kernel("Kernel bug detected", regs);
912 force_sig(SIGTRAP, current);
913 break;
914 case BRK_MEMU:
916 * This breakpoint code is used by the FPU emulator to retake
917 * control of the CPU after executing the instruction from the
918 * delay slot of an emulated branch.
920 * Terminate if exception was recognized as a delay slot return
921 * otherwise handle as normal.
923 if (do_dsemulret(regs))
924 return;
926 die_if_kernel("Math emu break/trap", regs);
927 force_sig(SIGTRAP, current);
928 break;
929 default:
930 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
931 die_if_kernel(b, regs);
932 force_sig(SIGTRAP, current);
936 asmlinkage void do_bp(struct pt_regs *regs)
938 unsigned long epc = msk_isa16_mode(exception_epc(regs));
939 unsigned int opcode, bcode;
940 enum ctx_state prev_state;
941 mm_segment_t seg;
943 seg = get_fs();
944 if (!user_mode(regs))
945 set_fs(KERNEL_DS);
947 prev_state = exception_enter();
948 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
949 if (get_isa16_mode(regs->cp0_epc)) {
950 u16 instr[2];
952 if (__get_user(instr[0], (u16 __user *)epc))
953 goto out_sigsegv;
955 if (!cpu_has_mmips) {
956 /* MIPS16e mode */
957 bcode = (instr[0] >> 5) & 0x3f;
958 } else if (mm_insn_16bit(instr[0])) {
959 /* 16-bit microMIPS BREAK */
960 bcode = instr[0] & 0xf;
961 } else {
962 /* 32-bit microMIPS BREAK */
963 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
964 goto out_sigsegv;
965 opcode = (instr[0] << 16) | instr[1];
966 bcode = (opcode >> 6) & ((1 << 20) - 1);
968 } else {
969 if (__get_user(opcode, (unsigned int __user *)epc))
970 goto out_sigsegv;
971 bcode = (opcode >> 6) & ((1 << 20) - 1);
975 * There is the ancient bug in the MIPS assemblers that the break
976 * code starts left to bit 16 instead to bit 6 in the opcode.
977 * Gas is bug-compatible, but not always, grrr...
978 * We handle both cases with a simple heuristics. --macro
980 if (bcode >= (1 << 10))
981 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
984 * notify the kprobe handlers, if instruction is likely to
985 * pertain to them.
987 switch (bcode) {
988 case BRK_UPROBE:
989 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
990 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
991 goto out;
992 else
993 break;
994 case BRK_UPROBE_XOL:
995 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
996 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
997 goto out;
998 else
999 break;
1000 case BRK_KPROBE_BP:
1001 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1002 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1003 goto out;
1004 else
1005 break;
1006 case BRK_KPROBE_SSTEPBP:
1007 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009 goto out;
1010 else
1011 break;
1012 default:
1013 break;
1016 do_trap_or_bp(regs, bcode, "Break");
1018 out:
1019 set_fs(seg);
1020 exception_exit(prev_state);
1021 return;
1023 out_sigsegv:
1024 force_sig(SIGSEGV, current);
1025 goto out;
1028 asmlinkage void do_tr(struct pt_regs *regs)
1030 u32 opcode, tcode = 0;
1031 enum ctx_state prev_state;
1032 u16 instr[2];
1033 mm_segment_t seg;
1034 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1036 seg = get_fs();
1037 if (!user_mode(regs))
1038 set_fs(get_ds());
1040 prev_state = exception_enter();
1041 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1042 if (get_isa16_mode(regs->cp0_epc)) {
1043 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1044 __get_user(instr[1], (u16 __user *)(epc + 2)))
1045 goto out_sigsegv;
1046 opcode = (instr[0] << 16) | instr[1];
1047 /* Immediate versions don't provide a code. */
1048 if (!(opcode & OPCODE))
1049 tcode = (opcode >> 12) & ((1 << 4) - 1);
1050 } else {
1051 if (__get_user(opcode, (u32 __user *)epc))
1052 goto out_sigsegv;
1053 /* Immediate versions don't provide a code. */
1054 if (!(opcode & OPCODE))
1055 tcode = (opcode >> 6) & ((1 << 10) - 1);
1058 do_trap_or_bp(regs, tcode, "Trap");
1060 out:
1061 set_fs(seg);
1062 exception_exit(prev_state);
1063 return;
1065 out_sigsegv:
1066 force_sig(SIGSEGV, current);
1067 goto out;
1070 asmlinkage void do_ri(struct pt_regs *regs)
1072 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1073 unsigned long old_epc = regs->cp0_epc;
1074 unsigned long old31 = regs->regs[31];
1075 enum ctx_state prev_state;
1076 unsigned int opcode = 0;
1077 int status = -1;
1080 * Avoid any kernel code. Just emulate the R2 instruction
1081 * as quickly as possible.
