irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / hwmon / pmbus / pmbus_core.c
blobba59eaef2e075a74cb15940fdc095673c15346a4
1 /*
2 * Hardware monitoring driver for PMBus devices
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 * Copyright (c) 2012 Guenter Roeck
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/err.h>
26 #include <linux/slab.h>
27 #include <linux/i2c.h>
28 #include <linux/hwmon.h>
29 #include <linux/hwmon-sysfs.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c/pmbus.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include "pmbus.h"
37 * Number of additional attribute pointers to allocate
38 * with each call to krealloc
40 #define PMBUS_ATTR_ALLOC_SIZE 32
43 * Index into status register array, per status register group
45 #define PB_STATUS_BASE 0
46 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
47 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
48 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
49 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
50 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
51 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES)
52 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1)
54 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1)
56 #define PMBUS_NAME_SIZE 24
58 struct pmbus_sensor {
59 struct pmbus_sensor *next;
60 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
61 struct device_attribute attribute;
62 u8 page; /* page number */
63 u16 reg; /* register */
64 enum pmbus_sensor_classes class; /* sensor class */
65 bool update; /* runtime sensor update needed */
66 int data; /* Sensor data.
67 Negative if there was a read error */
69 #define to_pmbus_sensor(_attr) \
70 container_of(_attr, struct pmbus_sensor, attribute)
72 struct pmbus_boolean {
73 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
74 struct sensor_device_attribute attribute;
75 struct pmbus_sensor *s1;
76 struct pmbus_sensor *s2;
78 #define to_pmbus_boolean(_attr) \
79 container_of(_attr, struct pmbus_boolean, attribute)
81 struct pmbus_label {
82 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
83 struct device_attribute attribute;
84 char label[PMBUS_NAME_SIZE]; /* label */
86 #define to_pmbus_label(_attr) \
87 container_of(_attr, struct pmbus_label, attribute)
89 struct pmbus_data {
90 struct device *dev;
91 struct device *hwmon_dev;
93 u32 flags; /* from platform data */
95 int exponent[PMBUS_PAGES];
96 /* linear mode: exponent for output voltages */
98 const struct pmbus_driver_info *info;
100 int max_attributes;
101 int num_attributes;
102 struct attribute_group group;
103 const struct attribute_group *groups[2];
105 struct pmbus_sensor *sensors;
107 struct mutex update_lock;
108 bool valid;
109 unsigned long last_updated; /* in jiffies */
112 * A single status register covers multiple attributes,
113 * so we keep them all together.
115 u8 status[PB_NUM_STATUS_REG];
116 u8 status_register;
118 u8 currpage;
121 void pmbus_clear_cache(struct i2c_client *client)
123 struct pmbus_data *data = i2c_get_clientdata(client);
125 data->valid = false;
127 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
129 int pmbus_set_page(struct i2c_client *client, u8 page)
131 struct pmbus_data *data = i2c_get_clientdata(client);
132 int rv = 0;
133 int newpage;
135 if (page != data->currpage) {
136 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
137 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
138 if (newpage != page)
139 rv = -EIO;
140 else
141 data->currpage = page;
143 return rv;
145 EXPORT_SYMBOL_GPL(pmbus_set_page);
147 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
149 int rv;
151 if (page >= 0) {
152 rv = pmbus_set_page(client, page);
153 if (rv < 0)
154 return rv;
157 return i2c_smbus_write_byte(client, value);
159 EXPORT_SYMBOL_GPL(pmbus_write_byte);
162 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
163 * a device specific mapping function exists and calls it if necessary.
165 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
167 struct pmbus_data *data = i2c_get_clientdata(client);
168 const struct pmbus_driver_info *info = data->info;
169 int status;
171 if (info->write_byte) {
172 status = info->write_byte(client, page, value);
173 if (status != -ENODATA)
174 return status;
176 return pmbus_write_byte(client, page, value);
179 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
181 int rv;
183 rv = pmbus_set_page(client, page);
184 if (rv < 0)
185 return rv;
187 return i2c_smbus_write_word_data(client, reg, word);
189 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
192 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
193 * a device specific mapping function exists and calls it if necessary.
195 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
196 u16 word)
198 struct pmbus_data *data = i2c_get_clientdata(client);
199 const struct pmbus_driver_info *info = data->info;
200 int status;
202 if (info->write_word_data) {
203 status = info->write_word_data(client, page, reg, word);
204 if (status != -ENODATA)
205 return status;
207 if (reg >= PMBUS_VIRT_BASE)
208 return -ENXIO;
209 return pmbus_write_word_data(client, page, reg, word);
212 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
214 int rv;
216 rv = pmbus_set_page(client, page);
217 if (rv < 0)
218 return rv;
220 return i2c_smbus_read_word_data(client, reg);
222 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
225 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
226 * a device specific mapping function exists and calls it if necessary.
228 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
230 struct pmbus_data *data = i2c_get_clientdata(client);
231 const struct pmbus_driver_info *info = data->info;
232 int status;
234 if (info->read_word_data) {
235 status = info->read_word_data(client, page, reg);
236 if (status != -ENODATA)
237 return status;
239 if (reg >= PMBUS_VIRT_BASE)
240 return -ENXIO;
241 return pmbus_read_word_data(client, page, reg);
244 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
246 int rv;
248 if (page >= 0) {
249 rv = pmbus_set_page(client, page);
250 if (rv < 0)
251 return rv;
254 return i2c_smbus_read_byte_data(client, reg);
256 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
258 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
260 int rv;
262 rv = pmbus_set_page(client, page);
263 if (rv < 0)
264 return rv;
266 return i2c_smbus_write_byte_data(client, reg, value);
268 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
270 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
271 u8 mask, u8 value)
273 unsigned int tmp;
274 int rv;
276 rv = pmbus_read_byte_data(client, page, reg);
277 if (rv < 0)
278 return rv;
280 tmp = (rv & ~mask) | (value & mask);
282 if (tmp != rv)
283 rv = pmbus_write_byte_data(client, page, reg, tmp);
285 return rv;
287 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
290 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
291 * a device specific mapping function exists and calls it if necessary.
