irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / dma / imx-sdma.c
blob0f6fd42f55ca41975b12dbe267ef3aabdb81c017
1 /*
2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/of_dma.h>
42 #include <asm/irq.h>
43 #include <linux/platform_data/dma-imx-sdma.h>
44 #include <linux/platform_data/dma-imx.h>
45 #include <linux/regmap.h>
46 #include <linux/mfd/syscon.h>
47 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49 #include "dmaengine.h"
51 /* SDMA registers */
52 #define SDMA_H_C0PTR 0x000
53 #define SDMA_H_INTR 0x004
54 #define SDMA_H_STATSTOP 0x008
55 #define SDMA_H_START 0x00c
56 #define SDMA_H_EVTOVR 0x010
57 #define SDMA_H_DSPOVR 0x014
58 #define SDMA_H_HOSTOVR 0x018
59 #define SDMA_H_EVTPEND 0x01c
60 #define SDMA_H_DSPENBL 0x020
61 #define SDMA_H_RESET 0x024
62 #define SDMA_H_EVTERR 0x028
63 #define SDMA_H_INTRMSK 0x02c
64 #define SDMA_H_PSW 0x030
65 #define SDMA_H_EVTERRDBG 0x034
66 #define SDMA_H_CONFIG 0x038
67 #define SDMA_ONCE_ENB 0x040
68 #define SDMA_ONCE_DATA 0x044
69 #define SDMA_ONCE_INSTR 0x048
70 #define SDMA_ONCE_STAT 0x04c
71 #define SDMA_ONCE_CMD 0x050
72 #define SDMA_EVT_MIRROR 0x054
73 #define SDMA_ILLINSTADDR 0x058
74 #define SDMA_CHN0ADDR 0x05c
75 #define SDMA_ONCE_RTB 0x060
76 #define SDMA_XTRIG_CONF1 0x070
77 #define SDMA_XTRIG_CONF2 0x074
78 #define SDMA_CHNENBL0_IMX35 0x200
79 #define SDMA_CHNENBL0_IMX31 0x080
80 #define SDMA_CHNPRI_0 0x100
83 * Buffer descriptor status values.
85 #define BD_DONE 0x01
86 #define BD_WRAP 0x02
87 #define BD_CONT 0x04
88 #define BD_INTR 0x08
89 #define BD_RROR 0x10
90 #define BD_LAST 0x20
91 #define BD_EXTD 0x80
94 * Data Node descriptor status values.
96 #define DND_END_OF_FRAME 0x80
97 #define DND_END_OF_XFER 0x40
98 #define DND_DONE 0x20
99 #define DND_UNUSED 0x01
102 * IPCV2 descriptor status values.
104 #define BD_IPCV2_END_OF_FRAME 0x40
106 #define IPCV2_MAX_NODES 50
108 * Error bit set in the CCB status field by the SDMA,
109 * in setbd routine, in case of a transfer error
111 #define DATA_ERROR 0x10000000
114 * Buffer descriptor commands.
116 #define C0_ADDR 0x01
117 #define C0_LOAD 0x02
118 #define C0_DUMP 0x03
119 #define C0_SETCTX 0x07
120 #define C0_GETCTX 0x03
121 #define C0_SETDM 0x01
122 #define C0_SETPM 0x04
123 #define C0_GETDM 0x02
124 #define C0_GETPM 0x08
126 * Change endianness indicator in the BD command field
128 #define CHANGE_ENDIANNESS 0x80
131 * p_2_p watermark_level description
132 * Bits Name Description
133 * 0-7 Lower WML Lower watermark level
134 * 8 PS 1: Pad Swallowing
135 * 0: No Pad Swallowing
136 * 9 PA 1: Pad Adding
137 * 0: No Pad Adding
138 * 10 SPDIF If this bit is set both source
139 * and destination are on SPBA
140 * 11 Source Bit(SP) 1: Source on SPBA
141 * 0: Source on AIPS
142 * 12 Destination Bit(DP) 1: Destination on SPBA
143 * 0: Destination on AIPS
144 * 13-15 --------- MUST BE 0
145 * 16-23 Higher WML HWML
146 * 24-27 N Total number of samples after
147 * which Pad adding/Swallowing
148 * must be done. It must be odd.
149 * 28 Lower WML Event(LWE) SDMA events reg to check for
150 * LWML event mask
151 * 0: LWE in EVENTS register
152 * 1: LWE in EVENTS2 register
153 * 29 Higher WML Event(HWE) SDMA events reg to check for
154 * HWML event mask
155 * 0: HWE in EVENTS register
156 * 1: HWE in EVENTS2 register
157 * 30 --------- MUST BE 0
158 * 31 CONT 1: Amount of samples to be
159 * transferred is unknown and
160 * script will keep on
161 * transferring samples as long as
162 * both events are detected and
163 * script must be manually stopped
164 * by the application
165 * 0: The amount of samples to be
166 * transferred is equal to the
167 * count field of mode word
169 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
170 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
171 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
172 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
173 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
174 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
175 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
176 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
177 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
178 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
181 * Mode/Count of data node descriptors - IPCv2
183 struct sdma_mode_count {
184 u32 count : 16; /* size of the buffer pointed by this BD */
185 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
186 u32 command : 8; /* command mostlky used for channel 0 */
190 * Buffer descriptor
192 struct sdma_buffer_descriptor {
193 struct sdma_mode_count mode;
194 u32 buffer_addr; /* address of the buffer described */
195 u32 ext_buffer_addr; /* extended buffer address */
196 } __attribute__ ((packed));
199 * struct sdma_channel_control - Channel control Block
201 * @current_bd_ptr current buffer descriptor processed
202 * @base_bd_ptr first element of buffer descriptor array
203 * @unused padding. The SDMA engine expects an array of 128 byte
204 * control blocks
206 struct sdma_channel_control {
207 u32 current_bd_ptr;
208 u32 base_bd_ptr;
209 u32 unused[2];
210 } __attribute__ ((packed));
213 * struct sdma_state_registers - SDMA context for a channel
215 * @pc: program counter
216 * @t: test bit: status of arithmetic & test instruction
217 * @rpc: return program counter
218 * @sf: source fault while loading data
219 * @spc: loop start program counter
220 * @df: destination fault while storing data
221 * @epc: loop end program counter
222 * @lm: loop mode
224 struct sdma_state_registers {
225 u32 pc :14;
226 u32 unused1: 1;
227 u32 t : 1;
228 u32 rpc :14;
229 u32 unused0: 1;
230 u32 sf : 1;
231 u32 spc :14;
232 u32 unused2: 1;
233 u32 df : 1;
234 u32 epc :14;
235 u32 lm : 2;
236 } __attribute__ ((packed));
239 * struct sdma_context_data - sdma context specific to a channel
