irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / cpufreq / cpufreq_ondemand.c
blob03ac6ce540424a189e2946a1dd98d2046cbc3622
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
32 static struct od_ops od_ops;
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
38 static unsigned int default_powersave_bias;
40 static void ondemand_powersave_bias_init_cpu(int cpu)
42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 dbs_info->freq_lo = 0;
49 * Not all CPUs want IO time to be accounted as busy; this depends on how
50 * efficient idling at a higher frequency/voltage is.
51 * Pavel Machek says this is not so for various generations of AMD and old
52 * Intel systems.
53 * Mike Chan (android.com) claims this is also not true for ARM.
54 * Because of this, whitelist specific known (series) of CPUs by default, and
55 * leave all others up to the user.
57 static int should_io_be_busy(void)
59 #if defined(CONFIG_X86)
61 * For Intel, Core 2 (model 15) and later have an efficient idle.
63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 boot_cpu_data.x86 == 6 &&
65 boot_cpu_data.x86_model >= 15)
66 return 1;
67 #endif
68 return 0;
72 * Find right freq to be set now with powersave_bias on.
73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 unsigned int freq_next, unsigned int relation)
79 unsigned int freq_req, freq_reduc, freq_avg;
80 unsigned int freq_hi, freq_lo;
81 unsigned int index = 0;
82 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 policy->cpu);
85 struct dbs_data *dbs_data = policy->governor_data;
86 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
88 if (!dbs_info->freq_table) {
89 dbs_info->freq_lo = 0;
90 dbs_info->freq_lo_jiffies = 0;
91 return freq_next;
94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 relation, &index);
96 freq_req = dbs_info->freq_table[index].frequency;
97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 freq_avg = freq_req - freq_reduc;
100 /* Find freq bounds for freq_avg in freq_table */
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_H, &index);
104 freq_lo = dbs_info->freq_table[index].frequency;
105 index = 0;
106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 CPUFREQ_RELATION_L, &index);
108 freq_hi = dbs_info->freq_table[index].frequency;
110 /* Find out how long we have to be in hi and lo freqs */
111 if (freq_hi == freq_lo) {
112 dbs_info->freq_lo = 0;
113 dbs_info->freq_lo_jiffies = 0;
114 return freq_lo;
116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 jiffies_hi += ((freq_hi - freq_lo) / 2);
119 jiffies_hi /= (freq_hi - freq_lo);
120 jiffies_lo = jiffies_total - jiffies_hi;
121 dbs_info->freq_lo = freq_lo;
122 dbs_info->freq_lo_jiffies = jiffies_lo;
123 dbs_info->freq_hi_jiffies = jiffies_hi;
124 return freq_hi;
127 static void ondemand_powersave_bias_init(void)
129 int i;
130 for_each_online_cpu(i) {
131 ondemand_powersave_bias_init_cpu(i);
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
137 struct dbs_data *dbs_data = policy->governor_data;
138 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
140 if (od_tuners->powersave_bias)
141 freq = od_ops.powersave_bias_target(policy, freq,
142 CPUFREQ_RELATION_H);
143 else if (policy->cur == policy->max)
144 return;
146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
151 * Every sampling_rate, we check, if current idle time is less than 20%
152 * (default), then we try to increase frequency. Else, we adjust the frequency
153 * proportional to load.
