irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / cpufreq / powernow-k8.c
blob0b5bf135b0907491a226353f2127cc51c9c13cde
1 /*
2 * (c) 2003-2012 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Maintainer:
8 * Andreas Herrmann <herrmann.der.user@googlemail.com>
10 * Based on the powernow-k7.c module written by Dave Jones.
11 * (C) 2003 Dave Jones on behalf of SuSE Labs
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@ucw.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
18 * Dominik Brodowski, Jacob Shin, and others.
19 * Originally developed by Paul Devriendt.
21 * Processor information obtained from Chapter 9 (Power and Thermal
22 * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23 * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24 * Power Management" in BKDGs for newer AMD CPU families.
26 * Tables for specific CPUs can be inferred from AMD's processor
27 * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #include <linux/kernel.h>
33 #include <linux/smp.h>
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/cpufreq.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/cpumask.h>
40 #include <linux/io.h>
41 #include <linux/delay.h>
43 #include <asm/msr.h>
44 #include <asm/cpu_device_id.h>
46 #include <linux/acpi.h>
47 #include <linux/mutex.h>
48 #include <acpi/processor.h>
50 #define VERSION "version 2.20.00"
51 #include "powernow-k8.h"
53 /* serialize freq changes */
54 static DEFINE_MUTEX(fidvid_mutex);
56 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
58 static struct cpufreq_driver cpufreq_amd64_driver;
60 /* Return a frequency in MHz, given an input fid */
61 static u32 find_freq_from_fid(u32 fid)
63 return 800 + (fid * 100);
66 /* Return a frequency in KHz, given an input fid */
67 static u32 find_khz_freq_from_fid(u32 fid)
69 return 1000 * find_freq_from_fid(fid);
72 /* Return the vco fid for an input fid
74 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
75 * only from corresponding high fids. This returns "high" fid corresponding to
76 * "low" one.
78 static u32 convert_fid_to_vco_fid(u32 fid)
80 if (fid < HI_FID_TABLE_BOTTOM)
81 return 8 + (2 * fid);
82 else
83 return fid;
87 * Return 1 if the pending bit is set. Unless we just instructed the processor
88 * to transition to a new state, seeing this bit set is really bad news.
90 static int pending_bit_stuck(void)
92 u32 lo, hi;
94 rdmsr(MSR_FIDVID_STATUS, lo, hi);
95 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
99 * Update the global current fid / vid values from the status msr.
100 * Returns 1 on error.
102 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
104 u32 lo, hi;
105 u32 i = 0;
107 do {
108 if (i++ > 10000) {
109 pr_debug("detected change pending stuck\n");
110 return 1;
112 rdmsr(MSR_FIDVID_STATUS, lo, hi);
113 } while (lo & MSR_S_LO_CHANGE_PENDING);
115 data->currvid = hi & MSR_S_HI_CURRENT_VID;
116 data->currfid = lo & MSR_S_LO_CURRENT_FID;
118 return 0;
121 /* the isochronous relief time */
122 static void count_off_irt(struct powernow_k8_data *data)
124 udelay((1 << data->irt) * 10);
125 return;
128 /* the voltage stabilization time */
129 static void count_off_vst(struct powernow_k8_data *data)
131 udelay(data->vstable * VST_UNITS_20US);
132 return;
135 /* need to init the control msr to a safe value (for each cpu) */
136 static void fidvid_msr_init(void)
138 u32 lo, hi;
139 u8 fid, vid;
141 rdmsr(MSR_FIDVID_STATUS, lo, hi);
142 vid = hi & MSR_S_HI_CURRENT_VID;
143 fid = lo & MSR_S_LO_CURRENT_FID;
144 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
145 hi = MSR_C_HI_STP_GNT_BENIGN;
146 pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
147 wrmsr(MSR_FIDVID_CTL, lo, hi);
150 /* write the new fid value along with the other control fields to the msr */
151 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
153 u32 lo;
154 u32 savevid = data->currvid;
155 u32 i = 0;
157 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
