2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time.
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/clockchips.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <linux/clk-provider.h>
58 #include <asm/trace.h>
61 #include <asm/processor.h>
62 #include <asm/nvram.h>
63 #include <asm/cache.h>
64 #include <asm/machdep.h>
65 #include <asm/uaccess.h>
69 #include <asm/div64.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/cputime.h>
75 /* powerpc clocksource/clockevent code */
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
80 static cycle_t
rtc_read(struct clocksource
*);
81 static struct clocksource clocksource_rtc
= {
84 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
85 .mask
= CLOCKSOURCE_MASK(64),
89 static cycle_t
timebase_read(struct clocksource
*);
90 static struct clocksource clocksource_timebase
= {
93 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
94 .mask
= CLOCKSOURCE_MASK(64),
95 .read
= timebase_read
,
98 #define DECREMENTER_MAX 0x7fffffff
100 static int decrementer_set_next_event(unsigned long evt
,
101 struct clock_event_device
*dev
);
102 static int decrementer_shutdown(struct clock_event_device
*evt
);
104 struct clock_event_device decrementer_clockevent
= {
105 .name
= "decrementer",
108 .set_next_event
= decrementer_set_next_event
,
109 .set_state_shutdown
= decrementer_shutdown
,
110 .tick_resume
= decrementer_shutdown
,
111 .features
= CLOCK_EVT_FEAT_ONESHOT
|
112 CLOCK_EVT_FEAT_C3STOP
,
114 EXPORT_SYMBOL(decrementer_clockevent
);
116 DEFINE_PER_CPU(u64
, decrementers_next_tb
);
117 static DEFINE_PER_CPU(struct clock_event_device
, decrementers
);
119 #define XSEC_PER_SEC (1024*1024)
122 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
124 /* compute ((xsec << 12) * max) >> 32 */
125 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
128 unsigned long tb_ticks_per_jiffy
;
129 unsigned long tb_ticks_per_usec
= 100; /* sane default */
130 EXPORT_SYMBOL(tb_ticks_per_usec
);
131 unsigned long tb_ticks_per_sec
;
132 EXPORT_SYMBOL(tb_ticks_per_sec
); /* for cputime_t conversions */
134 DEFINE_SPINLOCK(rtc_lock
);
135 EXPORT_SYMBOL_GPL(rtc_lock
);
137 static u64 tb_to_ns_scale __read_mostly
;
138 static unsigned tb_to_ns_shift __read_mostly
;
139 static u64 boot_tb __read_mostly
;
141 extern struct timezone sys_tz
;
142 static long timezone_offset
;
144 unsigned long ppc_proc_freq
;
145 EXPORT_SYMBOL_GPL(ppc_proc_freq
);
146 unsigned long ppc_tb_freq
;
147 EXPORT_SYMBOL_GPL(ppc_tb_freq
);
149 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
151 * Factors for converting from cputime_t (timebase ticks) to
152 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
153 * These are all stored as 0.64 fixed-point binary fractions.
155 u64 __cputime_jiffies_factor
;
156 EXPORT_SYMBOL(__cputime_jiffies_factor
);
157 u64 __cputime_usec_factor
;
158 EXPORT_SYMBOL(__cputime_usec_factor
);
159 u64 __cputime_sec_factor
;
160 EXPORT_SYMBOL(__cputime_sec_factor
);
161 u64 __cputime_clockt_factor
;
162 EXPORT_SYMBOL(__cputime_clockt_factor
);
163 DEFINE_PER_CPU(unsigned long, cputime_last_delta
);
164 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta
);
166 cputime_t cputime_one_jiffy
;
168 void (*dtl_consumer
)(struct dtl_entry
*, u64
);
170 static void calc_cputime_factors(void)
172 struct div_result res
;
174 div128_by_32(HZ
, 0, tb_ticks_per_sec
, &res
);
175 __cputime_jiffies_factor
= res
.result_low
;
176 div128_by_32(1000000, 0, tb_ticks_per_sec
, &res
);
177 __cputime_usec_factor
= res
.result_low
;
178 div128_by_32(1, 0, tb_ticks_per_sec
, &res
);
179 __cputime_sec_factor
= res
.result_low
;
180 div128_by_32(USER_HZ
, 0, tb_ticks_per_sec
, &res
);
181 __cputime_clockt_factor
= res
.result_low
;
185 * Read the SPURR on systems that have it, otherwise the PURR,
186 * or if that doesn't exist return the timebase value passed in.