293 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
295 struct pmbus_data *data = i2c_get_clientdata(client);
296 const struct pmbus_driver_info *info = data->info;
297 int status;
299 if (info->read_byte_data) {
300 status = info->read_byte_data(client, page, reg);
301 if (status != -ENODATA)
302 return status;
304 return pmbus_read_byte_data(client, page, reg);
307 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
309 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
312 void pmbus_clear_faults(struct i2c_client *client)
314 struct pmbus_data *data = i2c_get_clientdata(client);
315 int i;
317 for (i = 0; i < data->info->pages; i++)
318 pmbus_clear_fault_page(client, i);
320 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
322 static int pmbus_check_status_cml(struct i2c_client *client)
324 struct pmbus_data *data = i2c_get_clientdata(client);
325 int status, status2;
327 status = _pmbus_read_byte_data(client, -1, data->status_register);
328 if (status < 0 || (status & PB_STATUS_CML)) {
329 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
330 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
331 return -EIO;
333 return 0;
336 static bool pmbus_check_register(struct i2c_client *client,
337 int (*func)(struct i2c_client *client,
338 int page, int reg),
339 int page, int reg)
341 int rv;
342 struct pmbus_data *data = i2c_get_clientdata(client);
344 rv = func(client, page, reg);
345 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
346 rv = pmbus_check_status_cml(client);
347 pmbus_clear_fault_page(client, -1);
348 return rv >= 0;
351 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
353 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
355 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
357 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
359 return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
361 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
363 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
365 struct pmbus_data *data = i2c_get_clientdata(client);
367 return data->info;
369 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
371 static struct _pmbus_status {
372 u32 func;
373 u16 base;
374 u16 reg;
375 } pmbus_status[] = {
376 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
377 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
378 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
379 PMBUS_STATUS_TEMPERATURE },
380 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
381 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
384 static struct pmbus_data *pmbus_update_device(struct device *dev)
386 struct i2c_client *client = to_i2c_client(dev->parent);
387 struct pmbus_data *data = i2c_get_clientdata(client);
388 const struct pmbus_driver_info *info = data->info;
389 struct pmbus_sensor *sensor;
391 mutex_lock(&data->update_lock);
392 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
393 int i, j;
395 for (i = 0; i < info->pages; i++) {
396 data->status[PB_STATUS_BASE + i]
397 = _pmbus_read_byte_data(client, i,
398 data->status_register);
399 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
400 struct _pmbus_status *s = &pmbus_status[j];
402 if (!(info->func[i] & s->func))
403 continue;
404 data->status[s->base + i]
405 = _pmbus_read_byte_data(client, i,
406 s->reg);
410 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
411 data->status[PB_STATUS_INPUT_BASE]
412 = _pmbus_read_byte_data(client, 0,
413 PMBUS_STATUS_INPUT);
415 if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
416 data->status[PB_STATUS_VMON_BASE]
417 = _pmbus_read_byte_data(client, 0,
418 PMBUS_VIRT_STATUS_VMON);
420 for (sensor = data->sensors; sensor; sensor = sensor->next) {
421 if (!data->valid || sensor->update)
422 sensor->data
423 = _pmbus_read_word_data(client,
424 sensor->page,
425 sensor->reg);
427 pmbus_clear_faults(client);
428 data->last_updated = jiffies;
429 data->valid = 1;
431 mutex_unlock(&data->update_lock);
432 return data;
436 * Convert linear sensor values to milli- or micro-units
437 * depending on sensor type.
439 static long pmbus_reg2data_linear(struct pmbus_data *data,
440 struct pmbus_sensor *sensor)
442 s16 exponent;
443 s32 mantissa;
444 long val;
446 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
447 exponent = data->exponent[sensor->page];
448 mantissa = (u16) sensor->data;
449 } else { /* LINEAR11 */
450 exponent = ((s16)sensor->data) >> 11;
451 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
454 val = mantissa;
456 /* scale result to milli-units for all sensors except fans */
457 if (sensor->class != PSC_FAN)
458 val = val * 1000L;
460 /* scale result to micro-units for power sensors */
461 if (sensor->class == PSC_POWER)
462 val = val * 1000L;
464 if (exponent >= 0)
465 val <<= exponent;
466 else
467 val >>= -exponent;
469 return val;
473 * Convert direct sensor values to milli- or micro-units
474 * depending on sensor type.
476 static long pmbus_reg2data_direct(struct pmbus_data *data,
477 struct pmbus_sensor *sensor)
479 long val = (s16) sensor->data;
480 long m, b, R;
482 m = data->info->m[sensor->class];
483 b = data->info->b[sensor->class];
484 R = data->info->R[sensor->class];
486 if (m == 0)
487 return 0;
489 /* X = 1/m * (Y * 10^-R - b) */
490 R = -R;
491 /* scale result to milli-units for everything but fans */
492 if (sensor->class != PSC_FAN) {
493 R += 3;
494 b *= 1000;
497 /* scale result to micro-units for power sensors */
498 if (sensor->class == PSC_POWER) {
499 R += 3;
500 b *= 1000;
503 while (R > 0) {
504 val *= 10;
505 R--;
507 while (R < 0) {
508 val = DIV_ROUND_CLOSEST(val, 10);
509 R++;
512 return (val - b) / m;
516 * Convert VID sensor values to milli- or micro-units
517 * depending on sensor type.
519 static long pmbus_reg2data_vid(struct pmbus_data *data,
520 struct pmbus_sensor *sensor)
522 long val = sensor->data;
523 long rv = 0;
525 switch (data->info->vrm_version) {
526 case vr11:
527 if (val >= 0x02 && val <= 0xb2)
528 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
529 break;
530 case vr12:
531 if (val >= 0x01)
532 rv = 250 + (val - 1) * 5;
533 break;
535 return rv;
538 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
540 long val;
542 switch (data->info->format[sensor->class]) {
543 case direct:
544 val = pmbus_reg2data_direct(data, sensor);
545 break;
546 case vid:
547 val = pmbus_reg2data_vid(data, sensor);
548 break;
549 case linear:
550 default:
551 val = pmbus_reg2data_linear(data, sensor);
552 break;
554 return val;
557 #define MAX_MANTISSA (1023 * 1000)
558 #define MIN_MANTISSA (511 * 1000)
560 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
561 struct pmbus_sensor *sensor, long val)
563 s16 exponent = 0, mantissa;
564 bool negative = false;
566 /* simple case */
567 if (val == 0)
568 return 0;
570 if (sensor->class == PSC_VOLTAGE_OUT) {
571 /* LINEAR16 does not support negative voltages */
572 if (val < 0)
573 return 0;
576 * For a static exponents, we don't have a choice
577 * but to adjust the value to it.
