2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
29 #include <trace/events/block.h>
31 #define DM_MSG_PREFIX "core"
35 * ratelimit state to be used in DMXXX_LIMIT().
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
38 DEFAULT_RATELIMIT_INTERVAL
,
39 DEFAULT_RATELIMIT_BURST
);
40 EXPORT_SYMBOL(dm_ratelimit_state
);
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
50 static const char *_name
= DM_NAME
;
52 static unsigned int major
= 0;
53 static unsigned int _major
= 0;
55 static DEFINE_IDR(_minor_idr
);
57 static DEFINE_SPINLOCK(_minor_lock
);
59 static void do_deferred_remove(struct work_struct
*w
);
61 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
63 static struct workqueue_struct
*deferred_remove_workqueue
;
67 * One of these is allocated per bio.
70 struct mapped_device
*md
;
74 unsigned long start_time
;
75 spinlock_t endio_lock
;
76 struct dm_stats_aux stats_aux
;
80 * For request-based dm.
81 * One of these is allocated per request.
83 struct dm_rq_target_io
{
84 struct mapped_device
*md
;
86 struct request
*orig
, *clone
;
87 struct kthread_work work
;
90 struct dm_stats_aux stats_aux
;
91 unsigned long duration_jiffies
;
96 * For request-based dm - the bio clones we allocate are embedded in these
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
103 struct dm_rq_clone_bio_info
{
105 struct dm_rq_target_io
*tio
;
109 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
111 if (rq
&& rq
->end_io_data
)
112 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
117 #define MINOR_ALLOCED ((void *)-1)
120 * Bits for the md->flags field.
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
140 * Work processed by per-device workqueue.
142 struct mapped_device
{
143 struct srcu_struct io_barrier
;
144 struct mutex suspend_lock
;
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
153 struct dm_table __rcu
*map
;
155 struct list_head table_devices
;
156 struct mutex table_devices_lock
;
160 struct request_queue
*queue
;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock
;
165 struct target_type
*immutable_target_type
;
167 struct gendisk
*disk
;
173 * A list of ios that arrived while we were suspended.
176 wait_queue_head_t wait
;
177 struct work_struct work
;
178 struct bio_list deferred
;
179 spinlock_t deferred_lock
;
182 * Processing queue (flush)
184 struct workqueue_struct
*wq
;
187 * io objects are allocated from here.
198 wait_queue_head_t eventq
;
200 struct list_head uevent_list
;
201 spinlock_t uevent_lock
; /* Protect access to uevent_list */
204 * freeze/thaw support require holding onto a super block
206 struct super_block
*frozen_sb
;
207 struct block_device
*bdev
;
209 /* forced geometry settings */
210 struct hd_geometry geometry
;
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder
;
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio
;
218 /* the number of internal suspends */
219 unsigned internal_suspend_count
;
221 struct dm_stats stats
;
223 struct kthread_worker kworker
;
224 struct task_struct
*kworker_task
;
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs
;
229 sector_t last_rq_pos
;
230 ktime_t last_rq_start_time
;
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set
;
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq
= true;
240 static bool use_blk_mq
= false;
243 bool dm_use_blk_mq(struct mapped_device
*md
)
245 return md
->use_blk_mq
;
249 * For mempools pre-allocation at the table loading time.
251 struct dm_md_mempools
{
257 struct table_device
{
258 struct list_head list
;
260 struct dm_dev dm_dev
;
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache
*_io_cache
;
267 static struct kmem_cache
*_rq_tio_cache
;
268 static struct kmem_cache
*_rq_cache
;
271 * Bio-based DM's mempools' reserved IOs set by the user.
273 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
276 * Request-based DM's mempools' reserved IOs set by the user.
