irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / dma / amba-pl08x.c
blob9b42c05885507e9cb25aa2115a7ec69d2b955ac3
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * The full GNU General Public License is in this distribution in the file
19 * called COPYING.
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
26 * channel.
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
34 * The PL080 has a dual bus master, PL081 has a single master.
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
44 * Memory to peripheral transfer may be visualized as
45 * Get data from memory to DMAC
46 * Until no data left
47 * On burst request from peripheral
48 * Destination burst from DMAC to peripheral
49 * Clear burst request
50 * Raise terminal count interrupt
52 * For peripherals with a FIFO:
53 * Source burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
59 * ASSUMES default (little) endianness for DMA transfers
61 * The PL08x has two flow control settings:
62 * - DMAC flow control: the transfer size defines the number of transfers
63 * which occur for the current LLI entry, and the DMAC raises TC at the
64 * end of every LLI entry. Observed behaviour shows the DMAC listening
65 * to both the BREQ and SREQ signals (contrary to documented),
66 * transferring data if either is active. The LBREQ and LSREQ signals
67 * are ignored.
69 * - Peripheral flow control: the transfer size is ignored (and should be
70 * zero). The data is transferred from the current LLI entry, until
71 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
72 * will then move to the next LLI entry. Unsupported by PL080S.
74 #include <linux/amba/bus.h>
75 #include <linux/amba/pl08x.h>
76 #include <linux/debugfs.h>
77 #include <linux/delay.h>
78 #include <linux/device.h>
79 #include <linux/dmaengine.h>
80 #include <linux/dmapool.h>
81 #include <linux/dma-mapping.h>
82 #include <linux/export.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/module.h>
86 #include <linux/of.h>
87 #include <linux/of_dma.h>
88 #include <linux/pm_runtime.h>
89 #include <linux/seq_file.h>
90 #include <linux/slab.h>
91 #include <linux/amba/pl080.h>
93 #include "dmaengine.h"
94 #include "virt-dma.h"
96 #define DRIVER_NAME "pl08xdmac"
98 #define PL80X_DMA_BUSWIDTHS \
99 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
100 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
101 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
102 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
104 static struct amba_driver pl08x_amba_driver;
105 struct pl08x_driver_data;
108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
109 * @channels: the number of channels available in this variant
110 * @dualmaster: whether this version supports dual AHB masters or not.
111 * @nomadik: whether the channels have Nomadik security extension bits
112 * that need to be checked for permission before use and some registers are
113 * missing
114 * @pl080s: whether this version is a PL080S, which has separate register and
115 * LLI word for transfer size.
117 struct vendor_data {
118 u8 config_offset;
119 u8 channels;
120 bool dualmaster;
121 bool nomadik;
122 bool pl080s;
123 u32 max_transfer_size;
127 * struct pl08x_bus_data - information of source or destination
128 * busses for a transfer
129 * @addr: current address
130 * @maxwidth: the maximum width of a transfer on this bus
131 * @buswidth: the width of this bus in bytes: 1, 2 or 4
133 struct pl08x_bus_data {
134 dma_addr_t addr;
135 u8 maxwidth;
136 u8 buswidth;
139 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
142 * struct pl08x_phy_chan - holder for the physical channels
143 * @id: physical index to this channel
144 * @lock: a lock to use when altering an instance of this struct
145 * @serving: the virtual channel currently being served by this physical
146 * channel
147 * @locked: channel unavailable for the system, e.g. dedicated to secure
148 * world
150 struct pl08x_phy_chan {
151 unsigned int id;
152 void __iomem *base;
153 void __iomem *reg_config;
154 spinlock_t lock;
155 struct pl08x_dma_chan *serving;
156 bool locked;
160 * struct pl08x_sg - structure containing data per sg
161 * @src_addr: src address of sg
162 * @dst_addr: dst address of sg
163 * @len: transfer len in bytes
164 * @node: node for txd's dsg_list
166 struct pl08x_sg {
167 dma_addr_t src_addr;
168 dma_addr_t dst_addr;
169 size_t len;
170 struct list_head node;
174 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
175 * @vd: virtual DMA descriptor
176 * @dsg_list: list of children sg's
177 * @llis_bus: DMA memory address (physical) start for the LLIs
178 * @llis_va: virtual memory address start for the LLIs
179 * @cctl: control reg values for current txd
180 * @ccfg: config reg values for current txd
181 * @done: this marks completed descriptors, which should not have their
182 * mux released.
183 * @cyclic: indicate cyclic transfers
185 struct pl08x_txd {
186 struct virt_dma_desc vd;
187 struct list_head dsg_list;
188 dma_addr_t llis_bus;
189 u32 *llis_va;
190 /* Default cctl value for LLIs */
191 u32 cctl;
193 * Settings to be put into the physical channel when we
194 * trigger this txd. Other registers are in llis_va[0].
196 u32 ccfg;
197 bool done;
198 bool cyclic;
202 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
203 * states
204 * @PL08X_CHAN_IDLE: the channel is idle
205 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
206 * channel and is running a transfer on it
207 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
208 * channel, but the transfer is currently paused
209 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
210 * channel to become available (only pertains to memcpy channels)
212 enum pl08x_dma_chan_state {
213 PL08X_CHAN_IDLE,
214 PL08X_CHAN_RUNNING,
215 PL08X_CHAN_PAUSED,
216 PL08X_CHAN_WAITING,
220 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
221 * @vc: wrappped virtual channel
222 * @phychan: the physical channel utilized by this channel, if there is one
223 * @name: name of channel
224 * @cd: channel platform data
225 * @runtime_addr: address for RX/TX according to the runtime config
226 * @at: active transaction on this channel
227 * @lock: a lock for this channel data
228 * @host: a pointer to the host (internal use)
229 * @state: whether the channel is idle, paused, running etc
230 * @slave: whether this channel is a device (slave) or for memcpy
231 * @signal: the physical DMA request signal which this channel is using
232 * @mux_use: count of descriptors using this DMA request signal setting
234 struct pl08x_dma_chan {
235 struct virt_dma_chan vc;
236 struct pl08x_phy_chan *phychan;
237 const char *name;
238 const struct pl08x_channel_data *cd;
239 struct dma_slave_config cfg;
240 struct pl08x_txd *at;
241 struct pl08x_driver_data *host;
242 enum pl08x_dma_chan_state state;
243 bool slave;
244 int signal;
245 unsigned mux_use;
249 * struct pl08x_driver_data - the local state holder for the PL08x
250 * @slave: slave engine for this instance
251 * @memcpy: memcpy engine for this instance
252 * @base: virtual memory base (remapped) for the PL08x
253 * @adev: the corresponding AMBA (PrimeCell) bus entry
254 * @vd: vendor data for this PL08x variant
255 * @pd: platform data passed in from the platform/machine
256 * @phy_chans: array of data for the physical channels
257 * @pool: a pool for the LLI descriptors
258 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
259 * fetches
260 * @mem_buses: set to indicate memory transfers on AHB2.
261 * @lock: a spinlock for this struct
263 struct pl08x_driver_data {
264 struct dma_device slave;
265 struct dma_device memcpy;
266 void __iomem *base;
267 struct amba_device *adev;
268 const struct vendor_data *vd;
269 struct pl08x_platform_data *pd;
270 struct pl08x_phy_chan *phy_chans;
271 struct dma_pool *pool;
272 u8 lli_buses;
273 u8 mem_buses;
274 u8 lli_words;
278 * PL08X specific defines
281 /* The order of words in an LLI. */
282 #define PL080_LLI_SRC 0
283 #define PL080_LLI_DST 1
284 #define PL080_LLI_LLI 2
285 #define PL080_LLI_CCTL 3
286 #define PL080S_LLI_CCTL2 4
288 /* Total words in an LLI. */
289 #define PL080_LLI_WORDS 4
290 #define PL080S_LLI_WORDS 8
293 * Number of LLIs in each LLI buffer allocated for one transfer
294 * (maximum times we call dma_pool_alloc on this pool without freeing)
296 #define MAX_NUM_TSFR_LLIS 512
297 #define PL08X_ALIGN 8
299 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
301 return container_of(chan, struct pl08x_dma_chan, vc.chan);
304 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
306 return container_of(tx, struct pl08x_txd, vd.tx);
310 * Mux handling.