1083 if (mipsr2_emulation && cpu_has_mips_r6 &&
1084 likely(user_mode(regs)) &&
1085 likely(get_user(opcode, epc) >= 0)) {
1086 unsigned long fcr31 = 0;
1088 status = mipsr2_decoder(regs, opcode, &fcr31);
1089 switch (status) {
1090 case 0:
1091 case SIGEMT:
1092 task_thread_info(current)->r2_emul_return = 1;
1093 return;
1094 case SIGILL:
1095 goto no_r2_instr;
1096 default:
1097 process_fpemu_return(status,
1098 &current->thread.cp0_baduaddr,
1099 fcr31);
1100 task_thread_info(current)->r2_emul_return = 1;
1101 return;
1105 no_r2_instr:
1107 prev_state = exception_enter();
1108 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1110 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1111 SIGILL) == NOTIFY_STOP)
1112 goto out;
1114 die_if_kernel("Reserved instruction in kernel code", regs);
1116 if (unlikely(compute_return_epc(regs) < 0))
1117 goto out;
1119 if (get_isa16_mode(regs->cp0_epc)) {
1120 unsigned short mmop[2] = { 0 };
1122 if (unlikely(get_user(mmop[0], epc) < 0))
1123 status = SIGSEGV;
1124 if (unlikely(get_user(mmop[1], epc) < 0))
1125 status = SIGSEGV;
1126 opcode = (mmop[0] << 16) | mmop[1];
1128 if (status < 0)
1129 status = simulate_rdhwr_mm(regs, opcode);
1130 } else {
1131 if (unlikely(get_user(opcode, epc) < 0))
1132 status = SIGSEGV;
1134 if (!cpu_has_llsc && status < 0)
1135 status = simulate_llsc(regs, opcode);
1137 if (status < 0)
1138 status = simulate_rdhwr_normal(regs, opcode);
1140 if (status < 0)
1141 status = simulate_sync(regs, opcode);
1143 if (status < 0)
1144 status = simulate_fp(regs, opcode, old_epc, old31);
1147 if (status < 0)
1148 status = SIGILL;
1150 if (unlikely(status > 0)) {
1151 regs->cp0_epc = old_epc; /* Undo skip-over. */
1152 regs->regs[31] = old31;
1153 force_sig(status, current);
1156 out:
1157 exception_exit(prev_state);
1161 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1162 * emulated more than some threshold number of instructions, force migration to
1163 * a "CPU" that has FP support.
1165 static void mt_ase_fp_affinity(void)
1167 #ifdef CONFIG_MIPS_MT_FPAFF
1168 if (mt_fpemul_threshold > 0 &&
1169 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1171 * If there's no FPU present, or if the application has already
1172 * restricted the allowed set to exclude any CPUs with FPUs,
1173 * we'll skip the procedure.
1175 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1176 cpumask_t tmask;
1178 current->thread.user_cpus_allowed
1179 = current->cpus_allowed;
1180 cpumask_and(&tmask, &current->cpus_allowed,
1181 &mt_fpu_cpumask);
1182 set_cpus_allowed_ptr(current, &tmask);
1183 set_thread_flag(TIF_FPUBOUND);
1186 #endif /* CONFIG_MIPS_MT_FPAFF */
1190 * No lock; only written during early bootup by CPU 0.
1192 static RAW_NOTIFIER_HEAD(cu2_chain);
1194 int __ref register_cu2_notifier(struct notifier_block *nb)
1196 return raw_notifier_chain_register(&cu2_chain, nb);
1199 int cu2_notifier_call_chain(unsigned long val, void *v)
1201 return raw_notifier_call_chain(&cu2_chain, val, v);
1204 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1205 void *data)
1207 struct pt_regs *regs = data;
1209 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1210 "instruction", regs);
1211 force_sig(SIGILL, current);
1213 return NOTIFY_OK;
1216 static int wait_on_fp_mode_switch(atomic_t *p)
1219 * The FP mode for this task is currently being switched. That may
1220 * involve modifications to the format of this tasks FP context which
1221 * make it unsafe to proceed with execution for the moment. Instead,
1222 * schedule some other task.
1224 schedule();
1225 return 0;
1228 static int enable_restore_fp_context(int msa)
1230 int err, was_fpu_owner, prior_msa;
1233 * If an FP mode switch is currently underway, wait for it to
1234 * complete before proceeding.
1236 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1237 wait_on_fp_mode_switch, TASK_KILLABLE);
1239 if (!used_math()) {
1240 /* First time FP context user. */
1241 preempt_disable();
1242 err = init_fpu();
1243 if (msa && !err) {
1244 enable_msa();
1245 _init_msa_upper();
1246 set_thread_flag(TIF_USEDMSA);
1247 set_thread_flag(TIF_MSA_CTX_LIVE);
1249 preempt_enable();
1250 if (!err)
1251 set_used_math();
1252 return err;
1256 * This task has formerly used the FP context.
1258 * If this thread has no live MSA vector context then we can simply
1259 * restore the scalar FP context. If it has live MSA vector context
1260 * (that is, it has or may have used MSA since last performing a
1261 * function call) then we'll need to restore the vector context. This
1262 * applies even if we're currently only executing a scalar FP
1263 * instruction. This is because if we were to later execute an MSA
1264 * instruction then we'd either have to:
1266 * - Restore the vector context & clobber any registers modified by
1267 * scalar FP instructions between now & then.
1269 * or
1271 * - Not restore the vector context & lose the most significant bits
1272 * of all vector registers.