155 static void od_check_cpu(int cpu, unsigned int load)
157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
159 struct dbs_data *dbs_data = policy->governor_data;
160 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
162 dbs_info->freq_lo = 0;
164 /* Check for frequency increase */
165 if (load > od_tuners->up_threshold) {
166 /* If switching to max speed, apply sampling_down_factor */
167 if (policy->cur < policy->max)
168 dbs_info->rate_mult =
169 od_tuners->sampling_down_factor;
170 dbs_freq_increase(policy, policy->max);
171 } else {
172 /* Calculate the next frequency proportional to load */
173 unsigned int freq_next, min_f, max_f;
175 min_f = policy->cpuinfo.min_freq;
176 max_f = policy->cpuinfo.max_freq;
177 freq_next = min_f + load * (max_f - min_f) / 100;
179 /* No longer fully busy, reset rate_mult */
180 dbs_info->rate_mult = 1;
182 if (!od_tuners->powersave_bias) {
183 __cpufreq_driver_target(policy, freq_next,
184 CPUFREQ_RELATION_C);
185 return;
188 freq_next = od_ops.powersave_bias_target(policy, freq_next,
189 CPUFREQ_RELATION_L);
190 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
194 static unsigned int od_dbs_timer(struct cpu_dbs_info *cdbs,
195 struct dbs_data *dbs_data, bool modify_all)
197 struct cpufreq_policy *policy = cdbs->shared->policy;
198 unsigned int cpu = policy->cpu;
199 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
200 cpu);
201 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
202 int delay = 0, sample_type = dbs_info->sample_type;
204 if (!modify_all)
205 goto max_delay;
207 /* Common NORMAL_SAMPLE setup */
208 dbs_info->sample_type = OD_NORMAL_SAMPLE;
209 if (sample_type == OD_SUB_SAMPLE) {
210 delay = dbs_info->freq_lo_jiffies;
211 __cpufreq_driver_target(policy, dbs_info->freq_lo,
212 CPUFREQ_RELATION_H);
213 } else {
214 dbs_check_cpu(dbs_data, cpu);
215 if (dbs_info->freq_lo) {
216 /* Setup timer for SUB_SAMPLE */
217 dbs_info->sample_type = OD_SUB_SAMPLE;
218 delay = dbs_info->freq_hi_jiffies;
222 max_delay:
223 if (!delay)
224 delay = delay_for_sampling_rate(od_tuners->sampling_rate
225 * dbs_info->rate_mult);
227 return delay;
230 /************************** sysfs interface ************************/
231 static struct common_dbs_data od_dbs_cdata;
234 * update_sampling_rate - update sampling rate effective immediately if needed.
235 * @new_rate: new sampling rate
237 * If new rate is smaller than the old, simply updating
238 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
239 * original sampling_rate was 1 second and the requested new sampling rate is 10
240 * ms because the user needs immediate reaction from ondemand governor, but not
241 * sure if higher frequency will be required or not, then, the governor may
242 * change the sampling rate too late; up to 1 second later. Thus, if we are
243 * reducing the sampling rate, we need to make the new value effective
244 * immediately.
246 static void update_sampling_rate(struct dbs_data *dbs_data,
247 unsigned int new_rate)
249 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
250 int cpu;
252 od_tuners->sampling_rate = new_rate = max(new_rate,
253 dbs_data->min_sampling_rate);
255 for_each_online_cpu(cpu) {
256 struct cpufreq_policy *policy;
257 struct od_cpu_dbs_info_s *dbs_info;
258 unsigned long next_sampling, appointed_at;
260 policy = cpufreq_cpu_get(cpu);
261 if (!policy)
262 continue;
263 if (policy->governor != &cpufreq_gov_ondemand) {
264 cpufreq_cpu_put(policy);
265 continue;
267 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
268 cpufreq_cpu_put(policy);
270 if (!delayed_work_pending(&dbs_info->cdbs.dwork))
271 continue;
273 next_sampling = jiffies + usecs_to_jiffies(new_rate);
274 appointed_at = dbs_info->cdbs.dwork.timer.expires;
276 if (time_before(next_sampling, appointed_at)) {
277 cancel_delayed_work_sync(&dbs_info->cdbs.dwork);
279 gov_queue_work(dbs_data, policy,
280 usecs_to_jiffies(new_rate), true);
286 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
287 size_t count)
289 unsigned int input;
290 int ret;
291 ret = sscanf(buf, "%u", &input);
292 if (ret != 1)
293 return -EINVAL;
295 update_sampling_rate(dbs_data, input);
296 return count;
299 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
300 size_t count)
302 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
303 unsigned int input;
304 int ret;
305 unsigned int j;
307 ret = sscanf(buf, "%u", &input);
308 if (ret != 1)
309 return -EINVAL;
310 od_tuners->io_is_busy = !!input;
312 /* we need to re-evaluate prev_cpu_idle */
313 for_each_online_cpu(j) {