312 * This gives us the DMA request input to the PL08x primecell which the
313 * peripheral described by the channel data will be routed to, possibly
314 * via a board/SoC specific external MUX. One important point to note
315 * here is that this does not depend on the physical channel.
317 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
319 const struct pl08x_platform_data *pd = plchan->host->pd;
320 int ret;
322 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
323 ret = pd->get_xfer_signal(plchan->cd);
324 if (ret < 0) {
325 plchan->mux_use = 0;
326 return ret;
329 plchan->signal = ret;
331 return 0;
334 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
336 const struct pl08x_platform_data *pd = plchan->host->pd;
338 if (plchan->signal >= 0) {
339 WARN_ON(plchan->mux_use == 0);
341 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
342 pd->put_xfer_signal(plchan->cd, plchan->signal);
343 plchan->signal = -1;
349 * Physical channel handling
352 /* Whether a certain channel is busy or not */
353 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
355 unsigned int val;
357 val = readl(ch->reg_config);
358 return val & PL080_CONFIG_ACTIVE;
361 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
362 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
364 if (pl08x->vd->pl080s)
365 dev_vdbg(&pl08x->adev->dev,
366 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
367 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
368 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
369 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
370 lli[PL080S_LLI_CCTL2], ccfg);
371 else
372 dev_vdbg(&pl08x->adev->dev,
373 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
374 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
375 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
376 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
378 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
379 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
380 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
381 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
383 if (pl08x->vd->pl080s)
384 writel_relaxed(lli[PL080S_LLI_CCTL2],
385 phychan->base + PL080S_CH_CONTROL2);
387 writel(ccfg, phychan->reg_config);
391 * Set the initial DMA register values i.e. those for the first LLI
392 * The next LLI pointer and the configuration interrupt bit have
393 * been set when the LLIs were constructed. Poke them into the hardware
394 * and start the transfer.
396 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
398 struct pl08x_driver_data *pl08x = plchan->host;
399 struct pl08x_phy_chan *phychan = plchan->phychan;
400 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
401 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
402 u32 val;
404 list_del(&txd->vd.node);
406 plchan->at = txd;
408 /* Wait for channel inactive */
409 while (pl08x_phy_channel_busy(phychan))
410 cpu_relax();
412 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
414 /* Enable the DMA channel */
415 /* Do not access config register until channel shows as disabled */
416 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
417 cpu_relax();
419 /* Do not access config register until channel shows as inactive */
420 val = readl(phychan->reg_config);
421 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
422 val = readl(phychan->reg_config);
424 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
428 * Pause the channel by setting the HALT bit.
430 * For M->P transfers, pause the DMAC first and then stop the peripheral -
431 * the FIFO can only drain if the peripheral is still requesting data.
432 * (note: this can still timeout if the DMAC FIFO never drains of data.)
434 * For P->M transfers, disable the peripheral first to stop it filling
435 * the DMAC FIFO, and then pause the DMAC.
437 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
439 u32 val;
440 int timeout;
442 /* Set the HALT bit and wait for the FIFO to drain */
443 val = readl(ch->reg_config);
444 val |= PL080_CONFIG_HALT;
445 writel(val, ch->reg_config);
447 /* Wait for channel inactive */
448 for (timeout = 1000; timeout; timeout--) {
449 if (!pl08x_phy_channel_busy(ch))
450 break;
451 udelay(1);
453 if (pl08x_phy_channel_busy(ch))
454 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
457 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
459 u32 val;
461 /* Clear the HALT bit */
462 val = readl(ch->reg_config);
463 val &= ~PL080_CONFIG_HALT;
464 writel(val, ch->reg_config);
468 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
469 * clears any pending interrupt status. This should not be used for
470 * an on-going transfer, but as a method of shutting down a channel
471 * (eg, when it's no longer used) or terminating a transfer.
473 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
474 struct pl08x_phy_chan *ch)
476 u32 val = readl(ch->reg_config);
478 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
479 PL080_CONFIG_TC_IRQ_MASK);
481 writel(val, ch->reg_config);
483 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
484 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
487 static inline u32 get_bytes_in_cctl(u32 cctl)
489 /* The source width defines the number of bytes */
490 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
492 cctl &= PL080_CONTROL_SWIDTH_MASK;
494 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
495 case PL080_WIDTH_8BIT:
496 break;
497 case PL080_WIDTH_16BIT:
498 bytes *= 2;
499 break;
500 case PL080_WIDTH_32BIT:
501 bytes *= 4;
502 break;
504 return bytes;
507 static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
509 /* The source width defines the number of bytes */
510 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
512 cctl &= PL080_CONTROL_SWIDTH_MASK;
514 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
515 case PL080_WIDTH_8BIT:
516 break;
517 case PL080_WIDTH_16BIT:
518 bytes *= 2;
519 break;
520 case PL080_WIDTH_32BIT:
521 bytes *= 4;
522 break;
524 return bytes;
527 /* The channel should be paused when calling this */
528 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
530 struct pl08x_driver_data *pl08x = plchan->host;
531 const u32 *llis_va, *llis_va_limit;
532 struct pl08x_phy_chan *ch;
533 dma_addr_t llis_bus;
534 struct pl08x_txd *txd;
535 u32 llis_max_words;
536 size_t bytes;
537 u32 clli;
539 ch = plchan->phychan;
540 txd = plchan->at;
542 if (!ch || !txd)
543 return 0;
546 * Follow the LLIs to get the number of remaining
547 * bytes in the currently active transaction.
549 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
551 /* First get the remaining bytes in the active transfer */
552 if (pl08x->vd->pl080s)
553 bytes = get_bytes_in_cctl_pl080s(
554 readl(ch->base + PL080_CH_CONTROL),
555 readl(ch->base + PL080S_CH_CONTROL2));
556 else
557 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
559 if (!clli)
560 return bytes;
562 llis_va = txd->llis_va;
563 llis_bus = txd->llis_bus;
565 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
566 BUG_ON(clli < llis_bus || clli >= llis_bus +
567 sizeof(u32) * llis_max_words);
570 * Locate the next LLI - as this is an array,
571 * it's simple maths to find.
573 llis_va += (clli - llis_bus) / sizeof(u32);
575 llis_va_limit = llis_va + llis_max_words;
577 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
578 if (pl08x->vd->pl080s)
579 bytes += get_bytes_in_cctl_pl080s(
580 llis_va[PL080_LLI_CCTL],
581 llis_va[PL080S_LLI_CCTL2]);
582 else
583 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
586 * A LLI pointer going backward terminates the LLI list
588 if (llis_va[PL080_LLI_LLI] <= clli)
589 break;
592 return bytes;
596 * Allocate a physical channel for a virtual channel
598 * Try to locate a physical channel to be used for this transfer. If all
599 * are taken return NULL and the requester will have to cope by using
600 * some fallback PIO mode or retrying later.
602 static struct pl08x_phy_chan *
603 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
604 struct pl08x_dma_chan *virt_chan)
606 struct pl08x_phy_chan *ch = NULL;
607 unsigned long flags;
608 int i;
610 for (i = 0; i < pl08x->vd->channels; i++) {
611 ch = &pl08x->phy_chans[i];
613 spin_lock_irqsave(&ch->lock, flags);
615 if (!ch->locked && !ch->serving) {
616 ch->serving = virt_chan;
617 spin_unlock_irqrestore(&ch->lock, flags);
618 break;
621 spin_unlock_irqrestore(&ch->lock, flags);
624 if (i == pl08x->vd->channels) {
625 /* No physical channel available, cope with it */
626 return NULL;
629 return ch;
632 /* Mark the physical channel as free. Note, this write is atomic. */
633 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
634 struct pl08x_phy_chan *ch)
636 ch->serving = NULL;
640 * Try to allocate a physical channel. When successful, assign it to
641 * this virtual channel, and initiate the next descriptor. The
642 * virtual channel lock must be held at this point.
