irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / cpufreq / imx6q-cpufreq.c
blobef1fa8145419cd1d2aa277f3dd20c9645e698203
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
19 #define PU_SOC_VOLTAGE_NORMAL 1250000
20 #define PU_SOC_VOLTAGE_HIGH 1275000
21 #define FREQ_1P2_GHZ 1200000000
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
47 struct dev_pm_opp *opp;
48 unsigned long freq_hz, volt, volt_old;
49 unsigned int old_freq, new_freq;
50 int ret;
52 new_freq = freq_table[index].frequency;
53 freq_hz = new_freq * 1000;
54 old_freq = clk_get_rate(arm_clk) / 1000;
56 rcu_read_lock();
57 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
58 if (IS_ERR(opp)) {
59 rcu_read_unlock();
60 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
61 return PTR_ERR(opp);
64 volt = dev_pm_opp_get_voltage(opp);
65 rcu_read_unlock();
66 volt_old = regulator_get_voltage(arm_reg);
68 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
69 old_freq / 1000, volt_old / 1000,
70 new_freq / 1000, volt / 1000);
72 /* scaling up? scale voltage before frequency */
73 if (new_freq > old_freq) {
74 if (!IS_ERR(pu_reg)) {
75 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
76 if (ret) {
77 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
78 return ret;
81 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
82 if (ret) {
83 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
84 return ret;
86 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
87 if (ret) {
88 dev_err(cpu_dev,
89 "failed to scale vddarm up: %d\n", ret);
90 return ret;
95 * The setpoints are selected per PLL/PDF frequencies, so we need to
96 * reprogram PLL for frequency scaling. The procedure of reprogramming
97 * PLL1 is as below.
98 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
99 * flow is slightly different from other i.MX6 OSC.
100 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
101 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
102 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
103 * - Disable pll2_pfd2_396m_clk
105 if (of_machine_is_compatible("fsl,imx6ul")) {
107 * When changing pll1_sw_clk's parent to pll1_sys_clk,
108 * CPU may run at higher than 528MHz, this will lead to
109 * the system unstable if the voltage is lower than the
110 * voltage of 528MHz, so lower the CPU frequency to one
111 * half before changing CPU frequency.
113 clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
114 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
115 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
116 clk_set_parent(secondary_sel_clk, pll2_bus_clk);
117 else
118 clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
119 clk_set_parent(step_clk, secondary_sel_clk);
120 clk_set_parent(pll1_sw_clk, step_clk);
121 } else {
122 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
123 clk_set_parent(pll1_sw_clk, step_clk);
124 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
125 clk_set_rate(pll1_sys_clk, new_freq * 1000);
126 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
130 /* Ensure the arm clock divider is what we expect */
131 ret = clk_set_rate(arm_clk, new_freq * 1000);
132 if (ret) {
133 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
134 regulator_set_voltage_tol(arm_reg, volt_old, 0);
135 return ret;
138 /* scaling down? scale voltage after frequency */
139 if (new_freq < old_freq) {
140 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
141 if (ret) {
142 dev_warn(cpu_dev,
143 "failed to scale vddarm down: %d\n", ret);
144 ret = 0;
146 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
147 if (ret) {
148 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
149 ret = 0;
151 if (!IS_ERR(pu_reg)) {
152 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
153 if (ret) {
154 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
155 ret = 0;
160 return 0;
163 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
165 policy->clk = arm_clk;
166 return cpufreq_generic_init(policy, freq_table, transition_latency);
169 static struct cpufreq_driver imx6q_cpufreq_driver = {
170 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
171 .verify = cpufreq_generic_frequency_table_verify,
172 .target_index = imx6q_set_target,
173 .get = cpufreq_generic_get,
174 .init = imx6q_cpufreq_init,
175 .name = "imx6q-cpufreq",
176 .attr = cpufreq_generic_attr,
179 static int imx6q_cpufreq_probe(struct platform_device *pdev)
181 struct device_node *np;
182 struct dev_pm_opp *opp;
183 unsigned long min_volt, max_volt;
184 int num, ret;
185 const struct property *prop;
186 const __be32 *val;
187 u32 nr, i, j;
189 cpu_dev = get_cpu_device(0);
190 if (!cpu_dev) {
191 pr_err("failed to get cpu0 device\n");
192 return -ENODEV;
195 np = of_node_get(cpu_dev->of_node);
196 if (!np) {
197 dev_err(cpu_dev, "failed to find cpu0 node\n");
198 return -ENOENT;
201 arm_clk = clk_get(cpu_dev, "arm");
202 pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
203 pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
204 step_clk = clk_get(cpu_dev, "step");
205 pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
206 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
207 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
208 dev_err(cpu_dev, "failed to get clocks\n");
209 ret = -ENOENT;
210 goto put_clk;
213 if (of_machine_is_compatible("fsl,imx6ul")) {
214 pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
215 secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
216 if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
217 dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
218 ret = -ENOENT;
219 goto put_clk;
223 arm_reg = regulator_get(cpu_dev, "arm");
224 pu_reg = regulator_get_optional(cpu_dev, "pu");
225 soc_reg = regulator_get(cpu_dev, "soc");
226 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
227 dev_err(cpu_dev, "failed to get regulators\n");
228 ret = -ENOENT;
229 goto put_reg;
233 * We expect an OPP table supplied by platform.