158 pr_err("internal error - overflow on fid write\n");
159 return 1;
162 lo = fid;
163 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
164 lo |= MSR_C_LO_INIT_FID_VID;
166 pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
167 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
169 do {
170 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
171 if (i++ > 100) {
172 pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n");
173 return 1;
175 } while (query_current_values_with_pending_wait(data));
177 count_off_irt(data);
179 if (savevid != data->currvid) {
180 pr_err("vid change on fid trans, old 0x%x, new 0x%x\n",
181 savevid, data->currvid);
182 return 1;
185 if (fid != data->currfid) {
186 pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid,
187 data->currfid);
188 return 1;
191 return 0;
194 /* Write a new vid to the hardware */
195 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
197 u32 lo;
198 u32 savefid = data->currfid;
199 int i = 0;
201 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
202 pr_err("internal error - overflow on vid write\n");
203 return 1;
206 lo = data->currfid;
207 lo |= (vid << MSR_C_LO_VID_SHIFT);
208 lo |= MSR_C_LO_INIT_FID_VID;
210 pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
211 vid, lo, STOP_GRANT_5NS);
213 do {
214 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
215 if (i++ > 100) {
216 pr_err("internal error - pending bit very stuck - no further pstate changes possible\n");
217 return 1;
219 } while (query_current_values_with_pending_wait(data));
221 if (savefid != data->currfid) {
222 pr_err("fid changed on vid trans, old 0x%x new 0x%x\n",
223 savefid, data->currfid);
224 return 1;
227 if (vid != data->currvid) {
228 pr_err("vid trans failed, vid 0x%x, curr 0x%x\n",
229 vid, data->currvid);
230 return 1;
233 return 0;
237 * Reduce the vid by the max of step or reqvid.
238 * Decreasing vid codes represent increasing voltages:
239 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
241 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
242 u32 reqvid, u32 step)
244 if ((data->currvid - reqvid) > step)
245 reqvid = data->currvid - step;
247 if (write_new_vid(data, reqvid))
248 return 1;
250 count_off_vst(data);
252 return 0;
255 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
256 static int transition_fid_vid(struct powernow_k8_data *data,
257 u32 reqfid, u32 reqvid)
259 if (core_voltage_pre_transition(data, reqvid, reqfid))
260 return 1;
262 if (core_frequency_transition(data, reqfid))
263 return 1;
265 if (core_voltage_post_transition(data, reqvid))
266 return 1;
268 if (query_current_values_with_pending_wait(data))
269 return 1;
271 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
272 pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
273 smp_processor_id(),
274 reqfid, reqvid, data->currfid, data->currvid);
275 return 1;
278 pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
279 smp_processor_id(), data->currfid, data->currvid);
281 return 0;
284 /* Phase 1 - core voltage transition ... setup voltage */
285 static int core_voltage_pre_transition(struct powernow_k8_data *data,
286 u32 reqvid, u32 reqfid)
288 u32 rvosteps = data->rvo;
289 u32 savefid = data->currfid;
290 u32 maxvid, lo, rvomult = 1;
292 pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
293 smp_processor_id(),
294 data->currfid, data->currvid, reqvid, data->rvo);
296 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
297 rvomult = 2;
298 rvosteps *= rvomult;
299 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
300 maxvid = 0x1f & (maxvid >> 16);
301 pr_debug("ph1 maxvid=0x%x\n", maxvid);
302 if (reqvid < maxvid) /* lower numbers are higher voltages */
303 reqvid = maxvid;
305 while (data->currvid > reqvid) {
306 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
307 data->currvid, reqvid);
308 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
309 return 1;
312 while ((rvosteps > 0) &&