644 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
646 struct pl08x_driver_data *pl08x = plchan->host;
647 struct pl08x_phy_chan *ch;
649 ch = pl08x_get_phy_channel(pl08x, plchan);
650 if (!ch) {
651 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
652 plchan->state = PL08X_CHAN_WAITING;
653 return;
656 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
657 ch->id, plchan->name);
659 plchan->phychan = ch;
660 plchan->state = PL08X_CHAN_RUNNING;
661 pl08x_start_next_txd(plchan);
664 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
665 struct pl08x_dma_chan *plchan)
667 struct pl08x_driver_data *pl08x = plchan->host;
669 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
670 ch->id, plchan->name);
673 * We do this without taking the lock; we're really only concerned
674 * about whether this pointer is NULL or not, and we're guaranteed
675 * that this will only be called when it _already_ is non-NULL.
677 ch->serving = plchan;
678 plchan->phychan = ch;
679 plchan->state = PL08X_CHAN_RUNNING;
680 pl08x_start_next_txd(plchan);
684 * Free a physical DMA channel, potentially reallocating it to another
685 * virtual channel if we have any pending.
687 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
689 struct pl08x_driver_data *pl08x = plchan->host;
690 struct pl08x_dma_chan *p, *next;
692 retry:
693 next = NULL;
695 /* Find a waiting virtual channel for the next transfer. */
696 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
697 if (p->state == PL08X_CHAN_WAITING) {
698 next = p;
699 break;
702 if (!next) {
703 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
704 if (p->state == PL08X_CHAN_WAITING) {
705 next = p;
706 break;
710 /* Ensure that the physical channel is stopped */
711 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
713 if (next) {
714 bool success;
717 * Eww. We know this isn't going to deadlock
718 * but lockdep probably doesn't.
720 spin_lock(&next->vc.lock);
721 /* Re-check the state now that we have the lock */
722 success = next->state == PL08X_CHAN_WAITING;
723 if (success)
724 pl08x_phy_reassign_start(plchan->phychan, next);
725 spin_unlock(&next->vc.lock);
727 /* If the state changed, try to find another channel */
728 if (!success)
729 goto retry;
730 } else {
731 /* No more jobs, so free up the physical channel */
732 pl08x_put_phy_channel(pl08x, plchan->phychan);
735 plchan->phychan = NULL;
736 plchan->state = PL08X_CHAN_IDLE;
740 * LLI handling
743 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
745 switch (coded) {
746 case PL080_WIDTH_8BIT:
747 return 1;
748 case PL080_WIDTH_16BIT:
749 return 2;
750 case PL080_WIDTH_32BIT:
751 return 4;
752 default:
753 break;
755 BUG();
756 return 0;
759 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
760 size_t tsize)
762 u32 retbits = cctl;
764 /* Remove all src, dst and transfer size bits */
765 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
766 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
767 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
769 /* Then set the bits according to the parameters */
770 switch (srcwidth) {
771 case 1:
772 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
773 break;
774 case 2:
775 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
776 break;
777 case 4:
778 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
779 break;
780 default:
781 BUG();
782 break;
785 switch (dstwidth) {
786 case 1:
787 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
788 break;
789 case 2:
790 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
791 break;
792 case 4:
793 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
794 break;
795 default:
796 BUG();
797 break;
800 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
801 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
802 return retbits;
805 struct pl08x_lli_build_data {
806 struct pl08x_txd *txd;
807 struct pl08x_bus_data srcbus;
808 struct pl08x_bus_data dstbus;
809 size_t remainder;
810 u32 lli_bus;
814 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
815 * victim in case src & dest are not similarly aligned. i.e. If after aligning
816 * masters address with width requirements of transfer (by sending few byte by
817 * byte data), slave is still not aligned, then its width will be reduced to
818 * BYTE.
819 * - prefers the destination bus if both available
820 * - prefers bus with fixed address (i.e. peripheral)
822 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
823 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
825 if (!(cctl & PL080_CONTROL_DST_INCR)) {
826 *mbus = &bd->dstbus;
827 *sbus = &bd->srcbus;
828 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
829 *mbus = &bd->srcbus;
830 *sbus = &bd->dstbus;
831 } else {
832 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
833 *mbus = &bd->dstbus;
834 *sbus = &bd->srcbus;
835 } else {
836 *mbus = &bd->srcbus;
837 *sbus = &bd->dstbus;
843 * Fills in one LLI for a certain transfer descriptor and advance the counter
845 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
846 struct pl08x_lli_build_data *bd,
847 int num_llis, int len, u32 cctl, u32 cctl2)
849 u32 offset = num_llis * pl08x->lli_words;
850 u32 *llis_va = bd->txd->llis_va + offset;
851 dma_addr_t llis_bus = bd->txd->llis_bus;
853 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
855 /* Advance the offset to next LLI. */
856 offset += pl08x->lli_words;
858 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
859 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
860 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
861 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
862 llis_va[PL080_LLI_CCTL] = cctl;
863 if (pl08x->vd->pl080s)
864 llis_va[PL080S_LLI_CCTL2] = cctl2;
866 if (cctl & PL080_CONTROL_SRC_INCR)
867 bd->srcbus.addr += len;
868 if (cctl & PL080_CONTROL_DST_INCR)
869 bd->dstbus.addr += len;
871 BUG_ON(bd->remainder < len);
873 bd->remainder -= len;
876 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
877 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
878 int num_llis, size_t *total_bytes)
880 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
881 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
882 (*total_bytes) += len;
885 #ifdef VERBOSE_DEBUG
886 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
887 const u32 *llis_va, int num_llis)
889 int i;
891 if (pl08x->vd->pl080s) {
892 dev_vdbg(&pl08x->adev->dev,
893 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
894 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
895 for (i = 0; i < num_llis; i++) {
896 dev_vdbg(&pl08x->adev->dev,
897 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
898 i, llis_va, llis_va[PL080_LLI_SRC],
899 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
900 llis_va[PL080_LLI_CCTL],
901 llis_va[PL080S_LLI_CCTL2]);
902 llis_va += pl08x->lli_words;
904 } else {
905 dev_vdbg(&pl08x->adev->dev,
906 "%-3s %-9s %-10s %-10s %-10s %s\n",
907 "lli", "", "csrc", "cdst", "clli", "cctl");
908 for (i = 0; i < num_llis; i++) {
909 dev_vdbg(&pl08x->adev->dev,
910 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
911 i, llis_va, llis_va[PL080_LLI_SRC],
912 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
913 llis_va[PL080_LLI_CCTL]);
914 llis_va += pl08x->lli_words;
918 #else
919 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
920 const u32 *llis_va, int num_llis) {}
921 #endif
924 * This fills in the table of LLIs for the transfer descriptor
925 * Note that we assume we never have to change the burst sizes
926 * Return 0 for error
928 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
929 struct pl08x_txd *txd)
931 struct pl08x_bus_data *mbus, *sbus;
932 struct pl08x_lli_build_data bd;
933 int num_llis = 0;
934 u32 cctl, early_bytes = 0;
935 size_t max_bytes_per_lli, total_bytes;
936 u32 *llis_va, *last_lli;
937 struct pl08x_sg *dsg;
939 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
940 if (!txd->llis_va) {
941 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
942 return 0;
945 bd.txd = txd;
946 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
947 cctl = txd->cctl;
949 /* Find maximum width of the source bus */
950 bd.srcbus.maxwidth =
951 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
952 PL080_CONTROL_SWIDTH_SHIFT);
954 /* Find maximum width of the destination bus */
955 bd.dstbus.maxwidth =
956 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
957 PL080_CONTROL_DWIDTH_SHIFT);
959 list_for_each_entry(dsg, &txd->dsg_list, node) {
960 total_bytes = 0;
961 cctl = txd->cctl;
963 bd.srcbus.addr = dsg->src_addr;
964 bd.dstbus.addr = dsg->dst_addr;
965 bd.remainder = dsg->len;
966 bd.srcbus.buswidth = bd.srcbus.maxwidth;
967 bd.dstbus.buswidth = bd.dstbus.maxwidth;
969 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
971 dev_vdbg(&pl08x->adev->dev,
972 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
973 (u64)bd.srcbus.addr,
974 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
975 bd.srcbus.buswidth,
976 (u64)bd.dstbus.addr,
977 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
978 bd.dstbus.buswidth,
979 bd.remainder);
980 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
981 mbus == &bd.srcbus ? "src" : "dst",
982 sbus == &bd.srcbus ? "src" : "dst");
985 * Zero length is only allowed if all these requirements are
986 * met:
987 * - flow controller is peripheral.
