irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / block / blk-mq-tag.c
bloba07ca3488d96fb7a96159fbe48c0c9e5e95391ec
1 /*
2 * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
3 * over multiple cachelines to avoid ping-pong between multiple submitters
4 * or submitter and completer. Uses rolling wakeups to avoid falling of
5 * the scaling cliff when we run out of tags and have to start putting
6 * submitters to sleep.
8 * Uses active queue tracking to support fairer distribution of tags
9 * between multiple submitters when a shared tag map is used.
11 * Copyright (C) 2013-2014 Jens Axboe
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
17 #include <linux/blk-mq.h>
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-tag.h"
22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
24 int i;
26 for (i = 0; i < bt->map_nr; i++) {
27 struct blk_align_bitmap *bm = &bt->map[i];
28 int ret;
30 ret = find_first_zero_bit(&bm->word, bm->depth);
31 if (ret < bm->depth)
32 return true;
35 return false;
38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
40 if (!tags)
41 return true;
43 return bt_has_free_tags(&tags->bitmap_tags);
46 static inline int bt_index_inc(int index)
48 return (index + 1) & (BT_WAIT_QUEUES - 1);
51 static inline void bt_index_atomic_inc(atomic_t *index)
53 int old = atomic_read(index);
54 int new = bt_index_inc(old);
55 atomic_cmpxchg(index, old, new);
59 * If a previously inactive queue goes active, bump the active user count.
61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
63 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
64 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
65 atomic_inc(&hctx->tags->active_queues);
67 return true;
71 * Wakeup all potentially sleeping on tags
73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
75 struct blk_mq_bitmap_tags *bt;
76 int i, wake_index;
79 * Make sure all changes prior to this are visible from other CPUs.
81 smp_mb();
82 bt = &tags->bitmap_tags;
83 wake_index = atomic_read(&bt->wake_index);
84 for (i = 0; i < BT_WAIT_QUEUES; i++) {
85 struct bt_wait_state *bs = &bt->bs[wake_index];
87 if (waitqueue_active(&bs->wait))
88 wake_up(&bs->wait);
90 wake_index = bt_index_inc(wake_index);
93 if (include_reserve) {
94 bt = &tags->breserved_tags;
95 if (waitqueue_active(&bt->bs[0].wait))
96 wake_up(&bt->bs[0].wait);
101 * If a previously busy queue goes inactive, potential waiters could now
102 * be allowed to queue. Wake them up and check.
104 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
106 struct blk_mq_tags *tags = hctx->tags;
108 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
109 return;
111 atomic_dec(&tags->active_queues);
113 blk_mq_tag_wakeup_all(tags, false);
117 * For shared tag users, we track the number of currently active users
118 * and attempt to provide a fair share of the tag depth for each of them.
120 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
121 struct blk_mq_bitmap_tags *bt)
123 unsigned int depth, users;
125 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
126 return true;
127 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
128 return true;
131 * Don't try dividing an ant
133 if (bt->depth == 1)
134 return true;
136 users = atomic_read(&hctx->tags->active_queues);
137 if (!users)
138 return true;
141 * Allow at least some tags
143 depth = max((bt->depth + users - 1) / users, 4U);
144 return atomic_read(&hctx->nr_active) < depth;
147 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
148 bool nowrap)
150 int tag, org_last_tag = last_tag;
152 while (1) {
153 tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
154 if (unlikely(tag >= bm->depth)) {
156 * We started with an offset, and we didn't reset the
157 * offset to 0 in a failure case, so start from 0 to
158 * exhaust the map.
160 if (org_last_tag && last_tag && !nowrap) {
161 last_tag = org_last_tag = 0;
162 continue;
164 return -1;
167 if (!test_and_set_bit(tag, &bm->word))
168 break;
170 last_tag = tag + 1;
171 if (last_tag >= bm->depth - 1)
172 last_tag = 0;
175 return tag;
178 #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
181 * Straight forward bitmap tag implementation, where each bit is a tag
182 * (cleared == free, and set == busy). The small twist is using per-cpu
183 * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
184 * contexts. This enables us to drastically limit the space searched,
185 * without dirtying an extra shared cacheline like we would if we stored
186 * the cache value inside the shared blk_mq_bitmap_tags structure. On top
187 * of that, each word of tags is in a separate cacheline. This means that
188 * multiple users will tend to stick to different cachelines, at least
189 * until the map is exhausted.