314 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
316 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
317 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
319 return count;
322 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
323 size_t count)
325 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
326 unsigned int input;
327 int ret;
328 ret = sscanf(buf, "%u", &input);
330 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
331 input < MIN_FREQUENCY_UP_THRESHOLD) {
332 return -EINVAL;
335 od_tuners->up_threshold = input;
336 return count;
339 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
340 const char *buf, size_t count)
342 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
343 unsigned int input, j;
344 int ret;
345 ret = sscanf(buf, "%u", &input);
347 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
348 return -EINVAL;
349 od_tuners->sampling_down_factor = input;
351 /* Reset down sampling multiplier in case it was active */
352 for_each_online_cpu(j) {
353 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
355 dbs_info->rate_mult = 1;
357 return count;
360 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
361 const char *buf, size_t count)
363 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
364 unsigned int input;
365 int ret;
367 unsigned int j;
369 ret = sscanf(buf, "%u", &input);
370 if (ret != 1)
371 return -EINVAL;
373 if (input > 1)
374 input = 1;
376 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
377 return count;
379 od_tuners->ignore_nice_load = input;
381 /* we need to re-evaluate prev_cpu_idle */
382 for_each_online_cpu(j) {
383 struct od_cpu_dbs_info_s *dbs_info;
384 dbs_info = &per_cpu(od_cpu_dbs_info, j);
385 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
386 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
387 if (od_tuners->ignore_nice_load)
388 dbs_info->cdbs.prev_cpu_nice =
389 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
392 return count;
395 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
396 size_t count)
398 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
399 unsigned int input;
400 int ret;
401 ret = sscanf(buf, "%u", &input);
403 if (ret != 1)
404 return -EINVAL;
406 if (input > 1000)
407 input = 1000;
409 od_tuners->powersave_bias = input;
410 ondemand_powersave_bias_init();
411 return count;
414 show_store_one(od, sampling_rate);
415 show_store_one(od, io_is_busy);
416 show_store_one(od, up_threshold);
417 show_store_one(od, sampling_down_factor);
418 show_store_one(od, ignore_nice_load);
419 show_store_one(od, powersave_bias);
420 declare_show_sampling_rate_min(od);
422 gov_sys_pol_attr_rw(sampling_rate);
423 gov_sys_pol_attr_rw(io_is_busy);
424 gov_sys_pol_attr_rw(up_threshold);
425 gov_sys_pol_attr_rw(sampling_down_factor);
426 gov_sys_pol_attr_rw(ignore_nice_load);
427 gov_sys_pol_attr_rw(powersave_bias);
428 gov_sys_pol_attr_ro(sampling_rate_min);
430 static struct attribute *dbs_attributes_gov_sys[] = {
431 &sampling_rate_min_gov_sys.attr,
432 &sampling_rate_gov_sys.attr,
433 &up_threshold_gov_sys.attr,
434 &sampling_down_factor_gov_sys.attr,
435 &ignore_nice_load_gov_sys.attr,
436 &powersave_bias_gov_sys.attr,
437 &io_is_busy_gov_sys.attr,
438 NULL
441 static struct attribute_group od_attr_group_gov_sys = {
442 .attrs = dbs_attributes_gov_sys,
443 .name = "ondemand",
446 static struct attribute *dbs_attributes_gov_pol[] = {
447 &sampling_rate_min_gov_pol.attr,
448 &sampling_rate_gov_pol.attr,
449 &up_threshold_gov_pol.attr,
450 &sampling_down_factor_gov_pol.attr,
451 &ignore_nice_load_gov_pol.attr,
452 &powersave_bias_gov_pol.attr,
453 &io_is_busy_gov_pol.attr,
454 NULL
457 static struct attribute_group od_attr_group_gov_pol = {
458 .attrs = dbs_attributes_gov_pol,
459 .name = "ondemand",
462 /************************** sysfs end ************************/
464 static int od_init(struct dbs_data *dbs_data, bool notify)
466 struct od_dbs_tuners *tuners;
467 u64 idle_time;
468 int cpu;
470 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
471 if (!tuners) {
472 pr_err("%s: kzalloc failed\n", __func__);
473 return -ENOMEM;
476 cpu = get_cpu();
477 idle_time = get_cpu_idle_time_us(cpu, NULL);
478 put_cpu();
479 if (idle_time != -1ULL) {
480 /* Idle micro accounting is supported. Use finer thresholds */
481 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
483 * In nohz/micro accounting case we set the minimum frequency
484 * not depending on HZ, but fixed (very low). The deferred
485 * timer might skip some samples if idle/sleeping as needed.