1274 * Neither of those options is acceptable. We cannot restore the least
1275 * significant bits of the registers now & only restore the most
1276 * significant bits later because the most significant bits of any
1277 * vector registers whose aliased FP register is modified now will have
1278 * been zeroed. We'd have no way to know that when restoring the vector
1279 * context & thus may load an outdated value for the most significant
1280 * bits of a vector register.
1282 if (!msa && !thread_msa_context_live())
1283 return own_fpu(1);
1286 * This task is using or has previously used MSA. Thus we require
1287 * that Status.FR == 1.
1289 preempt_disable();
1290 was_fpu_owner = is_fpu_owner();
1291 err = own_fpu_inatomic(0);
1292 if (err)
1293 goto out;
1295 enable_msa();
1296 write_msa_csr(current->thread.fpu.msacsr);
1297 set_thread_flag(TIF_USEDMSA);
1300 * If this is the first time that the task is using MSA and it has
1301 * previously used scalar FP in this time slice then we already nave
1302 * FP context which we shouldn't clobber. We do however need to clear
1303 * the upper 64b of each vector register so that this task has no
1304 * opportunity to see data left behind by another.
1306 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1307 if (!prior_msa && was_fpu_owner) {
1308 _init_msa_upper();
1310 goto out;
1313 if (!prior_msa) {
1315 * Restore the least significant 64b of each vector register
1316 * from the existing scalar FP context.
1318 _restore_fp(current);
1321 * The task has not formerly used MSA, so clear the upper 64b
1322 * of each vector register such that it cannot see data left
1323 * behind by another task.
1325 _init_msa_upper();
1326 } else {
1327 /* We need to restore the vector context. */
1328 restore_msa(current);
1330 /* Restore the scalar FP control & status register */
1331 if (!was_fpu_owner)
1332 write_32bit_cp1_register(CP1_STATUS,
1333 current->thread.fpu.fcr31);
1336 out:
1337 preempt_enable();
1339 return 0;
1342 asmlinkage void do_cpu(struct pt_regs *regs)
1344 enum ctx_state prev_state;
1345 unsigned int __user *epc;
1346 unsigned long old_epc, old31;
1347 void __user *fault_addr;
1348 unsigned int opcode;
1349 unsigned long fcr31;
1350 unsigned int cpid;
1351 int status, err;
1352 unsigned long __maybe_unused flags;
1353 int sig;
1355 prev_state = exception_enter();
1356 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1358 if (cpid != 2)
1359 die_if_kernel("do_cpu invoked from kernel context!", regs);
1361 switch (cpid) {
1362 case 0:
1363 epc = (unsigned int __user *)exception_epc(regs);
1364 old_epc = regs->cp0_epc;
1365 old31 = regs->regs[31];
1366 opcode = 0;
1367 status = -1;
1369 if (unlikely(compute_return_epc(regs) < 0))
1370 break;
1372 if (get_isa16_mode(regs->cp0_epc)) {
1373 unsigned short mmop[2] = { 0 };
1375 if (unlikely(get_user(mmop[0], epc) < 0))
1376 status = SIGSEGV;
1377 if (unlikely(get_user(mmop[1], epc) < 0))
1378 status = SIGSEGV;
1379 opcode = (mmop[0] << 16) | mmop[1];
1381 if (status < 0)
1382 status = simulate_rdhwr_mm(regs, opcode);
1383 } else {
1384 if (unlikely(get_user(opcode, epc) < 0))
1385 status = SIGSEGV;
1387 if (!cpu_has_llsc && status < 0)
1388 status = simulate_llsc(regs, opcode);
1390 if (status < 0)
1391 status = simulate_rdhwr_normal(regs, opcode);
1394 if (status < 0)
1395 status = SIGILL;
1397 if (unlikely(status > 0)) {
1398 regs->cp0_epc = old_epc; /* Undo skip-over. */
1399 regs->regs[31] = old31;
1400 force_sig(status, current);
1403 break;
1405 case 3:
1407 * The COP3 opcode space and consequently the CP0.Status.CU3
1408 * bit and the CP0.Cause.CE=3 encoding have been removed as
1409 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1410 * up the space has been reused for COP1X instructions, that
1411 * are enabled by the CP0.Status.CU1 bit and consequently
1412 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1413 * exceptions. Some FPU-less processors that implement one
1414 * of these ISAs however use this code erroneously for COP1X
1415 * instructions. Therefore we redirect this trap to the FP
1416 * emulator too.
1418 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1419 force_sig(SIGILL, current);
1420 break;
1422 /* Fall through. */
1424 case 1:
1425 err = enable_restore_fp_context(0);
1427 if (raw_cpu_has_fpu && !err)
1428 break;
1430 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1431 &fault_addr);
1432 fcr31 = current->thread.fpu.fcr31;
1435 * We can't allow the emulated instruction to leave
1436 * any of the cause bits set in $fcr31.
