irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / hv / hv_balloon.c
blobb853b4b083bde2c402ee4dbacdd25736b4273e58
1 /*
2 * Copyright (c) 2012, Microsoft Corporation.
4 * Author:
5 * K. Y. Srinivasan <kys@microsoft.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
35 #include <linux/hyperv.h>
38 * We begin with definitions supporting the Dynamic Memory protocol
39 * with the host.
41 * Begin protocol definitions.
47 * Protocol versions. The low word is the minor version, the high word the major
48 * version.
50 * History:
51 * Initial version 1.0
52 * Changed to 0.1 on 2009/03/25
53 * Changes to 0.2 on 2009/05/14
54 * Changes to 0.3 on 2009/12/03
55 * Changed to 1.0 on 2011/04/05
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
62 enum {
63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
67 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
71 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
77 * Message Types
80 enum dm_message_type {
82 * Version 0.3
84 DM_ERROR = 0,
85 DM_VERSION_REQUEST = 1,
86 DM_VERSION_RESPONSE = 2,
87 DM_CAPABILITIES_REPORT = 3,
88 DM_CAPABILITIES_RESPONSE = 4,
89 DM_STATUS_REPORT = 5,
90 DM_BALLOON_REQUEST = 6,
91 DM_BALLOON_RESPONSE = 7,
92 DM_UNBALLOON_REQUEST = 8,
93 DM_UNBALLOON_RESPONSE = 9,
94 DM_MEM_HOT_ADD_REQUEST = 10,
95 DM_MEM_HOT_ADD_RESPONSE = 11,
96 DM_VERSION_03_MAX = 11,
98 * Version 1.0.
100 DM_INFO_MESSAGE = 12,
101 DM_VERSION_1_MAX = 12
106 * Structures defining the dynamic memory management
107 * protocol.
110 union dm_version {
111 struct {
112 __u16 minor_version;
113 __u16 major_version;
115 __u32 version;
116 } __packed;
119 union dm_caps {
120 struct {
121 __u64 balloon:1;
122 __u64 hot_add:1;
124 * To support guests that may have alignment
125 * limitations on hot-add, the guest can specify
126 * its alignment requirements; a value of n
127 * represents an alignment of 2^n in mega bytes.
129 __u64 hot_add_alignment:4;
130 __u64 reservedz:58;
131 } cap_bits;
132 __u64 caps;
133 } __packed;
135 union dm_mem_page_range {
136 struct {
138 * The PFN number of the first page in the range.
139 * 40 bits is the architectural limit of a PFN
140 * number for AMD64.
142 __u64 start_page:40;
144 * The number of pages in the range.
146 __u64 page_cnt:24;
147 } finfo;
148 __u64 page_range;
149 } __packed;
154 * The header for all dynamic memory messages:
156 * type: Type of the message.
157 * size: Size of the message in bytes; including the header.
158 * trans_id: The guest is responsible for manufacturing this ID.
161 struct dm_header {
162 __u16 type;
163 __u16 size;
164 __u32 trans_id;
165 } __packed;
168 * A generic message format for dynamic memory.
169 * Specific message formats are defined later in the file.
172 struct dm_message {
173 struct dm_header hdr;
174 __u8 data[]; /* enclosed message */
175 } __packed;
179 * Specific message types supporting the dynamic memory protocol.
183 * Version negotiation message. Sent from the guest to the host.
184 * The guest is free to try different versions until the host
185 * accepts the version.
187 * dm_version: The protocol version requested.
188 * is_last_attempt: If TRUE, this is the last version guest will request.
189 * reservedz: Reserved field, set to zero.
192 struct dm_version_request {
193 struct dm_header hdr;
194 union dm_version version;
195 __u32 is_last_attempt:1;
196 __u32 reservedz:31;
197 } __packed;
200 * Version response message; Host to Guest and indicates
201 * if the host has accepted the version sent by the guest.
203 * is_accepted: If TRUE, host has accepted the version and the guest
204 * should proceed to the next stage of the protocol. FALSE indicates that
205 * guest should re-try with a different version.
207 * reservedz: Reserved field, set to zero.
210 struct dm_version_response {
211 struct dm_header hdr;
212 __u64 is_accepted:1;
213 __u64 reservedz:63;
214 } __packed;
217 * Message reporting capabilities. This is sent from the guest to the
218 * host.
221 struct dm_capabilities {
222 struct dm_header hdr;
223 union dm_caps caps;
224 __u64 min_page_cnt;
225 __u64 max_page_number;
226 } __packed;
229 * Response to the capabilities message. This is sent from the host to the
230 * guest. This message notifies if the host has accepted the guest's
231 * capabilities. If the host has not accepted, the guest must shutdown
232 * the service.
234 * is_accepted: Indicates if the host has accepted guest's capabilities.
235 * reservedz: Must be 0.
238 struct dm_capabilities_resp_msg {
239 struct dm_header hdr;
240 __u64 is_accepted:1;
241 __u64 reservedz:63;
242 } __packed;
245 * This message is used to report memory pressure from the guest.
246 * This message is not part of any transaction and there is no
247 * response to this message.
249 * num_avail: Available memory in pages.
250 * num_committed: Committed memory in pages.
251 * page_file_size: The accumulated size of all page files
252 * in the system in pages.
253 * zero_free: The nunber of zero and free pages.