313 ((rvomult * data->rvo + data->currvid) > reqvid)) {
314 if (data->currvid == maxvid) {
315 rvosteps = 0;
316 } else {
317 pr_debug("ph1: changing vid for rvo, req 0x%x\n",
318 data->currvid - 1);
319 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
320 return 1;
321 rvosteps--;
325 if (query_current_values_with_pending_wait(data))
326 return 1;
328 if (savefid != data->currfid) {
329 pr_err("ph1 err, currfid changed 0x%x\n", data->currfid);
330 return 1;
333 pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
334 data->currfid, data->currvid);
336 return 0;
339 /* Phase 2 - core frequency transition */
340 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
342 u32 vcoreqfid, vcocurrfid, vcofiddiff;
343 u32 fid_interval, savevid = data->currvid;
345 if (data->currfid == reqfid) {
346 pr_err("ph2 null fid transition 0x%x\n", data->currfid);
347 return 0;
350 pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
351 smp_processor_id(),
352 data->currfid, data->currvid, reqfid);
354 vcoreqfid = convert_fid_to_vco_fid(reqfid);
355 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
356 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
357 : vcoreqfid - vcocurrfid;
359 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
360 vcofiddiff = 0;
362 while (vcofiddiff > 2) {
363 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
365 if (reqfid > data->currfid) {
366 if (data->currfid > LO_FID_TABLE_TOP) {
367 if (write_new_fid(data,
368 data->currfid + fid_interval))
369 return 1;
370 } else {
371 if (write_new_fid
372 (data,
373 2 + convert_fid_to_vco_fid(data->currfid)))
374 return 1;
376 } else {
377 if (write_new_fid(data, data->currfid - fid_interval))
378 return 1;
381 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
382 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
383 : vcoreqfid - vcocurrfid;
386 if (write_new_fid(data, reqfid))
387 return 1;
389 if (query_current_values_with_pending_wait(data))
390 return 1;
392 if (data->currfid != reqfid) {
393 pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
394 data->currfid, reqfid);
395 return 1;
398 if (savevid != data->currvid) {
399 pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n",
400 savevid, data->currvid);
401 return 1;
404 pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
405 data->currfid, data->currvid);
407 return 0;
410 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
411 static int core_voltage_post_transition(struct powernow_k8_data *data,
412 u32 reqvid)
414 u32 savefid = data->currfid;
415 u32 savereqvid = reqvid;
417 pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
418 smp_processor_id(),
419 data->currfid, data->currvid);
421 if (reqvid != data->currvid) {
422 if (write_new_vid(data, reqvid))
423 return 1;
425 if (savefid != data->currfid) {
426 pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n",
427 savefid, data->currfid);
428 return 1;
431 if (data->currvid != reqvid) {
432 pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x",
433 reqvid, data->currvid);
434 return 1;
438 if (query_current_values_with_pending_wait(data))
439 return 1;
441 if (savereqvid != data->currvid) {
442 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
443 return 1;
446 if (savefid != data->currfid) {
447 pr_debug("ph3 failed, currfid changed 0x%x\n",
448 data->currfid);
449 return 1;
452 pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
453 data->currfid, data->currvid);
455 return 0;
458 static const struct x86_cpu_id powernow_k8_ids[] = {
459 /* IO based frequency switching */
460 { X86_VENDOR_AMD, 0xf },
463 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
465 static void check_supported_cpu(void *_rc)
467 u32 eax, ebx, ecx, edx;
468 int *rc = _rc;
470 *rc = -ENODEV;
472 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
474 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
475 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