579 if (data->exponent[sensor->page] < 0)
580 val <<= -data->exponent[sensor->page];
581 else
582 val >>= data->exponent[sensor->page];
583 val = DIV_ROUND_CLOSEST(val, 1000);
584 return val & 0xffff;
587 if (val < 0) {
588 negative = true;
589 val = -val;
592 /* Power is in uW. Convert to mW before converting. */
593 if (sensor->class == PSC_POWER)
594 val = DIV_ROUND_CLOSEST(val, 1000L);
597 * For simplicity, convert fan data to milli-units
598 * before calculating the exponent.
600 if (sensor->class == PSC_FAN)
601 val = val * 1000;
603 /* Reduce large mantissa until it fits into 10 bit */
604 while (val >= MAX_MANTISSA && exponent < 15) {
605 exponent++;
606 val >>= 1;
608 /* Increase small mantissa to improve precision */
609 while (val < MIN_MANTISSA && exponent > -15) {
610 exponent--;
611 val <<= 1;
614 /* Convert mantissa from milli-units to units */
615 mantissa = DIV_ROUND_CLOSEST(val, 1000);
617 /* Ensure that resulting number is within range */
618 if (mantissa > 0x3ff)
619 mantissa = 0x3ff;
621 /* restore sign */
622 if (negative)
623 mantissa = -mantissa;
625 /* Convert to 5 bit exponent, 11 bit mantissa */
626 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
629 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
630 struct pmbus_sensor *sensor, long val)
632 long m, b, R;
634 m = data->info->m[sensor->class];
635 b = data->info->b[sensor->class];
636 R = data->info->R[sensor->class];
638 /* Power is in uW. Adjust R and b. */
639 if (sensor->class == PSC_POWER) {
640 R -= 3;
641 b *= 1000;
644 /* Calculate Y = (m * X + b) * 10^R */
645 if (sensor->class != PSC_FAN) {
646 R -= 3; /* Adjust R and b for data in milli-units */
647 b *= 1000;
649 val = val * m + b;
651 while (R > 0) {
652 val *= 10;
653 R--;
655 while (R < 0) {
656 val = DIV_ROUND_CLOSEST(val, 10);
657 R++;
660 return val;
663 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
664 struct pmbus_sensor *sensor, long val)
666 val = clamp_val(val, 500, 1600);
668 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
671 static u16 pmbus_data2reg(struct pmbus_data *data,
672 struct pmbus_sensor *sensor, long val)
674 u16 regval;
676 switch (data->info->format[sensor->class]) {
677 case direct:
678 regval = pmbus_data2reg_direct(data, sensor, val);
679 break;
680 case vid:
681 regval = pmbus_data2reg_vid(data, sensor, val);
682 break;
683 case linear:
684 default:
685 regval = pmbus_data2reg_linear(data, sensor, val);
686 break;
688 return regval;
692 * Return boolean calculated from converted data.
693 * <index> defines a status register index and mask.
694 * The mask is in the lower 8 bits, the register index is in bits 8..23.
696 * The associated pmbus_boolean structure contains optional pointers to two
697 * sensor attributes. If specified, those attributes are compared against each
698 * other to determine if a limit has been exceeded.
700 * If the sensor attribute pointers are NULL, the function returns true if
701 * (status[reg] & mask) is true.
703 * If sensor attribute pointers are provided, a comparison against a specified
704 * limit has to be performed to determine the boolean result.
705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
706 * sensor values referenced by sensor attribute pointers s1 and s2).
708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
711 * If a negative value is stored in any of the referenced registers, this value
712 * reflects an error code which will be returned.
714 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
715 int index)
717 struct pmbus_sensor *s1 = b->s1;
718 struct pmbus_sensor *s2 = b->s2;
719 u16 reg = (index >> 8) & 0xffff;
720 u8 mask = index & 0xff;
721 int ret, status;
722 u8 regval;
724 status = data->status[reg];
725 if (status < 0)
726 return status;
728 regval = status & mask;
729 if (!s1 && !s2) {
730 ret = !!regval;
731 } else if (!s1 || !s2) {
732 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
733 return 0;
734 } else {
735 long v1, v2;
737 if (s1->data < 0)
738 return s1->data;
739 if (s2->data < 0)
740 return s2->data;
742 v1 = pmbus_reg2data(data, s1);
743 v2 = pmbus_reg2data(data, s2);
744 ret = !!(regval && v1 >= v2);
746 return ret;
749 static ssize_t pmbus_show_boolean(struct device *dev,
750 struct device_attribute *da, char *buf)
752 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
753 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
754 struct pmbus_data *data = pmbus_update_device(dev);
755 int val;
757 val = pmbus_get_boolean(data, boolean, attr->index);
758 if (val < 0)
759 return val;
760 return snprintf(buf, PAGE_SIZE, "%d\n", val);
763 static ssize_t pmbus_show_sensor(struct device *dev,
764 struct device_attribute *devattr, char *buf)
766 struct pmbus_data *data = pmbus_update_device(dev);
767 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
769 if (sensor->data < 0)
770 return sensor->data;
772 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
775 static ssize_t pmbus_set_sensor(struct device *dev,
776 struct device_attribute *devattr,
777 const char *buf, size_t count)
779 struct i2c_client *client = to_i2c_client(dev->parent);
780 struct pmbus_data *data = i2c_get_clientdata(client);
781 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
782 ssize_t rv = count;
783 long val = 0;
784 int ret;
785 u16 regval;
787 if (kstrtol(buf, 10, &val) < 0)
788 return -EINVAL;
790 mutex_lock(&data->update_lock);
791 regval = pmbus_data2reg(data, sensor, val);
792 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
793 if (ret < 0)
794 rv = ret;
795 else
796 sensor->data = regval;
797 mutex_unlock(&data->update_lock);
798 return rv;
801 static ssize_t pmbus_show_label(struct device *dev,
802 struct device_attribute *da, char *buf)
804 struct pmbus_label *label = to_pmbus_label(da);
806 return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
809 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
811 if (data->num_attributes >= data->max_attributes - 1) {
812 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
813 void *new_attrs = krealloc(data->group.attrs,
814 new_max_attrs * sizeof(void *),
815 GFP_KERNEL);
816 if (!new_attrs)
817 return -ENOMEM;
818 data->group.attrs = new_attrs;
819 data->max_attributes = new_max_attrs;
822 data->group.attrs[data->num_attributes++] = attr;
823 data->group.attrs[data->num_attributes] = NULL;