241 * @channel_state: channel state bits
242 * @gReg: general registers
243 * @mda: burst dma destination address register
244 * @msa: burst dma source address register
245 * @ms: burst dma status register
246 * @md: burst dma data register
247 * @pda: peripheral dma destination address register
248 * @psa: peripheral dma source address register
249 * @ps: peripheral dma status register
250 * @pd: peripheral dma data register
251 * @ca: CRC polynomial register
252 * @cs: CRC accumulator register
253 * @dda: dedicated core destination address register
254 * @dsa: dedicated core source address register
255 * @ds: dedicated core status register
256 * @dd: dedicated core data register
258 struct sdma_context_data {
259 struct sdma_state_registers channel_state;
260 u32 gReg[8];
261 u32 mda;
262 u32 msa;
263 u32 ms;
264 u32 md;
265 u32 pda;
266 u32 psa;
267 u32 ps;
268 u32 pd;
269 u32 ca;
270 u32 cs;
271 u32 dda;
272 u32 dsa;
273 u32 ds;
274 u32 dd;
275 u32 scratch0;
276 u32 scratch1;
277 u32 scratch2;
278 u32 scratch3;
279 u32 scratch4;
280 u32 scratch5;
281 u32 scratch6;
282 u32 scratch7;
283 } __attribute__ ((packed));
285 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287 struct sdma_engine;
290 * struct sdma_channel - housekeeping for a SDMA channel
292 * @sdma pointer to the SDMA engine for this channel
293 * @channel the channel number, matches dmaengine chan_id + 1
294 * @direction transfer type. Needed for setting SDMA script
295 * @peripheral_type Peripheral type. Needed for setting SDMA script
296 * @event_id0 aka dma request line
297 * @event_id1 for channels that use 2 events
298 * @word_size peripheral access size
299 * @buf_tail ID of the buffer that was processed
300 * @num_bd max NUM_BD. number of descriptors currently handling
302 struct sdma_channel {
303 struct sdma_engine *sdma;
304 unsigned int channel;
305 enum dma_transfer_direction direction;
306 enum sdma_peripheral_type peripheral_type;
307 unsigned int event_id0;
308 unsigned int event_id1;
309 enum dma_slave_buswidth word_size;
310 unsigned int buf_tail;
311 unsigned int num_bd;
312 unsigned int period_len;
313 struct sdma_buffer_descriptor *bd;
314 dma_addr_t bd_phys;
315 unsigned int pc_from_device, pc_to_device;
316 unsigned int device_to_device;
317 unsigned long flags;
318 dma_addr_t per_address, per_address2;
319 unsigned long event_mask[2];
320 unsigned long watermark_level;
321 u32 shp_addr, per_addr;
322 struct dma_chan chan;
323 spinlock_t lock;
324 struct dma_async_tx_descriptor desc;
325 enum dma_status status;
326 unsigned int chn_count;
327 unsigned int chn_real_count;
328 struct tasklet_struct tasklet;
329 struct imx_dma_data data;
332 #define IMX_DMA_SG_LOOP BIT(0)
334 #define MAX_DMA_CHANNELS 32
335 #define MXC_SDMA_DEFAULT_PRIORITY 1
336 #define MXC_SDMA_MIN_PRIORITY 1
337 #define MXC_SDMA_MAX_PRIORITY 7
339 #define SDMA_FIRMWARE_MAGIC 0x414d4453
342 * struct sdma_firmware_header - Layout of the firmware image
344 * @magic "SDMA"
345 * @version_major increased whenever layout of struct sdma_script_start_addrs
346 * changes.
347 * @version_minor firmware minor version (for binary compatible changes)
348 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
349 * @num_script_addrs Number of script addresses in this image
350 * @ram_code_start offset of SDMA ram image in this firmware image
351 * @ram_code_size size of SDMA ram image
352 * @script_addrs Stores the start address of the SDMA scripts
353 * (in SDMA memory space)
355 struct sdma_firmware_header {
356 u32 magic;
357 u32 version_major;
358 u32 version_minor;
359 u32 script_addrs_start;
360 u32 num_script_addrs;
361 u32 ram_code_start;
362 u32 ram_code_size;
365 struct sdma_driver_data {
366 int chnenbl0;
367 int num_events;
368 struct sdma_script_start_addrs *script_addrs;
371 struct sdma_engine {
372 struct device *dev;
373 struct device_dma_parameters dma_parms;
374 struct sdma_channel channel[MAX_DMA_CHANNELS];
375 struct sdma_channel_control *channel_control;
376 void __iomem *regs;
377 struct sdma_context_data *context;
378 dma_addr_t context_phys;
379 struct dma_device dma_device;
380 struct clk *clk_ipg;
381 struct clk *clk_ahb;
382 spinlock_t channel_0_lock;
383 u32 script_number;
384 struct sdma_script_start_addrs *script_addrs;
385 const struct sdma_driver_data *drvdata;
386 u32 spba_start_addr;
387 u32 spba_end_addr;
390 static struct sdma_driver_data sdma_imx31 = {
391 .chnenbl0 = SDMA_CHNENBL0_IMX31,
392 .num_events = 32,
395 static struct sdma_script_start_addrs sdma_script_imx25 = {
396 .ap_2_ap_addr = 729,
397 .uart_2_mcu_addr = 904,
398 .per_2_app_addr = 1255,
399 .mcu_2_app_addr = 834,
400 .uartsh_2_mcu_addr = 1120,
401 .per_2_shp_addr = 1329,
402 .mcu_2_shp_addr = 1048,
403 .ata_2_mcu_addr = 1560,
404 .mcu_2_ata_addr = 1479,
405 .app_2_per_addr = 1189,
406 .app_2_mcu_addr = 770,
407 .shp_2_per_addr = 1407,
408 .shp_2_mcu_addr = 979,
411 static struct sdma_driver_data sdma_imx25 = {
412 .chnenbl0 = SDMA_CHNENBL0_IMX35,
413 .num_events = 48,
414 .script_addrs = &sdma_script_imx25,
417 static struct sdma_driver_data sdma_imx35 = {
418 .chnenbl0 = SDMA_CHNENBL0_IMX35,
419 .num_events = 48,
422 static struct sdma_script_start_addrs sdma_script_imx51 = {
423 .ap_2_ap_addr = 642,
424 .uart_2_mcu_addr = 817,
425 .mcu_2_app_addr = 747,
426 .mcu_2_shp_addr = 961,
427 .ata_2_mcu_addr = 1473,
428 .mcu_2_ata_addr = 1392,
429 .app_2_per_addr = 1033,
430 .app_2_mcu_addr = 683,
431 .shp_2_per_addr = 1251,
432 .shp_2_mcu_addr = 892,
435 static struct sdma_driver_data sdma_imx51 = {
436 .chnenbl0 = SDMA_CHNENBL0_IMX35,
437 .num_events = 48,
438 .script_addrs = &sdma_script_imx51,
441 static struct sdma_script_start_addrs sdma_script_imx53 = {
442 .ap_2_ap_addr = 642,
443 .app_2_mcu_addr = 683,
444 .mcu_2_app_addr = 747,
445 .uart_2_mcu_addr = 817,
446 .shp_2_mcu_addr = 891,