476 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
477 pr_info("Processor cpuid %x not supported\n", eax);
478 return;
481 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
482 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
483 pr_info("No frequency change capabilities detected\n");
484 return;
487 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
488 if ((edx & P_STATE_TRANSITION_CAPABLE)
489 != P_STATE_TRANSITION_CAPABLE) {
490 pr_info("Power state transitions not supported\n");
491 return;
493 *rc = 0;
497 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
498 u8 maxvid)
500 unsigned int j;
501 u8 lastfid = 0xff;
503 for (j = 0; j < data->numps; j++) {
504 if (pst[j].vid > LEAST_VID) {
505 pr_err(FW_BUG "vid %d invalid : 0x%x\n", j,
506 pst[j].vid);
507 return -EINVAL;
509 if (pst[j].vid < data->rvo) {
510 /* vid + rvo >= 0 */
511 pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j);
512 return -ENODEV;
514 if (pst[j].vid < maxvid + data->rvo) {
515 /* vid + rvo >= maxvid */
516 pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j);
517 return -ENODEV;
519 if (pst[j].fid > MAX_FID) {
520 pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j);
521 return -ENODEV;
523 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
524 /* Only first fid is allowed to be in "low" range */
525 pr_err(FW_BUG "two low fids - %d : 0x%x\n", j,
526 pst[j].fid);
527 return -EINVAL;
529 if (pst[j].fid < lastfid)
530 lastfid = pst[j].fid;
532 if (lastfid & 1) {
533 pr_err(FW_BUG "lastfid invalid\n");
534 return -EINVAL;
536 if (lastfid > LO_FID_TABLE_TOP)
537 pr_info(FW_BUG "first fid not from lo freq table\n");
539 return 0;
542 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
543 unsigned int entry)
545 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
548 static void print_basics(struct powernow_k8_data *data)
550 int j;
551 for (j = 0; j < data->numps; j++) {
552 if (data->powernow_table[j].frequency !=
553 CPUFREQ_ENTRY_INVALID) {
554 pr_info("fid 0x%x (%d MHz), vid 0x%x\n",
555 data->powernow_table[j].driver_data & 0xff,
556 data->powernow_table[j].frequency/1000,
557 data->powernow_table[j].driver_data >> 8);
560 if (data->batps)
561 pr_info("Only %d pstates on battery\n", data->batps);
564 static int fill_powernow_table(struct powernow_k8_data *data,
565 struct pst_s *pst, u8 maxvid)
567 struct cpufreq_frequency_table *powernow_table;
568 unsigned int j;
570 if (data->batps) {
571 /* use ACPI support to get full speed on mains power */
572 pr_warn("Only %d pstates usable (use ACPI driver for full range\n",
573 data->batps);
574 data->numps = data->batps;
577 for (j = 1; j < data->numps; j++) {
578 if (pst[j-1].fid >= pst[j].fid) {
579 pr_err("PST out of sequence\n");
580 return -EINVAL;
584 if (data->numps < 2) {
585 pr_err("no p states to transition\n");
586 return -ENODEV;
589 if (check_pst_table(data, pst, maxvid))
590 return -EINVAL;
592 powernow_table = kzalloc((sizeof(*powernow_table)
593 * (data->numps + 1)), GFP_KERNEL);
594 if (!powernow_table) {
595 pr_err("powernow_table memory alloc failure\n");
596 return -ENOMEM;
599 for (j = 0; j < data->numps; j++) {
600 int freq;
601 powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */
602 powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */
603 freq = find_khz_freq_from_fid(pst[j].fid);
604 powernow_table[j].frequency = freq;
606 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
607 powernow_table[data->numps].driver_data = 0;
609 if (query_current_values_with_pending_wait(data)) {
610 kfree(powernow_table);
611 return -EIO;
614 pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
615 data->powernow_table = powernow_table;
616 if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
617 print_basics(data);
619 for (j = 0; j < data->numps; j++)
620 if ((pst[j].fid == data->currfid) &&
621 (pst[j].vid == data->currvid))
622 return 0;
624 pr_debug("currfid/vid do not match PST, ignoring\n");