278 static unsigned reserved_rq_based_ios
= RESERVED_REQUEST_BASED_IOS
;
280 static unsigned __dm_get_module_param(unsigned *module_param
,
281 unsigned def
, unsigned max
)
283 unsigned param
= ACCESS_ONCE(*module_param
);
284 unsigned modified_param
= 0;
287 modified_param
= def
;
288 else if (param
> max
)
289 modified_param
= max
;
291 if (modified_param
) {
292 (void)cmpxchg(module_param
, param
, modified_param
);
293 param
= modified_param
;
299 unsigned dm_get_reserved_bio_based_ios(void)
301 return __dm_get_module_param(&reserved_bio_based_ios
,
302 RESERVED_BIO_BASED_IOS
, RESERVED_MAX_IOS
);
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
306 unsigned dm_get_reserved_rq_based_ios(void)
308 return __dm_get_module_param(&reserved_rq_based_ios
,
309 RESERVED_REQUEST_BASED_IOS
, RESERVED_MAX_IOS
);
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios
);
313 static int __init
local_init(void)
317 /* allocate a slab for the dm_ios */
318 _io_cache
= KMEM_CACHE(dm_io
, 0);
322 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
324 goto out_free_io_cache
;
326 _rq_cache
= kmem_cache_create("dm_clone_request", sizeof(struct request
),
327 __alignof__(struct request
), 0, NULL
);
329 goto out_free_rq_tio_cache
;
331 r
= dm_uevent_init();
333 goto out_free_rq_cache
;
335 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
336 if (!deferred_remove_workqueue
) {
338 goto out_uevent_exit
;
342 r
= register_blkdev(_major
, _name
);
344 goto out_free_workqueue
;
352 destroy_workqueue(deferred_remove_workqueue
);
356 kmem_cache_destroy(_rq_cache
);
357 out_free_rq_tio_cache
:
358 kmem_cache_destroy(_rq_tio_cache
);
360 kmem_cache_destroy(_io_cache
);
365 static void local_exit(void)
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue
);
370 kmem_cache_destroy(_rq_cache
);
371 kmem_cache_destroy(_rq_tio_cache
);
372 kmem_cache_destroy(_io_cache
);
373 unregister_blkdev(_major
, _name
);
378 DMINFO("cleaned up");
381 static int (*_inits
[])(void) __initdata
= {
392 static void (*_exits
[])(void) = {
403 static int __init
dm_init(void)
405 const int count
= ARRAY_SIZE(_inits
);
409 for (i
= 0; i
< count
; i
++) {
424 static void __exit
dm_exit(void)
426 int i
= ARRAY_SIZE(_exits
);
432 * Should be empty by this point.
434 idr_destroy(&_minor_idr
);
438 * Block device functions
440 int dm_deleting_md(struct mapped_device
*md
)
442 return test_bit(DMF_DELETING
, &md
->flags
);
445 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
447 struct mapped_device
*md
;
449 spin_lock(&_minor_lock
);
451 md
= bdev
->bd_disk
->private_data
;
455 if (test_bit(DMF_FREEING
, &md
->flags
) ||
456 dm_deleting_md(md
)) {
462 atomic_inc(&md
->open_count
);
464 spin_unlock(&_minor_lock
);
466 return md
? 0 : -ENXIO
;
469 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
471 struct mapped_device
*md
;
473 spin_lock(&_minor_lock
);
475 md
= disk
->private_data
;
479 if (atomic_dec_and_test(&md
->open_count
) &&
480 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
481 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
485 spin_unlock(&_minor_lock
);
488 int dm_open_count(struct mapped_device
*md
)
490 return atomic_read(&md
->open_count
);
494 * Guarantees nothing is using the device before it's deleted.