447 .mcu_2_shp_addr = 960,
448 .uartsh_2_mcu_addr = 1032,
449 .spdif_2_mcu_addr = 1100,
450 .mcu_2_spdif_addr = 1134,
451 .firi_2_mcu_addr = 1193,
452 .mcu_2_firi_addr = 1290,
455 static struct sdma_driver_data sdma_imx53 = {
456 .chnenbl0 = SDMA_CHNENBL0_IMX35,
457 .num_events = 48,
458 .script_addrs = &sdma_script_imx53,
461 static struct sdma_script_start_addrs sdma_script_imx6q = {
462 .ap_2_ap_addr = 642,
463 .uart_2_mcu_addr = 817,
464 .mcu_2_app_addr = 747,
465 .per_2_per_addr = 6331,
466 .uartsh_2_mcu_addr = 1032,
467 .mcu_2_shp_addr = 960,
468 .app_2_mcu_addr = 683,
469 .shp_2_mcu_addr = 891,
470 .spdif_2_mcu_addr = 1100,
471 .mcu_2_spdif_addr = 1134,
474 static struct sdma_driver_data sdma_imx6q = {
475 .chnenbl0 = SDMA_CHNENBL0_IMX35,
476 .num_events = 48,
477 .script_addrs = &sdma_script_imx6q,
480 static const struct platform_device_id sdma_devtypes[] = {
482 .name = "imx25-sdma",
483 .driver_data = (unsigned long)&sdma_imx25,
484 }, {
485 .name = "imx31-sdma",
486 .driver_data = (unsigned long)&sdma_imx31,
487 }, {
488 .name = "imx35-sdma",
489 .driver_data = (unsigned long)&sdma_imx35,
490 }, {
491 .name = "imx51-sdma",
492 .driver_data = (unsigned long)&sdma_imx51,
493 }, {
494 .name = "imx53-sdma",
495 .driver_data = (unsigned long)&sdma_imx53,
496 }, {
497 .name = "imx6q-sdma",
498 .driver_data = (unsigned long)&sdma_imx6q,
499 }, {
500 /* sentinel */
503 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
505 static const struct of_device_id sdma_dt_ids[] = {
506 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
507 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
508 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
509 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
510 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
511 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
512 { /* sentinel */ }
514 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
516 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
517 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
518 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
519 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
521 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
523 u32 chnenbl0 = sdma->drvdata->chnenbl0;
524 return chnenbl0 + event * 4;
527 static int sdma_config_ownership(struct sdma_channel *sdmac,
528 bool event_override, bool mcu_override, bool dsp_override)
530 struct sdma_engine *sdma = sdmac->sdma;
531 int channel = sdmac->channel;
532 unsigned long evt, mcu, dsp;
534 if (event_override && mcu_override && dsp_override)
535 return -EINVAL;
537 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
538 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
539 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
541 if (dsp_override)
542 __clear_bit(channel, &dsp);
543 else
544 __set_bit(channel, &dsp);
546 if (event_override)
547 __clear_bit(channel, &evt);
548 else
549 __set_bit(channel, &evt);
551 if (mcu_override)
552 __clear_bit(channel, &mcu);
553 else
554 __set_bit(channel, &mcu);
556 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
557 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
558 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
560 return 0;
563 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
565 writel(BIT(channel), sdma->regs + SDMA_H_START);
569 * sdma_run_channel0 - run a channel and wait till it's done
571 static int sdma_run_channel0(struct sdma_engine *sdma)
573 int ret;
574 unsigned long timeout = 500;
576 sdma_enable_channel(sdma, 0);
578 while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
579 if (timeout-- <= 0)
580 break;
581 udelay(1);
584 if (ret) {
585 /* Clear the interrupt status */
586 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
587 } else {
588 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
591 /* Set bits of CONFIG register with dynamic context switching */
592 if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
593 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
595 return ret ? 0 : -ETIMEDOUT;
598 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
599 u32 address)
601 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
602 void *buf_virt;
603 dma_addr_t buf_phys;
604 int ret;
605 unsigned long flags;
607 buf_virt = dma_alloc_coherent(NULL,
608 size,
609 &buf_phys, GFP_KERNEL);
610 if (!buf_virt) {
611 return -ENOMEM;
614 spin_lock_irqsave(&sdma->channel_0_lock, flags);
616 bd0->mode.command = C0_SETPM;
617 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
618 bd0->mode.count = size / 2;
619 bd0->buffer_addr = buf_phys;
620 bd0->ext_buffer_addr = address;
622 memcpy(buf_virt, buf, size);
624 ret = sdma_run_channel0(sdma);
626 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
628 dma_free_coherent(NULL, size, buf_virt, buf_phys);
630 return ret;
633 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
635 struct sdma_engine *sdma = sdmac->sdma;
636 int channel = sdmac->channel;
637 unsigned long val;
638 u32 chnenbl = chnenbl_ofs(sdma, event);
640 val = readl_relaxed(sdma->regs + chnenbl);
641 __set_bit(channel, &val);
642 writel_relaxed(val, sdma->regs + chnenbl);
645 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
647 struct sdma_engine *sdma = sdmac->sdma;
648 int channel = sdmac->channel;
649 u32 chnenbl = chnenbl_ofs(sdma, event);
650 unsigned long val;
652 val = readl_relaxed(sdma->regs + chnenbl);
653 __clear_bit(channel, &val);
654 writel_relaxed(val, sdma->regs + chnenbl);
657 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
659 if (sdmac->desc.callback)
660 sdmac->desc.callback(sdmac->desc.callback_param);
663 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
665 struct sdma_buffer_descriptor *bd;
668 * loop mode. Iterate over descriptors, re-setup them and
669 * call callback function.