191 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
192 unsigned int *tag_cache, struct blk_mq_tags *tags)
194 unsigned int last_tag, org_last_tag;
195 int index, i, tag;
197 if (!hctx_may_queue(hctx, bt))
198 return -1;
200 last_tag = org_last_tag = *tag_cache;
201 index = TAG_TO_INDEX(bt, last_tag);
203 for (i = 0; i < bt->map_nr; i++) {
204 tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
205 BT_ALLOC_RR(tags));
206 if (tag != -1) {
207 tag += (index << bt->bits_per_word);
208 goto done;
212 * Jump to next index, and reset the last tag to be the
213 * first tag of that index
215 index++;
216 last_tag = (index << bt->bits_per_word);
218 if (index >= bt->map_nr) {
219 index = 0;
220 last_tag = 0;
224 *tag_cache = 0;
225 return -1;
228 * Only update the cache from the allocation path, if we ended
229 * up using the specific cached tag.
231 done:
232 if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
233 last_tag = tag + 1;
234 if (last_tag >= bt->depth - 1)
235 last_tag = 0;
237 *tag_cache = last_tag;
240 return tag;
243 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
244 struct blk_mq_hw_ctx *hctx)
246 struct bt_wait_state *bs;
247 int wait_index;
249 if (!hctx)
250 return &bt->bs[0];
252 wait_index = atomic_read(&hctx->wait_index);
253 bs = &bt->bs[wait_index];
254 bt_index_atomic_inc(&hctx->wait_index);
255 return bs;
258 static int bt_get(struct blk_mq_alloc_data *data,
259 struct blk_mq_bitmap_tags *bt,
260 struct blk_mq_hw_ctx *hctx,
261 unsigned int *last_tag, struct blk_mq_tags *tags)
263 struct bt_wait_state *bs;
264 DEFINE_WAIT(wait);
265 int tag;
267 tag = __bt_get(hctx, bt, last_tag, tags);
268 if (tag != -1)
269 return tag;
271 if (!gfpflags_allow_blocking(data->gfp))
272 return -1;
274 bs = bt_wait_ptr(bt, hctx);
275 do {
276 prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
278 tag = __bt_get(hctx, bt, last_tag, tags);
279 if (tag != -1)
280 break;
283 * We're out of tags on this hardware queue, kick any
284 * pending IO submits before going to sleep waiting for
285 * some to complete. Note that hctx can be NULL here for
286 * reserved tag allocation.
288 if (hctx)
289 blk_mq_run_hw_queue(hctx, false);
292 * Retry tag allocation after running the hardware queue,
293 * as running the queue may also have found completions.
295 tag = __bt_get(hctx, bt, last_tag, tags);
296 if (tag != -1)
297 break;
299 blk_mq_put_ctx(data->ctx);
301 io_schedule();
303 data->ctx = blk_mq_get_ctx(data->q);
304 data->hctx = data->q->mq_ops->map_queue(data->q,
305 data->ctx->cpu);
306 if (data->reserved) {
307 bt = &data->hctx->tags->breserved_tags;
308 } else {
309 last_tag = &data->ctx->last_tag;
310 hctx = data->hctx;
311 bt = &hctx->tags->bitmap_tags;
313 finish_wait(&bs->wait, &wait);
314 bs = bt_wait_ptr(bt, hctx);
315 } while (1);
317 finish_wait(&bs->wait, &wait);
318 return tag;
321 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
323 int tag;
325 tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
326 &data->ctx->last_tag, data->hctx->tags);
327 if (tag >= 0)
328 return tag + data->hctx->tags->nr_reserved_tags;
330 return BLK_MQ_TAG_FAIL;
333 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
335 int tag, zero = 0;
337 if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
338 WARN_ON_ONCE(1);
339 return BLK_MQ_TAG_FAIL;
342 tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
343 data->hctx->tags);
344 if (tag < 0)
345 return BLK_MQ_TAG_FAIL;
347 return tag;
350 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
352 if (!data->reserved)
353 return __blk_mq_get_tag(data);
355 return __blk_mq_get_reserved_tag(data);
358 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
360 int i, wake_index;
362 wake_index = atomic_read(&bt->wake_index);
363 for (i = 0; i < BT_WAIT_QUEUES; i++) {
364 struct bt_wait_state *bs = &bt->bs[wake_index];
366 if (waitqueue_active(&bs->wait)) {
367 int o = atomic_read(&bt->wake_index);
368 if (wake_index != o)
369 atomic_cmpxchg(&bt->wake_index, o, wake_index);
371 return bs;
374 wake_index = bt_index_inc(wake_index);