254 * page_file_writes: The writes to the page file in pages.
255 * io_diff: An indicator of file cache efficiency or page file activity,
256 * calculated as File Cache Page Fault Count - Page Read Count.
257 * This value is in pages.
259 * Some of these metrics are Windows specific and fortunately
260 * the algorithm on the host side that computes the guest memory
261 * pressure only uses num_committed value.
264 struct dm_status {
265 struct dm_header hdr;
266 __u64 num_avail;
267 __u64 num_committed;
268 __u64 page_file_size;
269 __u64 zero_free;
270 __u32 page_file_writes;
271 __u32 io_diff;
272 } __packed;
276 * Message to ask the guest to allocate memory - balloon up message.
277 * This message is sent from the host to the guest. The guest may not be
278 * able to allocate as much memory as requested.
280 * num_pages: number of pages to allocate.
283 struct dm_balloon {
284 struct dm_header hdr;
285 __u32 num_pages;
286 __u32 reservedz;
287 } __packed;
291 * Balloon response message; this message is sent from the guest
292 * to the host in response to the balloon message.
294 * reservedz: Reserved; must be set to zero.
295 * more_pages: If FALSE, this is the last message of the transaction.
296 * if TRUE there will atleast one more message from the guest.
298 * range_count: The number of ranges in the range array.
300 * range_array: An array of page ranges returned to the host.
304 struct dm_balloon_response {
305 struct dm_header hdr;
306 __u32 reservedz;
307 __u32 more_pages:1;
308 __u32 range_count:31;
309 union dm_mem_page_range range_array[];
310 } __packed;
313 * Un-balloon message; this message is sent from the host
314 * to the guest to give guest more memory.
316 * more_pages: If FALSE, this is the last message of the transaction.
317 * if TRUE there will atleast one more message from the guest.
319 * reservedz: Reserved; must be set to zero.
321 * range_count: The number of ranges in the range array.
323 * range_array: An array of page ranges returned to the host.
327 struct dm_unballoon_request {
328 struct dm_header hdr;
329 __u32 more_pages:1;
330 __u32 reservedz:31;
331 __u32 range_count;
332 union dm_mem_page_range range_array[];
333 } __packed;
336 * Un-balloon response message; this message is sent from the guest
337 * to the host in response to an unballoon request.
341 struct dm_unballoon_response {
342 struct dm_header hdr;
343 } __packed;
347 * Hot add request message. Message sent from the host to the guest.
349 * mem_range: Memory range to hot add.
351 * On Linux we currently don't support this since we cannot hot add
352 * arbitrary granularity of memory.
355 struct dm_hot_add {
356 struct dm_header hdr;
357 union dm_mem_page_range range;
358 } __packed;
361 * Hot add response message.
362 * This message is sent by the guest to report the status of a hot add request.
363 * If page_count is less than the requested page count, then the host should
364 * assume all further hot add requests will fail, since this indicates that
365 * the guest has hit an upper physical memory barrier.
367 * Hot adds may also fail due to low resources; in this case, the guest must
368 * not complete this message until the hot add can succeed, and the host must
369 * not send a new hot add request until the response is sent.
370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371 * times it fails the request.
374 * page_count: number of pages that were successfully hot added.
376 * result: result of the operation 1: success, 0: failure.
380 struct dm_hot_add_response {
381 struct dm_header hdr;
382 __u32 page_count;
383 __u32 result;
384 } __packed;
387 * Types of information sent from host to the guest.
390 enum dm_info_type {
391 INFO_TYPE_MAX_PAGE_CNT = 0,
392 MAX_INFO_TYPE
397 * Header for the information message.
400 struct dm_info_header {
401 enum dm_info_type type;
402 __u32 data_size;
403 } __packed;
406 * This message is sent from the host to the guest to pass
407 * some relevant information (win8 addition).
409 * reserved: no used.
410 * info_size: size of the information blob.
411 * info: information blob.
414 struct dm_info_msg {
415 struct dm_header hdr;
416 __u32 reserved;
417 __u32 info_size;
418 __u8 info[];
422 * End protocol definitions.
426 * State to manage hot adding memory into the guest.
427 * The range start_pfn : end_pfn specifies the range
428 * that the host has asked us to hot add. The range
429 * start_pfn : ha_end_pfn specifies the range that we have
430 * currently hot added. We hot add in multiples of 128M
431 * chunks; it is possible that we may not be able to bring
432 * online all the pages in the region. The range
433 * covered_end_pfn defines the pages that can
434 * be brough online.
437 struct hv_hotadd_state {
438 struct list_head list;
439 unsigned long start_pfn;
440 unsigned long covered_end_pfn;
441 unsigned long ha_end_pfn;
442 unsigned long end_pfn;
445 struct balloon_state {
446 __u32 num_pages;
447 struct work_struct wrk;
450 struct hot_add_wrk {
451 union dm_mem_page_range ha_page_range;
452 union dm_mem_page_range ha_region_range;
453 struct work_struct wrk;
456 static bool hot_add = true;
457 static bool do_hot_add;
459 * Delay reporting memory pressure by
460 * the specified number of seconds.
462 static uint pressure_report_delay = 45;
465 * The last time we posted a pressure report to host.
467 static unsigned long last_post_time;
469 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
470 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
472 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
473 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
474 static atomic_t trans_id = ATOMIC_INIT(0);
476 static int dm_ring_size = (5 * PAGE_SIZE);
479 * Driver specific state.