988 * - src.addr is aligned to src.width
989 * - dst.addr is aligned to dst.width
991 * sg_len == 1 should be true, as there can be two cases here:
993 * - Memory addresses are contiguous and are not scattered.
994 * Here, Only one sg will be passed by user driver, with
995 * memory address and zero length. We pass this to controller
996 * and after the transfer it will receive the last burst
997 * request from peripheral and so transfer finishes.
999 * - Memory addresses are scattered and are not contiguous.
1000 * Here, Obviously as DMA controller doesn't know when a lli's
1001 * transfer gets over, it can't load next lli. So in this
1002 * case, there has to be an assumption that only one lli is
1003 * supported. Thus, we can't have scattered addresses.
1005 if (!bd.remainder) {
1006 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1007 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1008 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1009 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1010 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1011 __func__);
1012 return 0;
1015 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1016 !IS_BUS_ALIGNED(&bd.dstbus)) {
1017 dev_err(&pl08x->adev->dev,
1018 "%s src & dst address must be aligned to src"
1019 " & dst width if peripheral is flow controller",
1020 __func__);
1021 return 0;
1024 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1025 bd.dstbus.buswidth, 0);
1026 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1027 0, cctl, 0);
1028 break;
1032 * Send byte by byte for following cases
1033 * - Less than a bus width available
1034 * - until master bus is aligned
1036 if (bd.remainder < mbus->buswidth)
1037 early_bytes = bd.remainder;
1038 else if (!IS_BUS_ALIGNED(mbus)) {
1039 early_bytes = mbus->buswidth -
1040 (mbus->addr & (mbus->buswidth - 1));
1041 if ((bd.remainder - early_bytes) < mbus->buswidth)
1042 early_bytes = bd.remainder;
1045 if (early_bytes) {
1046 dev_vdbg(&pl08x->adev->dev,
1047 "%s byte width LLIs (remain 0x%08zx)\n",
1048 __func__, bd.remainder);
1049 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1050 num_llis++, &total_bytes);
1053 if (bd.remainder) {
1055 * Master now aligned
1056 * - if slave is not then we must set its width down
1058 if (!IS_BUS_ALIGNED(sbus)) {
1059 dev_dbg(&pl08x->adev->dev,
1060 "%s set down bus width to one byte\n",
1061 __func__);
1063 sbus->buswidth = 1;
1067 * Bytes transferred = tsize * src width, not
1068 * MIN(buswidths)
1070 max_bytes_per_lli = bd.srcbus.buswidth *
1071 pl08x->vd->max_transfer_size;
1072 dev_vdbg(&pl08x->adev->dev,
1073 "%s max bytes per lli = %zu\n",
1074 __func__, max_bytes_per_lli);
1077 * Make largest possible LLIs until less than one bus
1078 * width left
1080 while (bd.remainder > (mbus->buswidth - 1)) {
1081 size_t lli_len, tsize, width;
1084 * If enough left try to send max possible,
1085 * otherwise try to send the remainder
1087 lli_len = min(bd.remainder, max_bytes_per_lli);
1090 * Check against maximum bus alignment:
1091 * Calculate actual transfer size in relation to
1092 * bus width an get a maximum remainder of the
1093 * highest bus width - 1
1095 width = max(mbus->buswidth, sbus->buswidth);
1096 lli_len = (lli_len / width) * width;
1097 tsize = lli_len / bd.srcbus.buswidth;
1099 dev_vdbg(&pl08x->adev->dev,
1100 "%s fill lli with single lli chunk of "
1101 "size 0x%08zx (remainder 0x%08zx)\n",
1102 __func__, lli_len, bd.remainder);
1104 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1105 bd.dstbus.buswidth, tsize);
1106 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1107 lli_len, cctl, tsize);
1108 total_bytes += lli_len;
1112 * Send any odd bytes
1114 if (bd.remainder) {
1115 dev_vdbg(&pl08x->adev->dev,
1116 "%s align with boundary, send odd bytes (remain %zu)\n",
1117 __func__, bd.remainder);
1118 prep_byte_width_lli(pl08x, &bd, &cctl,
1119 bd.remainder, num_llis++, &total_bytes);
1123 if (total_bytes != dsg->len) {
1124 dev_err(&pl08x->adev->dev,
1125 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1126 __func__, total_bytes, dsg->len);
1127 return 0;
1130 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1131 dev_err(&pl08x->adev->dev,
1132 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1133 __func__, MAX_NUM_TSFR_LLIS);
1134 return 0;
1138 llis_va = txd->llis_va;
1139 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1141 if (txd->cyclic) {
1142 /* Link back to the first LLI. */
1143 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1144 } else {
1145 /* The final LLI terminates the LLI. */
1146 last_lli[PL080_LLI_LLI] = 0;
1147 /* The final LLI element shall also fire an interrupt. */
1148 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1151 pl08x_dump_lli(pl08x, llis_va, num_llis);
1153 return num_llis;
1156 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1157 struct pl08x_txd *txd)
1159 struct pl08x_sg *dsg, *_dsg;
1161 if (txd->llis_va)
1162 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1164 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1165 list_del(&dsg->node);
1166 kfree(dsg);
1169 kfree(txd);
1172 static void pl08x_desc_free(struct virt_dma_desc *vd)
1174 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1175 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1177 dma_descriptor_unmap(&vd->tx);
1178 if (!txd->done)
1179 pl08x_release_mux(plchan);
1181 pl08x_free_txd(plchan->host, txd);
1184 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1185 struct pl08x_dma_chan *plchan)
1187 LIST_HEAD(head);
1189 vchan_get_all_descriptors(&plchan->vc, &head);
1190 vchan_dma_desc_free_list(&plchan->vc, &head);
1194 * The DMA ENGINE API
1196 static void pl08x_free_chan_resources(struct dma_chan *chan)
1198 /* Ensure all queued descriptors are freed */
1199 vchan_free_chan_resources(to_virt_chan(chan));
1202 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1203 struct dma_chan *chan, unsigned long flags)
1205 struct dma_async_tx_descriptor *retval = NULL;
1207 return retval;
1211 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1212 * If slaves are relying on interrupts to signal completion this function
1213 * must not be called with interrupts disabled.
1215 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1216 dma_cookie_t cookie, struct dma_tx_state *txstate)
1218 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1219 struct virt_dma_desc *vd;
1220 unsigned long flags;
1221 enum dma_status ret;
1222 size_t bytes = 0;
1224 ret = dma_cookie_status(chan, cookie, txstate);
1225 if (ret == DMA_COMPLETE)
1226 return ret;
1229 * There's no point calculating the residue if there's
1230 * no txstate to store the value.