671 while (1) {
672 bd = &sdmac->bd[sdmac->buf_tail];
674 if (bd->mode.status & BD_DONE)
675 break;
677 if (bd->mode.status & BD_RROR)
678 sdmac->status = DMA_ERROR;
680 bd->mode.status |= BD_DONE;
681 sdmac->buf_tail++;
682 sdmac->buf_tail %= sdmac->num_bd;
686 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
688 struct sdma_buffer_descriptor *bd;
689 int i, error = 0;
691 sdmac->chn_real_count = 0;
693 * non loop mode. Iterate over all descriptors, collect
694 * errors and call callback function
696 for (i = 0; i < sdmac->num_bd; i++) {
697 bd = &sdmac->bd[i];
699 if (bd->mode.status & (BD_DONE | BD_RROR))
700 error = -EIO;
701 sdmac->chn_real_count += bd->mode.count;
704 if (error)
705 sdmac->status = DMA_ERROR;
706 else
707 sdmac->status = DMA_COMPLETE;
709 dma_cookie_complete(&sdmac->desc);
710 if (sdmac->desc.callback)
711 sdmac->desc.callback(sdmac->desc.callback_param);
714 static void sdma_tasklet(unsigned long data)
716 struct sdma_channel *sdmac = (struct sdma_channel *) data;
718 if (sdmac->flags & IMX_DMA_SG_LOOP)
719 sdma_handle_channel_loop(sdmac);
720 else
721 mxc_sdma_handle_channel_normal(sdmac);
724 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
726 struct sdma_engine *sdma = dev_id;
727 unsigned long stat;
729 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
730 /* not interested in channel 0 interrupts */
731 stat &= ~1;
732 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
734 while (stat) {
735 int channel = fls(stat) - 1;
736 struct sdma_channel *sdmac = &sdma->channel[channel];
738 if (sdmac->flags & IMX_DMA_SG_LOOP)
739 sdma_update_channel_loop(sdmac);
741 tasklet_schedule(&sdmac->tasklet);
743 __clear_bit(channel, &stat);
746 return IRQ_HANDLED;
750 * sets the pc of SDMA script according to the peripheral type
752 static void sdma_get_pc(struct sdma_channel *sdmac,
753 enum sdma_peripheral_type peripheral_type)
755 struct sdma_engine *sdma = sdmac->sdma;
756 int per_2_emi = 0, emi_2_per = 0;
758 * These are needed once we start to support transfers between
759 * two peripherals or memory-to-memory transfers
761 int per_2_per = 0, emi_2_emi = 0;
763 sdmac->pc_from_device = 0;
764 sdmac->pc_to_device = 0;
765 sdmac->device_to_device = 0;
767 switch (peripheral_type) {
768 case IMX_DMATYPE_MEMORY:
769 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
770 break;
771 case IMX_DMATYPE_DSP:
772 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
773 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
774 break;
775 case IMX_DMATYPE_FIRI:
776 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
777 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
778 break;
779 case IMX_DMATYPE_UART:
780 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
781 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
782 break;
783 case IMX_DMATYPE_UART_SP:
784 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
785 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
786 break;
787 case IMX_DMATYPE_ATA:
788 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
789 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
790 break;
791 case IMX_DMATYPE_CSPI:
792 case IMX_DMATYPE_EXT:
793 case IMX_DMATYPE_SSI:
794 case IMX_DMATYPE_SAI:
795 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
796 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
797 break;
798 case IMX_DMATYPE_SSI_DUAL:
799 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
800 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
801 break;
802 case IMX_DMATYPE_SSI_SP:
803 case IMX_DMATYPE_MMC:
804 case IMX_DMATYPE_SDHC:
805 case IMX_DMATYPE_CSPI_SP:
806 case IMX_DMATYPE_ESAI:
807 case IMX_DMATYPE_MSHC_SP:
808 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
809 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
810 break;
811 case IMX_DMATYPE_ASRC:
812 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
813 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
814 per_2_per = sdma->script_addrs->per_2_per_addr;
815 break;
816 case IMX_DMATYPE_ASRC_SP:
817 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
818 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
819 per_2_per = sdma->script_addrs->per_2_per_addr;
820 break;
821 case IMX_DMATYPE_MSHC:
822 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
823 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
824 break;
825 case IMX_DMATYPE_CCM:
826 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
827 break;
828 case IMX_DMATYPE_SPDIF:
829 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
830 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
831 break;
832 case IMX_DMATYPE_IPU_MEMORY:
833 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
834 break;
835 default:
836 break;
839 sdmac->pc_from_device = per_2_emi;
840 sdmac->pc_to_device = emi_2_per;
841 sdmac->device_to_device = per_2_per;
844 static int sdma_load_context(struct sdma_channel *sdmac)
846 struct sdma_engine *sdma = sdmac->sdma;
847 int channel = sdmac->channel;
848 int load_address;
849 struct sdma_context_data *context = sdma->context;
850 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
851 int ret;
852 unsigned long flags;
854 if (sdmac->direction == DMA_DEV_TO_MEM)
855 load_address = sdmac->pc_from_device;
856 else if (sdmac->direction == DMA_DEV_TO_DEV)
857 load_address = sdmac->device_to_device;
858 else
859 load_address = sdmac->pc_to_device;
861 if (load_address < 0)
862 return load_address;
864 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
865 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
866 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
867 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
868 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
869 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
871 spin_lock_irqsave(&sdma->channel_0_lock, flags);
873 memset(context, 0, sizeof(*context));
874 context->channel_state.pc = load_address;
876 /* Send by context the event mask,base address for peripheral
877 * and watermark level
879 context->gReg[0] = sdmac->event_mask[1];
880 context->gReg[1] = sdmac->event_mask[0];
881 context->gReg[2] = sdmac->per_addr;
882 context->gReg[6] = sdmac->shp_addr;
883 context->gReg[7] = sdmac->watermark_level;
885 bd0->mode.command = C0_SETDM;
886 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
887 bd0->mode.count = sizeof(*context) / 4;
888 bd0->buffer_addr = sdma->context_phys;
889 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
890 ret = sdma_run_channel0(sdma);
892 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
894 return ret;
897 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
899 return container_of(chan, struct sdma_channel, chan);
902 static int sdma_disable_channel(struct dma_chan *chan)
904 struct sdma_channel *sdmac = to_sdma_chan(chan);
905 struct sdma_engine *sdma = sdmac->sdma;
906 int channel = sdmac->channel;
908 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
909 sdmac->status = DMA_ERROR;
911 return 0;
914 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
916 struct sdma_engine *sdma = sdmac->sdma;
918 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
919 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
921 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
922 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
924 if (sdmac->event_id0 > 31)
925 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
927 if (sdmac->event_id1 > 31)
928 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
931 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
932 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
933 * r0(event_mask[1]) and r1(event_mask[0]).