482 enum hv_dm_state {
483 DM_INITIALIZING = 0,
484 DM_INITIALIZED,
485 DM_BALLOON_UP,
486 DM_BALLOON_DOWN,
487 DM_HOT_ADD,
488 DM_INIT_ERROR
492 static __u8 recv_buffer[PAGE_SIZE];
493 static __u8 *send_buffer;
494 #define PAGES_IN_2M 512
495 #define HA_CHUNK (32 * 1024)
497 struct hv_dynmem_device {
498 struct hv_device *dev;
499 enum hv_dm_state state;
500 struct completion host_event;
501 struct completion config_event;
504 * Number of pages we have currently ballooned out.
506 unsigned int num_pages_ballooned;
507 unsigned int num_pages_onlined;
508 unsigned int num_pages_added;
511 * State to manage the ballooning (up) operation.
513 struct balloon_state balloon_wrk;
516 * State to execute the "hot-add" operation.
518 struct hot_add_wrk ha_wrk;
521 * This state tracks if the host has specified a hot-add
522 * region.
524 bool host_specified_ha_region;
527 * State to synchronize hot-add.
529 struct completion ol_waitevent;
530 bool ha_waiting;
532 * This thread handles hot-add
533 * requests from the host as well as notifying
534 * the host with regards to memory pressure in
535 * the guest.
537 struct task_struct *thread;
539 struct mutex ha_region_mutex;
542 * A list of hot-add regions.
544 struct list_head ha_region_list;
547 * We start with the highest version we can support
548 * and downgrade based on the host; we save here the
549 * next version to try.
551 __u32 next_version;
554 static struct hv_dynmem_device dm_device;
556 static void post_status(struct hv_dynmem_device *dm);
558 #ifdef CONFIG_MEMORY_HOTPLUG
559 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
560 void *v)
562 struct memory_notify *mem = (struct memory_notify *)v;
564 switch (val) {
565 case MEM_GOING_ONLINE:
566 mutex_lock(&dm_device.ha_region_mutex);
567 break;
569 case MEM_ONLINE:
570 dm_device.num_pages_onlined += mem->nr_pages;
571 case MEM_CANCEL_ONLINE:
572 if (val == MEM_ONLINE ||
573 mutex_is_locked(&dm_device.ha_region_mutex))
574 mutex_unlock(&dm_device.ha_region_mutex);
575 if (dm_device.ha_waiting) {
576 dm_device.ha_waiting = false;
577 complete(&dm_device.ol_waitevent);
579 break;
581 case MEM_OFFLINE:
582 mutex_lock(&dm_device.ha_region_mutex);
583 dm_device.num_pages_onlined -= mem->nr_pages;
584 mutex_unlock(&dm_device.ha_region_mutex);
585 break;
586 case MEM_GOING_OFFLINE:
587 case MEM_CANCEL_OFFLINE:
588 break;
590 return NOTIFY_OK;
593 static struct notifier_block hv_memory_nb = {
594 .notifier_call = hv_memory_notifier,
595 .priority = 0
599 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
601 int i;
603 for (i = 0; i < size; i++) {
604 struct page *pg;
605 pg = pfn_to_page(start_pfn + i);
606 __online_page_set_limits(pg);
607 __online_page_increment_counters(pg);
608 __online_page_free(pg);
612 static void hv_mem_hot_add(unsigned long start, unsigned long size,
613 unsigned long pfn_count,
614 struct hv_hotadd_state *has)
616 int ret = 0;
617 int i, nid;
618 unsigned long start_pfn;
619 unsigned long processed_pfn;
620 unsigned long total_pfn = pfn_count;
622 for (i = 0; i < (size/HA_CHUNK); i++) {
623 start_pfn = start + (i * HA_CHUNK);
624 has->ha_end_pfn += HA_CHUNK;
626 if (total_pfn > HA_CHUNK) {
627 processed_pfn = HA_CHUNK;
628 total_pfn -= HA_CHUNK;
629 } else {
630 processed_pfn = total_pfn;
631 total_pfn = 0;
634 has->covered_end_pfn += processed_pfn;
636 init_completion(&dm_device.ol_waitevent);
637 dm_device.ha_waiting = true;
639 mutex_unlock(&dm_device.ha_region_mutex);
640 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
641 ret = add_memory(nid, PFN_PHYS((start_pfn)),
642 (HA_CHUNK << PAGE_SHIFT));
644 if (ret) {
645 pr_info("hot_add memory failed error is %d\n", ret);
646 if (ret == -EEXIST) {
648 * This error indicates that the error
649 * is not a transient failure. This is the
650 * case where the guest's physical address map
651 * precludes hot adding memory. Stop all further
652 * memory hot-add.
654 do_hot_add = false;
656 has->ha_end_pfn -= HA_CHUNK;
657 has->covered_end_pfn -= processed_pfn;
658 mutex_lock(&dm_device.ha_region_mutex);
659 break;
663 * Wait for the memory block to be onlined.
664 * Since the hot add has succeeded, it is ok to
665 * proceed even if the pages in the hot added region
666 * have not been "onlined" within the allowed time.