188 static u64
read_spurr(u64 tb
)
190 if (cpu_has_feature(CPU_FTR_SPURR
))
191 return mfspr(SPRN_SPURR
);
192 if (cpu_has_feature(CPU_FTR_PURR
))
193 return mfspr(SPRN_PURR
);
197 #ifdef CONFIG_PPC_SPLPAR
200 * Scan the dispatch trace log and count up the stolen time.
201 * Should be called with interrupts disabled.
203 static u64
scan_dispatch_log(u64 stop_tb
)
205 u64 i
= local_paca
->dtl_ridx
;
206 struct dtl_entry
*dtl
= local_paca
->dtl_curr
;
207 struct dtl_entry
*dtl_end
= local_paca
->dispatch_log_end
;
208 struct lppaca
*vpa
= local_paca
->lppaca_ptr
;
216 if (i
== be64_to_cpu(vpa
->dtl_idx
))
218 while (i
< be64_to_cpu(vpa
->dtl_idx
)) {
219 dtb
= be64_to_cpu(dtl
->timebase
);
220 tb_delta
= be32_to_cpu(dtl
->enqueue_to_dispatch_time
) +
221 be32_to_cpu(dtl
->ready_to_enqueue_time
);
223 if (i
+ N_DISPATCH_LOG
< be64_to_cpu(vpa
->dtl_idx
)) {
224 /* buffer has overflowed */
225 i
= be64_to_cpu(vpa
->dtl_idx
) - N_DISPATCH_LOG
;
226 dtl
= local_paca
->dispatch_log
+ (i
% N_DISPATCH_LOG
);
232 dtl_consumer(dtl
, i
);
237 dtl
= local_paca
->dispatch_log
;
239 local_paca
->dtl_ridx
= i
;
240 local_paca
->dtl_curr
= dtl
;
245 * Accumulate stolen time by scanning the dispatch trace log.
246 * Called on entry from user mode.
248 void accumulate_stolen_time(void)
252 u8 save_soft_enabled
= local_paca
->soft_enabled
;
254 /* We are called early in the exception entry, before
255 * soft/hard_enabled are sync'ed to the expected state
256 * for the exception. We are hard disabled but the PACA
257 * needs to reflect that so various debug stuff doesn't
260 local_paca
->soft_enabled
= 0;
262 sst
= scan_dispatch_log(local_paca
->starttime_user
);
263 ust
= scan_dispatch_log(local_paca
->starttime
);
264 local_paca
->system_time
-= sst
;
265 local_paca
->user_time
-= ust
;
266 local_paca
->stolen_time
+= ust
+ sst
;
268 local_paca
->soft_enabled
= save_soft_enabled
;
271 static inline u64
calculate_stolen_time(u64 stop_tb
)
275 if (get_paca()->dtl_ridx
!= be64_to_cpu(get_lppaca()->dtl_idx
)) {
276 stolen
= scan_dispatch_log(stop_tb
);
277 get_paca()->system_time
-= stolen
;
280 stolen
+= get_paca()->stolen_time
;
281 get_paca()->stolen_time
= 0;
285 #else /* CONFIG_PPC_SPLPAR */
286 static inline u64
calculate_stolen_time(u64 stop_tb
)
291 #endif /* CONFIG_PPC_SPLPAR */
294 * Account time for a transition between system, hard irq
297 static u64
vtime_delta(struct task_struct
*tsk
,
298 u64
*sys_scaled
, u64
*stolen
)
300 u64 now
, nowscaled
, deltascaled
;
301 u64 udelta
, delta
, user_scaled
;
303 WARN_ON_ONCE(!irqs_disabled());
306 nowscaled
= read_spurr(now
);
307 get_paca()->system_time
+= now
- get_paca()->starttime
;
308 get_paca()->starttime
= now
;
309 deltascaled
= nowscaled
- get_paca()->startspurr
;
310 get_paca()->startspurr
= nowscaled
;
312 *stolen
= calculate_stolen_time(now
);
314 delta
= get_paca()->system_time
;
315 get_paca()->system_time
= 0;
316 udelta
= get_paca()->user_time
- get_paca()->utime_sspurr
;
317 get_paca()->utime_sspurr
= get_paca()->user_time
;
320 * Because we don't read the SPURR on every kernel entry/exit,
321 * deltascaled includes both user and system SPURR ticks.