935 if (lwml > hwml) {
936 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
937 SDMA_WATERMARK_LEVEL_HWML);
938 sdmac->watermark_level |= hwml;
939 sdmac->watermark_level |= lwml << 16;
940 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
943 if (sdmac->per_address2 >= sdma->spba_start_addr &&
944 sdmac->per_address2 <= sdma->spba_end_addr)
945 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
947 if (sdmac->per_address >= sdma->spba_start_addr &&
948 sdmac->per_address <= sdma->spba_end_addr)
949 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
951 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
954 static int sdma_config_channel(struct dma_chan *chan)
956 struct sdma_channel *sdmac = to_sdma_chan(chan);
957 int ret;
959 sdma_disable_channel(chan);
961 sdmac->event_mask[0] = 0;
962 sdmac->event_mask[1] = 0;
963 sdmac->shp_addr = 0;
964 sdmac->per_addr = 0;
966 if (sdmac->event_id0) {
967 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
968 return -EINVAL;
969 sdma_event_enable(sdmac, sdmac->event_id0);
972 if (sdmac->event_id1) {
973 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
974 return -EINVAL;
975 sdma_event_enable(sdmac, sdmac->event_id1);
978 switch (sdmac->peripheral_type) {
979 case IMX_DMATYPE_DSP:
980 sdma_config_ownership(sdmac, false, true, true);
981 break;
982 case IMX_DMATYPE_MEMORY:
983 sdma_config_ownership(sdmac, false, true, false);
984 break;
985 default:
986 sdma_config_ownership(sdmac, true, true, false);
987 break;
990 sdma_get_pc(sdmac, sdmac->peripheral_type);
992 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
993 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
994 /* Handle multiple event channels differently */
995 if (sdmac->event_id1) {
996 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
997 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
998 sdma_set_watermarklevel_for_p2p(sdmac);
999 } else
1000 __set_bit(sdmac->event_id0, sdmac->event_mask);
1002 /* Watermark Level */
1003 sdmac->watermark_level |= sdmac->watermark_level;
1004 /* Address */
1005 sdmac->shp_addr = sdmac->per_address;
1006 sdmac->per_addr = sdmac->per_address2;
1007 } else {
1008 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1011 ret = sdma_load_context(sdmac);
1013 return ret;
1016 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1017 unsigned int priority)
1019 struct sdma_engine *sdma = sdmac->sdma;
1020 int channel = sdmac->channel;
1022 if (priority < MXC_SDMA_MIN_PRIORITY
1023 || priority > MXC_SDMA_MAX_PRIORITY) {
1024 return -EINVAL;
1027 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1029 return 0;
1032 static int sdma_request_channel(struct sdma_channel *sdmac)
1034 struct sdma_engine *sdma = sdmac->sdma;
1035 int channel = sdmac->channel;
1036 int ret = -EBUSY;
1038 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1039 GFP_KERNEL);
1040 if (!sdmac->bd) {
1041 ret = -ENOMEM;
1042 goto out;
1045 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1046 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1048 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1049 return 0;
1050 out:
1052 return ret;
1055 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1057 unsigned long flags;
1058 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1059 dma_cookie_t cookie;
1061 spin_lock_irqsave(&sdmac->lock, flags);
1063 cookie = dma_cookie_assign(tx);
1065 spin_unlock_irqrestore(&sdmac->lock, flags);
1067 return cookie;
1070 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1072 struct sdma_channel *sdmac = to_sdma_chan(chan);
1073 struct imx_dma_data *data = chan->private;
1074 int prio, ret;
1076 if (!data)
1077 return -EINVAL;
1079 switch (data->priority) {
1080 case DMA_PRIO_HIGH:
1081 prio = 3;
1082 break;
1083 case DMA_PRIO_MEDIUM:
1084 prio = 2;
1085 break;
1086 case DMA_PRIO_LOW:
1087 default:
1088 prio = 1;
1089 break;
1092 sdmac->peripheral_type = data->peripheral_type;
1093 sdmac->event_id0 = data->dma_request;
1094 sdmac->event_id1 = data->dma_request2;
1096 ret = clk_enable(sdmac->sdma->clk_ipg);
1097 if (ret)
1098 return ret;
1099 ret = clk_enable(sdmac->sdma->clk_ahb);
1100 if (ret)
1101 goto disable_clk_ipg;
1103 ret = sdma_request_channel(sdmac);
1104 if (ret)
1105 goto disable_clk_ahb;
1107 ret = sdma_set_channel_priority(sdmac, prio);
1108 if (ret)
1109 goto disable_clk_ahb;
1111 dma_async_tx_descriptor_init(&sdmac->desc, chan);
1112 sdmac->desc.tx_submit = sdma_tx_submit;
1113 /* txd.flags will be overwritten in prep funcs */
1114 sdmac->desc.flags = DMA_CTRL_ACK;
1116 return 0;
1118 disable_clk_ahb:
1119 clk_disable(sdmac->sdma->clk_ahb);
1120 disable_clk_ipg:
1121 clk_disable(sdmac->sdma->clk_ipg);
1122 return ret;
1125 static void sdma_free_chan_resources(struct dma_chan *chan)
1127 struct sdma_channel *sdmac = to_sdma_chan(chan);
1128 struct sdma_engine *sdma = sdmac->sdma;
1130 sdma_disable_channel(chan);
1132 if (sdmac->event_id0)
1133 sdma_event_disable(sdmac, sdmac->event_id0);
1134 if (sdmac->event_id1)
1135 sdma_event_disable(sdmac, sdmac->event_id1);
1137 sdmac->event_id0 = 0;
1138 sdmac->event_id1 = 0;
1140 sdma_set_channel_priority(sdmac, 0);
1142 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1144 clk_disable(sdma->clk_ipg);
1145 clk_disable(sdma->clk_ahb);
1148 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1149 struct dma_chan *chan, struct scatterlist *sgl,
1150 unsigned int sg_len, enum dma_transfer_direction direction,
1151 unsigned long flags, void *context)
1153 struct sdma_channel *sdmac = to_sdma_chan(chan);
1154 struct sdma_engine *sdma = sdmac->sdma;
1155 int ret, i, count;
1156 int channel = sdmac->channel;
1157 struct scatterlist *sg;
1159 if (sdmac->status == DMA_IN_PROGRESS)
1160 return NULL;
1161 sdmac->status = DMA_IN_PROGRESS;
1163 sdmac->flags = 0;
1165 sdmac->buf_tail = 0;
1167 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1168 sg_len, channel);
1170 sdmac->direction = direction;
1171 ret = sdma_load_context(sdmac);
1172 if (ret)
1173 goto err_out;
1175 if (sg_len > NUM_BD) {
1176 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1177 channel, sg_len, NUM_BD);
1178 ret = -EINVAL;
1179 goto err_out;
1182 sdmac->chn_count = 0;