824 return 0;
827 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
828 const char *name,
829 umode_t mode,
830 ssize_t (*show)(struct device *dev,
831 struct device_attribute *attr,
832 char *buf),
833 ssize_t (*store)(struct device *dev,
834 struct device_attribute *attr,
835 const char *buf, size_t count))
837 sysfs_attr_init(&dev_attr->attr);
838 dev_attr->attr.name = name;
839 dev_attr->attr.mode = mode;
840 dev_attr->show = show;
841 dev_attr->store = store;
844 static void pmbus_attr_init(struct sensor_device_attribute *a,
845 const char *name,
846 umode_t mode,
847 ssize_t (*show)(struct device *dev,
848 struct device_attribute *attr,
849 char *buf),
850 ssize_t (*store)(struct device *dev,
851 struct device_attribute *attr,
852 const char *buf, size_t count),
853 int idx)
855 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
856 a->index = idx;
859 static int pmbus_add_boolean(struct pmbus_data *data,
860 const char *name, const char *type, int seq,
861 struct pmbus_sensor *s1,
862 struct pmbus_sensor *s2,
863 u16 reg, u8 mask)
865 struct pmbus_boolean *boolean;
866 struct sensor_device_attribute *a;
868 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
869 if (!boolean)
870 return -ENOMEM;
872 a = &boolean->attribute;
874 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
875 name, seq, type);
876 boolean->s1 = s1;
877 boolean->s2 = s2;
878 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
879 (reg << 8) | mask);
881 return pmbus_add_attribute(data, &a->dev_attr.attr);
884 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
885 const char *name, const char *type,
886 int seq, int page, int reg,
887 enum pmbus_sensor_classes class,
888 bool update, bool readonly)
890 struct pmbus_sensor *sensor;
891 struct device_attribute *a;
893 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
894 if (!sensor)
895 return NULL;
896 a = &sensor->attribute;
898 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
899 name, seq, type);
900 sensor->page = page;
901 sensor->reg = reg;
902 sensor->class = class;
903 sensor->update = update;
904 pmbus_dev_attr_init(a, sensor->name,
905 readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
906 pmbus_show_sensor, pmbus_set_sensor);
908 if (pmbus_add_attribute(data, &a->attr))
909 return NULL;
911 sensor->next = data->sensors;
912 data->sensors = sensor;
914 return sensor;
917 static int pmbus_add_label(struct pmbus_data *data,
918 const char *name, int seq,
919 const char *lstring, int index)
921 struct pmbus_label *label;
922 struct device_attribute *a;
924 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
925 if (!label)
926 return -ENOMEM;
928 a = &label->attribute;
930 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
931 if (!index)
932 strncpy(label->label, lstring, sizeof(label->label) - 1);
933 else
934 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
935 index);
937 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
938 return pmbus_add_attribute(data, &a->attr);
942 * Search for attributes. Allocate sensors, booleans, and labels as needed.
946 * The pmbus_limit_attr structure describes a single limit attribute
947 * and its associated alarm attribute.
949 struct pmbus_limit_attr {
950 u16 reg; /* Limit register */
951 u16 sbit; /* Alarm attribute status bit */
952 bool update; /* True if register needs updates */
953 bool low; /* True if low limit; for limits with compare
954 functions only */
955 const char *attr; /* Attribute name */
956 const char *alarm; /* Alarm attribute name */
960 * The pmbus_sensor_attr structure describes one sensor attribute. This
961 * description includes a reference to the associated limit attributes.
963 struct pmbus_sensor_attr {
964 u16 reg; /* sensor register */
965 u8 gbit; /* generic status bit */
966 u8 nlimit; /* # of limit registers */
967 enum pmbus_sensor_classes class;/* sensor class */
968 const char *label; /* sensor label */
969 bool paged; /* true if paged sensor */
970 bool update; /* true if update needed */
971 bool compare; /* true if compare function needed */
972 u32 func; /* sensor mask */
973 u32 sfunc; /* sensor status mask */
974 int sbase; /* status base register */
975 const struct pmbus_limit_attr *limit;/* limit registers */
979 * Add a set of limit attributes and, if supported, the associated
980 * alarm attributes.
981 * returns 0 if no alarm register found, 1 if an alarm register was found,
982 * < 0 on errors.
984 static int pmbus_add_limit_attrs(struct i2c_client *client,
985 struct pmbus_data *data,
986 const struct pmbus_driver_info *info,
987 const char *name, int index, int page,
988 struct pmbus_sensor *base,
989 const struct pmbus_sensor_attr *attr)
991 const struct pmbus_limit_attr *l = attr->limit;
992 int nlimit = attr->nlimit;
993 int have_alarm = 0;
994 int i, ret;
995 struct pmbus_sensor *curr;
997 for (i = 0; i < nlimit; i++) {
998 if (pmbus_check_word_register(client, page, l->reg)) {
999 curr = pmbus_add_sensor(data, name, l->attr, index,
1000 page, l->reg, attr->class,
1001 attr->update || l->update,
1002 false);
1003 if (!curr)
1004 return -ENOMEM;
1005 if (l->sbit && (info->func[page] & attr->sfunc)) {
1006 ret = pmbus_add_boolean(data, name,
1007 l->alarm, index,
1008 attr->compare ? l->low ? curr : base
1009 : NULL,
1010 attr->compare ? l->low ? base : curr
1011 : NULL,
1012 attr->sbase + page, l->sbit);
1013 if (ret)
1014 return ret;
1015 have_alarm = 1;
1018 l++;
1020 return have_alarm;
1023 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1024 struct pmbus_data *data,
1025 const struct pmbus_driver_info *info,
1026 const char *name,
1027 int index, int page,
1028 const struct pmbus_sensor_attr *attr)
1030 struct pmbus_sensor *base;
1031 int ret;
1033 if (attr->label) {
1034 ret = pmbus_add_label(data, name, index, attr->label,
1035 attr->paged ? page + 1 : 0);
1036 if (ret)
1037 return ret;
1039 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1040 attr->class, true, true);
1041 if (!base)
1042 return -ENOMEM;
1043 if (attr->sfunc) {
1044 ret = pmbus_add_limit_attrs(client, data, info, name,
1045 index, page, base, attr);
1046 if (ret < 0)
1047 return ret;
1049 * Add generic alarm attribute only if there are no individual
1050 * alarm attributes, if there is a global alarm bit, and if
1051 * the generic status register for this page is accessible.