1232 if (!txstate) {
1233 if (plchan->state == PL08X_CHAN_PAUSED)
1234 ret = DMA_PAUSED;
1235 return ret;
1238 spin_lock_irqsave(&plchan->vc.lock, flags);
1239 ret = dma_cookie_status(chan, cookie, txstate);
1240 if (ret != DMA_COMPLETE) {
1241 vd = vchan_find_desc(&plchan->vc, cookie);
1242 if (vd) {
1243 /* On the issued list, so hasn't been processed yet */
1244 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1245 struct pl08x_sg *dsg;
1247 list_for_each_entry(dsg, &txd->dsg_list, node)
1248 bytes += dsg->len;
1249 } else {
1250 bytes = pl08x_getbytes_chan(plchan);
1253 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1256 * This cookie not complete yet
1257 * Get number of bytes left in the active transactions and queue
1259 dma_set_residue(txstate, bytes);
1261 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1262 ret = DMA_PAUSED;
1264 /* Whether waiting or running, we're in progress */
1265 return ret;
1268 /* PrimeCell DMA extension */
1269 struct burst_table {
1270 u32 burstwords;
1271 u32 reg;
1274 static const struct burst_table burst_sizes[] = {
1276 .burstwords = 256,
1277 .reg = PL080_BSIZE_256,
1280 .burstwords = 128,
1281 .reg = PL080_BSIZE_128,
1284 .burstwords = 64,
1285 .reg = PL080_BSIZE_64,
1288 .burstwords = 32,
1289 .reg = PL080_BSIZE_32,
1292 .burstwords = 16,
1293 .reg = PL080_BSIZE_16,
1296 .burstwords = 8,
1297 .reg = PL080_BSIZE_8,
1300 .burstwords = 4,
1301 .reg = PL080_BSIZE_4,
1304 .burstwords = 0,
1305 .reg = PL080_BSIZE_1,
1310 * Given the source and destination available bus masks, select which
1311 * will be routed to each port. We try to have source and destination
1312 * on separate ports, but always respect the allowable settings.
1314 static u32 pl08x_select_bus(u8 src, u8 dst)
1316 u32 cctl = 0;
1318 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1319 cctl |= PL080_CONTROL_DST_AHB2;
1320 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1321 cctl |= PL080_CONTROL_SRC_AHB2;
1323 return cctl;
1326 static u32 pl08x_cctl(u32 cctl)
1328 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1329 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1330 PL080_CONTROL_PROT_MASK);
1332 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1333 return cctl | PL080_CONTROL_PROT_SYS;
1336 static u32 pl08x_width(enum dma_slave_buswidth width)
1338 switch (width) {
1339 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1340 return PL080_WIDTH_8BIT;
1341 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1342 return PL080_WIDTH_16BIT;
1343 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1344 return PL080_WIDTH_32BIT;
1345 default:
1346 return ~0;
1350 static u32 pl08x_burst(u32 maxburst)
1352 int i;
1354 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1355 if (burst_sizes[i].burstwords <= maxburst)
1356 break;
1358 return burst_sizes[i].reg;
1361 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1362 enum dma_slave_buswidth addr_width, u32 maxburst)
1364 u32 width, burst, cctl = 0;
1366 width = pl08x_width(addr_width);
1367 if (width == ~0)
1368 return ~0;
1370 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1371 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1374 * If this channel will only request single transfers, set this
1375 * down to ONE element. Also select one element if no maxburst
1376 * is specified.
1378 if (plchan->cd->single)
1379 maxburst = 1;
1381 burst = pl08x_burst(maxburst);
1382 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1383 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1385 return pl08x_cctl(cctl);
1389 * Slave transactions callback to the slave device to allow
1390 * synchronization of slave DMA signals with the DMAC enable
1392 static void pl08x_issue_pending(struct dma_chan *chan)
1394 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1395 unsigned long flags;
1397 spin_lock_irqsave(&plchan->vc.lock, flags);
1398 if (vchan_issue_pending(&plchan->vc)) {
1399 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1400 pl08x_phy_alloc_and_start(plchan);
1402 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1405 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1407 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1409 if (txd) {
1410 INIT_LIST_HEAD(&txd->dsg_list);
1412 /* Always enable error and terminal interrupts */
1413 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1414 PL080_CONFIG_TC_IRQ_MASK;
1416 return txd;
1420 * Initialize a descriptor to be used by memcpy submit
1422 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1423 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1424 size_t len, unsigned long flags)
1426 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1427 struct pl08x_driver_data *pl08x = plchan->host;
1428 struct pl08x_txd *txd;
1429 struct pl08x_sg *dsg;
1430 int ret;
1432 txd = pl08x_get_txd(plchan);
1433 if (!txd) {
1434 dev_err(&pl08x->adev->dev,
1435 "%s no memory for descriptor\n", __func__);
1436 return NULL;
1439 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1440 if (!dsg) {
1441 pl08x_free_txd(pl08x, txd);
1442 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1443 __func__);
1444 return NULL;
1446 list_add_tail(&dsg->node, &txd->dsg_list);
1448 dsg->src_addr = src;
1449 dsg->dst_addr = dest;
1450 dsg->len = len;
1452 /* Set platform data for m2m */
1453 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1454 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1455 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1457 /* Both to be incremented or the code will break */
1458 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1460 if (pl08x->vd->dualmaster)
1461 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1462 pl08x->mem_buses);
1464 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1465 if (!ret) {
1466 pl08x_free_txd(pl08x, txd);
1467 return NULL;
1470 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1473 static struct pl08x_txd *pl08x_init_txd(
1474 struct dma_chan *chan,
1475 enum dma_transfer_direction direction,
1476 dma_addr_t *slave_addr)
1478 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1479 struct pl08x_driver_data *pl08x = plchan->host;
1480 struct pl08x_txd *txd;
1481 enum dma_slave_buswidth addr_width;
1482 int ret, tmp;
1483 u8 src_buses, dst_buses;
1484 u32 maxburst, cctl;
1486 txd = pl08x_get_txd(plchan);
1487 if (!txd) {
1488 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1489 return NULL;
1493 * Set up addresses, the PrimeCell configured address
1494 * will take precedence since this may configure the
1495 * channel target address dynamically at runtime.
1497 if (direction == DMA_MEM_TO_DEV) {
1498 cctl = PL080_CONTROL_SRC_INCR;
1499 *slave_addr = plchan->cfg.dst_addr;
1500 addr_width = plchan->cfg.dst_addr_width;
1501 maxburst = plchan->cfg.dst_maxburst;
1502 src_buses = pl08x->mem_buses;
1503 dst_buses = plchan->cd->periph_buses;
1504 } else if (direction == DMA_DEV_TO_MEM) {
1505 cctl = PL080_CONTROL_DST_INCR;
1506 *slave_addr = plchan->cfg.src_addr;
1507 addr_width = plchan->cfg.src_addr_width;
1508 maxburst = plchan->cfg.src_maxburst;
1509 src_buses = plchan->cd->periph_buses;
1510 dst_buses = pl08x->mem_buses;
1511 } else {
1512 pl08x_free_txd(pl08x, txd);
1513 dev_err(&pl08x->adev->dev,
1514 "%s direction unsupported\n", __func__);
1515 return NULL;
1518 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1519 if (cctl == ~0) {
1520 pl08x_free_txd(pl08x, txd);
1521 dev_err(&pl08x->adev->dev,
1522 "DMA slave configuration botched?\n");
1523 return NULL;
1526 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1528 if (plchan->cfg.device_fc)
1529 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1530 PL080_FLOW_PER2MEM_PER;
1531 else
1532 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1533 PL080_FLOW_PER2MEM;
1535 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1537 ret = pl08x_request_mux(plchan);
1538 if (ret < 0) {
1539 pl08x_free_txd(pl08x, txd);
1540 dev_dbg(&pl08x->adev->dev,
1541 "unable to mux for transfer on %s due to platform restrictions\n",
1542 plchan->name);
1543 return NULL;
1546 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1547 plchan->signal, plchan->name);
1549 /* Assign the flow control signal to this channel */
1550 if (direction == DMA_MEM_TO_DEV)
1551 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1552 else
1553 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1555 return txd;
1558 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1559 enum dma_transfer_direction direction,
1560 dma_addr_t slave_addr,
1561 dma_addr_t buf_addr,