1183 for_each_sg(sgl, sg, sg_len, i) {
1184 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1185 int param;
1187 bd->buffer_addr = sg->dma_address;
1189 count = sg_dma_len(sg);
1191 if (count > 0xffff) {
1192 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1193 channel, count, 0xffff);
1194 ret = -EINVAL;
1195 goto err_out;
1198 bd->mode.count = count;
1199 sdmac->chn_count += count;
1201 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1202 ret = -EINVAL;
1203 goto err_out;
1206 switch (sdmac->word_size) {
1207 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1208 bd->mode.command = 0;
1209 if (count & 3 || sg->dma_address & 3)
1210 return NULL;
1211 break;
1212 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1213 bd->mode.command = 2;
1214 if (count & 1 || sg->dma_address & 1)
1215 return NULL;
1216 break;
1217 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1218 bd->mode.command = 1;
1219 break;
1220 default:
1221 return NULL;
1224 param = BD_DONE | BD_EXTD | BD_CONT;
1226 if (i + 1 == sg_len) {
1227 param |= BD_INTR;
1228 param |= BD_LAST;
1229 param &= ~BD_CONT;
1232 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1233 i, count, (u64)sg->dma_address,
1234 param & BD_WRAP ? "wrap" : "",
1235 param & BD_INTR ? " intr" : "");
1237 bd->mode.status = param;
1240 sdmac->num_bd = sg_len;
1241 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1243 return &sdmac->desc;
1244 err_out:
1245 sdmac->status = DMA_ERROR;
1246 return NULL;
1249 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1250 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1251 size_t period_len, enum dma_transfer_direction direction,
1252 unsigned long flags)
1254 struct sdma_channel *sdmac = to_sdma_chan(chan);
1255 struct sdma_engine *sdma = sdmac->sdma;
1256 int num_periods = buf_len / period_len;
1257 int channel = sdmac->channel;
1258 int ret, i = 0, buf = 0;
1260 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1262 if (sdmac->status == DMA_IN_PROGRESS)
1263 return NULL;
1265 sdmac->status = DMA_IN_PROGRESS;
1267 sdmac->buf_tail = 0;
1268 sdmac->period_len = period_len;
1270 sdmac->flags |= IMX_DMA_SG_LOOP;
1271 sdmac->direction = direction;
1272 ret = sdma_load_context(sdmac);
1273 if (ret)
1274 goto err_out;
1276 if (num_periods > NUM_BD) {
1277 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1278 channel, num_periods, NUM_BD);
1279 goto err_out;
1282 if (period_len > 0xffff) {
1283 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1284 channel, period_len, 0xffff);
1285 goto err_out;
1288 while (buf < buf_len) {
1289 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1290 int param;
1292 bd->buffer_addr = dma_addr;
1294 bd->mode.count = period_len;
1296 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1297 goto err_out;
1298 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1299 bd->mode.command = 0;
1300 else
1301 bd->mode.command = sdmac->word_size;
1303 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1304 if (i + 1 == num_periods)
1305 param |= BD_WRAP;
1307 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1308 i, period_len, (u64)dma_addr,
1309 param & BD_WRAP ? "wrap" : "",
1310 param & BD_INTR ? " intr" : "");
1312 bd->mode.status = param;
1314 dma_addr += period_len;
1315 buf += period_len;
1317 i++;
1320 sdmac->num_bd = num_periods;
1321 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1323 return &sdmac->desc;
1324 err_out:
1325 sdmac->status = DMA_ERROR;
1326 return NULL;
1329 static int sdma_config(struct dma_chan *chan,
1330 struct dma_slave_config *dmaengine_cfg)
1332 struct sdma_channel *sdmac = to_sdma_chan(chan);
1334 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1335 sdmac->per_address = dmaengine_cfg->src_addr;
1336 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1337 dmaengine_cfg->src_addr_width;
1338 sdmac->word_size = dmaengine_cfg->src_addr_width;
1339 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1340 sdmac->per_address2 = dmaengine_cfg->src_addr;
1341 sdmac->per_address = dmaengine_cfg->dst_addr;
1342 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1343 SDMA_WATERMARK_LEVEL_LWML;
1344 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1345 SDMA_WATERMARK_LEVEL_HWML;
1346 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1347 } else {
1348 sdmac->per_address = dmaengine_cfg->dst_addr;
1349 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1350 dmaengine_cfg->dst_addr_width;
1351 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1353 sdmac->direction = dmaengine_cfg->direction;
1354 return sdma_config_channel(chan);
1357 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1358 dma_cookie_t cookie,
1359 struct dma_tx_state *txstate)
1361 struct sdma_channel *sdmac = to_sdma_chan(chan);
1362 u32 residue;
1364 if (sdmac->flags & IMX_DMA_SG_LOOP)
1365 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1366 else
1367 residue = sdmac->chn_count - sdmac->chn_real_count;
1369 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1370 residue);
1372 return sdmac->status;
1375 static void sdma_issue_pending(struct dma_chan *chan)
1377 struct sdma_channel *sdmac = to_sdma_chan(chan);
1378 struct sdma_engine *sdma = sdmac->sdma;
1380 if (sdmac->status == DMA_IN_PROGRESS)
1381 sdma_enable_channel(sdma, sdmac->channel);
1384 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1385 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1386 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1388 static void sdma_add_scripts(struct sdma_engine *sdma,
1389 const struct sdma_script_start_addrs *addr)
1391 s32 *addr_arr = (u32 *)addr;
1392 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1393 int i;
1395 /* use the default firmware in ROM if missing external firmware */
1396 if (!sdma->script_number)
1397 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1399 for (i = 0; i < sdma->script_number; i++)
1400 if (addr_arr[i] > 0)
1401 saddr_arr[i] = addr_arr[i];
1404 static void sdma_load_firmware(const struct firmware *fw, void *context)
1406 struct sdma_engine *sdma = context;
1407 const struct sdma_firmware_header *header;
1408 const struct sdma_script_start_addrs *addr;
1409 unsigned short *ram_code;
1411 if (!fw) {