1438 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1440 /* Send a signal if required. */
1441 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1442 mt_ase_fp_affinity();
1444 break;
1446 case 2:
1447 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1448 break;
1451 exception_exit(prev_state);
1454 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1456 enum ctx_state prev_state;
1458 prev_state = exception_enter();
1459 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1460 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1461 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1462 goto out;
1464 /* Clear MSACSR.Cause before enabling interrupts */
1465 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1466 local_irq_enable();
1468 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1469 force_sig(SIGFPE, current);
1470 out:
1471 exception_exit(prev_state);
1474 asmlinkage void do_msa(struct pt_regs *regs)
1476 enum ctx_state prev_state;
1477 int err;
1479 prev_state = exception_enter();
1481 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1482 force_sig(SIGILL, current);
1483 goto out;
1486 die_if_kernel("do_msa invoked from kernel context!", regs);
1488 err = enable_restore_fp_context(1);
1489 if (err)
1490 force_sig(SIGILL, current);
1491 out:
1492 exception_exit(prev_state);
1495 asmlinkage void do_mdmx(struct pt_regs *regs)
1497 enum ctx_state prev_state;
1499 prev_state = exception_enter();
1500 force_sig(SIGILL, current);
1501 exception_exit(prev_state);
1505 * Called with interrupts disabled.
1507 asmlinkage void do_watch(struct pt_regs *regs)
1509 enum ctx_state prev_state;
1510 u32 cause;
1512 prev_state = exception_enter();
1514 * Clear WP (bit 22) bit of cause register so we don't loop
1515 * forever.
1517 cause = read_c0_cause();
1518 cause &= ~(1 << 22);
1519 write_c0_cause(cause);
1522 * If the current thread has the watch registers loaded, save
1523 * their values and send SIGTRAP. Otherwise another thread
1524 * left the registers set, clear them and continue.
1526 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1527 mips_read_watch_registers();
1528 local_irq_enable();
1529 force_sig(SIGTRAP, current);
1530 } else {
1531 mips_clear_watch_registers();
1532 local_irq_enable();
1534 exception_exit(prev_state);
1537 asmlinkage void do_mcheck(struct pt_regs *regs)
1539 int multi_match = regs->cp0_status & ST0_TS;
1540 enum ctx_state prev_state;
1541 mm_segment_t old_fs = get_fs();
1543 prev_state = exception_enter();
1544 show_regs(regs);
1546 if (multi_match) {
1547 dump_tlb_regs();
1548 pr_info("\n");
1549 dump_tlb_all();
1552 if (!user_mode(regs))
1553 set_fs(KERNEL_DS);
1555 show_code((unsigned int __user *) regs->cp0_epc);
1557 set_fs(old_fs);
1560 * Some chips may have other causes of machine check (e.g. SB1
1561 * graduation timer)
1563 panic("Caught Machine Check exception - %scaused by multiple "
1564 "matching entries in the TLB.",
1565 (multi_match) ? "" : "not ");
1568 asmlinkage void do_mt(struct pt_regs *regs)
1570 int subcode;
1572 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1573 >> VPECONTROL_EXCPT_SHIFT;
1574 switch (subcode) {
1575 case 0:
1576 printk(KERN_DEBUG "Thread Underflow\n");
1577 break;
1578 case 1:
1579 printk(KERN_DEBUG "Thread Overflow\n");
1580 break;
1581 case 2:
1582 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1583 break;
1584 case 3:
1585 printk(KERN_DEBUG "Gating Storage Exception\n");
1586 break;
1587 case 4:
1588 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1589 break;
1590 case 5:
1591 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1592 break;
1593 default:
1594 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1595 subcode);
1596 break;
1598 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1600 force_sig(SIGILL, current);
1604 asmlinkage void do_dsp(struct pt_regs *regs)
1606 if (cpu_has_dsp)
1607 panic("Unexpected DSP exception");
1609 force_sig(SIGILL, current);
1612 asmlinkage void do_reserved(struct pt_regs *regs)
1615 * Game over - no way to handle this if it ever occurs. Most probably
1616 * caused by a new unknown cpu type or after another deadly
1617 * hard/software error.
1619 show_regs(regs);
1620 panic("Caught reserved exception %ld - should not happen.",
1621 (regs->cp0_cause & 0x7f) >> 2);
1624 static int __initdata l1parity = 1;
1625 static int __init nol1parity(char *s)
1627 l1parity = 0;
1628 return 1;
1630 __setup("nol1par", nol1parity);
1631 static int __initdata l2parity = 1;
1632 static int __init nol2parity(char *s)
1634 l2parity = 0;
1635 return 1;
1637 __setup("nol2par", nol2parity);
1640 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1641 * it different ways.