668 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
669 mutex_lock(&dm_device.ha_region_mutex);
670 post_status(&dm_device);
673 return;
676 static void hv_online_page(struct page *pg)
678 struct list_head *cur;
679 struct hv_hotadd_state *has;
680 unsigned long cur_start_pgp;
681 unsigned long cur_end_pgp;
683 list_for_each(cur, &dm_device.ha_region_list) {
684 has = list_entry(cur, struct hv_hotadd_state, list);
685 cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
686 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
688 if (((unsigned long)pg >= cur_start_pgp) &&
689 ((unsigned long)pg < cur_end_pgp)) {
691 * This frame is currently backed; online the
692 * page.
694 __online_page_set_limits(pg);
695 __online_page_increment_counters(pg);
696 __online_page_free(pg);
701 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
703 struct list_head *cur;
704 struct hv_hotadd_state *has;
705 unsigned long residual, new_inc;
707 if (list_empty(&dm_device.ha_region_list))
708 return false;
710 list_for_each(cur, &dm_device.ha_region_list) {
711 has = list_entry(cur, struct hv_hotadd_state, list);
714 * If the pfn range we are dealing with is not in the current
715 * "hot add block", move on.
717 if ((start_pfn >= has->end_pfn))
718 continue;
720 * If the current hot add-request extends beyond
721 * our current limit; extend it.
723 if ((start_pfn + pfn_cnt) > has->end_pfn) {
724 residual = (start_pfn + pfn_cnt - has->end_pfn);
726 * Extend the region by multiples of HA_CHUNK.
728 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
729 if (residual % HA_CHUNK)
730 new_inc += HA_CHUNK;
732 has->end_pfn += new_inc;
736 * If the current start pfn is not where the covered_end
737 * is, update it.
740 if (has->covered_end_pfn != start_pfn)
741 has->covered_end_pfn = start_pfn;
743 return true;
747 return false;
750 static unsigned long handle_pg_range(unsigned long pg_start,
751 unsigned long pg_count)
753 unsigned long start_pfn = pg_start;
754 unsigned long pfn_cnt = pg_count;
755 unsigned long size;
756 struct list_head *cur;
757 struct hv_hotadd_state *has;
758 unsigned long pgs_ol = 0;
759 unsigned long old_covered_state;
761 if (list_empty(&dm_device.ha_region_list))
762 return 0;
764 list_for_each(cur, &dm_device.ha_region_list) {
765 has = list_entry(cur, struct hv_hotadd_state, list);
768 * If the pfn range we are dealing with is not in the current
769 * "hot add block", move on.
771 if ((start_pfn >= has->end_pfn))
772 continue;
774 old_covered_state = has->covered_end_pfn;
776 if (start_pfn < has->ha_end_pfn) {
778 * This is the case where we are backing pages
779 * in an already hot added region. Bring
780 * these pages online first.
782 pgs_ol = has->ha_end_pfn - start_pfn;
783 if (pgs_ol > pfn_cnt)
784 pgs_ol = pfn_cnt;
787 * Check if the corresponding memory block is already
788 * online by checking its last previously backed page.
789 * In case it is we need to bring rest (which was not
790 * backed previously) online too.
792 if (start_pfn > has->start_pfn &&
793 !PageReserved(pfn_to_page(start_pfn - 1)))
794 hv_bring_pgs_online(start_pfn, pgs_ol);
796 has->covered_end_pfn += pgs_ol;
797 pfn_cnt -= pgs_ol;
800 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
802 * We have some residual hot add range
803 * that needs to be hot added; hot add
804 * it now. Hot add a multiple of
805 * of HA_CHUNK that fully covers the pages
806 * we have.
808 size = (has->end_pfn - has->ha_end_pfn);
809 if (pfn_cnt <= size) {
810 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
811 if (pfn_cnt % HA_CHUNK)
812 size += HA_CHUNK;
813 } else {
814 pfn_cnt = size;
816 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
819 * If we managed to online any pages that were given to us,
820 * we declare success.
822 return has->covered_end_pfn - old_covered_state;
826 return 0;
829 static unsigned long process_hot_add(unsigned long pg_start,
830 unsigned long pfn_cnt,
831 unsigned long rg_start,
832 unsigned long rg_size)
834 struct hv_hotadd_state *ha_region = NULL;
836 if (pfn_cnt == 0)
837 return 0;
839 if (!dm_device.host_specified_ha_region)
840 if (pfn_covered(pg_start, pfn_cnt))
841 goto do_pg_range;
844 * If the host has specified a hot-add range; deal with it first.
847 if (rg_size != 0) {
848 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
849 if (!ha_region)
850 return 0;
852 INIT_LIST_HEAD(&ha_region->list);
854 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
855 ha_region->start_pfn = rg_start;
856 ha_region->ha_end_pfn = rg_start;
857 ha_region->covered_end_pfn = pg_start;
858 ha_region->end_pfn = rg_start + rg_size;
861 do_pg_range:
863 * Process the page range specified; bringing them
864 * online if possible.
866 return handle_pg_range(pg_start, pfn_cnt);
869 #endif
871 static void hot_add_req(struct work_struct *dummy)
873 struct dm_hot_add_response resp;
874 #ifdef CONFIG_MEMORY_HOTPLUG
875 unsigned long pg_start, pfn_cnt;
876 unsigned long rg_start, rg_sz;
877 #endif
878 struct hv_dynmem_device *dm = &dm_device;
880 memset(&resp, 0, sizeof(struct dm_hot_add_response));
881 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
882 resp.hdr.size = sizeof(struct dm_hot_add_response);
884 #ifdef CONFIG_MEMORY_HOTPLUG
885 mutex_lock(&dm_device.ha_region_mutex);
886 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
887 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
889 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
890 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
892 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
893 unsigned long region_size;
894 unsigned long region_start;
897 * The host has not specified the hot-add region.