1053 if (!ret && attr->gbit &&
1054 pmbus_check_byte_register(client, page,
1055 data->status_register)) {
1056 ret = pmbus_add_boolean(data, name, "alarm", index,
1057 NULL, NULL,
1058 PB_STATUS_BASE + page,
1059 attr->gbit);
1060 if (ret)
1061 return ret;
1064 return 0;
1067 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1068 struct pmbus_data *data,
1069 const char *name,
1070 const struct pmbus_sensor_attr *attrs,
1071 int nattrs)
1073 const struct pmbus_driver_info *info = data->info;
1074 int index, i;
1075 int ret;
1077 index = 1;
1078 for (i = 0; i < nattrs; i++) {
1079 int page, pages;
1081 pages = attrs->paged ? info->pages : 1;
1082 for (page = 0; page < pages; page++) {
1083 if (!(info->func[page] & attrs->func))
1084 continue;
1085 ret = pmbus_add_sensor_attrs_one(client, data, info,
1086 name, index, page,
1087 attrs);
1088 if (ret)
1089 return ret;
1090 index++;
1092 attrs++;
1094 return 0;
1097 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1099 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1100 .attr = "min",
1101 .alarm = "min_alarm",
1102 .sbit = PB_VOLTAGE_UV_WARNING,
1103 }, {
1104 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1105 .attr = "lcrit",
1106 .alarm = "lcrit_alarm",
1107 .sbit = PB_VOLTAGE_UV_FAULT,
1108 }, {
1109 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1110 .attr = "max",
1111 .alarm = "max_alarm",
1112 .sbit = PB_VOLTAGE_OV_WARNING,
1113 }, {
1114 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1115 .attr = "crit",
1116 .alarm = "crit_alarm",
1117 .sbit = PB_VOLTAGE_OV_FAULT,
1118 }, {
1119 .reg = PMBUS_VIRT_READ_VIN_AVG,
1120 .update = true,
1121 .attr = "average",
1122 }, {
1123 .reg = PMBUS_VIRT_READ_VIN_MIN,
1124 .update = true,
1125 .attr = "lowest",
1126 }, {
1127 .reg = PMBUS_VIRT_READ_VIN_MAX,
1128 .update = true,
1129 .attr = "highest",
1130 }, {
1131 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1132 .attr = "reset_history",
1136 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1138 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1139 .attr = "min",
1140 .alarm = "min_alarm",
1141 .sbit = PB_VOLTAGE_UV_WARNING,
1142 }, {
1143 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1144 .attr = "lcrit",
1145 .alarm = "lcrit_alarm",
1146 .sbit = PB_VOLTAGE_UV_FAULT,
1147 }, {
1148 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1149 .attr = "max",
1150 .alarm = "max_alarm",
1151 .sbit = PB_VOLTAGE_OV_WARNING,
1152 }, {
1153 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1154 .attr = "crit",
1155 .alarm = "crit_alarm",
1156 .sbit = PB_VOLTAGE_OV_FAULT,
1160 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1162 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1163 .attr = "min",
1164 .alarm = "min_alarm",
1165 .sbit = PB_VOLTAGE_UV_WARNING,
1166 }, {
1167 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1168 .attr = "lcrit",
1169 .alarm = "lcrit_alarm",
1170 .sbit = PB_VOLTAGE_UV_FAULT,
1171 }, {
1172 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1173 .attr = "max",
1174 .alarm = "max_alarm",
1175 .sbit = PB_VOLTAGE_OV_WARNING,
1176 }, {
1177 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1178 .attr = "crit",
1179 .alarm = "crit_alarm",
1180 .sbit = PB_VOLTAGE_OV_FAULT,
1181 }, {
1182 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1183 .update = true,
1184 .attr = "average",
1185 }, {
1186 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1187 .update = true,
1188 .attr = "lowest",
1189 }, {
1190 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1191 .update = true,
1192 .attr = "highest",
1193 }, {
1194 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1195 .attr = "reset_history",
1199 static const struct pmbus_sensor_attr voltage_attributes[] = {
1201 .reg = PMBUS_READ_VIN,
1202 .class = PSC_VOLTAGE_IN,
1203 .label = "vin",
1204 .func = PMBUS_HAVE_VIN,
1205 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1206 .sbase = PB_STATUS_INPUT_BASE,
1207 .gbit = PB_STATUS_VIN_UV,
1208 .limit = vin_limit_attrs,
1209 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1210 }, {
1211 .reg = PMBUS_VIRT_READ_VMON,
1212 .class = PSC_VOLTAGE_IN,
1213 .label = "vmon",
1214 .func = PMBUS_HAVE_VMON,
1215 .sfunc = PMBUS_HAVE_STATUS_VMON,
1216 .sbase = PB_STATUS_VMON_BASE,
1217 .limit = vmon_limit_attrs,
1218 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1219 }, {
1220 .reg = PMBUS_READ_VCAP,
1221 .class = PSC_VOLTAGE_IN,
1222 .label = "vcap",
1223 .func = PMBUS_HAVE_VCAP,
1224 }, {
1225 .reg = PMBUS_READ_VOUT,
1226 .class = PSC_VOLTAGE_OUT,
1227 .label = "vout",
1228 .paged = true,
1229 .func = PMBUS_HAVE_VOUT,
1230 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1231 .sbase = PB_STATUS_VOUT_BASE,
1232 .gbit = PB_STATUS_VOUT_OV,
1233 .limit = vout_limit_attrs,
1234 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1238 /* Current attributes */
1240 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1242 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1243 .attr = "max",
1244 .alarm = "max_alarm",
1245 .sbit = PB_IIN_OC_WARNING,
1246 }, {
1247 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1248 .attr = "crit",
1249 .alarm = "crit_alarm",
1250 .sbit = PB_IIN_OC_FAULT,
1251 }, {
1252 .reg = PMBUS_VIRT_READ_IIN_AVG,
1253 .update = true,
1254 .attr = "average",
1255 }, {
1256 .reg = PMBUS_VIRT_READ_IIN_MIN,
1257 .update = true,
1258 .attr = "lowest",
1259 }, {
1260 .reg = PMBUS_VIRT_READ_IIN_MAX,
1261 .update = true,
1262 .attr = "highest",
1263 }, {
1264 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1265 .attr = "reset_history",