322 * Apportion these ticks to system SPURR ticks and user
323 * SPURR ticks in the same ratio as the system time (delta)
324 * and user time (udelta) values obtained from the timebase
325 * over the same interval. The system ticks get accounted here;
326 * the user ticks get saved up in paca->user_time_scaled to be
327 * used by account_process_tick.
330 user_scaled
= udelta
;
331 if (deltascaled
!= delta
+ udelta
) {
333 *sys_scaled
= deltascaled
* delta
/ (delta
+ udelta
);
334 user_scaled
= deltascaled
- *sys_scaled
;
336 *sys_scaled
= deltascaled
;
339 get_paca()->user_time_scaled
+= user_scaled
;
344 void vtime_account_system(struct task_struct
*tsk
)
346 u64 delta
, sys_scaled
, stolen
;
348 delta
= vtime_delta(tsk
, &sys_scaled
, &stolen
);
349 account_system_time(tsk
, 0, delta
, sys_scaled
);
351 account_steal_time(stolen
);
353 EXPORT_SYMBOL_GPL(vtime_account_system
);
355 void vtime_account_idle(struct task_struct
*tsk
)
357 u64 delta
, sys_scaled
, stolen
;
359 delta
= vtime_delta(tsk
, &sys_scaled
, &stolen
);
360 account_idle_time(delta
+ stolen
);
364 * Transfer the user time accumulated in the paca
365 * by the exception entry and exit code to the generic
366 * process user time records.
367 * Must be called with interrupts disabled.
368 * Assumes that vtime_account_system/idle() has been called
369 * recently (i.e. since the last entry from usermode) so that
370 * get_paca()->user_time_scaled is up to date.
372 void vtime_account_user(struct task_struct
*tsk
)
374 cputime_t utime
, utimescaled
;
376 utime
= get_paca()->user_time
;
377 utimescaled
= get_paca()->user_time_scaled
;
378 get_paca()->user_time
= 0;
379 get_paca()->user_time_scaled
= 0;
380 get_paca()->utime_sspurr
= 0;
381 account_user_time(tsk
, utime
, utimescaled
);
384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
385 #define calc_cputime_factors()
388 void __delay(unsigned long loops
)
396 /* the RTCL register wraps at 1000000000 */
397 diff
= get_rtcl() - start
;
400 } while (diff
< loops
);
403 while (get_tbl() - start
< loops
)
408 EXPORT_SYMBOL(__delay
);
410 void udelay(unsigned long usecs
)
412 __delay(tb_ticks_per_usec
* usecs
);
414 EXPORT_SYMBOL(udelay
);
417 unsigned long profile_pc(struct pt_regs
*regs
)
419 unsigned long pc
= instruction_pointer(regs
);
421 if (in_lock_functions(pc
))
426 EXPORT_SYMBOL(profile_pc
);
429 #ifdef CONFIG_IRQ_WORK
432 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
435 static inline unsigned long test_irq_work_pending(void)
439 asm volatile("lbz %0,%1(13)"
441 : "i" (offsetof(struct paca_struct
, irq_work_pending
)));
445 static inline void set_irq_work_pending_flag(void)
447 asm volatile("stb %0,%1(13)" : :
449 "i" (offsetof(struct paca_struct
, irq_work_pending