496 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
500 spin_lock(&_minor_lock
);
502 if (dm_open_count(md
)) {
505 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
506 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
509 set_bit(DMF_DELETING
, &md
->flags
);
511 spin_unlock(&_minor_lock
);
516 int dm_cancel_deferred_remove(struct mapped_device
*md
)
520 spin_lock(&_minor_lock
);
522 if (test_bit(DMF_DELETING
, &md
->flags
))
525 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
527 spin_unlock(&_minor_lock
);
532 static void do_deferred_remove(struct work_struct
*w
)
534 dm_deferred_remove();
537 sector_t
dm_get_size(struct mapped_device
*md
)
539 return get_capacity(md
->disk
);
542 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
547 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
552 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
554 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
556 return dm_get_geometry(md
, geo
);
559 static int dm_get_live_table_for_ioctl(struct mapped_device
*md
,
560 struct dm_target
**tgt
, struct block_device
**bdev
,
561 fmode_t
*mode
, int *srcu_idx
)
563 struct dm_table
*map
;
568 map
= dm_get_live_table(md
, srcu_idx
);
569 if (!map
|| !dm_table_get_size(map
))
572 /* We only support devices that have a single target */
573 if (dm_table_get_num_targets(map
) != 1)
576 *tgt
= dm_table_get_target(map
, 0);
578 if (!(*tgt
)->type
->prepare_ioctl
)
581 if (dm_suspended_md(md
)) {
586 r
= (*tgt
)->type
->prepare_ioctl(*tgt
, bdev
, mode
);
593 dm_put_live_table(md
, *srcu_idx
);
594 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
601 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
602 unsigned int cmd
, unsigned long arg
)
604 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
605 struct dm_target
*tgt
;
606 struct block_device
*tgt_bdev
= NULL
;
609 r
= dm_get_live_table_for_ioctl(md
, &tgt
, &tgt_bdev
, &mode
, &srcu_idx
);
615 * Target determined this ioctl is being issued against
616 * a logical partition of the parent bdev; so extra
617 * validation is needed.
619 r
= scsi_verify_blk_ioctl(NULL
, cmd
);
624 r
= __blkdev_driver_ioctl(tgt_bdev
, mode
, cmd
, arg
);
626 dm_put_live_table(md
, srcu_idx
);
630 static struct dm_io
*alloc_io(struct mapped_device
*md
)
632 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
635 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
637 mempool_free(io
, md
->io_pool
);
640 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
642 bio_put(&tio
->clone
);
645 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
648 return mempool_alloc(md
->io_pool
, gfp_mask
);
651 static void free_rq_tio(struct dm_rq_target_io
*tio
)
653 mempool_free(tio
, tio
->md
->io_pool
);
656 static struct request
*alloc_clone_request(struct mapped_device
*md
,
659 return mempool_alloc(md
->rq_pool
, gfp_mask
);
662 static void free_clone_request(struct mapped_device
*md
, struct request
*rq
)
664 mempool_free(rq
, md
->rq_pool
);
667 static int md_in_flight(struct mapped_device
*md
)
669 return atomic_read(&md
->pending
[READ
]) +
670 atomic_read(&md
->pending
[WRITE
]);
673 static void start_io_acct(struct dm_io
*io
)
675 struct mapped_device
*md
= io
->md
;
676 struct bio
*bio
= io
->bio
;
678 int rw
= bio_data_dir(bio
);
680 io
->start_time
= jiffies
;
682 cpu
= part_stat_lock();
683 part_round_stats(cpu
, &dm_disk(md
)->part0
);
685 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
686 atomic_inc_return(&md
->pending
[rw
]));
688 if (unlikely(dm_stats_used(&md
->stats
)))
689 dm_stats_account_io(&md
->stats
, bio
->bi_rw
, bio
->bi_iter
.bi_sector
,
690 bio_sectors(bio
), false, 0, &io
->stats_aux
);
693 static void end_io_acct(struct dm_io
*io
)
695 struct mapped_device
*md
= io
->md
;
696 struct bio
*bio
= io
->bio
;
697 unsigned long duration
= jiffies
- io
->start_time
;
699 int rw
= bio_data_dir(bio
);
701 generic_end_io_acct(rw
, &dm_disk(md
)->part0
, io
->start_time
);
703 if (unlikely(dm_stats_used(&md
->stats
)))
704 dm_stats_account_io(&md
->stats
, bio
->bi_rw
, bio
->bi_iter
.bi_sector
,
705 bio_sectors(bio
), true, duration
, &io
->stats_aux
);
708 * After this is decremented the bio must not be touched if it is
711 pending
= atomic_dec_return(&md
->pending
[rw
]);
712 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
713 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
715 /* nudge anyone waiting on suspend queue */
721 * Add the bio to the list of deferred io.