898 * Based on the hot-add page range being specified,
899 * compute a hot-add region that can cover the pages
900 * that need to be hot-added while ensuring the alignment
901 * and size requirements of Linux as it relates to hot-add.
903 region_start = pg_start;
904 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
905 if (pfn_cnt % HA_CHUNK)
906 region_size += HA_CHUNK;
908 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
910 rg_start = region_start;
911 rg_sz = region_size;
914 if (do_hot_add)
915 resp.page_count = process_hot_add(pg_start, pfn_cnt,
916 rg_start, rg_sz);
918 dm->num_pages_added += resp.page_count;
919 mutex_unlock(&dm_device.ha_region_mutex);
920 #endif
922 * The result field of the response structure has the
923 * following semantics:
925 * 1. If all or some pages hot-added: Guest should return success.
927 * 2. If no pages could be hot-added:
929 * If the guest returns success, then the host
930 * will not attempt any further hot-add operations. This
931 * signifies a permanent failure.
933 * If the guest returns failure, then this failure will be
934 * treated as a transient failure and the host may retry the
935 * hot-add operation after some delay.
937 if (resp.page_count > 0)
938 resp.result = 1;
939 else if (!do_hot_add)
940 resp.result = 1;
941 else
942 resp.result = 0;
944 if (!do_hot_add || (resp.page_count == 0))
945 pr_info("Memory hot add failed\n");
947 dm->state = DM_INITIALIZED;
948 resp.hdr.trans_id = atomic_inc_return(&trans_id);
949 vmbus_sendpacket(dm->dev->channel, &resp,
950 sizeof(struct dm_hot_add_response),
951 (unsigned long)NULL,
952 VM_PKT_DATA_INBAND, 0);
955 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
957 struct dm_info_header *info_hdr;
959 info_hdr = (struct dm_info_header *)msg->info;
961 switch (info_hdr->type) {
962 case INFO_TYPE_MAX_PAGE_CNT:
963 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
964 pr_info("Data Size is %d\n", info_hdr->data_size);
965 break;
966 default:
967 pr_info("Received Unknown type: %d\n", info_hdr->type);
971 static unsigned long compute_balloon_floor(void)
973 unsigned long min_pages;
974 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
975 /* Simple continuous piecewiese linear function:
976 * max MiB -> min MiB gradient
977 * 0 0
978 * 16 16
979 * 32 24
980 * 128 72 (1/2)
981 * 512 168 (1/4)
982 * 2048 360 (1/8)
983 * 8192 744 (1/16)
984 * 32768 1512 (1/32)
986 if (totalram_pages < MB2PAGES(128))
987 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
988 else if (totalram_pages < MB2PAGES(512))
989 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
990 else if (totalram_pages < MB2PAGES(2048))
991 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
992 else if (totalram_pages < MB2PAGES(8192))
993 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
994 else
995 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
996 #undef MB2PAGES
997 return min_pages;
1001 * Post our status as it relates memory pressure to the
1002 * host. Host expects the guests to post this status
1003 * periodically at 1 second intervals.
1005 * The metrics specified in this protocol are very Windows
1006 * specific and so we cook up numbers here to convey our memory
1007 * pressure.
1010 static void post_status(struct hv_dynmem_device *dm)
1012 struct dm_status status;
1013 struct sysinfo val;
1014 unsigned long now = jiffies;
1015 unsigned long last_post = last_post_time;
1017 if (pressure_report_delay > 0) {
1018 --pressure_report_delay;
1019 return;
1022 if (!time_after(now, (last_post_time + HZ)))
1023 return;
1025 si_meminfo(&val);
1026 memset(&status, 0, sizeof(struct dm_status));
1027 status.hdr.type = DM_STATUS_REPORT;
1028 status.hdr.size = sizeof(struct dm_status);
1029 status.hdr.trans_id = atomic_inc_return(&trans_id);
1032 * The host expects the guest to report free and committed memory.
1033 * Furthermore, the host expects the pressure information to include
1034 * the ballooned out pages. For a given amount of memory that we are
1035 * managing we need to compute a floor below which we should not
1036 * balloon. Compute this and add it to the pressure report.
1037 * We also need to report all offline pages (num_pages_added -
1038 * num_pages_onlined) as committed to the host, otherwise it can try
1039 * asking us to balloon them out.
1041 status.num_avail = val.freeram;
1042 status.num_committed = vm_memory_committed() +
1043 dm->num_pages_ballooned +
1044 (dm->num_pages_added > dm->num_pages_onlined ?
1045 dm->num_pages_added - dm->num_pages_onlined : 0) +
1046 compute_balloon_floor();
1049 * If our transaction ID is no longer current, just don't
1050 * send the status. This can happen if we were interrupted
1051 * after we picked our transaction ID.
1053 if (status.hdr.trans_id != atomic_read(&trans_id))
1054 return;
1057 * If the last post time that we sampled has changed,
1058 * we have raced, don't post the status.