)));
452 static inline void clear_irq_work_pending(void)
454 asm volatile("stb %0,%1(13)" : :
456 "i" (offsetof(struct paca_struct
, irq_work_pending
)));
461 DEFINE_PER_CPU(u8
, irq_work_pending
);
463 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
464 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
465 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
467 #endif /* 32 vs 64 bit */
469 void arch_irq_work_raise(void)
472 set_irq_work_pending_flag();
477 #else /* CONFIG_IRQ_WORK */
479 #define test_irq_work_pending() 0
480 #define clear_irq_work_pending()
482 #endif /* CONFIG_IRQ_WORK */
484 static void __timer_interrupt(void)
486 struct pt_regs
*regs
= get_irq_regs();
487 u64
*next_tb
= this_cpu_ptr(&decrementers_next_tb
);
488 struct clock_event_device
*evt
= this_cpu_ptr(&decrementers
);
491 trace_timer_interrupt_entry(regs
);
493 if (test_irq_work_pending()) {
494 clear_irq_work_pending();
498 now
= get_tb_or_rtc();
499 if (now
>= *next_tb
) {
501 if (evt
->event_handler
)
502 evt
->event_handler(evt
);
503 __this_cpu_inc(irq_stat
.timer_irqs_event
);
505 now
= *next_tb
- now
;
506 if (now
<= DECREMENTER_MAX
)
508 /* We may have raced with new irq work */
509 if (test_irq_work_pending())
511 __this_cpu_inc(irq_stat
.timer_irqs_others
);
515 /* collect purr register values often, for accurate calculations */
516 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
517 struct cpu_usage
*cu
= this_cpu_ptr(&cpu_usage_array
);
518 cu
->current_tb
= mfspr(SPRN_PURR
);
522 trace_timer_interrupt_exit(regs
);
526 * timer_interrupt - gets called when the decrementer overflows,
527 * with interrupts disabled.
529 void timer_interrupt(struct pt_regs
* regs
)
531 struct pt_regs
*old_regs
;
532 u64
*next_tb
= this_cpu_ptr(&decrementers_next_tb
);
534 /* Ensure a positive value is written to the decrementer, or else
535 * some CPUs will continue to take decrementer exceptions.
537 set_dec(DECREMENTER_MAX
);
539 /* Some implementations of hotplug will get timer interrupts while
540 * offline, just ignore these and we also need to set
541 * decrementers_next_tb as MAX to make sure __check_irq_replay
542 * don't replay timer interrupt when return, otherwise we'll trap
545 if (!cpu_online(smp_processor_id())) {
550 /* Conditionally hard-enable interrupts now that the DEC has been
551 * bumped to its maximum value
553 may_hard_irq_enable();
556 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
557 if (atomic_read(&ppc_n_lost_interrupts
) != 0)
561 old_regs
= set_irq_regs(regs
);
566 set_irq_regs(old_regs
);
570 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
571 * left pending on exit from a KVM guest. We don't need to do anything
572 * to clear them, as they are edge-triggered.