1643 static inline void parity_protection_init(void)
1645 switch (current_cpu_type()) {
1646 case CPU_24K:
1647 case CPU_34K:
1648 case CPU_74K:
1649 case CPU_1004K:
1650 case CPU_1074K:
1651 case CPU_INTERAPTIV:
1652 case CPU_PROAPTIV:
1653 case CPU_P5600:
1654 case CPU_QEMU_GENERIC:
1655 case CPU_I6400:
1657 #define ERRCTL_PE 0x80000000
1658 #define ERRCTL_L2P 0x00800000
1659 unsigned long errctl;
1660 unsigned int l1parity_present, l2parity_present;
1662 errctl = read_c0_ecc();
1663 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1665 /* probe L1 parity support */
1666 write_c0_ecc(errctl | ERRCTL_PE);
1667 back_to_back_c0_hazard();
1668 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1670 /* probe L2 parity support */
1671 write_c0_ecc(errctl|ERRCTL_L2P);
1672 back_to_back_c0_hazard();
1673 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1675 if (l1parity_present && l2parity_present) {
1676 if (l1parity)
1677 errctl |= ERRCTL_PE;
1678 if (l1parity ^ l2parity)
1679 errctl |= ERRCTL_L2P;
1680 } else if (l1parity_present) {
1681 if (l1parity)
1682 errctl |= ERRCTL_PE;
1683 } else if (l2parity_present) {
1684 if (l2parity)
1685 errctl |= ERRCTL_L2P;
1686 } else {
1687 /* No parity available */
1690 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1692 write_c0_ecc(errctl);
1693 back_to_back_c0_hazard();
1694 errctl = read_c0_ecc();
1695 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1697 if (l1parity_present)
1698 printk(KERN_INFO "Cache parity protection %sabled\n",
1699 (errctl & ERRCTL_PE) ? "en" : "dis");
1701 if (l2parity_present) {
1702 if (l1parity_present && l1parity)
1703 errctl ^= ERRCTL_L2P;
1704 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1705 (errctl & ERRCTL_L2P) ? "en" : "dis");
1708 break;
1710 case CPU_5KC:
1711 case CPU_5KE:
1712 case CPU_LOONGSON1:
1713 write_c0_ecc(0x80000000);
1714 back_to_back_c0_hazard();
1715 /* Set the PE bit (bit 31) in the c0_errctl register. */
1716 printk(KERN_INFO "Cache parity protection %sabled\n",
1717 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1718 break;
1719 case CPU_20KC:
1720 case CPU_25KF:
1721 /* Clear the DE bit (bit 16) in the c0_status register. */
1722 printk(KERN_INFO "Enable cache parity protection for "
1723 "MIPS 20KC/25KF CPUs.\n");
1724 clear_c0_status(ST0_DE);
1725 break;
1726 default:
1727 break;
1731 asmlinkage void cache_parity_error(void)
1733 const int field = 2 * sizeof(unsigned long);
1734 unsigned int reg_val;
1736 /* For the moment, report the problem and hang. */
1737 printk("Cache error exception:\n");
1738 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1739 reg_val = read_c0_cacheerr();
1740 printk("c0_cacheerr == %08x\n", reg_val);
1742 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1743 reg_val & (1<<30) ? "secondary" : "primary",
1744 reg_val & (1<<31) ? "data" : "insn");
1745 if ((cpu_has_mips_r2_r6) &&
1746 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1747 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1748 reg_val & (1<<29) ? "ED " : "",
1749 reg_val & (1<<28) ? "ET " : "",
1750 reg_val & (1<<27) ? "ES " : "",
1751 reg_val & (1<<26) ? "EE " : "",
1752 reg_val & (1<<25) ? "EB " : "",
1753 reg_val & (1<<24) ? "EI " : "",
1754 reg_val & (1<<23) ? "E1 " : "",
1755 reg_val & (1<<22) ? "E0 " : "");
1756 } else {
1757 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1758 reg_val & (1<<29) ? "ED " : "",
1759 reg_val & (1<<28) ? "ET " : "",
1760 reg_val & (1<<26) ? "EE " : "",
1761 reg_val & (1<<25) ? "EB " : "",
1762 reg_val & (1<<24) ? "EI " : "",
1763 reg_val & (1<<23) ? "E1 " : "",
1764 reg_val & (1<<22) ? "E0 " : "");
1766 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1768 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1769 if (reg_val & (1<<22))
1770 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1772 if (reg_val & (1<<23))
1773 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1774 #endif
1776 panic("Can't handle the cache error!");
1779 asmlinkage void do_ftlb(void)
1781 const int field = 2 * sizeof(unsigned long);
1782 unsigned int reg_val;
1784 /* For the moment, report the problem and hang. */
1785 if ((cpu_has_mips_r2_r6) &&
1786 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1787 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1788 read_c0_ecc());
1789 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1790 reg_val = read_c0_cacheerr();
1791 pr_err("c0_cacheerr == %08x\n", reg_val);
1793 if ((reg_val & 0xc0000000) == 0xc0000000) {
1794 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1795 } else {
1796 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1797 reg_val & (1<<30) ? "secondary" : "primary",
1798 reg_val & (1<<31) ? "data" : "insn");
1800 } else {
1801 pr_err("FTLB error exception\n");
1803 /* Just print the cacheerr bits for now */
1804 cache_parity_error();
1808 * SDBBP EJTAG debug exception handler.
1809 * We skip the instruction and return to the next instruction.
1811 void ejtag_exception_handler(struct pt_regs *regs)
1813 const int field = 2 * sizeof(unsigned long);
1814 unsigned long depc, old_epc, old_ra;
1815 unsigned int debug;
1817 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1818 depc = read_c0_depc();
1819 debug = read_c0_debug();
1820 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1821 if (debug & 0x80000000) {
1823 * In branch delay slot.
1824 * We cheat a little bit here and use EPC to calculate the
1825 * debug return address (DEPC). EPC is restored after the
1826 * calculation.
1828 old_epc = regs->cp0_epc;
1829 old_ra = regs->regs[31];
1830 regs->cp0_epc = depc;
1831 compute_return_epc(regs);
1832 depc = regs->cp0_epc;
1833 regs->cp0_epc = old_epc;
1834 regs->regs[31] = old_ra;
1835 } else
1836 depc += 4;
1837 write_c0_depc(depc);
1839 #if 0
1840 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1841 write_c0_debug(debug | 0x100);
1842 #endif
1846 * NMI exception handler.