723 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
727 spin_lock_irqsave(&md
->deferred_lock
, flags
);
728 bio_list_add(&md
->deferred
, bio
);
729 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
730 queue_work(md
->wq
, &md
->work
);
734 * Everyone (including functions in this file), should use this
735 * function to access the md->map field, and make sure they call
736 * dm_put_live_table() when finished.
738 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
740 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
742 return srcu_dereference(md
->map
, &md
->io_barrier
);
745 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
747 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
750 void dm_sync_table(struct mapped_device
*md
)
752 synchronize_srcu(&md
->io_barrier
);
753 synchronize_rcu_expedited();
757 * A fast alternative to dm_get_live_table/dm_put_live_table.
758 * The caller must not block between these two functions.
760 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
763 return rcu_dereference(md
->map
);
766 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
772 * Open a table device so we can use it as a map destination.
774 static int open_table_device(struct table_device
*td
, dev_t dev
,
775 struct mapped_device
*md
)
777 static char *_claim_ptr
= "I belong to device-mapper";
778 struct block_device
*bdev
;
782 BUG_ON(td
->dm_dev
.bdev
);
784 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _claim_ptr
);
786 return PTR_ERR(bdev
);
788 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
790 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
794 td
->dm_dev
.bdev
= bdev
;
799 * Close a table device that we've been using.
801 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
803 if (!td
->dm_dev
.bdev
)
806 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
807 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
808 td
->dm_dev
.bdev
= NULL
;
811 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
813 struct table_device
*td
;
815 list_for_each_entry(td
, l
, list
)
816 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
822 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
823 struct dm_dev
**result
) {
825 struct table_device
*td
;
827 mutex_lock(&md
->table_devices_lock
);
828 td
= find_table_device(&md
->table_devices
, dev
, mode
);
830 td
= kmalloc(sizeof(*td
), GFP_KERNEL
);
832 mutex_unlock(&md
->table_devices_lock
);
836 td
->dm_dev
.mode
= mode
;
837 td
->dm_dev
.bdev
= NULL
;
839 if ((r
= open_table_device(td
, dev
, md
))) {
840 mutex_unlock(&md
->table_devices_lock
);
845 format_dev_t(td
->dm_dev
.name
, dev
);
847 atomic_set(&td
->count
, 0);
848 list_add(&td
->list
, &md
->table_devices
);
850 atomic_inc(&td
->count
);
851 mutex_unlock(&md
->table_devices_lock
);
853 *result
= &td
->dm_dev
;
856 EXPORT_SYMBOL_GPL(dm_get_table_device
);
858 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
860 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
862 mutex_lock(&md
->table_devices_lock
);
863 if (atomic_dec_and_test(&td
->count
)) {
864 close_table_device(td
, md
);
868 mutex_unlock(&md
->table_devices_lock
);
870 EXPORT_SYMBOL(dm_put_table_device
);
872 static void free_table_devices(struct list_head
*devices
)
874 struct list_head
*tmp
, *next
;
876 list_for_each_safe(tmp
, next
, devices
) {
877 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
879 DMWARN("dm_destroy: %s still exists with %d references",
880 td
->dm_dev
.name
, atomic_read(&td
->count
));
886 * Get the geometry associated with a dm device
888 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
896 * Set the geometry of a device.
898 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
900 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
902 if (geo
->start
> sz
) {
903 DMWARN("Start sector is beyond the geometry limits.");
912 /*-----------------------------------------------------------------
914 * A more elegant soln is in the works that uses the queue
915 * merge fn, unfortunately there are a couple of changes to
916 * the block layer that I want to make for this. So in the
917 * interests of getting something for people to use I give
918 * you this clearly demarcated crap.
919 *---------------------------------------------------------------*/
921 static int __noflush_suspending(struct mapped_device
*md
)
923 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
927 * Decrements the number of outstanding ios that a bio has been
928 * cloned into, completing the original io if necc.
930 static void dec_pending(struct dm_io
*io
, int error
)
935 struct mapped_device
*md
= io
->md
;
937 /* Push-back supersedes any I/O errors */
938 if (unlikely(error
)) {
939 spin_lock_irqsave(&io
->endio_lock
, flags
);
940 if (!(io
->error
> 0 && __noflush_suspending(md
)))
942 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
945 if (atomic_dec_and_test(&io
->io_count
)) {
946 if (io
->error
== DM_ENDIO_REQUEUE
) {
948 * Target requested pushing back the I/O.