1562 unsigned int len)
1564 struct pl08x_sg *dsg;
1566 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1567 if (!dsg)
1568 return -ENOMEM;
1570 list_add_tail(&dsg->node, &txd->dsg_list);
1572 dsg->len = len;
1573 if (direction == DMA_MEM_TO_DEV) {
1574 dsg->src_addr = buf_addr;
1575 dsg->dst_addr = slave_addr;
1576 } else {
1577 dsg->src_addr = slave_addr;
1578 dsg->dst_addr = buf_addr;
1581 return 0;
1584 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1585 struct dma_chan *chan, struct scatterlist *sgl,
1586 unsigned int sg_len, enum dma_transfer_direction direction,
1587 unsigned long flags, void *context)
1589 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1590 struct pl08x_driver_data *pl08x = plchan->host;
1591 struct pl08x_txd *txd;
1592 struct scatterlist *sg;
1593 int ret, tmp;
1594 dma_addr_t slave_addr;
1596 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1597 __func__, sg_dma_len(sgl), plchan->name);
1599 txd = pl08x_init_txd(chan, direction, &slave_addr);
1600 if (!txd)
1601 return NULL;
1603 for_each_sg(sgl, sg, sg_len, tmp) {
1604 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1605 sg_dma_address(sg),
1606 sg_dma_len(sg));
1607 if (ret) {
1608 pl08x_release_mux(plchan);
1609 pl08x_free_txd(pl08x, txd);
1610 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1611 __func__);
1612 return NULL;
1616 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1617 if (!ret) {
1618 pl08x_release_mux(plchan);
1619 pl08x_free_txd(pl08x, txd);
1620 return NULL;
1623 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1626 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1627 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1628 size_t period_len, enum dma_transfer_direction direction,
1629 unsigned long flags)
1631 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1632 struct pl08x_driver_data *pl08x = plchan->host;
1633 struct pl08x_txd *txd;
1634 int ret, tmp;
1635 dma_addr_t slave_addr;
1637 dev_dbg(&pl08x->adev->dev,
1638 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1639 __func__, period_len, buf_len,
1640 direction == DMA_MEM_TO_DEV ? "to" : "from",
1641 plchan->name);
1643 txd = pl08x_init_txd(chan, direction, &slave_addr);
1644 if (!txd)
1645 return NULL;
1647 txd->cyclic = true;
1648 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1649 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1650 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1651 buf_addr + tmp, period_len);
1652 if (ret) {
1653 pl08x_release_mux(plchan);
1654 pl08x_free_txd(pl08x, txd);
1655 return NULL;
1659 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1660 if (!ret) {
1661 pl08x_release_mux(plchan);
1662 pl08x_free_txd(pl08x, txd);
1663 return NULL;
1666 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1669 static int pl08x_config(struct dma_chan *chan,
1670 struct dma_slave_config *config)
1672 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1673 struct pl08x_driver_data *pl08x = plchan->host;
1675 if (!plchan->slave)
1676 return -EINVAL;
1678 /* Reject definitely invalid configurations */
1679 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1680 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1681 return -EINVAL;
1683 if (config->device_fc && pl08x->vd->pl080s) {
1684 dev_err(&pl08x->adev->dev,
1685 "%s: PL080S does not support peripheral flow control\n",
1686 __func__);
1687 return -EINVAL;
1690 plchan->cfg = *config;
1692 return 0;
1695 static int pl08x_terminate_all(struct dma_chan *chan)
1697 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1698 struct pl08x_driver_data *pl08x = plchan->host;
1699 unsigned long flags;
1701 spin_lock_irqsave(&plchan->vc.lock, flags);
1702 if (!plchan->phychan && !plchan->at) {
1703 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1704 return 0;
1707 plchan->state = PL08X_CHAN_IDLE;
1709 if (plchan->phychan) {
1711 * Mark physical channel as free and free any slave
1712 * signal
1714 pl08x_phy_free(plchan);
1716 /* Dequeue jobs and free LLIs */
1717 if (plchan->at) {
1718 pl08x_desc_free(&plchan->at->vd);
1719 plchan->at = NULL;
1721 /* Dequeue jobs not yet fired as well */
1722 pl08x_free_txd_list(pl08x, plchan);
1724 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1726 return 0;
1729 static int pl08x_pause(struct dma_chan *chan)
1731 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1732 unsigned long flags;
1735 * Anything succeeds on channels with no physical allocation and
1736 * no queued transfers.
1738 spin_lock_irqsave(&plchan->vc.lock, flags);
1739 if (!plchan->phychan && !plchan->at) {
1740 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1741 return 0;
1744 pl08x_pause_phy_chan(plchan->phychan);
1745 plchan->state = PL08X_CHAN_PAUSED;
1747 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1749 return 0;
1752 static int pl08x_resume(struct dma_chan *chan)
1754 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1755 unsigned long flags;
1758 * Anything succeeds on channels with no physical allocation and
1759 * no queued transfers.
1761 spin_lock_irqsave(&plchan->vc.lock, flags);
1762 if (!plchan->phychan && !plchan->at) {
1763 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1764 return 0;
1767 pl08x_resume_phy_chan(plchan->phychan);
1768 plchan->state = PL08X_CHAN_RUNNING;
1770 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1772 return 0;
1775 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1777 struct pl08x_dma_chan *plchan;
1778 char *name = chan_id;
1780 /* Reject channels for devices not bound to this driver */
1781 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1782 return false;
1784 plchan = to_pl08x_chan(chan);
1786 /* Check that the channel is not taken! */
1787 if (!strcmp(plchan->name, name))
1788 return true;
1790 return false;
1792 EXPORT_SYMBOL_GPL(pl08x_filter_id);
1795 * Just check that the device is there and active
1796 * TODO: turn this bit on/off depending on the number of physical channels
1797 * actually used, if it is zero... well shut it off. That will save some
1798 * power. Cut the clock at the same time.
1800 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1802 /* The Nomadik variant does not have the config register */
1803 if (pl08x->vd->nomadik)
1804 return;
1805 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1808 static irqreturn_t pl08x_irq(int irq, void *dev)
1810 struct pl08x_driver_data *pl08x = dev;
1811 u32 mask = 0, err, tc, i;
1813 /* check & clear - ERR & TC interrupts */
1814 err = readl(pl08x->base + PL080_ERR_STATUS);
1815 if (err) {
1816 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1817 __func__, err);
1818 writel(err, pl08x->base + PL080_ERR_CLEAR);
1820 tc = readl(pl08x->base + PL080_TC_STATUS);
1821 if (tc)
1822 writel(tc, pl08x->base + PL080_TC_CLEAR);
1824 if (!err && !tc)
1825 return IRQ_NONE;
1827 for (i = 0; i < pl08x->vd->channels; i++) {
1828 if (((1 << i) & err) || ((1 << i) & tc)) {
1829 /* Locate physical channel */
1830 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1831 struct pl08x_dma_chan *plchan = phychan->serving;
1832 struct pl08x_txd *tx;
1834 if (!plchan) {
1835 dev_err(&pl08x->adev->dev,
1836 "%s Error TC interrupt on unused channel: 0x%08x\n",
1837 __func__, i);
1838 continue;
1841 spin_lock(&plchan->vc.lock);
1842 tx = plchan->at;
1843 if (tx && tx->cyclic) {
1844 vchan_cyclic_callback(&tx->vd);
1845 } else if (tx) {
1846 plchan->at = NULL;
1848 * This descriptor is done, release its mux
1849 * reservation.
1851 pl08x_release_mux(plchan);
1852 tx->done = true;
1853 vchan_cookie_complete(&tx->vd);
1856 * And start the next descriptor (if any),
1857 * otherwise free this channel.
1859 if (vchan_next_desc(&plchan->vc))
1860 pl08x_start_next_txd(plchan);
1861 else
1862 pl08x_phy_free(plchan);
1864 spin_unlock(&plchan->vc.lock);
1866 mask |= (1 << i);
1870 return mask ? IRQ_HANDLED : IRQ_NONE;
1873 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1875 chan->slave = true;
1876 chan->name = chan->cd->bus_id;
1877 chan->cfg.src_addr = chan->cd->addr;
1878 chan->cfg.dst_addr = chan->cd->addr;
1882 * Initialise the DMAC memcpy/slave channels.
1883 * Make a local wrapper to hold required data
1885 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1886 struct dma_device *dmadev, unsigned int channels, bool slave)
1888 struct pl08x_dma_chan *chan;
1889 int i;
1891 INIT_LIST_HEAD(&dmadev->channels);
1894 * Register as many many memcpy as we have physical channels,
1895 * we won't always be able to use all but the code will have
1896 * to cope with that situation.