574 void hdec_interrupt(struct pt_regs
*regs
)
578 #ifdef CONFIG_SUSPEND
579 static void generic_suspend_disable_irqs(void)
581 /* Disable the decrementer, so that it doesn't interfere
585 set_dec(DECREMENTER_MAX
);
587 set_dec(DECREMENTER_MAX
);
590 static void generic_suspend_enable_irqs(void)
595 /* Overrides the weak version in kernel/power/main.c */
596 void arch_suspend_disable_irqs(void)
598 if (ppc_md
.suspend_disable_irqs
)
599 ppc_md
.suspend_disable_irqs();
600 generic_suspend_disable_irqs();
603 /* Overrides the weak version in kernel/power/main.c */
604 void arch_suspend_enable_irqs(void)
606 generic_suspend_enable_irqs();
607 if (ppc_md
.suspend_enable_irqs
)
608 ppc_md
.suspend_enable_irqs();
612 unsigned long long tb_to_ns(unsigned long long ticks
)
614 return mulhdu(ticks
, tb_to_ns_scale
) << tb_to_ns_shift
;
616 EXPORT_SYMBOL_GPL(tb_to_ns
);
619 * Scheduler clock - returns current time in nanosec units.
621 * Note: mulhdu(a, b) (multiply high double unsigned) returns
622 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
623 * are 64-bit unsigned numbers.
625 unsigned long long sched_clock(void)
629 return mulhdu(get_tb() - boot_tb
, tb_to_ns_scale
) << tb_to_ns_shift
;
633 #ifdef CONFIG_PPC_PSERIES
636 * Running clock - attempts to give a view of time passing for a virtualised
638 * Uses the VTB register if available otherwise a next best guess.
640 unsigned long long running_clock(void)
643 * Don't read the VTB as a host since KVM does not switch in host
644 * timebase into the VTB when it takes a guest off the CPU, reading the
645 * VTB would result in reading 'last switched out' guest VTB.
647 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
648 * would be unsafe to rely only on the #ifdef above.
650 if (firmware_has_feature(FW_FEATURE_LPAR
) &&
651 cpu_has_feature(CPU_FTR_ARCH_207S
))
652 return mulhdu(get_vtb() - boot_tb
, tb_to_ns_scale
) << tb_to_ns_shift
;
655 * This is a next best approximation without a VTB.
656 * On a host which is running bare metal there should never be any stolen
657 * time and on a host which doesn't do any virtualisation TB *should* equal
658 * VTB so it makes no difference anyway.
660 return local_clock() - cputime_to_nsecs(kcpustat_this_cpu
->cpustat
[CPUTIME_STEAL
]);
664 static int __init
get_freq(char *name
, int cells
, unsigned long *val
)
666 struct device_node
*cpu
;
670 /* The cpu node should have timebase and clock frequency properties */
671 cpu
= of_find_node_by_type(NULL
, "cpu");
674 fp
= of_get_property(cpu
, name
, NULL
);
677 *val
= of_read_ulong(fp
, cells
);
686 static void start_cpu_decrementer(void)
688 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
689 /* Clear any pending timer interrupts */
690 mtspr(SPRN_TSR
, TSR_ENW
| TSR_WIS
| TSR_DIS
| TSR_FIS
);
692 /* Enable decrementer interrupt */
693 mtspr(SPRN_TCR
, TCR_DIE
);
694 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
697 void __init
generic_calibrate_decr(void)
699 ppc_tb_freq
= DEFAULT_TB_FREQ
; /* hardcoded default */
701 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq
) &&
702 !get_freq("timebase-frequency", 1, &ppc_tb_freq
)) {
704 printk(KERN_ERR