1060 if (last_post != last_post_time)
1061 return;
1063 last_post_time = jiffies;
1064 vmbus_sendpacket(dm->dev->channel, &status,
1065 sizeof(struct dm_status),
1066 (unsigned long)NULL,
1067 VM_PKT_DATA_INBAND, 0);
1071 static void free_balloon_pages(struct hv_dynmem_device *dm,
1072 union dm_mem_page_range *range_array)
1074 int num_pages = range_array->finfo.page_cnt;
1075 __u64 start_frame = range_array->finfo.start_page;
1076 struct page *pg;
1077 int i;
1079 for (i = 0; i < num_pages; i++) {
1080 pg = pfn_to_page(i + start_frame);
1081 __free_page(pg);
1082 dm->num_pages_ballooned--;
1088 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1089 unsigned int num_pages,
1090 struct dm_balloon_response *bl_resp,
1091 int alloc_unit)
1093 unsigned int i = 0;
1094 struct page *pg;
1096 if (num_pages < alloc_unit)
1097 return 0;
1099 for (i = 0; (i * alloc_unit) < num_pages; i++) {
1100 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1101 PAGE_SIZE)
1102 return i * alloc_unit;
1105 * We execute this code in a thread context. Furthermore,
1106 * we don't want the kernel to try too hard.
1108 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1109 __GFP_NOMEMALLOC | __GFP_NOWARN,
1110 get_order(alloc_unit << PAGE_SHIFT));
1112 if (!pg)
1113 return i * alloc_unit;
1115 dm->num_pages_ballooned += alloc_unit;
1118 * If we allocatted 2M pages; split them so we
1119 * can free them in any order we get.
1122 if (alloc_unit != 1)
1123 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1125 bl_resp->range_count++;
1126 bl_resp->range_array[i].finfo.start_page =
1127 page_to_pfn(pg);
1128 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1129 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1133 return num_pages;
1138 static void balloon_up(struct work_struct *dummy)
1140 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1141 unsigned int num_ballooned = 0;
1142 struct dm_balloon_response *bl_resp;
1143 int alloc_unit;
1144 int ret;
1145 bool done = false;
1146 int i;
1147 struct sysinfo val;
1148 unsigned long floor;
1150 /* The host balloons pages in 2M granularity. */
1151 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1154 * We will attempt 2M allocations. However, if we fail to
1155 * allocate 2M chunks, we will go back to 4k allocations.
1157 alloc_unit = 512;
1159 si_meminfo(&val);
1160 floor = compute_balloon_floor();
1162 /* Refuse to balloon below the floor, keep the 2M granularity. */
1163 if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1164 num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1165 num_pages -= num_pages % PAGES_IN_2M;
1168 while (!done) {
1169 bl_resp = (struct dm_balloon_response *)send_buffer;
1170 memset(send_buffer, 0, PAGE_SIZE);
1171 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1172 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1173 bl_resp->more_pages = 1;
1176 num_pages -= num_ballooned;
1177 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1178 bl_resp, alloc_unit);
1180 if (alloc_unit != 1 && num_ballooned == 0) {
1181 alloc_unit = 1;
1182 continue;
1185 if (num_ballooned == 0 || num_ballooned == num_pages) {
1186 bl_resp->more_pages = 0;
1187 done = true;
1188 dm_device.state = DM_INITIALIZED;
1192 * We are pushing a lot of data through the channel;
1193 * deal with transient failures caused because of the
1194 * lack of space in the ring buffer.
1197 do {
1198 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1199 ret = vmbus_sendpacket(dm_device.dev->channel,
1200 bl_resp,
1201 bl_resp->hdr.size,
1202 (unsigned long)NULL,
1203 VM_PKT_DATA_INBAND, 0);
1205 if (ret == -EAGAIN)
1206 msleep(20);
1207 post_status(&dm_device);
1208 } while (ret == -EAGAIN);
1210 if (ret) {
1212 * Free up the memory we allocatted.
1214 pr_info("Balloon response failed\n");
1216 for (i = 0; i < bl_resp->range_count; i++)
1217 free_balloon_pages(&dm_device,
1218 &bl_resp->range_array[i]);
1220 done = true;
1226 static void balloon_down(struct hv_dynmem_device *dm,
1227 struct dm_unballoon_request *req)
1229 union dm_mem_page_range *range_array = req->range_array;
1230 int range_count = req->range_count;
1231 struct dm_unballoon_response resp;
1232 int i;
1234 for (i = 0; i < range_count; i++) {
1235 free_balloon_pages(dm, &range_array[i]);
1236 complete(&dm_device.config_event);
1239 if (req->more_pages == 1)
1240 return;
1242 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1243 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1244 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1245 resp.hdr.size = sizeof(struct dm_unballoon_response);
1247 vmbus_sendpacket(dm_device.dev->channel, &resp,
1248 sizeof(struct dm_unballoon_response),
1249 (unsigned long)NULL,
1250 VM_PKT_DATA_INBAND, 0);
1252 dm->state = DM_INITIALIZED;
1255 static void balloon_onchannelcallback(void *context);
1257 static int dm_thread_func(void *dm_dev)
1259 struct hv_dynmem_device *dm = dm_dev;
1261 while (!kthread_should_stop()) {
1262 wait_for_completion_interruptible_timeout(
1263 &dm_device.config_event, 1*HZ);
1265 * The host expects us to post information on the memory
1266 * pressure every second.