625 return 0;
628 /* Find and validate the PSB/PST table in BIOS. */
629 static int find_psb_table(struct powernow_k8_data *data)
631 struct psb_s *psb;
632 unsigned int i;
633 u32 mvs;
634 u8 maxvid;
635 u32 cpst = 0;
636 u32 thiscpuid;
638 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
639 /* Scan BIOS looking for the signature. */
640 /* It can not be at ffff0 - it is too big. */
642 psb = phys_to_virt(i);
643 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
644 continue;
646 pr_debug("found PSB header at 0x%p\n", psb);
648 pr_debug("table vers: 0x%x\n", psb->tableversion);
649 if (psb->tableversion != PSB_VERSION_1_4) {
650 pr_err(FW_BUG "PSB table is not v1.4\n");
651 return -ENODEV;
654 pr_debug("flags: 0x%x\n", psb->flags1);
655 if (psb->flags1) {
656 pr_err(FW_BUG "unknown flags\n");
657 return -ENODEV;
660 data->vstable = psb->vstable;
661 pr_debug("voltage stabilization time: %d(*20us)\n",
662 data->vstable);
664 pr_debug("flags2: 0x%x\n", psb->flags2);
665 data->rvo = psb->flags2 & 3;
666 data->irt = ((psb->flags2) >> 2) & 3;
667 mvs = ((psb->flags2) >> 4) & 3;
668 data->vidmvs = 1 << mvs;
669 data->batps = ((psb->flags2) >> 6) & 3;
671 pr_debug("ramp voltage offset: %d\n", data->rvo);
672 pr_debug("isochronous relief time: %d\n", data->irt);
673 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
675 pr_debug("numpst: 0x%x\n", psb->num_tables);
676 cpst = psb->num_tables;
677 if ((psb->cpuid == 0x00000fc0) ||
678 (psb->cpuid == 0x00000fe0)) {
679 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
680 if ((thiscpuid == 0x00000fc0) ||
681 (thiscpuid == 0x00000fe0))
682 cpst = 1;
684 if (cpst != 1) {
685 pr_err(FW_BUG "numpst must be 1\n");
686 return -ENODEV;
689 data->plllock = psb->plllocktime;
690 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
691 pr_debug("maxfid: 0x%x\n", psb->maxfid);
692 pr_debug("maxvid: 0x%x\n", psb->maxvid);
693 maxvid = psb->maxvid;
695 data->numps = psb->numps;
696 pr_debug("numpstates: 0x%x\n", data->numps);
697 return fill_powernow_table(data,
698 (struct pst_s *)(psb+1), maxvid);
701 * If you see this message, complain to BIOS manufacturer. If
702 * he tells you "we do not support Linux" or some similar
703 * nonsense, remember that Windows 2000 uses the same legacy
704 * mechanism that the old Linux PSB driver uses. Tell them it
705 * is broken with Windows 2000.
707 * The reference to the AMD documentation is chapter 9 in the
708 * BIOS and Kernel Developer's Guide, which is available on
709 * www.amd.com
711 pr_err(FW_BUG "No PSB or ACPI _PSS objects\n");
712 pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n");
713 return -ENODEV;
716 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
717 unsigned int index)
719 u64 control;
721 if (!data->acpi_data.state_count)
722 return;
724 control = data->acpi_data.states[index].control;
725 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
726 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
727 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
728 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
729 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
730 data->vstable = (control >> VST_SHIFT) & VST_MASK;
733 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
735 struct cpufreq_frequency_table *powernow_table;
736 int ret_val = -ENODEV;
737 u64 control, status;
739 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
740 pr_debug("register performance failed: bad ACPI data\n");
741 return -EIO;
744 /* verify the data contained in the ACPI structures */
745 if (data->acpi_data.state_count <= 1) {
746 pr_debug("No ACPI P-States\n");
747 goto err_out;
750 control = data->acpi_data.control_register.space_id;
751 status = data->acpi_data.status_register.space_id;
753 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
754 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
755 pr_debug("Invalid control/status registers (%llx - %llx)\n",