950 spin_lock_irqsave(&md
->deferred_lock
, flags
);
951 if (__noflush_suspending(md
))
952 bio_list_add_head(&md
->deferred
, io
->bio
);
954 /* noflush suspend was interrupted. */
956 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
959 io_error
= io
->error
;
964 if (io_error
== DM_ENDIO_REQUEUE
)
967 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_iter
.bi_size
) {
969 * Preflush done for flush with data, reissue
972 bio
->bi_rw
&= ~REQ_FLUSH
;
975 /* done with normal IO or empty flush */
976 trace_block_bio_complete(md
->queue
, bio
, io_error
);
977 bio
->bi_error
= io_error
;
983 static void disable_write_same(struct mapped_device
*md
)
985 struct queue_limits
*limits
= dm_get_queue_limits(md
);
987 /* device doesn't really support WRITE SAME, disable it */
988 limits
->max_write_same_sectors
= 0;
991 static void clone_endio(struct bio
*bio
)
993 int error
= bio
->bi_error
;
995 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
996 struct dm_io
*io
= tio
->io
;
997 struct mapped_device
*md
= tio
->io
->md
;
998 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
1001 r
= endio(tio
->ti
, bio
, error
);
1002 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
1004 * error and requeue request are handled
1008 else if (r
== DM_ENDIO_INCOMPLETE
)
1009 /* The target will handle the io */
1012 DMWARN("unimplemented target endio return value: %d", r
);
1017 if (unlikely(r
== -EREMOTEIO
&& (bio
->bi_rw
& REQ_WRITE_SAME
) &&
1018 !bdev_get_queue(bio
->bi_bdev
)->limits
.max_write_same_sectors
))
1019 disable_write_same(md
);
1022 dec_pending(io
, error
);
1026 * Partial completion handling for request-based dm
1028 static void end_clone_bio(struct bio
*clone
)
1030 struct dm_rq_clone_bio_info
*info
=
1031 container_of(clone
, struct dm_rq_clone_bio_info
, clone
);
1032 struct dm_rq_target_io
*tio
= info
->tio
;
1033 struct bio
*bio
= info
->orig
;
1034 unsigned int nr_bytes
= info
->orig
->bi_iter
.bi_size
;
1035 int error
= clone
->bi_error
;
1041 * An error has already been detected on the request.
1042 * Once error occurred, just let clone->end_io() handle
1048 * Don't notice the error to the upper layer yet.
1049 * The error handling decision is made by the target driver,
1050 * when the request is completed.
1057 * I/O for the bio successfully completed.
1058 * Notice the data completion to the upper layer.
1062 * bios are processed from the head of the list.
1063 * So the completing bio should always be rq->bio.
1064 * If it's not, something wrong is happening.
1066 if (tio
->orig
->bio
!= bio
)
1067 DMERR("bio completion is going in the middle of the request");
1070 * Update the original request.
1071 * Do not use blk_end_request() here, because it may complete
1072 * the original request before the clone, and break the ordering.
1074 blk_update_request(tio
->orig
, 0, nr_bytes
);
1077 static struct dm_rq_target_io
*tio_from_request(struct request
*rq
)
1079 return (rq
->q
->mq_ops
? blk_mq_rq_to_pdu(rq
) : rq
->special
);
1082 static void rq_end_stats(struct mapped_device
*md
, struct request
*orig
)
1084 if (unlikely(dm_stats_used(&md
->stats
))) {
1085 struct dm_rq_target_io
*tio
= tio_from_request(orig
);
1086 tio
->duration_jiffies
= jiffies
- tio
->duration_jiffies
;
1087 dm_stats_account_io(&md
->stats
, orig
->cmd_flags
, blk_rq_pos(orig
),
1088 tio
->n_sectors
, true, tio
->duration_jiffies
,
1094 * Don't touch any member of the md after calling this function because
1095 * the md may be freed in dm_put() at the end of this function.