"WARNING: Estimating decrementer frequency "
708 ppc_proc_freq
= DEFAULT_PROC_FREQ
; /* hardcoded default */
710 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq
) &&
711 !get_freq("clock-frequency", 1, &ppc_proc_freq
)) {
713 printk(KERN_ERR
"WARNING: Estimating processor frequency "
718 int update_persistent_clock(struct timespec now
)
722 if (!ppc_md
.set_rtc_time
)
725 to_tm(now
.tv_sec
+ 1 + timezone_offset
, &tm
);
729 return ppc_md
.set_rtc_time(&tm
);
732 static void __read_persistent_clock(struct timespec
*ts
)
735 static int first
= 1;
738 /* XXX this is a litle fragile but will work okay in the short term */
741 if (ppc_md
.time_init
)
742 timezone_offset
= ppc_md
.time_init();
744 /* get_boot_time() isn't guaranteed to be safe to call late */
745 if (ppc_md
.get_boot_time
) {
746 ts
->tv_sec
= ppc_md
.get_boot_time() - timezone_offset
;
750 if (!ppc_md
.get_rtc_time
) {
754 ppc_md
.get_rtc_time(&tm
);
756 ts
->tv_sec
= mktime(tm
.tm_year
+1900, tm
.tm_mon
+1, tm
.tm_mday
,
757 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
);
760 void read_persistent_clock(struct timespec
*ts
)
762 __read_persistent_clock(ts
);
764 /* Sanitize it in case real time clock is set below EPOCH */
765 if (ts
->tv_sec
< 0) {
772 /* clocksource code */
773 static cycle_t
rtc_read(struct clocksource
*cs
)
775 return (cycle_t
)get_rtc();
778 static cycle_t
timebase_read(struct clocksource
*cs
)
780 return (cycle_t
)get_tb();
783 void update_vsyscall_old(struct timespec
*wall_time
, struct timespec
*wtm
,
784 struct clocksource
*clock
, u32 mult
, cycle_t cycle_last
)
786 u64 new_tb_to_xs
, new_stamp_xsec
;
789 if (clock
!= &clocksource_timebase
)
792 /* Make userspace gettimeofday spin until we're done. */
793 ++vdso_data
->tb_update_count
;
796 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
797 new_tb_to_xs
= (u64
) mult
* (19342813113834067ULL >> clock
->shift
);
798 new_stamp_xsec
= (u64
) wall_time
->tv_nsec
* XSEC_PER_SEC
;
799 do_div(new_stamp_xsec
, 1000000000);
800 new_stamp_xsec
+= (u64
) wall_time
->tv_sec
* XSEC_PER_SEC
;
802 BUG_ON(wall_time
->tv_nsec
>= NSEC_PER_SEC
);
803 /* this is tv_nsec / 1e9 as a 0.32 fraction */
804 frac_sec
= ((u64
) wall_time
->tv_nsec
* 18446744073ULL) >> 32;
807 * tb_update_count is used to allow the userspace gettimeofday code
808 * to assure itself that it sees a consistent view of the tb_to_xs and
809 * stamp_xsec variables. It reads the tb_update_count, then reads
810 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
811 * the two values of tb_update_count match and are even then the
812 * tb_to_xs and stamp_xsec values are consistent. If not, then it
813 * loops back and reads them again until this criteria is met.
814 * We expect the caller to have done the first increment of
815 * vdso_data->tb_update_count already.
817 vdso_data
->tb_orig_stamp
= cycle_last
;
818 vdso_data
->stamp_xsec
= new_stamp_xsec
;
819 vdso_data
->tb_to_xs
= new_tb_to_xs
;
820 vdso_data
->wtom_clock_sec
= wtm
->tv_sec
;
821 vdso_data
->wtom_clock_nsec
= wtm
->tv_nsec
;
822 vdso_data
->stamp_xtime
= *wall_time
;
823 vdso_data
->stamp_sec_fraction
= frac_sec
;
825 ++(vdso_data