1269 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1271 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1272 .attr = "max",
1273 .alarm = "max_alarm",
1274 .sbit = PB_IOUT_OC_WARNING,
1275 }, {
1276 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1277 .attr = "lcrit",
1278 .alarm = "lcrit_alarm",
1279 .sbit = PB_IOUT_UC_FAULT,
1280 }, {
1281 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1282 .attr = "crit",
1283 .alarm = "crit_alarm",
1284 .sbit = PB_IOUT_OC_FAULT,
1285 }, {
1286 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1287 .update = true,
1288 .attr = "average",
1289 }, {
1290 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1291 .update = true,
1292 .attr = "lowest",
1293 }, {
1294 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1295 .update = true,
1296 .attr = "highest",
1297 }, {
1298 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1299 .attr = "reset_history",
1303 static const struct pmbus_sensor_attr current_attributes[] = {
1305 .reg = PMBUS_READ_IIN,
1306 .class = PSC_CURRENT_IN,
1307 .label = "iin",
1308 .func = PMBUS_HAVE_IIN,
1309 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1310 .sbase = PB_STATUS_INPUT_BASE,
1311 .limit = iin_limit_attrs,
1312 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1313 }, {
1314 .reg = PMBUS_READ_IOUT,
1315 .class = PSC_CURRENT_OUT,
1316 .label = "iout",
1317 .paged = true,
1318 .func = PMBUS_HAVE_IOUT,
1319 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1320 .sbase = PB_STATUS_IOUT_BASE,
1321 .gbit = PB_STATUS_IOUT_OC,
1322 .limit = iout_limit_attrs,
1323 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1327 /* Power attributes */
1329 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1331 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1332 .attr = "max",
1333 .alarm = "alarm",
1334 .sbit = PB_PIN_OP_WARNING,
1335 }, {
1336 .reg = PMBUS_VIRT_READ_PIN_AVG,
1337 .update = true,
1338 .attr = "average",
1339 }, {
1340 .reg = PMBUS_VIRT_READ_PIN_MIN,
1341 .update = true,
1342 .attr = "input_lowest",
1343 }, {
1344 .reg = PMBUS_VIRT_READ_PIN_MAX,
1345 .update = true,
1346 .attr = "input_highest",
1347 }, {
1348 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1349 .attr = "reset_history",
1353 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1355 .reg = PMBUS_POUT_MAX,
1356 .attr = "cap",
1357 .alarm = "cap_alarm",
1358 .sbit = PB_POWER_LIMITING,
1359 }, {
1360 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1361 .attr = "max",
1362 .alarm = "max_alarm",
1363 .sbit = PB_POUT_OP_WARNING,
1364 }, {
1365 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1366 .attr = "crit",
1367 .alarm = "crit_alarm",
1368 .sbit = PB_POUT_OP_FAULT,
1369 }, {
1370 .reg = PMBUS_VIRT_READ_POUT_AVG,
1371 .update = true,
1372 .attr = "average",
1373 }, {
1374 .reg = PMBUS_VIRT_READ_POUT_MIN,
1375 .update = true,
1376 .attr = "input_lowest",
1377 }, {
1378 .reg = PMBUS_VIRT_READ_POUT_MAX,
1379 .update = true,
1380 .attr = "input_highest",
1381 }, {
1382 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1383 .attr = "reset_history",
1387 static const struct pmbus_sensor_attr power_attributes[] = {
1389 .reg = PMBUS_READ_PIN,
1390 .class = PSC_POWER,
1391 .label = "pin",
1392 .func = PMBUS_HAVE_PIN,
1393 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1394 .sbase = PB_STATUS_INPUT_BASE,
1395 .limit = pin_limit_attrs,
1396 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1397 }, {
1398 .reg = PMBUS_READ_POUT,
1399 .class = PSC_POWER,
1400 .label = "pout",
1401 .paged = true,
1402 .func = PMBUS_HAVE_POUT,
1403 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1404 .sbase = PB_STATUS_IOUT_BASE,
1405 .limit = pout_limit_attrs,
1406 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1410 /* Temperature atributes */
1412 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1414 .reg = PMBUS_UT_WARN_LIMIT,
1415 .low = true,
1416 .attr = "min",
1417 .alarm = "min_alarm",
1418 .sbit = PB_TEMP_UT_WARNING,
1419 }, {
1420 .reg = PMBUS_UT_FAULT_LIMIT,
1421 .low = true,
1422 .attr = "lcrit",
1423 .alarm = "lcrit_alarm",
1424 .sbit = PB_TEMP_UT_FAULT,
1425 }, {
1426 .reg = PMBUS_OT_WARN_LIMIT,
1427 .attr = "max",
1428 .alarm = "max_alarm",
1429 .sbit = PB_TEMP_OT_WARNING,
1430 }, {
1431 .reg = PMBUS_OT_FAULT_LIMIT,
1432 .attr = "crit",
1433 .alarm = "crit_alarm",
1434 .sbit = PB_TEMP_OT_FAULT,
1435 }, {
1436 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1437 .attr = "lowest",
1438 }, {
1439 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1440 .attr = "average",
1441 }, {
1442 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1443 .attr = "highest",
1444 }, {
1445 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1446 .attr = "reset_history",
1450 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1452 .reg = PMBUS_UT_WARN_LIMIT,
1453 .low = true,
1454 .attr = "min",
1455 .alarm = "min_alarm",
1456 .sbit = PB_TEMP_UT_WARNING,
1457 }, {
1458 .reg = PMBUS_UT_FAULT_LIMIT,
1459 .low = true,
1460 .attr = "lcrit",
1461 .alarm = "lcrit_alarm",
1462 .sbit = PB_TEMP_UT_FAULT,
1463 }, {
1464 .reg = PMBUS_OT_WARN_LIMIT,
1465 .attr = "max",
1466 .alarm = "max_alarm",
1467 .sbit = PB_TEMP_OT_WARNING,
1468 }, {
1469 .reg = PMBUS_OT_FAULT_LIMIT,
1470 .attr = "crit",
1471 .alarm = "crit_alarm",
1472 .sbit = PB_TEMP_OT_FAULT,
1473 }, {
1474 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1475 .attr = "lowest",
1476 }, {
1477 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1478 .attr = "average",
1479 }, {
1480 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1481 .attr = "highest",
1482 }, {