1096 * Or do dm_get() before calling this function and dm_put() later.
1098 static void rq_completed(struct mapped_device
*md
, int rw
, bool run_queue
)
1100 atomic_dec(&md
->pending
[rw
]);
1102 /* nudge anyone waiting on suspend queue */
1103 if (!md_in_flight(md
))
1107 * Run this off this callpath, as drivers could invoke end_io while
1108 * inside their request_fn (and holding the queue lock). Calling
1109 * back into ->request_fn() could deadlock attempting to grab the
1113 if (md
->queue
->mq_ops
)
1114 blk_mq_run_hw_queues(md
->queue
, true);
1116 blk_run_queue_async(md
->queue
);
1120 * dm_put() must be at the end of this function. See the comment above
1125 static void free_rq_clone(struct request
*clone
)
1127 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1128 struct mapped_device
*md
= tio
->md
;
1130 blk_rq_unprep_clone(clone
);
1132 if (md
->type
== DM_TYPE_MQ_REQUEST_BASED
)
1133 /* stacked on blk-mq queue(s) */
1134 tio
->ti
->type
->release_clone_rq(clone
);
1135 else if (!md
->queue
->mq_ops
)
1136 /* request_fn queue stacked on request_fn queue(s) */
1137 free_clone_request(md
, clone
);
1139 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1140 * no need to call free_clone_request() because we leverage blk-mq by
1141 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1144 if (!md
->queue
->mq_ops
)
1149 * Complete the clone and the original request.
1150 * Must be called without clone's queue lock held,
1151 * see end_clone_request() for more details.
1153 static void dm_end_request(struct request
*clone
, int error
)
1155 int rw
= rq_data_dir(clone
);
1156 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1157 struct mapped_device
*md
= tio
->md
;
1158 struct request
*rq
= tio
->orig
;
1160 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
1161 rq
->errors
= clone
->errors
;
1162 rq
->resid_len
= clone
->resid_len
;
1166 * We are using the sense buffer of the original
1168 * So setting the length of the sense data is enough.
1170 rq
->sense_len
= clone
->sense_len
;
1173 free_rq_clone(clone
);
1174 rq_end_stats(md
, rq
);
1176 blk_end_request_all(rq
, error
);
1178 blk_mq_end_request(rq
, error
);
1179 rq_completed(md
, rw
, true);
1182 static void dm_unprep_request(struct request
*rq
)
1184 struct dm_rq_target_io
*tio
= tio_from_request(rq
);
1185 struct request
*clone
= tio
->clone
;
1187 if (!rq
->q
->mq_ops
) {
1189 rq
->cmd_flags
&= ~REQ_DONTPREP
;
1193 free_rq_clone(clone
);
1197 * Requeue the original request of a clone.
1199 static void old_requeue_request(struct request
*rq
)
1201 struct request_queue
*q
= rq
->q
;
1202 unsigned long flags
;
1204 spin_lock_irqsave(q
->queue_lock
, flags
);
1205 blk_requeue_request(q
, rq
);
1206 blk_run_queue_async(q
);
1207 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1210 static void dm_requeue_original_request(struct mapped_device
*md
,
1213 int rw
= rq_data_dir(rq
);
1215 dm_unprep_request(rq
);
1217 rq_end_stats(md
, rq
);
1219 old_requeue_request(rq
);
1221 blk_mq_requeue_request(rq
);
1222 blk_mq_kick_requeue_list(rq
->q
);
1225 rq_completed(md
, rw
, false);
1228 static void old_stop_queue(struct request_queue
*q
)
1230 unsigned long flags
;
1232 if (blk_queue_stopped(q
))
1235 spin_lock_irqsave(q
->queue_lock
, flags
);
1237 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1240 static void stop_queue(struct request_queue
*q
)
1245 blk_mq_stop_hw_queues(q
);
1248 static void old_start_queue(struct request_queue
*q
)
1250 unsigned long flags
;
1252 spin_lock_irqsave(q
->queue_lock
, flags
);
1253 if (blk_queue_stopped(q
))
1255 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1258 static void start_queue(struct request_queue
*q
)
1263 blk_mq_start_stopped_hw_queues(q
, true);
1266 static void dm_done(struct request
*clone
, int error
, bool mapped
)
1269 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1270 dm_request_endio_fn rq_end_io
= NULL
;
1273 rq_end_io