->tb_update_count
);
828 void update_vsyscall_tz(void)
830 vdso_data
->tz_minuteswest
= sys_tz
.tz_minuteswest
;
831 vdso_data
->tz_dsttime
= sys_tz
.tz_dsttime
;
834 static void __init
clocksource_init(void)
836 struct clocksource
*clock
;
839 clock
= &clocksource_rtc
;
841 clock
= &clocksource_timebase
;
843 if (clocksource_register_hz(clock
, tb_ticks_per_sec
)) {
844 printk(KERN_ERR
"clocksource: %s is already registered\n",
849 printk(KERN_INFO
"clocksource: %s mult[%x] shift[%d] registered\n",
850 clock
->name
, clock
->mult
, clock
->shift
);
853 static int decrementer_set_next_event(unsigned long evt
,
854 struct clock_event_device
*dev
)
856 __this_cpu_write(decrementers_next_tb
, get_tb_or_rtc() + evt
);
859 /* We may have raced with new irq work */
860 if (test_irq_work_pending())
866 static int decrementer_shutdown(struct clock_event_device
*dev
)
868 decrementer_set_next_event(DECREMENTER_MAX
, dev
);
872 /* Interrupt handler for the timer broadcast IPI */
873 void tick_broadcast_ipi_handler(void)
875 u64
*next_tb
= this_cpu_ptr(&decrementers_next_tb
);
877 *next_tb
= get_tb_or_rtc();
881 static void register_decrementer_clockevent(int cpu
)
883 struct clock_event_device
*dec
= &per_cpu(decrementers
, cpu
);
885 *dec
= decrementer_clockevent
;
886 dec
->cpumask
= cpumask_of(cpu
);
888 printk_once(KERN_DEBUG
"clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
889 dec
->name
, dec
->mult
, dec
->shift
, cpu
);
891 clockevents_register_device(dec
);
894 static void __init
init_decrementer_clockevent(void)
896 int cpu
= smp_processor_id();
898 clockevents_calc_mult_shift(&decrementer_clockevent
, ppc_tb_freq
, 4);
900 decrementer_clockevent
.max_delta_ns
=
901 clockevent_delta2ns(DECREMENTER_MAX
, &decrementer_clockevent
);
902 decrementer_clockevent
.min_delta_ns
=
903 clockevent_delta2ns(2, &decrementer_clockevent
);
905 register_decrementer_clockevent(cpu
);
908 void secondary_cpu_time_init(void)
910 /* Start the decrementer on CPUs that have manual control
913 start_cpu_decrementer();
915 /* FIME: Should make unrelatred change to move snapshot_timebase
917 register_decrementer_clockevent(smp_processor_id());
920 /* This function is only called on the boot processor */
921 void __init
time_init(void)
923 struct div_result res
;
928 /* 601 processor: dec counts down by 128 every 128ns */
929 ppc_tb_freq
= 1000000000;
931 /* Normal PowerPC with timebase register */
932 ppc_md
.calibrate_decr();
933 printk(KERN_DEBUG
"time_init: decrementer frequency = %lu.%.6lu MHz\n",
934 ppc_tb_freq
/ 1000000, ppc_tb_freq
% 1000000);
935 printk(KERN_DEBUG
"time_init: processor frequency = %lu.%.6lu MHz\n",
936 ppc_proc_freq
/ 1000000, ppc_proc_freq
% 1000000);
939 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
940 tb_ticks_per_sec
= ppc_tb_freq
;
941 tb_ticks_per_usec
= ppc_tb_freq
/ 1000000;
942 calc_cputime_factors();
943 setup_cputime_one_jiffy();
946 * Compute scale factor for sched_clock.
947 * The calibrate_decr() function has set tb_ticks_per_sec,
948 * which is the timebase frequency.
949 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
950 * the 128-bit result as a 64.64 fixed-point number.