1847 * No lock; only written during early bootup by CPU 0.
1849 static RAW_NOTIFIER_HEAD(nmi_chain);
1851 int register_nmi_notifier(struct notifier_block *nb)
1853 return raw_notifier_chain_register(&nmi_chain, nb);
1856 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1858 char str[100];
1860 nmi_enter();
1861 raw_notifier_call_chain(&nmi_chain, 0, regs);
1862 bust_spinlocks(1);
1863 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1864 smp_processor_id(), regs->cp0_epc);
1865 regs->cp0_epc = read_c0_errorepc();
1866 die(str, regs);
1867 nmi_exit();
1870 #define VECTORSPACING 0x100 /* for EI/VI mode */
1872 unsigned long ebase;
1873 unsigned long exception_handlers[32];
1874 unsigned long vi_handlers[64];
1876 void __init *set_except_vector(int n, void *addr)
1878 unsigned long handler = (unsigned long) addr;
1879 unsigned long old_handler;
1881 #ifdef CONFIG_CPU_MICROMIPS
1883 * Only the TLB handlers are cache aligned with an even
1884 * address. All other handlers are on an odd address and
1885 * require no modification. Otherwise, MIPS32 mode will
1886 * be entered when handling any TLB exceptions. That
1887 * would be bad...since we must stay in microMIPS mode.
1889 if (!(handler & 0x1))
1890 handler |= 1;
1891 #endif
1892 old_handler = xchg(&exception_handlers[n], handler);
1894 if (n == 0 && cpu_has_divec) {
1895 #ifdef CONFIG_CPU_MICROMIPS
1896 unsigned long jump_mask = ~((1 << 27) - 1);
1897 #else
1898 unsigned long jump_mask = ~((1 << 28) - 1);
1899 #endif
1900 u32 *buf = (u32 *)(ebase + 0x200);
1901 unsigned int k0 = 26;
1902 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1903 uasm_i_j(&buf, handler & ~jump_mask);
1904 uasm_i_nop(&buf);
1905 } else {
1906 UASM_i_LA(&buf, k0, handler);
1907 uasm_i_jr(&buf, k0);
1908 uasm_i_nop(&buf);
1910 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1912 return (void *)old_handler;
1915 static void do_default_vi(void)
1917 show_regs(get_irq_regs());
1918 panic("Caught unexpected vectored interrupt.");
1921 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1923 unsigned long handler;
1924 unsigned long old_handler = vi_handlers[n];
1925 int srssets = current_cpu_data.srsets;
1926 u16 *h;
1927 unsigned char *b;
1929 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1931 if (addr == NULL) {
1932 handler = (unsigned long) do_default_vi;
1933 srs = 0;
1934 } else
1935 handler = (unsigned long) addr;
1936 vi_handlers[n] = handler;
1938 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1940 if (srs >= srssets)
1941 panic("Shadow register set %d not supported", srs);
1943 if (cpu_has_veic) {
1944 if (board_bind_eic_interrupt)
1945 board_bind_eic_interrupt(n, srs);
1946 } else if (cpu_has_vint) {
1947 /* SRSMap is only defined if shadow sets are implemented */
1948 if (srssets > 1)
1949 change_c0_srsmap(0xf << n*4, srs << n*4);
1952 if (srs == 0) {
1954 * If no shadow set is selected then use the default handler
1955 * that does normal register saving and standard interrupt exit
1957 extern char except_vec_vi, except_vec_vi_lui;
1958 extern char except_vec_vi_ori, except_vec_vi_end;
1959 extern char rollback_except_vec_vi;
1960 char *vec_start = using_rollback_handler() ?
1961 &rollback_except_vec_vi : &except_vec_vi;
1962 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1963 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1964 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1965 #else
1966 const int lui_offset = &except_vec_vi_lui - vec_start;
1967 const int ori_offset = &except_vec_vi_ori - vec_start;
1968 #endif
1969 const int handler_len = &except_vec_vi_end - vec_start;
1971 if (handler_len > VECTORSPACING) {
1973 * Sigh... panicing won't help as the console
1974 * is probably not configured :(
1976 panic("VECTORSPACING too small");
1979 set_handler(((unsigned long)b - ebase), vec_start,
1980 #ifdef CONFIG_CPU_MICROMIPS
1981 (handler_len - 1));
1982 #else
1983 handler_len);
1984 #endif
1985 h = (u16 *)(b + lui_offset);
1986 *h = (handler >> 16) & 0xffff;
1987 h = (u16 *)(b + ori_offset);
1988 *h = (handler & 0xffff);
1989 local_flush_icache_range((unsigned long)b,
1990 (unsigned long)(b+handler_len));
1992 else {
1994 * In other cases jump directly to the interrupt handler. It
1995 * is the handler's responsibility to save registers if required
1996 * (eg hi/lo) and return from the exception using "eret".