= tio
->ti
->type
->rq_end_io
;
1275 if (mapped
&& rq_end_io
)
1276 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
1279 if (unlikely(r
== -EREMOTEIO
&& (clone
->cmd_flags
& REQ_WRITE_SAME
) &&
1280 !clone
->q
->limits
.max_write_same_sectors
))
1281 disable_write_same(tio
->md
);
1284 /* The target wants to complete the I/O */
1285 dm_end_request(clone
, r
);
1286 else if (r
== DM_ENDIO_INCOMPLETE
)
1287 /* The target will handle the I/O */
1289 else if (r
== DM_ENDIO_REQUEUE
)
1290 /* The target wants to requeue the I/O */
1291 dm_requeue_original_request(tio
->md
, tio
->orig
);
1293 DMWARN("unimplemented target endio return value: %d", r
);
1299 * Request completion handler for request-based dm
1301 static void dm_softirq_done(struct request
*rq
)
1304 struct dm_rq_target_io
*tio
= tio_from_request(rq
);
1305 struct request
*clone
= tio
->clone
;
1309 rq_end_stats(tio
->md
, rq
);
1310 rw
= rq_data_dir(rq
);
1311 if (!rq
->q
->mq_ops
) {
1312 blk_end_request_all(rq
, tio
->error
);
1313 rq_completed(tio
->md
, rw
, false);
1316 blk_mq_end_request(rq
, tio
->error
);
1317 rq_completed(tio
->md
, rw
, false);
1322 if (rq
->cmd_flags
& REQ_FAILED
)
1325 dm_done(clone
, tio
->error
, mapped
);
1329 * Complete the clone and the original request with the error status
1330 * through softirq context.
1332 static void dm_complete_request(struct request
*rq
, int error
)
1334 struct dm_rq_target_io
*tio
= tio_from_request(rq
);
1337 blk_complete_request(rq
);
1341 * Complete the not-mapped clone and the original request with the error status
1342 * through softirq context.
1343 * Target's rq_end_io() function isn't called.
1344 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1346 static void dm_kill_unmapped_request(struct request
*rq
, int error
)
1348 rq
->cmd_flags
|= REQ_FAILED
;
1349 dm_complete_request(rq
, error
);
1353 * Called with the clone's queue lock held (for non-blk-mq)
1355 static void end_clone_request(struct request
*clone
, int error
)
1357 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1359 if (!clone
->q
->mq_ops
) {
1361 * For just cleaning up the information of the queue in which
1362 * the clone was dispatched.
1363 * The clone is *NOT* freed actually here because it is alloced
1364 * from dm own mempool (REQ_ALLOCED isn't set).
1366 __blk_put_request(clone
->q
, clone
);
1370 * Actual request completion is done in a softirq context which doesn't
1371 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1372 * - another request may be submitted by the upper level driver
1373 * of the stacking during the completion
1374 * - the submission which requires queue lock may be done
1375 * against this clone's queue
1377 dm_complete_request(tio
->orig
, error
);
1381 * Return maximum size of I/O possible at the supplied sector up to the current
1384 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1386 sector_t target_offset
= dm_target_offset(ti
, sector
);
1388 return ti
->len
- target_offset
;
1391 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1393 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1394 sector_t offset
, max_len
;
1397 * Does the target need to split even further?
1399 if (ti
->max_io_len
) {
1400 offset
= dm_target_offset(ti
, sector
);
1401 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1402 max_len
= sector_div(offset
, ti
->max_io_len
);
1404 max_len
= offset
& (ti
->max_io_len
- 1);
1405 max_len
= ti
->max_io_len
- max_len
;
1414 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1416 if (len
> UINT_MAX
) {
1417 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1418 (unsigned long long)len
, UINT_MAX
);
1419 ti
->error
= "Maximum size of target IO is too large";
1423 ti
->max_io_len
= (uint32_t) len
;
1427 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1430 * A target may call dm_accept_partial_bio only from the map routine. It is
1431 * allowed for all bio types except REQ_FLUSH.