1268 reinit_completion(&dm_device.config_event);
1269 post_status(dm);
1272 return 0;
1276 static void version_resp(struct hv_dynmem_device *dm,
1277 struct dm_version_response *vresp)
1279 struct dm_version_request version_req;
1280 int ret;
1282 if (vresp->is_accepted) {
1284 * We are done; wakeup the
1285 * context waiting for version
1286 * negotiation.
1288 complete(&dm->host_event);
1289 return;
1292 * If there are more versions to try, continue
1293 * with negotiations; if not
1294 * shutdown the service since we are not able
1295 * to negotiate a suitable version number
1296 * with the host.
1298 if (dm->next_version == 0)
1299 goto version_error;
1301 memset(&version_req, 0, sizeof(struct dm_version_request));
1302 version_req.hdr.type = DM_VERSION_REQUEST;
1303 version_req.hdr.size = sizeof(struct dm_version_request);
1304 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1305 version_req.version.version = dm->next_version;
1308 * Set the next version to try in case current version fails.
1309 * Win7 protocol ought to be the last one to try.
1311 switch (version_req.version.version) {
1312 case DYNMEM_PROTOCOL_VERSION_WIN8:
1313 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1314 version_req.is_last_attempt = 0;
1315 break;
1316 default:
1317 dm->next_version = 0;
1318 version_req.is_last_attempt = 1;
1321 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1322 sizeof(struct dm_version_request),
1323 (unsigned long)NULL,
1324 VM_PKT_DATA_INBAND, 0);
1326 if (ret)
1327 goto version_error;
1329 return;
1331 version_error:
1332 dm->state = DM_INIT_ERROR;
1333 complete(&dm->host_event);
1336 static void cap_resp(struct hv_dynmem_device *dm,
1337 struct dm_capabilities_resp_msg *cap_resp)
1339 if (!cap_resp->is_accepted) {
1340 pr_info("Capabilities not accepted by host\n");
1341 dm->state = DM_INIT_ERROR;
1343 complete(&dm->host_event);
1346 static void balloon_onchannelcallback(void *context)
1348 struct hv_device *dev = context;
1349 u32 recvlen;
1350 u64 requestid;
1351 struct dm_message *dm_msg;
1352 struct dm_header *dm_hdr;
1353 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1354 struct dm_balloon *bal_msg;
1355 struct dm_hot_add *ha_msg;
1356 union dm_mem_page_range *ha_pg_range;
1357 union dm_mem_page_range *ha_region;
1359 memset(recv_buffer, 0, sizeof(recv_buffer));
1360 vmbus_recvpacket(dev->channel, recv_buffer,
1361 PAGE_SIZE, &recvlen, &requestid);
1363 if (recvlen > 0) {
1364 dm_msg = (struct dm_message *)recv_buffer;
1365 dm_hdr = &dm_msg->hdr;
1367 switch (dm_hdr->type) {
1368 case DM_VERSION_RESPONSE:
1369 version_resp(dm,
1370 (struct dm_version_response *)dm_msg);
1371 break;
1373 case DM_CAPABILITIES_RESPONSE:
1374 cap_resp(dm,
1375 (struct dm_capabilities_resp_msg *)dm_msg);
1376 break;
1378 case DM_BALLOON_REQUEST:
1379 if (dm->state == DM_BALLOON_UP)
1380 pr_warn("Currently ballooning\n");
1381 bal_msg = (struct dm_balloon *)recv_buffer;
1382 dm->state = DM_BALLOON_UP;
1383 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1384 schedule_work(&dm_device.balloon_wrk.wrk);
1385 break;
1387 case DM_UNBALLOON_REQUEST:
1388 dm->state = DM_BALLOON_DOWN;
1389 balloon_down(dm,
1390 (struct dm_unballoon_request *)recv_buffer);
1391 break;
1393 case DM_MEM_HOT_ADD_REQUEST:
1394 if (dm->state == DM_HOT_ADD)
1395 pr_warn("Currently hot-adding\n");
1396 dm->state = DM_HOT_ADD;
1397 ha_msg = (struct dm_hot_add *)recv_buffer;
1398 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1400 * This is a normal hot-add request specifying
1401 * hot-add memory.
1403 ha_pg_range = &ha_msg->range;
1404 dm->ha_wrk.ha_page_range = *ha_pg_range;
1405 dm->ha_wrk.ha_region_range.page_range = 0;
1406 } else {
1408 * Host is specifying that we first hot-add
1409 * a region and then partially populate this
1410 * region.
1412 dm->host_specified_ha_region = true;
1413 ha_pg_range = &ha_msg->range;
1414 ha_region = &ha_pg_range[1];
1415 dm->ha_wrk.ha_page_range = *ha_pg_range;
1416 dm->ha_wrk.ha_region_range = *ha_region;
1418 schedule_work(&dm_device.ha_wrk.wrk);
1419 break;
1421 case DM_INFO_MESSAGE:
1422 process_info(dm, (struct dm_info_msg *)dm_msg);
1423 break;
1425 default:
1426 pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1433 static int balloon_probe(struct hv_device *dev,
1434 const struct hv_vmbus_device_id *dev_id)
1436 int ret;
1437 unsigned long t;
1438 struct dm_version_request version_req;
1439 struct dm_capabilities cap_msg;
1441 do_hot_add = hot_add;
1444 * First allocate a send buffer.