1998 u32 insn;
2000 h = (u16 *)b;
2001 /* j handler */
2002 #ifdef CONFIG_CPU_MICROMIPS
2003 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2004 #else
2005 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2006 #endif
2007 h[0] = (insn >> 16) & 0xffff;
2008 h[1] = insn & 0xffff;
2009 h[2] = 0;
2010 h[3] = 0;
2011 local_flush_icache_range((unsigned long)b,
2012 (unsigned long)(b+8));
2015 return (void *)old_handler;
2018 void *set_vi_handler(int n, vi_handler_t addr)
2020 return set_vi_srs_handler(n, addr, 0);
2023 extern void tlb_init(void);
2026 * Timer interrupt
2028 int cp0_compare_irq;
2029 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2030 int cp0_compare_irq_shift;
2033 * Performance counter IRQ or -1 if shared with timer
2035 int cp0_perfcount_irq;
2036 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2039 * Fast debug channel IRQ or -1 if not present
2041 int cp0_fdc_irq;
2042 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2044 static int noulri;
2046 static int __init ulri_disable(char *s)
2048 pr_info("Disabling ulri\n");
2049 noulri = 1;
2051 return 1;
2053 __setup("noulri", ulri_disable);
2055 /* configure STATUS register */
2056 static void configure_status(void)
2059 * Disable coprocessors and select 32-bit or 64-bit addressing
2060 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2061 * flag that some firmware may have left set and the TS bit (for
2062 * IP27). Set XX for ISA IV code to work.
2064 unsigned int status_set = ST0_CU0;
2065 #ifdef CONFIG_64BIT
2066 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2067 #endif
2068 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2069 status_set |= ST0_XX;
2070 if (cpu_has_dsp)
2071 status_set |= ST0_MX;
2073 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2074 status_set);
2077 /* configure HWRENA register */
2078 static void configure_hwrena(void)
2080 unsigned int hwrena = cpu_hwrena_impl_bits;
2082 if (cpu_has_mips_r2_r6)
2083 hwrena |= 0x0000000f;
2085 if (!noulri && cpu_has_userlocal)
2086 hwrena |= (1 << 29);
2088 if (hwrena)
2089 write_c0_hwrena(hwrena);
2092 static void configure_exception_vector(void)
2094 if (cpu_has_veic || cpu_has_vint) {
2095 unsigned long sr = set_c0_status(ST0_BEV);
2096 write_c0_ebase(ebase);
2097 write_c0_status(sr);
2098 /* Setting vector spacing enables EI/VI mode */
2099 change_c0_intctl(0x3e0, VECTORSPACING);
2101 if (cpu_has_divec) {
2102 if (cpu_has_mipsmt) {
2103 unsigned int vpflags = dvpe();
2104 set_c0_cause(CAUSEF_IV);
2105 evpe(vpflags);
2106 } else
2107 set_c0_cause(CAUSEF_IV);
2111 void per_cpu_trap_init(bool is_boot_cpu)
2113 unsigned int cpu = smp_processor_id();
2115 configure_status();
2116 configure_hwrena();
2118 configure_exception_vector();
2121 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2123 * o read IntCtl.IPTI to determine the timer interrupt
2124 * o read IntCtl.IPPCI to determine the performance counter interrupt
2125 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2127 if (cpu_has_mips_r2_r6) {
2128 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2129 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2130 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2131 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2132 if (!cp0_fdc_irq)
2133 cp0_fdc_irq = -1;
2135 } else {
2136 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2137 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2138 cp0_perfcount_irq = -1;
2139 cp0_fdc_irq = -1;
2142 if (!cpu_data[cpu].asid_cache)
2143 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2145 atomic_inc(&init_mm.mm_count);
2146 current->active_mm = &init_mm;
2147 BUG_ON(current->mm);
2148 enter_lazy_tlb(&init_mm, current);
2150 /* Boot CPU's cache setup in setup_arch(). */
2151 if (!is_boot_cpu)
2152 cpu_cache_init();
2153 tlb_init();
2154 TLBMISS_HANDLER_SETUP();
2157 /* Install CPU exception handler */
2158 void set_handler(unsigned long offset, void *addr, unsigned long size)
2160 #ifdef CONFIG_CPU_MICROMIPS
2161 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2162 #else
2163 memcpy((void *)(ebase + offset), addr, size);
2164 #endif
2165 local_flush_icache_range(ebase + offset, ebase + offset + size);
2168 static char panic_null_cerr[] =
2169 "Trying to set NULL cache error exception handler";
2172 * Install uncached CPU exception handler.
2173 * This is suitable only for the cache error exception which is the only
2174 * exception handler that is being run uncached.
2176 void set_uncached_handler(unsigned long offset, void *addr,
2177 unsigned long size)
2179 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2181 if (!addr)
2182 panic(panic_null_cerr);
2184 memcpy((void *)(uncached_ebase + offset), addr, size);
2187 static int __initdata rdhwr_noopt;
2188 static int __init set_rdhwr_noopt(char *str)
2190 rdhwr_noopt = 1;
2191 return 1;
2194 __setup("rdhwr_noopt", set_rdhwr_noopt);
2196 void __init trap_init(void)
2198 extern char except_vec3_generic;
2199 extern char except_vec4;
2200 extern char except_vec3_r4000;
2201 unsigned long i;
2203 check_wait();
2205 if (cpu_has_veic || cpu_has_vint) {
2206 unsigned long size = 0x200 + VECTORSPACING*64;
2207 ebase = (unsigned long)
2208 __alloc_bootmem(size, 1 << fls(size), 0);
2209 } else {
2210 ebase = CAC_BASE;
2212 if (cpu_has_mips_r2_r6)
2213 ebase += (read_c0_ebase() & 0x3ffff000);
2216 if (cpu_has_mmips) {
2217 unsigned int config3 = read_c0_config3();
2219 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2220 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2221 else
2222 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2225 if (board_ebase_setup)
2226 board_ebase_setup();
2227 per_cpu_trap_init(true);
2230 * Copy the generic exception handlers to their final destination.