1898 for (i = 0; i < channels; i++) {
1899 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1900 if (!chan) {
1901 dev_err(&pl08x->adev->dev,
1902 "%s no memory for channel\n", __func__);
1903 return -ENOMEM;
1906 chan->host = pl08x;
1907 chan->state = PL08X_CHAN_IDLE;
1908 chan->signal = -1;
1910 if (slave) {
1911 chan->cd = &pl08x->pd->slave_channels[i];
1912 pl08x_dma_slave_init(chan);
1913 } else {
1914 chan->cd = &pl08x->pd->memcpy_channel;
1915 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1916 if (!chan->name) {
1917 kfree(chan);
1918 return -ENOMEM;
1921 dev_dbg(&pl08x->adev->dev,
1922 "initialize virtual channel \"%s\"\n",
1923 chan->name);
1925 chan->vc.desc_free = pl08x_desc_free;
1926 vchan_init(&chan->vc, dmadev);
1928 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1929 i, slave ? "slave" : "memcpy");
1930 return i;
1933 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1935 struct pl08x_dma_chan *chan = NULL;
1936 struct pl08x_dma_chan *next;
1938 list_for_each_entry_safe(chan,
1939 next, &dmadev->channels, vc.chan.device_node) {
1940 list_del(&chan->vc.chan.device_node);
1941 kfree(chan);
1945 #ifdef CONFIG_DEBUG_FS
1946 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1948 switch (state) {
1949 case PL08X_CHAN_IDLE:
1950 return "idle";
1951 case PL08X_CHAN_RUNNING:
1952 return "running";
1953 case PL08X_CHAN_PAUSED:
1954 return "paused";
1955 case PL08X_CHAN_WAITING:
1956 return "waiting";
1957 default:
1958 break;
1960 return "UNKNOWN STATE";
1963 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1965 struct pl08x_driver_data *pl08x = s->private;
1966 struct pl08x_dma_chan *chan;
1967 struct pl08x_phy_chan *ch;
1968 unsigned long flags;
1969 int i;
1971 seq_printf(s, "PL08x physical channels:\n");
1972 seq_printf(s, "CHANNEL:\tUSER:\n");
1973 seq_printf(s, "--------\t-----\n");
1974 for (i = 0; i < pl08x->vd->channels; i++) {
1975 struct pl08x_dma_chan *virt_chan;
1977 ch = &pl08x->phy_chans[i];
1979 spin_lock_irqsave(&ch->lock, flags);
1980 virt_chan = ch->serving;
1982 seq_printf(s, "%d\t\t%s%s\n",
1983 ch->id,
1984 virt_chan ? virt_chan->name : "(none)",
1985 ch->locked ? " LOCKED" : "");
1987 spin_unlock_irqrestore(&ch->lock, flags);
1990 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1991 seq_printf(s, "CHANNEL:\tSTATE:\n");
1992 seq_printf(s, "--------\t------\n");
1993 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1994 seq_printf(s, "%s\t\t%s\n", chan->name,
1995 pl08x_state_str(chan->state));
1998 seq_printf(s, "\nPL08x virtual slave channels:\n");
1999 seq_printf(s, "CHANNEL:\tSTATE:\n");
2000 seq_printf(s, "--------\t------\n");
2001 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2002 seq_printf(s, "%s\t\t%s\n", chan->name,
2003 pl08x_state_str(chan->state));
2006 return 0;
2009 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2011 return single_open(file, pl08x_debugfs_show, inode->i_private);
2014 static const struct file_operations pl08x_debugfs_operations = {
2015 .open = pl08x_debugfs_open,
2016 .read = seq_read,
2017 .llseek = seq_lseek,
2018 .release = single_release,
2021 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2023 /* Expose a simple debugfs interface to view all clocks */
2024 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2025 S_IFREG | S_IRUGO, NULL, pl08x,
2026 &pl08x_debugfs_operations);
2029 #else
2030 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2033 #endif
2035 #ifdef CONFIG_OF
2036 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2037 u32 id)
2039 struct pl08x_dma_chan *chan;
2041 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2042 if (chan->signal == id)
2043 return &chan->vc.chan;
2046 return NULL;
2049 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2050 struct of_dma *ofdma)
2052 struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2053 struct pl08x_channel_data *data;
2054 struct pl08x_dma_chan *chan;
2055 struct dma_chan *dma_chan;
2057 if (!pl08x)
2058 return NULL;
2060 if (dma_spec->args_count != 2)
2061 return NULL;
2063 dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2064 if (dma_chan)
2065 return dma_get_slave_channel(dma_chan);
2067 chan = devm_kzalloc(pl08x->slave.dev, sizeof(*chan) + sizeof(*data),
2068 GFP_KERNEL);
2069 if (!chan)
2070 return NULL;
2072 data = (void *)&chan[1];
2073 data->bus_id = "(none)";
2074 data->periph_buses = dma_spec->args[1];
2076 chan->cd = data;
2077 chan->host = pl08x;
2078 chan->slave = true;
2079 chan->name = data->bus_id;
2080 chan->state = PL08X_CHAN_IDLE;
2081 chan->signal = dma_spec->args[0];
2082 chan->vc.desc_free = pl08x_desc_free;
2084 vchan_init(&chan->vc, &pl08x->slave);
2086 return dma_get_slave_channel(&chan->vc.chan);
2089 static int pl08x_of_probe(struct amba_device *adev,
2090 struct pl08x_driver_data *pl08x,
2091 struct device_node *np)
2093 struct pl08x_platform_data *pd;
2094 u32 cctl_memcpy = 0;
2095 u32 val;
2096 int ret;
2098 pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2099 if (!pd)
2100 return -ENOMEM;
2102 /* Eligible bus masters for fetching LLIs */
2103 if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2104 pd->lli_buses |= PL08X_AHB1;
2105 if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2106 pd->lli_buses |= PL08X_AHB2;
2107 if (!pd->lli_buses) {
2108 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2109 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2112 /* Eligible bus masters for memory access */
2113 if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2114 pd->mem_buses |= PL08X_AHB1;
2115 if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2116 pd->mem_buses |= PL08X_AHB2;
2117 if (!pd->mem_buses) {
2118 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2119 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2122 /* Parse the memcpy channel properties */
2123 ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2124 if (ret) {
2125 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2126 val = 1;
2128 switch (val) {
2129 default:
2130 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2131 /* Fall through */
2132 case 1:
2133 cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2134 PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2135 break;
2136 case 4:
2137 cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2138 PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2139 break;
2140 case 8:
2141 cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2142 PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2143 break;
2144 case 16:
2145 cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2146 PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2147 break;
2148 case 32:
2149 cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2150 PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2151 break;
2152 case 64:
2153 cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2154 PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2155 break;
2156 case 128:
2157 cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2158 PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2159 break;
2160 case 256:
2161 cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2162 PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2163 break;
2166 ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2167 if (ret) {
2168 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2169 val = 8;
2171 switch (val) {
2172 default:
2173 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2174 /* Fall through */
2175 case 8:
2176 cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2177 PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2178 break;
2179 case 16:
2180 cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2181 PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2182 break;
2183 case 32:
2184 cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2185 PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2186 break;
2189 /* This is currently the only thing making sense */
2190 cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2192 /* Set up memcpy channel */
2193 pd->memcpy_channel.bus_id = "memcpy";
2194 pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2195 /* Use the buses that can access memory, obviously */
2196 pd->memcpy_channel.periph_buses = pd->mem_buses;
2198 pl08x->pd = pd;
2200 return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2201 pl08x);
2203 #else
2204 static inline int pl08x_of_probe(struct amba_device *adev,
2205 struct pl08x_driver_data *pl08x,
2206 struct device_node *np)
2208 return -EINVAL;
2210 #endif
2212 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2214 struct pl08x_driver_data *pl08x;