377 return NULL;
380 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
382 const int index = TAG_TO_INDEX(bt, tag);
383 struct bt_wait_state *bs;
384 int wait_cnt;
386 clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
388 /* Ensure that the wait list checks occur after clear_bit(). */
389 smp_mb();
391 bs = bt_wake_ptr(bt);
392 if (!bs)
393 return;
395 wait_cnt = atomic_dec_return(&bs->wait_cnt);
396 if (unlikely(wait_cnt < 0))
397 wait_cnt = atomic_inc_return(&bs->wait_cnt);
398 if (wait_cnt == 0) {
399 atomic_add(bt->wake_cnt, &bs->wait_cnt);
400 bt_index_atomic_inc(&bt->wake_index);
401 wake_up(&bs->wait);
405 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
406 unsigned int *last_tag)
408 struct blk_mq_tags *tags = hctx->tags;
410 if (tag >= tags->nr_reserved_tags) {
411 const int real_tag = tag - tags->nr_reserved_tags;
413 BUG_ON(real_tag >= tags->nr_tags);
414 bt_clear_tag(&tags->bitmap_tags, real_tag);
415 if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
416 *last_tag = real_tag;
417 } else {
418 BUG_ON(tag >= tags->nr_reserved_tags);
419 bt_clear_tag(&tags->breserved_tags, tag);
423 static void bt_for_each(struct blk_mq_hw_ctx *hctx,
424 struct blk_mq_bitmap_tags *bt, unsigned int off,
425 busy_iter_fn *fn, void *data, bool reserved)
427 struct request *rq;
428 int bit, i;
430 for (i = 0; i < bt->map_nr; i++) {
431 struct blk_align_bitmap *bm = &bt->map[i];
433 for (bit = find_first_bit(&bm->word, bm->depth);
434 bit < bm->depth;
435 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
436 rq = hctx->tags->rqs[off + bit];
437 if (rq->q == hctx->queue)
438 fn(hctx, rq, data, reserved);
441 off += (1 << bt->bits_per_word);
445 static void bt_tags_for_each(struct blk_mq_tags *tags,
446 struct blk_mq_bitmap_tags *bt, unsigned int off,
447 busy_tag_iter_fn *fn, void *data, bool reserved)
449 struct request *rq;
450 int bit, i;
452 if (!tags->rqs)
453 return;
454 for (i = 0; i < bt->map_nr; i++) {
455 struct blk_align_bitmap *bm = &bt->map[i];
457 for (bit = find_first_bit(&bm->word, bm->depth);
458 bit < bm->depth;
459 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
460 rq = tags->rqs[off + bit];
461 fn(rq, data, reserved);
464 off += (1 << bt->bits_per_word);
468 void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
469 void *priv)
471 if (tags->nr_reserved_tags)
472 bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true);
473 bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
474 false);
476 EXPORT_SYMBOL(blk_mq_all_tag_busy_iter);
478 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
479 void *priv)
481 struct blk_mq_hw_ctx *hctx;
482 int i;
485 queue_for_each_hw_ctx(q, hctx, i) {
486 struct blk_mq_tags *tags = hctx->tags;
489 * If not software queues are currently mapped to this
490 * hardware queue, there's nothing to check
492 if (!blk_mq_hw_queue_mapped(hctx))
493 continue;
495 if (tags->nr_reserved_tags)
496 bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
497 bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
498 false);
503 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
505 unsigned int i, used;
507 for (i = 0, used = 0; i < bt->map_nr; i++) {
508 struct blk_align_bitmap *bm = &bt->map[i];
510 used += bitmap_weight(&bm->word, bm->depth);
513 return bt->depth - used;
516 static void bt_update_count(struct blk_mq_bitmap_tags *bt,
517 unsigned int depth)
519 unsigned int tags_per_word = 1U << bt->bits_per_word;
520 unsigned int map_depth = depth;
522 if (depth) {
523 int i;
525 for (i = 0; i < bt->map_nr; i++) {
526 bt->map[i].depth = min(map_depth, tags_per_word);
527 map_depth -= bt->map[i].depth;
531 bt->wake_cnt = BT_WAIT_BATCH;
532 if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
533 bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
535 bt->depth = depth;
538 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
539 int node, bool reserved)
541 int i;
543 bt->bits_per_word = ilog2(BITS_PER_LONG);
546 * Depth can be zero for reserved tags, that's not a failure
547 * condition.