951 * We then shift that number right until it is less than 1.0,
952 * giving us the scale factor and shift count to use in
955 div128_by_32(1000000000, 0, tb_ticks_per_sec
, &res
);
956 scale
= res
.result_low
;
957 for (shift
= 0; res
.result_high
!= 0; ++shift
) {
958 scale
= (scale
>> 1) | (res
.result_high
<< 63);
959 res
.result_high
>>= 1;
961 tb_to_ns_scale
= scale
;
962 tb_to_ns_shift
= shift
;
963 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
964 boot_tb
= get_tb_or_rtc();
966 /* If platform provided a timezone (pmac), we correct the time */
967 if (timezone_offset
) {
968 sys_tz
.tz_minuteswest
= -timezone_offset
/ 60;
969 sys_tz
.tz_dsttime
= 0;
972 vdso_data
->tb_update_count
= 0;
973 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
975 /* Start the decrementer on CPUs that have manual control
978 start_cpu_decrementer();
980 /* Register the clocksource */
983 init_decrementer_clockevent();
984 tick_setup_hrtimer_broadcast();
986 #ifdef CONFIG_COMMON_CLK
993 #define STARTOFTIME 1970
994 #define SECDAY 86400L
995 #define SECYR (SECDAY * 365)
996 #define leapyear(year) ((year) % 4 == 0 && \
997 ((year) % 100 != 0 || (year) % 400 == 0))
998 #define days_in_year(a) (leapyear(a) ? 366 : 365)
999 #define days_in_month(a) (month_days[(a) - 1])
1001 static int month_days
[12] = {
1002 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1006 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1008 void GregorianDay(struct rtc_time
* tm
)
1013 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1015 lastYear
= tm
->tm_year
- 1;
1018 * Number of leap corrections to apply up to end of last year
1020 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1023 * This year is a leap year if it is divisible by 4 except when it is
1024 * divisible by 100 unless it is divisible by 400
1026 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1028 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1030 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1033 tm
->tm_wday
= day
% 7;
1035 EXPORT_SYMBOL_GPL(GregorianDay
);
1037 void to_tm(int tim
, struct rtc_time
* tm
)
1040 register long hms
, day
;
1045 /* Hours, minutes, seconds are easy */
1046 tm
->tm_hour
= hms
/ 3600;
1047 tm
->tm_min
= (hms
% 3600) / 60;
1048 tm
->tm_sec
= (hms
% 3600) % 60;
1050 /* Number of years in days */
1051 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1052 day
-= days_in_year(i
);
1055 /* Number of months in days left */
1056 if (leapyear(tm
->tm_year
))
1057 days_in_month(FEBRUARY
) = 29;
1058 for (i
= 1; day
>= days_in_month(i
); i
++)
1059 day
-= days_in_month(i
);
1060 days_in_month(FEBRUARY
) = 28;
1063 /* Days are what is left over (+1) from all that. */
1064 tm
->tm_mday
= day
+ 1;
1067 * Determine the day of week
1071 EXPORT_SYMBOL(to_tm
);
1074 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1077 void div128_by_32(u64 dividend_high
, u64 dividend_low
,
1078 unsigned divisor
, struct div_result
*dr
)
1080 unsigned long a
, b
, c
, d
;
1081 unsigned long w
, x
, y
, z
;
1084 a
= dividend_high
>> 32;
1085 b
= dividend_high
& 0xffffffff;
1086 c
= dividend_low
>> 32;
1087 d
= dividend_low
& 0xffffffff;
1090 ra
= ((u64
)(a
- (w
* divisor
)) << 32) + b
;
1092 rb
= ((u64
) do_div(ra
, divisor
) << 32) + c
;
1095 rc
= ((u64
) do_div(rb
, divisor
) << 32) + d
;
1098 do_div(rc
, divisor
);
1101 dr
->result_high
= ((u64
)w
<< 32) + x
;
1102 dr
->result_low
= ((u64
)y
<< 32) + z
;
1106 /* We don't need to calibrate delay, we use the CPU timebase for that */
1107 void calibrate_delay(void)
1109 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1110 * as the number of __delay(1) in a jiffy, so make it so
1112 loops_per_jiffy
= tb_ticks_per_jiffy
;
1115 static int __init
rtc_init(void)
1117 struct platform_device
*pdev
;
1119 if (!ppc_md
.get_rtc_time
)
1122 pdev
= platform_device_register_simple("rtc-generic", -1, NULL
, 0);
1124 return PTR_ERR_OR_ZERO(pdev
);
1127 device_initcall(rtc_init
);