1412 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1413 /* In this case we just use the ROM firmware. */
1414 return;
1417 if (fw->size < sizeof(*header))
1418 goto err_firmware;
1420 header = (struct sdma_firmware_header *)fw->data;
1422 if (header->magic != SDMA_FIRMWARE_MAGIC)
1423 goto err_firmware;
1424 if (header->ram_code_start + header->ram_code_size > fw->size)
1425 goto err_firmware;
1426 switch (header->version_major) {
1427 case 1:
1428 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1429 break;
1430 case 2:
1431 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1432 break;
1433 case 3:
1434 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1435 break;
1436 default:
1437 dev_err(sdma->dev, "unknown firmware version\n");
1438 goto err_firmware;
1441 addr = (void *)header + header->script_addrs_start;
1442 ram_code = (void *)header + header->ram_code_start;
1444 clk_enable(sdma->clk_ipg);
1445 clk_enable(sdma->clk_ahb);
1446 /* download the RAM image for SDMA */
1447 sdma_load_script(sdma, ram_code,
1448 header->ram_code_size,
1449 addr->ram_code_start_addr);
1450 clk_disable(sdma->clk_ipg);
1451 clk_disable(sdma->clk_ahb);
1453 sdma_add_scripts(sdma, addr);
1455 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1456 header->version_major,
1457 header->version_minor);
1459 err_firmware:
1460 release_firmware(fw);
1463 #define EVENT_REMAP_CELLS 3
1465 static int sdma_event_remap(struct sdma_engine *sdma)
1467 struct device_node *np = sdma->dev->of_node;
1468 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1469 struct property *event_remap;
1470 struct regmap *gpr;
1471 char propname[] = "fsl,sdma-event-remap";
1472 u32 reg, val, shift, num_map, i;
1473 int ret = 0;
1475 if (IS_ERR(np) || IS_ERR(gpr_np))
1476 goto out;
1478 event_remap = of_find_property(np, propname, NULL);
1479 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1480 if (!num_map) {
1481 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1482 goto out;
1483 } else if (num_map % EVENT_REMAP_CELLS) {
1484 dev_err(sdma->dev, "the property %s must modulo %d\n",
1485 propname, EVENT_REMAP_CELLS);
1486 ret = -EINVAL;
1487 goto out;
1490 gpr = syscon_node_to_regmap(gpr_np);
1491 if (IS_ERR(gpr)) {
1492 dev_err(sdma->dev, "failed to get gpr regmap\n");
1493 ret = PTR_ERR(gpr);
1494 goto out;
1497 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1498 ret = of_property_read_u32_index(np, propname, i, &reg);
1499 if (ret) {
1500 dev_err(sdma->dev, "failed to read property %s index %d\n",
1501 propname, i);
1502 goto out;
1505 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1506 if (ret) {
1507 dev_err(sdma->dev, "failed to read property %s index %d\n",
1508 propname, i + 1);
1509 goto out;
1512 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1513 if (ret) {
1514 dev_err(sdma->dev, "failed to read property %s index %d\n",
1515 propname, i + 2);
1516 goto out;
1519 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1522 out:
1523 if (!IS_ERR(gpr_np))
1524 of_node_put(gpr_np);
1526 return ret;
1529 static int sdma_get_firmware(struct sdma_engine *sdma,
1530 const char *fw_name)
1532 int ret;
1534 ret = request_firmware_nowait(THIS_MODULE,
1535 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1536 GFP_KERNEL, sdma, sdma_load_firmware);
1538 return ret;
1541 static int sdma_init(struct sdma_engine *sdma)
1543 int i, ret;
1544 dma_addr_t ccb_phys;
1546 ret = clk_enable(sdma->clk_ipg);
1547 if (ret)
1548 return ret;
1549 ret = clk_enable(sdma->clk_ahb);
1550 if (ret)
1551 goto disable_clk_ipg;
1553 /* Be sure SDMA has not started yet */
1554 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1556 sdma->channel_control = dma_alloc_coherent(NULL,
1557 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1558 sizeof(struct sdma_context_data),
1559 &ccb_phys, GFP_KERNEL);
1561 if (!sdma->channel_control) {
1562 ret = -ENOMEM;
1563 goto err_dma_alloc;
1566 sdma->context = (void *)sdma->channel_control +
1567 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1568 sdma->context_phys = ccb_phys +
1569 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1571 /* Zero-out the CCB structures array just allocated */
1572 memset(sdma->channel_control, 0,
1573 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1575 /* disable all channels */
1576 for (i = 0; i < sdma->drvdata->num_events; i++)
1577 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1579 /* All channels have priority 0 */
1580 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1581 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1583 ret = sdma_request_channel(&sdma->channel[0]);
1584 if (ret)
1585 goto err_dma_alloc;
1587 sdma_config_ownership(&sdma->channel[0], false, true, false);
1589 /* Set Command Channel (Channel Zero) */
1590 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1592 /* Set bits of CONFIG register but with static context switching */
1593 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1594 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1596 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1598 /* Initializes channel's priorities */
1599 sdma_set_channel_priority(&sdma->channel[0], 7);
1601 clk_disable(sdma->clk_ipg);
1602 clk_disable(sdma->clk_ahb);
1604 return 0;
1606 err_dma_alloc:
1607 clk_disable(sdma->clk_ahb);
1608 disable_clk_ipg:
1609 clk_disable(sdma->clk_ipg);
1610 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1611 return ret;
1614 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1616 struct sdma_channel *sdmac = to_sdma_chan(chan);
1617 struct imx_dma_data *data = fn_param;
1619 if (!imx_dma_is_general_purpose(chan))
1620 return false;
1622 sdmac->data = *data;
1623 chan->private = &sdmac->data;
1625 return true;
1628 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1629 struct of_dma *ofdma)
1631 struct sdma_engine *sdma = ofdma->of_dma_data;
1632 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1633 struct imx_dma_data data;
1635 if (dma_spec->args_count != 3)
1636 return NULL;
1638 data.dma_request = dma_spec->args[0];
1639 data.peripheral_type = dma_spec->args[1];
1640 data.priority = dma_spec->args[2];
1642 * init dma_request2 to zero, which is not used by the dts.