756 control, status);
757 goto err_out;
760 /* fill in data->powernow_table */
761 powernow_table = kzalloc((sizeof(*powernow_table)
762 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
763 if (!powernow_table) {
764 pr_debug("powernow_table memory alloc failure\n");
765 goto err_out;
768 /* fill in data */
769 data->numps = data->acpi_data.state_count;
770 powernow_k8_acpi_pst_values(data, 0);
772 ret_val = fill_powernow_table_fidvid(data, powernow_table);
773 if (ret_val)
774 goto err_out_mem;
776 powernow_table[data->acpi_data.state_count].frequency =
777 CPUFREQ_TABLE_END;
778 data->powernow_table = powernow_table;
780 if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
781 print_basics(data);
783 /* notify BIOS that we exist */
784 acpi_processor_notify_smm(THIS_MODULE);
786 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
787 pr_err("unable to alloc powernow_k8_data cpumask\n");
788 ret_val = -ENOMEM;
789 goto err_out_mem;
792 return 0;
794 err_out_mem:
795 kfree(powernow_table);
797 err_out:
798 acpi_processor_unregister_performance(data->cpu);
800 /* data->acpi_data.state_count informs us at ->exit()
801 * whether ACPI was used */
802 data->acpi_data.state_count = 0;
804 return ret_val;
807 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
808 struct cpufreq_frequency_table *powernow_table)
810 int i;
812 for (i = 0; i < data->acpi_data.state_count; i++) {
813 u32 fid;
814 u32 vid;
815 u32 freq, index;
816 u64 status, control;
818 if (data->exttype) {
819 status = data->acpi_data.states[i].status;
820 fid = status & EXT_FID_MASK;
821 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
822 } else {
823 control = data->acpi_data.states[i].control;
824 fid = control & FID_MASK;
825 vid = (control >> VID_SHIFT) & VID_MASK;
828 pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
830 index = fid | (vid<<8);
831 powernow_table[i].driver_data = index;
833 freq = find_khz_freq_from_fid(fid);
834 powernow_table[i].frequency = freq;
836 /* verify frequency is OK */
837 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
838 pr_debug("invalid freq %u kHz, ignoring\n", freq);
839 invalidate_entry(powernow_table, i);
840 continue;
843 /* verify voltage is OK -
844 * BIOSs are using "off" to indicate invalid */
845 if (vid == VID_OFF) {
846 pr_debug("invalid vid %u, ignoring\n", vid);
847 invalidate_entry(powernow_table, i);
848 continue;
851 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
852 pr_info("invalid freq entries %u kHz vs. %u kHz\n",
853 freq, (unsigned int)
854 (data->acpi_data.states[i].core_frequency
855 * 1000));
856 invalidate_entry(powernow_table, i);
857 continue;
860 return 0;
863 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
865 if (data->acpi_data.state_count)
866 acpi_processor_unregister_performance(data->cpu);
867 free_cpumask_var(data->acpi_data.shared_cpu_map);
870 static int get_transition_latency(struct powernow_k8_data *data)
872 int max_latency = 0;
873 int i;
874 for (i = 0; i < data->acpi_data.state_count; i++) {
875 int cur_latency = data->acpi_data.states[i].transition_latency
876 + data->acpi_data.states[i].bus_master_latency;
877 if (cur_latency > max_latency)
878 max_latency = cur_latency;
880 if (max_latency == 0) {
881 pr_err(FW_WARN "Invalid zero transition latency\n");
882 max_latency = 1;
884 /* value in usecs, needs to be in nanoseconds */
885 return 1000 * max_latency;
888 /* Take a frequency, and issue the fid/vid transition command */
889 static int transition_frequency_fidvid(struct powernow_k8_data *data,
890 unsigned int index)
892 struct cpufreq_policy *policy;
893 u32 fid = 0;
894 u32 vid = 0;
895 int res;
896 struct cpufreq_freqs freqs;
898 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
900 /* fid/vid correctness check for k8 */
901 /* fid are the lower 8 bits of the index we stored into
902 * the cpufreq frequency table in find_psb_table, vid
903 * are the upper 8 bits.