549 if (depth) {
550 unsigned int nr, tags_per_word;
552 tags_per_word = (1 << bt->bits_per_word);
555 * If the tag space is small, shrink the number of tags
556 * per word so we spread over a few cachelines, at least.
557 * If less than 4 tags, just forget about it, it's not
558 * going to work optimally anyway.
560 if (depth >= 4) {
561 while (tags_per_word * 4 > depth) {
562 bt->bits_per_word--;
563 tags_per_word = (1 << bt->bits_per_word);
567 nr = ALIGN(depth, tags_per_word) / tags_per_word;
568 bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
569 GFP_KERNEL, node);
570 if (!bt->map)
571 return -ENOMEM;
573 bt->map_nr = nr;
576 bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
577 if (!bt->bs) {
578 kfree(bt->map);
579 bt->map = NULL;
580 return -ENOMEM;
583 bt_update_count(bt, depth);
585 for (i = 0; i < BT_WAIT_QUEUES; i++) {
586 init_waitqueue_head(&bt->bs[i].wait);
587 atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
590 return 0;
593 static void bt_free(struct blk_mq_bitmap_tags *bt)
595 kfree(bt->map);
596 kfree(bt->bs);
599 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
600 int node, int alloc_policy)
602 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
604 tags->alloc_policy = alloc_policy;
606 if (bt_alloc(&tags->bitmap_tags, depth, node, false))
607 goto enomem;
608 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
609 goto enomem;
611 return tags;
612 enomem:
613 bt_free(&tags->bitmap_tags);
614 kfree(tags);
615 return NULL;
618 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
619 unsigned int reserved_tags,
620 int node, int alloc_policy)
622 struct blk_mq_tags *tags;
624 if (total_tags > BLK_MQ_TAG_MAX) {
625 pr_err("blk-mq: tag depth too large\n");
626 return NULL;
629 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
630 if (!tags)
631 return NULL;
633 if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) {
634 kfree(tags);
635 return NULL;
638 tags->nr_tags = total_tags;
639 tags->nr_reserved_tags = reserved_tags;
641 return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
644 void blk_mq_free_tags(struct blk_mq_tags *tags)
646 bt_free(&tags->bitmap_tags);
647 bt_free(&tags->breserved_tags);
648 free_cpumask_var(tags->cpumask);
649 kfree(tags);
652 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
654 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
656 *tag = prandom_u32() % depth;
659 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
661 tdepth -= tags->nr_reserved_tags;
662 if (tdepth > tags->nr_tags)
663 return -EINVAL;
666 * Don't need (or can't) update reserved tags here, they remain
667 * static and should never need resizing.
669 bt_update_count(&tags->bitmap_tags, tdepth);
670 blk_mq_tag_wakeup_all(tags, false);
671 return 0;
675 * blk_mq_unique_tag() - return a tag that is unique queue-wide
676 * @rq: request for which to compute a unique tag
678 * The tag field in struct request is unique per hardware queue but not over
679 * all hardware queues. Hence this function that returns a tag with the
680 * hardware context index in the upper bits and the per hardware queue tag in
681 * the lower bits.
683 * Note: When called for a request that is queued on a non-multiqueue request
684 * queue, the hardware context index is set to zero.
686 u32 blk_mq_unique_tag(struct request *rq)
688 struct request_queue *q = rq->q;
689 struct blk_mq_hw_ctx *hctx;
690 int hwq = 0;
692 if (q->mq_ops) {
693 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
694 hwq = hctx->queue_num;
697 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
698 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
700 EXPORT_SYMBOL(blk_mq_unique_tag);
702 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
704 char *orig_page = page;
705 unsigned int free, res;
707 if (!tags)
708 return 0;
710 page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
711 "bits_per_word=%u\n",
712 tags->nr_tags, tags->nr_reserved_tags,
713 tags->bitmap_tags.bits_per_word);
715 free = bt_unused_tags(&tags->bitmap_tags);
716 res = bt_unused_tags(&tags->breserved_tags);
718 page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
719 page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
721 return page - orig_page;