2231 * This will be overriden later as suitable for a particular
2232 * configuration.
2234 set_handler(0x180, &except_vec3_generic, 0x80);
2237 * Setup default vectors
2239 for (i = 0; i <= 31; i++)
2240 set_except_vector(i, handle_reserved);
2243 * Copy the EJTAG debug exception vector handler code to it's final
2244 * destination.
2246 if (cpu_has_ejtag && board_ejtag_handler_setup)
2247 board_ejtag_handler_setup();
2250 * Only some CPUs have the watch exceptions.
2252 if (cpu_has_watch)
2253 set_except_vector(23, handle_watch);
2256 * Initialise interrupt handlers
2258 if (cpu_has_veic || cpu_has_vint) {
2259 int nvec = cpu_has_veic ? 64 : 8;
2260 for (i = 0; i < nvec; i++)
2261 set_vi_handler(i, NULL);
2263 else if (cpu_has_divec)
2264 set_handler(0x200, &except_vec4, 0x8);
2267 * Some CPUs can enable/disable for cache parity detection, but does
2268 * it different ways.
2270 parity_protection_init();
2273 * The Data Bus Errors / Instruction Bus Errors are signaled
2274 * by external hardware. Therefore these two exceptions
2275 * may have board specific handlers.
2277 if (board_be_init)
2278 board_be_init();
2280 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2281 : handle_int);
2282 set_except_vector(1, handle_tlbm);
2283 set_except_vector(2, handle_tlbl);
2284 set_except_vector(3, handle_tlbs);
2286 set_except_vector(4, handle_adel);
2287 set_except_vector(5, handle_ades);
2289 set_except_vector(6, handle_ibe);
2290 set_except_vector(7, handle_dbe);
2292 set_except_vector(8, handle_sys);
2293 set_except_vector(9, handle_bp);
2294 set_except_vector(10, rdhwr_noopt ? handle_ri :
2295 (cpu_has_vtag_icache ?
2296 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2297 set_except_vector(11, handle_cpu);
2298 set_except_vector(12, handle_ov);
2299 set_except_vector(13, handle_tr);
2300 set_except_vector(14, handle_msa_fpe);
2302 if (current_cpu_type() == CPU_R6000 ||
2303 current_cpu_type() == CPU_R6000A) {
2305 * The R6000 is the only R-series CPU that features a machine
2306 * check exception (similar to the R4000 cache error) and
2307 * unaligned ldc1/sdc1 exception. The handlers have not been
2308 * written yet. Well, anyway there is no R6000 machine on the
2309 * current list of targets for Linux/MIPS.
2310 * (Duh, crap, there is someone with a triple R6k machine)
2312 //set_except_vector(14, handle_mc);
2313 //set_except_vector(15, handle_ndc);
2317 if (board_nmi_handler_setup)
2318 board_nmi_handler_setup();
2320 if (cpu_has_fpu && !cpu_has_nofpuex)
2321 set_except_vector(15, handle_fpe);
2323 set_except_vector(16, handle_ftlb);
2325 if (cpu_has_rixiex) {
2326 set_except_vector(19, tlb_do_page_fault_0);
2327 set_except_vector(20, tlb_do_page_fault_0);
2330 set_except_vector(21, handle_msa);
2331 set_except_vector(22, handle_mdmx);
2333 if (cpu_has_mcheck)
2334 set_except_vector(24, handle_mcheck);
2336 if (cpu_has_mipsmt)
2337 set_except_vector(25, handle_mt);
2339 set_except_vector(26, handle_dsp);
2341 if (board_cache_error_setup)
2342 board_cache_error_setup();
2344 if (cpu_has_vce)
2345 /* Special exception: R4[04]00 uses also the divec space. */
2346 set_handler(0x180, &except_vec3_r4000, 0x100);
2347 else if (cpu_has_4kex)
2348 set_handler(0x180, &except_vec3_generic, 0x80);
2349 else
2350 set_handler(0x080, &except_vec3_generic, 0x80);
2352 local_flush_icache_range(ebase, ebase + 0x400);
2354 sort_extable(__start___dbe_table, __stop___dbe_table);
2356 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2359 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2360 void *v)
2362 switch (cmd) {
2363 case CPU_PM_ENTER_FAILED:
2364 case CPU_PM_EXIT:
2365 configure_status();
2366 configure_hwrena();
2367 configure_exception_vector();
2369 /* Restore register with CPU number for TLB handlers */
2370 TLBMISS_HANDLER_RESTORE();
2372 break;
2375 return NOTIFY_OK;
2378 static struct notifier_block trap_pm_notifier_block = {
2379 .notifier_call = trap_pm_notifier,
2382 static int __init trap_pm_init(void)
2384 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2386 arch_initcall(trap_pm_init);