905 fid = data->powernow_table[index].driver_data & 0xFF;
906 vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8;
908 pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
910 if (query_current_values_with_pending_wait(data))
911 return 1;
913 if ((data->currvid == vid) && (data->currfid == fid)) {
914 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
915 fid, vid);
916 return 0;
919 pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
920 smp_processor_id(), fid, vid);
921 freqs.old = find_khz_freq_from_fid(data->currfid);
922 freqs.new = find_khz_freq_from_fid(fid);
924 policy = cpufreq_cpu_get(smp_processor_id());
925 cpufreq_cpu_put(policy);
927 cpufreq_freq_transition_begin(policy, &freqs);
928 res = transition_fid_vid(data, fid, vid);
929 cpufreq_freq_transition_end(policy, &freqs, res);
931 return res;
934 struct powernowk8_target_arg {
935 struct cpufreq_policy *pol;
936 unsigned newstate;
939 static long powernowk8_target_fn(void *arg)
941 struct powernowk8_target_arg *pta = arg;
942 struct cpufreq_policy *pol = pta->pol;
943 unsigned newstate = pta->newstate;
944 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
945 u32 checkfid;
946 u32 checkvid;
947 int ret;
949 if (!data)
950 return -EINVAL;
952 checkfid = data->currfid;
953 checkvid = data->currvid;
955 if (pending_bit_stuck()) {
956 pr_err("failing targ, change pending bit set\n");
957 return -EIO;
960 pr_debug("targ: cpu %d, %d kHz, min %d, max %d\n",
961 pol->cpu, data->powernow_table[newstate].frequency, pol->min,
962 pol->max);
964 if (query_current_values_with_pending_wait(data))
965 return -EIO;
967 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
968 data->currfid, data->currvid);
970 if ((checkvid != data->currvid) ||
971 (checkfid != data->currfid)) {
972 pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
973 checkfid, data->currfid,
974 checkvid, data->currvid);
977 mutex_lock(&fidvid_mutex);
979 powernow_k8_acpi_pst_values(data, newstate);
981 ret = transition_frequency_fidvid(data, newstate);
983 if (ret) {
984 pr_err("transition frequency failed\n");
985 mutex_unlock(&fidvid_mutex);
986 return 1;
988 mutex_unlock(&fidvid_mutex);
990 pol->cur = find_khz_freq_from_fid(data->currfid);
992 return 0;
995 /* Driver entry point to switch to the target frequency */
996 static int powernowk8_target(struct cpufreq_policy *pol, unsigned index)
998 struct powernowk8_target_arg pta = { .pol = pol, .newstate = index };
1000 return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1003 struct init_on_cpu {
1004 struct powernow_k8_data *data;
1005 int rc;
1008 static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1010 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1012 if (pending_bit_stuck()) {
1013 pr_err("failing init, change pending bit set\n");
1014 init_on_cpu->rc = -ENODEV;
1015 return;
1018 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1019 init_on_cpu->rc = -ENODEV;
1020 return;
1023 fidvid_msr_init();
1025 init_on_cpu->rc = 0;
1028 #define MISSING_PSS_MSG \
1029 FW_BUG "No compatible ACPI _PSS objects found.\n" \
1030 FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \
1031 FW_BUG "If that doesn't help, try upgrading your BIOS.\n"
1033 /* per CPU init entry point to the driver */
1034 static int powernowk8_cpu_init(struct cpufreq_policy *pol)
1036 struct powernow_k8_data *data;
1037 struct init_on_cpu init_on_cpu;
1038 int rc, cpu;
1040 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1041 if (rc)
1042 return -ENODEV;
1044 data = kzalloc(sizeof(*data), GFP_KERNEL);
1045 if (!data) {
1046 pr_err("unable to alloc powernow_k8_data");
1047 return -ENOMEM;
1050 data->cpu = pol->cpu;
1052 if (powernow_k8_cpu_init_acpi(data)) {
1054 * Use the PSB BIOS structure. This is only available on
1055 * an UP version, and is deprecated by AMD.
1057 if (num_online_cpus() != 1) {
1058 pr_err_once(MISSING_PSS_MSG);
1059 goto err_out;
1061 if (pol->cpu != 0) {
1062 pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n");
1063 goto err_out;
1065 rc = find_psb_table(data);
1066 if (rc)
1067 goto err_out;
1069 /* Take a crude guess here.