1483 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1484 .attr = "reset_history",
1488 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1490 .reg = PMBUS_UT_WARN_LIMIT,
1491 .low = true,
1492 .attr = "min",
1493 .alarm = "min_alarm",
1494 .sbit = PB_TEMP_UT_WARNING,
1495 }, {
1496 .reg = PMBUS_UT_FAULT_LIMIT,
1497 .low = true,
1498 .attr = "lcrit",
1499 .alarm = "lcrit_alarm",
1500 .sbit = PB_TEMP_UT_FAULT,
1501 }, {
1502 .reg = PMBUS_OT_WARN_LIMIT,
1503 .attr = "max",
1504 .alarm = "max_alarm",
1505 .sbit = PB_TEMP_OT_WARNING,
1506 }, {
1507 .reg = PMBUS_OT_FAULT_LIMIT,
1508 .attr = "crit",
1509 .alarm = "crit_alarm",
1510 .sbit = PB_TEMP_OT_FAULT,
1514 static const struct pmbus_sensor_attr temp_attributes[] = {
1516 .reg = PMBUS_READ_TEMPERATURE_1,
1517 .class = PSC_TEMPERATURE,
1518 .paged = true,
1519 .update = true,
1520 .compare = true,
1521 .func = PMBUS_HAVE_TEMP,
1522 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1523 .sbase = PB_STATUS_TEMP_BASE,
1524 .gbit = PB_STATUS_TEMPERATURE,
1525 .limit = temp_limit_attrs,
1526 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1527 }, {
1528 .reg = PMBUS_READ_TEMPERATURE_2,
1529 .class = PSC_TEMPERATURE,
1530 .paged = true,
1531 .update = true,
1532 .compare = true,
1533 .func = PMBUS_HAVE_TEMP2,
1534 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1535 .sbase = PB_STATUS_TEMP_BASE,
1536 .gbit = PB_STATUS_TEMPERATURE,
1537 .limit = temp_limit_attrs2,
1538 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1539 }, {
1540 .reg = PMBUS_READ_TEMPERATURE_3,
1541 .class = PSC_TEMPERATURE,
1542 .paged = true,
1543 .update = true,
1544 .compare = true,
1545 .func = PMBUS_HAVE_TEMP3,
1546 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1547 .sbase = PB_STATUS_TEMP_BASE,
1548 .gbit = PB_STATUS_TEMPERATURE,
1549 .limit = temp_limit_attrs3,
1550 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1554 static const int pmbus_fan_registers[] = {
1555 PMBUS_READ_FAN_SPEED_1,
1556 PMBUS_READ_FAN_SPEED_2,
1557 PMBUS_READ_FAN_SPEED_3,
1558 PMBUS_READ_FAN_SPEED_4
1561 static const int pmbus_fan_config_registers[] = {
1562 PMBUS_FAN_CONFIG_12,
1563 PMBUS_FAN_CONFIG_12,
1564 PMBUS_FAN_CONFIG_34,
1565 PMBUS_FAN_CONFIG_34
1568 static const int pmbus_fan_status_registers[] = {
1569 PMBUS_STATUS_FAN_12,
1570 PMBUS_STATUS_FAN_12,
1571 PMBUS_STATUS_FAN_34,
1572 PMBUS_STATUS_FAN_34
1575 static const u32 pmbus_fan_flags[] = {
1576 PMBUS_HAVE_FAN12,
1577 PMBUS_HAVE_FAN12,
1578 PMBUS_HAVE_FAN34,
1579 PMBUS_HAVE_FAN34
1582 static const u32 pmbus_fan_status_flags[] = {
1583 PMBUS_HAVE_STATUS_FAN12,
1584 PMBUS_HAVE_STATUS_FAN12,
1585 PMBUS_HAVE_STATUS_FAN34,
1586 PMBUS_HAVE_STATUS_FAN34
1589 /* Fans */
1590 static int pmbus_add_fan_attributes(struct i2c_client *client,
1591 struct pmbus_data *data)
1593 const struct pmbus_driver_info *info = data->info;
1594 int index = 1;
1595 int page;
1596 int ret;
1598 for (page = 0; page < info->pages; page++) {
1599 int f;
1601 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1602 int regval;
1604 if (!(info->func[page] & pmbus_fan_flags[f]))
1605 break;
1607 if (!pmbus_check_word_register(client, page,
1608 pmbus_fan_registers[f]))
1609 break;
1612 * Skip fan if not installed.
1613 * Each fan configuration register covers multiple fans,
1614 * so we have to do some magic.
1616 regval = _pmbus_read_byte_data(client, page,
1617 pmbus_fan_config_registers[f]);
1618 if (regval < 0 ||
1619 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1620 continue;
1622 if (pmbus_add_sensor(data, "fan", "input", index,
1623 page, pmbus_fan_registers[f],
1624 PSC_FAN, true, true) == NULL)
1625 return -ENOMEM;
1628 * Each fan status register covers multiple fans,
1629 * so we have to do some magic.
1631 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1632 pmbus_check_byte_register(client,
1633 page, pmbus_fan_status_registers[f])) {
1634 int base;
1636 if (f > 1) /* fan 3, 4 */
1637 base = PB_STATUS_FAN34_BASE + page;
1638 else
1639 base = PB_STATUS_FAN_BASE + page;
1640 ret = pmbus_add_boolean(data, "fan",
1641 "alarm", index, NULL, NULL, base,
1642 PB_FAN_FAN1_WARNING >> (f & 1));
1643 if (ret)
1644 return ret;
1645 ret = pmbus_add_boolean(data, "fan",
1646 "fault", index, NULL, NULL, base,
1647 PB_FAN_FAN1_FAULT >> (f & 1));
1648 if (ret)
1649 return ret;
1651 index++;
1654 return 0;
1657 static int pmbus_find_attributes(struct i2c_client *client,
1658 struct pmbus_data *data)
1660 int ret;
1662 /* Voltage sensors */
1663 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1664 ARRAY_SIZE(voltage_attributes));
1665 if (ret)
1666 return ret;
1668 /* Current sensors */
1669 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1670 ARRAY_SIZE(current_attributes));
1671 if (ret)
1672 return ret;
1674 /* Power sensors */
1675 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1676 ARRAY_SIZE(power_attributes));
1677 if (ret)
1678 return ret;
1680 /* Temperature sensors */
1681 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1682 ARRAY_SIZE(temp_attributes));
1683 if (ret)
1684 return ret;
1686 /* Fans */
1687 ret = pmbus_add_fan_attributes(client, data);
1688 return ret;
1692 * Identify chip parameters.
1693 * This function is called for all chips.
1695 static int pmbus_identify_common(struct i2c_client *client,
1696 struct pmbus_data *data, int page)
1698 int vout_mode = -1;
1700 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
1701 vout_mode = _pmbus_read_byte_data(client, page,
1702 PMBUS_VOUT_MODE);
1703 if (vout_mode >= 0 && vout_mode != 0xff) {
1705 * Not all chips support the VOUT_MODE command,
1706 * so a failure to read it is not an error.