1643 * For P2P, dma_request2 is init from dma_request_channel(),
1644 * chan->private will point to the imx_dma_data, and in
1645 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1646 * be set to sdmac->event_id1.
1648 data.dma_request2 = 0;
1650 return dma_request_channel(mask, sdma_filter_fn, &data);
1653 static int sdma_probe(struct platform_device *pdev)
1655 const struct of_device_id *of_id =
1656 of_match_device(sdma_dt_ids, &pdev->dev);
1657 struct device_node *np = pdev->dev.of_node;
1658 struct device_node *spba_bus;
1659 const char *fw_name;
1660 int ret;
1661 int irq;
1662 struct resource *iores;
1663 struct resource spba_res;
1664 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1665 int i;
1666 struct sdma_engine *sdma;
1667 s32 *saddr_arr;
1668 const struct sdma_driver_data *drvdata = NULL;
1670 if (of_id)
1671 drvdata = of_id->data;
1672 else if (pdev->id_entry)
1673 drvdata = (void *)pdev->id_entry->driver_data;
1675 if (!drvdata) {
1676 dev_err(&pdev->dev, "unable to find driver data\n");
1677 return -EINVAL;
1680 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1681 if (ret)
1682 return ret;
1684 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1685 if (!sdma)
1686 return -ENOMEM;
1688 spin_lock_init(&sdma->channel_0_lock);
1690 sdma->dev = &pdev->dev;
1691 sdma->drvdata = drvdata;
1693 irq = platform_get_irq(pdev, 0);
1694 if (irq < 0)
1695 return irq;
1697 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1698 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1699 if (IS_ERR(sdma->regs))
1700 return PTR_ERR(sdma->regs);
1702 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1703 if (IS_ERR(sdma->clk_ipg))
1704 return PTR_ERR(sdma->clk_ipg);
1706 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1707 if (IS_ERR(sdma->clk_ahb))
1708 return PTR_ERR(sdma->clk_ahb);
1710 clk_prepare(sdma->clk_ipg);
1711 clk_prepare(sdma->clk_ahb);
1713 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1714 sdma);
1715 if (ret)
1716 return ret;
1718 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1719 if (!sdma->script_addrs)
1720 return -ENOMEM;
1722 /* initially no scripts available */
1723 saddr_arr = (s32 *)sdma->script_addrs;
1724 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1725 saddr_arr[i] = -EINVAL;
1727 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1728 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1730 INIT_LIST_HEAD(&sdma->dma_device.channels);
1731 /* Initialize channel parameters */
1732 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1733 struct sdma_channel *sdmac = &sdma->channel[i];
1735 sdmac->sdma = sdma;
1736 spin_lock_init(&sdmac->lock);
1738 sdmac->chan.device = &sdma->dma_device;
1739 dma_cookie_init(&sdmac->chan);
1740 sdmac->channel = i;
1742 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1743 (unsigned long) sdmac);
1745 * Add the channel to the DMAC list. Do not add channel 0 though
1746 * because we need it internally in the SDMA driver. This also means
1747 * that channel 0 in dmaengine counting matches sdma channel 1.
1749 if (i)
1750 list_add_tail(&sdmac->chan.device_node,
1751 &sdma->dma_device.channels);
1754 ret = sdma_init(sdma);
1755 if (ret)
1756 goto err_init;
1758 ret = sdma_event_remap(sdma);
1759 if (ret)
1760 goto err_init;
1762 if (sdma->drvdata->script_addrs)
1763 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1764 if (pdata && pdata->script_addrs)
1765 sdma_add_scripts(sdma, pdata->script_addrs);
1767 if (pdata) {
1768 ret = sdma_get_firmware(sdma, pdata->fw_name);
1769 if (ret)
1770 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1771 } else {
1773 * Because that device tree does not encode ROM script address,
1774 * the RAM script in firmware is mandatory for device tree
1775 * probe, otherwise it fails.
1777 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1778 &fw_name);
1779 if (ret)
1780 dev_warn(&pdev->dev, "failed to get firmware name\n");
1781 else {
1782 ret = sdma_get_firmware(sdma, fw_name);
1783 if (ret)
1784 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1788 sdma->dma_device.dev = &pdev->dev;
1790 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1791 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1792 sdma->dma_device.device_tx_status = sdma_tx_status;
1793 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1794 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1795 sdma->dma_device.device_config = sdma_config;
1796 sdma->dma_device.device_terminate_all = sdma_disable_channel;
1797 sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1798 sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1799 sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1800 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1801 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1802 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1803 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1805 platform_set_drvdata(pdev, sdma);
1807 ret = dma_async_device_register(&sdma->dma_device);
1808 if (ret) {
1809 dev_err(&pdev->dev, "unable to register\n");
1810 goto err_init;
1813 if (np) {
1814 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1815 if (ret) {
1816 dev_err(&pdev->dev, "failed to register controller\n");
1817 goto err_register;
1820 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1821 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1822 if (!ret) {
1823 sdma->spba_start_addr = spba_res.start;
1824 sdma->spba_end_addr = spba_res.end;
1826 of_node_put(spba_bus);
1829 return 0;
1831 err_register:
1832 dma_async_device_unregister(&sdma->dma_device);
1833 err_init:
1834 kfree(sdma->script_addrs);
1835 return ret;
1838 static int sdma_remove(struct platform_device *pdev)
1840 struct sdma_engine *sdma = platform_get_drvdata(pdev);
1841 int i;
1843 dma_async_device_unregister(&sdma->dma_device);
1844 kfree(sdma->script_addrs);
1845 /* Kill the tasklet */
1846 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1847 struct sdma_channel *sdmac = &sdma->channel[i];
1849 tasklet_kill(&sdmac->tasklet);
1852 platform_set_drvdata(pdev, NULL);
1853 return 0;
1856 static struct platform_driver sdma_driver = {
1857 .driver = {
1858 .name = "imx-sdma",
1859 .of_match_table = sdma_dt_ids,
1861 .id_table = sdma_devtypes,
1862 .remove = sdma_remove,
1863 .probe = sdma_probe,
1866 module_platform_driver(sdma_driver);
1868 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1869 MODULE_DESCRIPTION("i.MX SDMA driver");
1870 MODULE_LICENSE("GPL");