1070 * That guess was in microseconds, so multiply with 1000 */
1071 pol->cpuinfo.transition_latency = (
1072 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1073 ((1 << data->irt) * 30)) * 1000;
1074 } else /* ACPI _PSS objects available */
1075 pol->cpuinfo.transition_latency = get_transition_latency(data);
1077 /* only run on specific CPU from here on */
1078 init_on_cpu.data = data;
1079 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1080 &init_on_cpu, 1);
1081 rc = init_on_cpu.rc;
1082 if (rc != 0)
1083 goto err_out_exit_acpi;
1085 cpumask_copy(pol->cpus, topology_core_cpumask(pol->cpu));
1086 data->available_cores = pol->cpus;
1088 /* min/max the cpu is capable of */
1089 if (cpufreq_table_validate_and_show(pol, data->powernow_table)) {
1090 pr_err(FW_BUG "invalid powernow_table\n");
1091 powernow_k8_cpu_exit_acpi(data);
1092 kfree(data->powernow_table);
1093 kfree(data);
1094 return -EINVAL;
1097 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1098 data->currfid, data->currvid);
1100 /* Point all the CPUs in this policy to the same data */
1101 for_each_cpu(cpu, pol->cpus)
1102 per_cpu(powernow_data, cpu) = data;
1104 return 0;
1106 err_out_exit_acpi:
1107 powernow_k8_cpu_exit_acpi(data);
1109 err_out:
1110 kfree(data);
1111 return -ENODEV;
1114 static int powernowk8_cpu_exit(struct cpufreq_policy *pol)
1116 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1117 int cpu;
1119 if (!data)
1120 return -EINVAL;
1122 powernow_k8_cpu_exit_acpi(data);
1124 kfree(data->powernow_table);
1125 kfree(data);
1126 for_each_cpu(cpu, pol->cpus)
1127 per_cpu(powernow_data, cpu) = NULL;
1129 return 0;
1132 static void query_values_on_cpu(void *_err)
1134 int *err = _err;
1135 struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1137 *err = query_current_values_with_pending_wait(data);
1140 static unsigned int powernowk8_get(unsigned int cpu)
1142 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1143 unsigned int khz = 0;
1144 int err;
1146 if (!data)
1147 return 0;
1149 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1150 if (err)
1151 goto out;
1153 khz = find_khz_freq_from_fid(data->currfid);
1156 out:
1157 return khz;
1160 static struct cpufreq_driver cpufreq_amd64_driver = {
1161 .flags = CPUFREQ_ASYNC_NOTIFICATION,
1162 .verify = cpufreq_generic_frequency_table_verify,
1163 .target_index = powernowk8_target,
1164 .bios_limit = acpi_processor_get_bios_limit,
1165 .init = powernowk8_cpu_init,
1166 .exit = powernowk8_cpu_exit,
1167 .get = powernowk8_get,
1168 .name = "powernow-k8",
1169 .attr = cpufreq_generic_attr,
1172 static void __request_acpi_cpufreq(void)
1174 const char *cur_drv, *drv = "acpi-cpufreq";
1176 cur_drv = cpufreq_get_current_driver();
1177 if (!cur_drv)
1178 goto request;
1180 if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
1181 pr_warn("WTF driver: %s\n", cur_drv);
1183 return;
1185 request:
1186 pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n");
1187 request_module(drv);
1190 /* driver entry point for init */
1191 static int powernowk8_init(void)
1193 unsigned int i, supported_cpus = 0;
1194 int ret;
1196 if (static_cpu_has(X86_FEATURE_HW_PSTATE)) {
1197 __request_acpi_cpufreq();
1198 return -ENODEV;
1201 if (!x86_match_cpu(powernow_k8_ids))
1202 return -ENODEV;
1204 get_online_cpus();
1205 for_each_online_cpu(i) {
1206 smp_call_function_single(i, check_supported_cpu, &ret, 1);
1207 if (!ret)
1208 supported_cpus++;
1211 if (supported_cpus != num_online_cpus()) {
1212 put_online_cpus();
1213 return -ENODEV;
1215 put_online_cpus();
1217 ret = cpufreq_register_driver(&cpufreq_amd64_driver);
1218 if (ret)
1219 return ret;
1221 pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n",
1222 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1224 return ret;
1227 /* driver entry point for term */
1228 static void __exit powernowk8_exit(void)
1230 pr_debug("exit\n");
1232 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1235 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>");
1236 MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>");
1237 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1238 MODULE_LICENSE("GPL");
1240 late_initcall(powernowk8_init);
1241 module_exit(powernowk8_exit);