1708 switch (vout_mode >> 5) {
1709 case 0: /* linear mode */
1710 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1711 return -ENODEV;
1713 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
1714 break;
1715 case 1: /* VID mode */
1716 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1717 return -ENODEV;
1718 break;
1719 case 2: /* direct mode */
1720 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1721 return -ENODEV;
1722 break;
1723 default:
1724 return -ENODEV;
1728 pmbus_clear_fault_page(client, page);
1729 return 0;
1732 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
1733 struct pmbus_driver_info *info)
1735 struct device *dev = &client->dev;
1736 int page, ret;
1739 * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try
1740 * to use PMBUS_STATUS_WORD instead if that is the case.
1741 * Bail out if both registers are not supported.
1743 data->status_register = PMBUS_STATUS_BYTE;
1744 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
1745 if (ret < 0 || ret == 0xff) {
1746 data->status_register = PMBUS_STATUS_WORD;
1747 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
1748 if (ret < 0 || ret == 0xffff) {
1749 dev_err(dev, "PMBus status register not found\n");
1750 return -ENODEV;
1754 /* Enable PEC if the controller supports it */
1755 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
1756 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK))
1757 client->flags |= I2C_CLIENT_PEC;
1759 pmbus_clear_faults(client);
1761 if (info->identify) {
1762 ret = (*info->identify)(client, info);
1763 if (ret < 0) {
1764 dev_err(dev, "Chip identification failed\n");
1765 return ret;
1769 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1770 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
1771 return -ENODEV;
1774 for (page = 0; page < info->pages; page++) {
1775 ret = pmbus_identify_common(client, data, page);
1776 if (ret < 0) {
1777 dev_err(dev, "Failed to identify chip capabilities\n");
1778 return ret;
1781 return 0;
1784 #if IS_ENABLED(CONFIG_REGULATOR)
1785 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
1787 struct device *dev = rdev_get_dev(rdev);
1788 struct i2c_client *client = to_i2c_client(dev->parent);
1789 u8 page = rdev_get_id(rdev);
1790 int ret;
1792 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
1793 if (ret < 0)
1794 return ret;
1796 return !!(ret & PB_OPERATION_CONTROL_ON);
1799 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
1801 struct device *dev = rdev_get_dev(rdev);
1802 struct i2c_client *client = to_i2c_client(dev->parent);
1803 u8 page = rdev_get_id(rdev);
1805 return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
1806 PB_OPERATION_CONTROL_ON,
1807 enable ? PB_OPERATION_CONTROL_ON : 0);
1810 static int pmbus_regulator_enable(struct regulator_dev *rdev)
1812 return _pmbus_regulator_on_off(rdev, 1);
1815 static int pmbus_regulator_disable(struct regulator_dev *rdev)
1817 return _pmbus_regulator_on_off(rdev, 0);
1820 const struct regulator_ops pmbus_regulator_ops = {
1821 .enable = pmbus_regulator_enable,
1822 .disable = pmbus_regulator_disable,
1823 .is_enabled = pmbus_regulator_is_enabled,
1825 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
1827 static int pmbus_regulator_register(struct pmbus_data *data)
1829 struct device *dev = data->dev;
1830 const struct pmbus_driver_info *info = data->info;
1831 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1832 struct regulator_dev *rdev;
1833 int i;
1835 for (i = 0; i < info->num_regulators; i++) {
1836 struct regulator_config config = { };
1838 config.dev = dev;
1839 config.driver_data = data;
1841 if (pdata && pdata->reg_init_data)
1842 config.init_data = &pdata->reg_init_data[i];
1844 rdev = devm_regulator_register(dev, &info->reg_desc[i],
1845 &config);
1846 if (IS_ERR(rdev)) {
1847 dev_err(dev, "Failed to register %s regulator\n",
1848 info->reg_desc[i].name);
1849 return PTR_ERR(rdev);
1853 return 0;
1855 #else
1856 static int pmbus_regulator_register(struct pmbus_data *data)
1858 return 0;
1860 #endif
1862 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1863 struct pmbus_driver_info *info)
1865 struct device *dev = &client->dev;
1866 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1867 struct pmbus_data *data;
1868 int ret;
1870 if (!info)
1871 return -ENODEV;
1873 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1874 | I2C_FUNC_SMBUS_BYTE_DATA
1875 | I2C_FUNC_SMBUS_WORD_DATA))
1876 return -ENODEV;
1878 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1879 if (!data)
1880 return -ENOMEM;
1882 i2c_set_clientdata(client, data);
1883 mutex_init(&data->update_lock);
1884 data->dev = dev;
1886 if (pdata)
1887 data->flags = pdata->flags;
1888 data->info = info;
1890 ret = pmbus_init_common(client, data, info);
1891 if (ret < 0)
1892 return ret;
1894 ret = pmbus_find_attributes(client, data);
1895 if (ret)
1896 goto out_kfree;
1899 * If there are no attributes, something is wrong.
1900 * Bail out instead of trying to register nothing.
1902 if (!data->num_attributes) {
1903 dev_err(dev, "No attributes found\n");
1904 ret = -ENODEV;
1905 goto out_kfree;
1908 data->groups[0] = &data->group;
1909 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1910 data, data->groups);
1911 if (IS_ERR(data->hwmon_dev)) {
1912 ret = PTR_ERR(data->hwmon_dev);
1913 dev_err(dev, "Failed to register hwmon device\n");
1914 goto out_kfree;
1917 ret = pmbus_regulator_register(data);
1918 if (ret)
1919 goto out_unregister;
1921 return 0;
1923 out_unregister:
1924 hwmon_device_unregister(data->hwmon_dev);
1925 out_kfree:
1926 kfree(data->group.attrs);
1927 return ret;
1929 EXPORT_SYMBOL_GPL(pmbus_do_probe);
1931 int pmbus_do_remove(struct i2c_client *client)
1933 struct pmbus_data *data = i2c_get_clientdata(client);
1934 hwmon_device_unregister(data->hwmon_dev);
1935 kfree(data->group.attrs);
1936 return 0;
1938 EXPORT_SYMBOL_GPL(pmbus_do_remove);
1940 MODULE_AUTHOR("Guenter Roeck");
1941 MODULE_DESCRIPTION("PMBus core driver");
1942 MODULE_LICENSE("GPL");