487 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
488 } else {
489 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
491 /* For correct statistics, we need 10 ticks for each measure */
492 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
493 jiffies_to_usecs(10);
496 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
497 tuners->ignore_nice_load = 0;
498 tuners->powersave_bias = default_powersave_bias;
499 tuners->io_is_busy = should_io_be_busy();
501 dbs_data->tuners = tuners;
502 return 0;
505 static void od_exit(struct dbs_data *dbs_data, bool notify)
507 kfree(dbs_data->tuners);
510 define_get_cpu_dbs_routines(od_cpu_dbs_info);
512 static struct od_ops od_ops = {
513 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
514 .powersave_bias_target = generic_powersave_bias_target,
515 .freq_increase = dbs_freq_increase,
518 static struct common_dbs_data od_dbs_cdata = {
519 .governor = GOV_ONDEMAND,
520 .attr_group_gov_sys = &od_attr_group_gov_sys,
521 .attr_group_gov_pol = &od_attr_group_gov_pol,
522 .get_cpu_cdbs = get_cpu_cdbs,
523 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
524 .gov_dbs_timer = od_dbs_timer,
525 .gov_check_cpu = od_check_cpu,
526 .gov_ops = &od_ops,
527 .init = od_init,
528 .exit = od_exit,
529 .mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex),
532 static void od_set_powersave_bias(unsigned int powersave_bias)
534 struct cpufreq_policy *policy;
535 struct dbs_data *dbs_data;
536 struct od_dbs_tuners *od_tuners;
537 unsigned int cpu;
538 cpumask_t done;
540 default_powersave_bias = powersave_bias;
541 cpumask_clear(&done);
543 get_online_cpus();
544 for_each_online_cpu(cpu) {
545 struct cpu_common_dbs_info *shared;
547 if (cpumask_test_cpu(cpu, &done))
548 continue;
550 shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
551 if (!shared)
552 continue;
554 policy = shared->policy;
555 cpumask_or(&done, &done, policy->cpus);
557 if (policy->governor != &cpufreq_gov_ondemand)
558 continue;
560 dbs_data = policy->governor_data;
561 od_tuners = dbs_data->tuners;
562 od_tuners->powersave_bias = default_powersave_bias;
564 put_online_cpus();
567 void od_register_powersave_bias_handler(unsigned int (*f)
568 (struct cpufreq_policy *, unsigned int, unsigned int),
569 unsigned int powersave_bias)
571 od_ops.powersave_bias_target = f;
572 od_set_powersave_bias(powersave_bias);
574 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
576 void od_unregister_powersave_bias_handler(void)
578 od_ops.powersave_bias_target = generic_powersave_bias_target;
579 od_set_powersave_bias(0);
581 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
583 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
584 unsigned int event)
586 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
589 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
590 static
591 #endif
592 struct cpufreq_governor cpufreq_gov_ondemand = {
593 .name = "ondemand",
594 .governor = od_cpufreq_governor_dbs,
595 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
596 .owner = THIS_MODULE,
599 static int __init cpufreq_gov_dbs_init(void)
601 return cpufreq_register_governor(&cpufreq_gov_ondemand);
604 static void __exit cpufreq_gov_dbs_exit(void)
606 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
609 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
610 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
611 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
612 "Low Latency Frequency Transition capable processors");
613 MODULE_LICENSE("GPL");
615 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
616 fs_initcall(cpufreq_gov_dbs_init);
617 #else
618 module_init(cpufreq_gov_dbs_init);
619 #endif
620 module_exit(cpufreq_gov_dbs_exit);