2215 const struct vendor_data *vd = id->data;
2216 struct device_node *np = adev->dev.of_node;
2217 u32 tsfr_size;
2218 int ret = 0;
2219 int i;
2221 ret = amba_request_regions(adev, NULL);
2222 if (ret)
2223 return ret;
2225 /* Ensure that we can do DMA */
2226 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2227 if (ret)
2228 goto out_no_pl08x;
2230 /* Create the driver state holder */
2231 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2232 if (!pl08x) {
2233 ret = -ENOMEM;
2234 goto out_no_pl08x;
2237 /* Initialize memcpy engine */
2238 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2239 pl08x->memcpy.dev = &adev->dev;
2240 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2241 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2242 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2243 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2244 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2245 pl08x->memcpy.device_config = pl08x_config;
2246 pl08x->memcpy.device_pause = pl08x_pause;
2247 pl08x->memcpy.device_resume = pl08x_resume;
2248 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2249 pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2250 pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2251 pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2252 pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2254 /* Initialize slave engine */
2255 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2256 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2257 pl08x->slave.dev = &adev->dev;
2258 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2259 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2260 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2261 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2262 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2263 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2264 pl08x->slave.device_config = pl08x_config;
2265 pl08x->slave.device_pause = pl08x_pause;
2266 pl08x->slave.device_resume = pl08x_resume;
2267 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2268 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2269 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2270 pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2271 pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2273 /* Get the platform data */
2274 pl08x->pd = dev_get_platdata(&adev->dev);
2275 if (!pl08x->pd) {
2276 if (np) {
2277 ret = pl08x_of_probe(adev, pl08x, np);
2278 if (ret)
2279 goto out_no_platdata;
2280 } else {
2281 dev_err(&adev->dev, "no platform data supplied\n");
2282 ret = -EINVAL;
2283 goto out_no_platdata;
2287 /* Assign useful pointers to the driver state */
2288 pl08x->adev = adev;
2289 pl08x->vd = vd;
2291 /* By default, AHB1 only. If dualmaster, from platform */
2292 pl08x->lli_buses = PL08X_AHB1;
2293 pl08x->mem_buses = PL08X_AHB1;
2294 if (pl08x->vd->dualmaster) {
2295 pl08x->lli_buses = pl08x->pd->lli_buses;
2296 pl08x->mem_buses = pl08x->pd->mem_buses;
2299 if (vd->pl080s)
2300 pl08x->lli_words = PL080S_LLI_WORDS;
2301 else
2302 pl08x->lli_words = PL080_LLI_WORDS;
2303 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2305 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2306 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2307 tsfr_size, PL08X_ALIGN, 0);
2308 if (!pl08x->pool) {
2309 ret = -ENOMEM;
2310 goto out_no_lli_pool;
2313 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2314 if (!pl08x->base) {
2315 ret = -ENOMEM;
2316 goto out_no_ioremap;
2319 /* Turn on the PL08x */
2320 pl08x_ensure_on(pl08x);
2322 /* Attach the interrupt handler */
2323 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2324 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2326 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2327 if (ret) {
2328 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2329 __func__, adev->irq[0]);
2330 goto out_no_irq;
2333 /* Initialize physical channels */
2334 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2335 GFP_KERNEL);
2336 if (!pl08x->phy_chans) {
2337 dev_err(&adev->dev, "%s failed to allocate "
2338 "physical channel holders\n",
2339 __func__);
2340 ret = -ENOMEM;
2341 goto out_no_phychans;
2344 for (i = 0; i < vd->channels; i++) {
2345 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2347 ch->id = i;
2348 ch->base = pl08x->base + PL080_Cx_BASE(i);
2349 ch->reg_config = ch->base + vd->config_offset;
2350 spin_lock_init(&ch->lock);
2353 * Nomadik variants can have channels that are locked
2354 * down for the secure world only. Lock up these channels
2355 * by perpetually serving a dummy virtual channel.
2357 if (vd->nomadik) {
2358 u32 val;
2360 val = readl(ch->reg_config);
2361 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2362 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2363 ch->locked = true;
2367 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2368 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2371 /* Register as many memcpy channels as there are physical channels */
2372 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2373 pl08x->vd->channels, false);
2374 if (ret <= 0) {
2375 dev_warn(&pl08x->adev->dev,
2376 "%s failed to enumerate memcpy channels - %d\n",
2377 __func__, ret);
2378 goto out_no_memcpy;
2381 /* Register slave channels */
2382 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2383 pl08x->pd->num_slave_channels, true);
2384 if (ret < 0) {
2385 dev_warn(&pl08x->adev->dev,
2386 "%s failed to enumerate slave channels - %d\n",
2387 __func__, ret);
2388 goto out_no_slave;
2391 ret = dma_async_device_register(&pl08x->memcpy);
2392 if (ret) {
2393 dev_warn(&pl08x->adev->dev,
2394 "%s failed to register memcpy as an async device - %d\n",
2395 __func__, ret);
2396 goto out_no_memcpy_reg;
2399 ret = dma_async_device_register(&pl08x->slave);
2400 if (ret) {
2401 dev_warn(&pl08x->adev->dev,
2402 "%s failed to register slave as an async device - %d\n",
2403 __func__, ret);
2404 goto out_no_slave_reg;
2407 amba_set_drvdata(adev, pl08x);
2408 init_pl08x_debugfs(pl08x);
2409 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2410 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2411 (unsigned long long)adev->res.start, adev->irq[0]);
2413 return 0;
2415 out_no_slave_reg:
2416 dma_async_device_unregister(&pl08x->memcpy);
2417 out_no_memcpy_reg:
2418 pl08x_free_virtual_channels(&pl08x->slave);
2419 out_no_slave:
2420 pl08x_free_virtual_channels(&pl08x->memcpy);
2421 out_no_memcpy:
2422 kfree(pl08x->phy_chans);
2423 out_no_phychans:
2424 free_irq(adev->irq[0], pl08x);
2425 out_no_irq:
2426 iounmap(pl08x->base);
2427 out_no_ioremap:
2428 dma_pool_destroy(pl08x->pool);
2429 out_no_lli_pool:
2430 out_no_platdata:
2431 kfree(pl08x);
2432 out_no_pl08x:
2433 amba_release_regions(adev);
2434 return ret;
2437 /* PL080 has 8 channels and the PL080 have just 2 */
2438 static struct vendor_data vendor_pl080 = {
2439 .config_offset = PL080_CH_CONFIG,
2440 .channels = 8,
2441 .dualmaster = true,
2442 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2445 static struct vendor_data vendor_nomadik = {
2446 .config_offset = PL080_CH_CONFIG,
2447 .channels = 8,
2448 .dualmaster = true,
2449 .nomadik = true,
2450 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2453 static struct vendor_data vendor_pl080s = {
2454 .config_offset = PL080S_CH_CONFIG,
2455 .channels = 8,
2456 .pl080s = true,
2457 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2460 static struct vendor_data vendor_pl081 = {
2461 .config_offset = PL080_CH_CONFIG,
2462 .channels = 2,
2463 .dualmaster = false,
2464 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2467 static struct amba_id pl08x_ids[] = {
2468 /* Samsung PL080S variant */
2470 .id = 0x0a141080,
2471 .mask = 0xffffffff,
2472 .data = &vendor_pl080s,
2474 /* PL080 */
2476 .id = 0x00041080,
2477 .mask = 0x000fffff,
2478 .data = &vendor_pl080,
2480 /* PL081 */
2482 .id = 0x00041081,
2483 .mask = 0x000fffff,
2484 .data = &vendor_pl081,
2486 /* Nomadik 8815 PL080 variant */
2488 .id = 0x00280080,
2489 .mask = 0x00ffffff,
2490 .data = &vendor_nomadik,
2492 { 0, 0 },
2495 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2497 static struct amba_driver pl08x_amba_driver = {
2498 .drv.name = DRIVER_NAME,
2499 .id_table = pl08x_ids,
2500 .probe = pl08x_probe,
2503 static int __init pl08x_init(void)
2505 int retval;
2506 retval = amba_driver_register(&pl08x_amba_driver);
2507 if (retval)
2508 printk(KERN_WARNING DRIVER_NAME
2509 "failed to register as an AMBA device (%d)\n",
2510 retval);
2511 return retval;
2513 subsys_initcall(pl08x_init);