234 * Just, incase the platform did not supply the OPP
235 * table, it will try to get it.
237 num = dev_pm_opp_get_opp_count(cpu_dev);
238 if (num < 0) {
239 ret = dev_pm_opp_of_add_table(cpu_dev);
240 if (ret < 0) {
241 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
242 goto put_reg;
245 /* Because we have added the OPPs here, we must free them */
246 free_opp = true;
248 num = dev_pm_opp_get_opp_count(cpu_dev);
249 if (num < 0) {
250 ret = num;
251 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
252 goto out_free_opp;
256 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
257 if (ret) {
258 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
259 goto put_reg;
262 /* Make imx6_soc_volt array's size same as arm opp number */
263 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
264 if (imx6_soc_volt == NULL) {
265 ret = -ENOMEM;
266 goto free_freq_table;
269 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
270 if (!prop || !prop->value)
271 goto soc_opp_out;
274 * Each OPP is a set of tuples consisting of frequency and
275 * voltage like <freq-kHz vol-uV>.
277 nr = prop->length / sizeof(u32);
278 if (nr % 2 || (nr / 2) < num)
279 goto soc_opp_out;
281 for (j = 0; j < num; j++) {
282 val = prop->value;
283 for (i = 0; i < nr / 2; i++) {
284 unsigned long freq = be32_to_cpup(val++);
285 unsigned long volt = be32_to_cpup(val++);
286 if (freq_table[j].frequency == freq) {
287 imx6_soc_volt[soc_opp_count++] = volt;
288 break;
293 soc_opp_out:
294 /* use fixed soc opp volt if no valid soc opp info found in dtb */
295 if (soc_opp_count != num) {
296 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
297 for (j = 0; j < num; j++)
298 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
299 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
300 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
303 if (of_property_read_u32(np, "clock-latency", &transition_latency))
304 transition_latency = CPUFREQ_ETERNAL;
307 * Calculate the ramp time for max voltage change in the
308 * VDDSOC and VDDPU regulators.
310 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
311 if (ret > 0)
312 transition_latency += ret * 1000;
313 if (!IS_ERR(pu_reg)) {
314 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
315 if (ret > 0)
316 transition_latency += ret * 1000;
320 * OPP is maintained in order of increasing frequency, and
321 * freq_table initialised from OPP is therefore sorted in the
322 * same order.
324 rcu_read_lock();
325 opp = dev_pm_opp_find_freq_exact(cpu_dev,
326 freq_table[0].frequency * 1000, true);
327 min_volt = dev_pm_opp_get_voltage(opp);
328 opp = dev_pm_opp_find_freq_exact(cpu_dev,
329 freq_table[--num].frequency * 1000, true);
330 max_volt = dev_pm_opp_get_voltage(opp);
331 rcu_read_unlock();
332 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
333 if (ret > 0)
334 transition_latency += ret * 1000;
336 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
337 if (ret) {
338 dev_err(cpu_dev, "failed register driver: %d\n", ret);
339 goto free_freq_table;
342 of_node_put(np);
343 return 0;
345 free_freq_table:
346 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
347 out_free_opp:
348 if (free_opp)
349 dev_pm_opp_of_remove_table(cpu_dev);
350 put_reg:
351 if (!IS_ERR(arm_reg))
352 regulator_put(arm_reg);
353 if (!IS_ERR(pu_reg))
354 regulator_put(pu_reg);
355 if (!IS_ERR(soc_reg))
356 regulator_put(soc_reg);
357 put_clk:
358 if (!IS_ERR(arm_clk))
359 clk_put(arm_clk);
360 if (!IS_ERR(pll1_sys_clk))
361 clk_put(pll1_sys_clk);
362 if (!IS_ERR(pll1_sw_clk))
363 clk_put(pll1_sw_clk);
364 if (!IS_ERR(step_clk))
365 clk_put(step_clk);
366 if (!IS_ERR(pll2_pfd2_396m_clk))
367 clk_put(pll2_pfd2_396m_clk);
368 if (!IS_ERR(pll2_bus_clk))
369 clk_put(pll2_bus_clk);
370 if (!IS_ERR(secondary_sel_clk))
371 clk_put(secondary_sel_clk);
372 of_node_put(np);
373 return ret;
376 static int imx6q_cpufreq_remove(struct platform_device *pdev)
378 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
379 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
380 if (free_opp)
381 dev_pm_opp_of_remove_table(cpu_dev);
382 regulator_put(arm_reg);
383 if (!IS_ERR(pu_reg))
384 regulator_put(pu_reg);
385 regulator_put(soc_reg);
386 clk_put(arm_clk);
387 clk_put(pll1_sys_clk);
388 clk_put(pll1_sw_clk);
389 clk_put(step_clk);
390 clk_put(pll2_pfd2_396m_clk);
391 clk_put(pll2_bus_clk);
392 clk_put(secondary_sel_clk);
394 return 0;
397 static struct platform_driver imx6q_cpufreq_platdrv = {
398 .driver = {
399 .name = "imx6q-cpufreq",
401 .probe = imx6q_cpufreq_probe,
402 .remove = imx6q_cpufreq_remove,
404 module_platform_driver(imx6q_cpufreq_platdrv);
406 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
407 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
408 MODULE_LICENSE("GPL");