1447 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1448 if (!send_buffer)
1449 return -ENOMEM;
1451 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1452 balloon_onchannelcallback, dev);
1454 if (ret)
1455 goto probe_error0;
1457 dm_device.dev = dev;
1458 dm_device.state = DM_INITIALIZING;
1459 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1460 init_completion(&dm_device.host_event);
1461 init_completion(&dm_device.config_event);
1462 INIT_LIST_HEAD(&dm_device.ha_region_list);
1463 mutex_init(&dm_device.ha_region_mutex);
1464 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1465 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1466 dm_device.host_specified_ha_region = false;
1468 dm_device.thread =
1469 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1470 if (IS_ERR(dm_device.thread)) {
1471 ret = PTR_ERR(dm_device.thread);
1472 goto probe_error1;
1475 #ifdef CONFIG_MEMORY_HOTPLUG
1476 set_online_page_callback(&hv_online_page);
1477 register_memory_notifier(&hv_memory_nb);
1478 #endif
1480 hv_set_drvdata(dev, &dm_device);
1482 * Initiate the hand shake with the host and negotiate
1483 * a version that the host can support. We start with the
1484 * highest version number and go down if the host cannot
1485 * support it.
1487 memset(&version_req, 0, sizeof(struct dm_version_request));
1488 version_req.hdr.type = DM_VERSION_REQUEST;
1489 version_req.hdr.size = sizeof(struct dm_version_request);
1490 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1491 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1492 version_req.is_last_attempt = 0;
1494 ret = vmbus_sendpacket(dev->channel, &version_req,
1495 sizeof(struct dm_version_request),
1496 (unsigned long)NULL,
1497 VM_PKT_DATA_INBAND, 0);
1498 if (ret)
1499 goto probe_error2;
1501 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1502 if (t == 0) {
1503 ret = -ETIMEDOUT;
1504 goto probe_error2;
1508 * If we could not negotiate a compatible version with the host
1509 * fail the probe function.
1511 if (dm_device.state == DM_INIT_ERROR) {
1512 ret = -ETIMEDOUT;
1513 goto probe_error2;
1516 * Now submit our capabilities to the host.
1518 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1519 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1520 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1521 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1523 cap_msg.caps.cap_bits.balloon = 1;
1524 cap_msg.caps.cap_bits.hot_add = 1;
1527 * Specify our alignment requirements as it relates
1528 * memory hot-add. Specify 128MB alignment.
1530 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1533 * Currently the host does not use these
1534 * values and we set them to what is done in the
1535 * Windows driver.
1537 cap_msg.min_page_cnt = 0;
1538 cap_msg.max_page_number = -1;
1540 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1541 sizeof(struct dm_capabilities),
1542 (unsigned long)NULL,
1543 VM_PKT_DATA_INBAND, 0);
1544 if (ret)
1545 goto probe_error2;
1547 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1548 if (t == 0) {
1549 ret = -ETIMEDOUT;
1550 goto probe_error2;
1554 * If the host does not like our capabilities,
1555 * fail the probe function.
1557 if (dm_device.state == DM_INIT_ERROR) {
1558 ret = -ETIMEDOUT;
1559 goto probe_error2;
1562 dm_device.state = DM_INITIALIZED;
1564 return 0;
1566 probe_error2:
1567 #ifdef CONFIG_MEMORY_HOTPLUG
1568 restore_online_page_callback(&hv_online_page);
1569 #endif
1570 kthread_stop(dm_device.thread);
1572 probe_error1:
1573 vmbus_close(dev->channel);
1574 probe_error0:
1575 kfree(send_buffer);
1576 return ret;
1579 static int balloon_remove(struct hv_device *dev)
1581 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1582 struct list_head *cur, *tmp;
1583 struct hv_hotadd_state *has;
1585 if (dm->num_pages_ballooned != 0)
1586 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1588 cancel_work_sync(&dm->balloon_wrk.wrk);
1589 cancel_work_sync(&dm->ha_wrk.wrk);
1591 vmbus_close(dev->channel);
1592 kthread_stop(dm->thread);
1593 kfree(send_buffer);
1594 #ifdef CONFIG_MEMORY_HOTPLUG
1595 restore_online_page_callback(&hv_online_page);
1596 unregister_memory_notifier(&hv_memory_nb);
1597 #endif
1598 list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1599 has = list_entry(cur, struct hv_hotadd_state, list);
1600 list_del(&has->list);
1601 kfree(has);
1604 return 0;
1607 static const struct hv_vmbus_device_id id_table[] = {
1608 /* Dynamic Memory Class ID */
1609 /* 525074DC-8985-46e2-8057-A307DC18A502 */
1610 { HV_DM_GUID, },
1611 { },
1614 MODULE_DEVICE_TABLE(vmbus, id_table);
1616 static struct hv_driver balloon_drv = {
1617 .name = "hv_balloon",
1618 .id_table = id_table,
1619 .probe = balloon_probe,
1620 .remove = balloon_remove,
1623 static int __init init_balloon_drv(void)
1626 return vmbus_driver_register(&balloon_drv);
1629 module_init(init_balloon_drv);
1631 MODULE_DESCRIPTION("Hyper-V Balloon");
1632 MODULE_LICENSE("GPL");