1433 * dm_accept_partial_bio informs the dm that the target only wants to process
1434 * additional n_sectors sectors of the bio and the rest of the data should be
1435 * sent in a next bio.
1437 * A diagram that explains the arithmetics:
1438 * +--------------------+---------------+-------+
1440 * +--------------------+---------------+-------+
1442 * <-------------- *tio->len_ptr --------------->
1443 * <------- bi_size ------->
1446 * Region 1 was already iterated over with bio_advance or similar function.
1447 * (it may be empty if the target doesn't use bio_advance)
1448 * Region 2 is the remaining bio size that the target wants to process.
1449 * (it may be empty if region 1 is non-empty, although there is no reason
1451 * The target requires that region 3 is to be sent in the next bio.
1453 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1454 * the partially processed part (the sum of regions 1+2) must be the same for all
1455 * copies of the bio.
1457 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1459 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1460 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1461 BUG_ON(bio
->bi_rw
& REQ_FLUSH
);
1462 BUG_ON(bi_size
> *tio
->len_ptr
);
1463 BUG_ON(n_sectors
> bi_size
);
1464 *tio
->len_ptr
-= bi_size
- n_sectors
;
1465 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1467 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1469 static void __map_bio(struct dm_target_io
*tio
)
1473 struct mapped_device
*md
;
1474 struct bio
*clone
= &tio
->clone
;
1475 struct dm_target
*ti
= tio
->ti
;
1477 clone
->bi_end_io
= clone_endio
;
1480 * Map the clone. If r == 0 we don't need to do
1481 * anything, the target has assumed ownership of
1484 atomic_inc(&tio
->io
->io_count
);
1485 sector
= clone
->bi_iter
.bi_sector
;
1486 r
= ti
->type
->map(ti
, clone
);
1487 if (r
== DM_MAPIO_REMAPPED
) {
1488 /* the bio has been remapped so dispatch it */
1490 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1491 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1493 generic_make_request(clone
);
1494 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1495 /* error the io and bail out, or requeue it if needed */
1497 dec_pending(tio
->io
, r
);
1499 } else if (r
!= DM_MAPIO_SUBMITTED
) {
1500 DMWARN("unimplemented target map return value: %d", r
);
1506 struct mapped_device
*md
;
1507 struct dm_table
*map
;
1511 unsigned sector_count
;
1514 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1516 bio
->bi_iter
.bi_sector
= sector
;
1517 bio
->bi_iter
.bi_size
= to_bytes(len
);
1521 * Creates a bio that consists of range of complete bvecs.
1523 static void clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1524 sector_t sector
, unsigned len
)
1526 struct bio
*clone
= &tio
->clone
;
1528 __bio_clone_fast(clone
, bio
);
1530 if (bio_integrity(bio
))
1531 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1533 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1534 clone
->bi_iter
.bi_size
= to_bytes(len
);
1536 if (bio_integrity(bio
))
1537 bio_integrity_trim(clone
, 0, len
);
1540 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1541 struct dm_target
*ti
,
1542 unsigned target_bio_nr
)
1544 struct dm_target_io
*tio
;
1547 clone
= bio_alloc_bioset(GFP_NOIO
, 0, ci
->md
->bs
);
1548 tio
= container_of(clone
, struct dm_target_io
, clone
);
1552 tio
->target_bio_nr
= target_bio_nr
;
1557 static void __clone_and_map_simple_bio(struct clone_info
*ci
,
1558 struct dm_target
*ti
,
1559 unsigned target_bio_nr
, unsigned *len
)
1561 struct dm_target_io
*tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1562 struct bio
*clone
= &tio
->clone
;
1566 __bio_clone_fast(clone
, ci
->bio
);
1568 bio_setup_sector(clone
, ci
->sector
, *len
);
1573 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1574 unsigned num_bios
, unsigned *len
)
1576 unsigned target_bio_nr
;
1578 for (target_bio_nr
= 0; target_bio_nr
< num_bios
; target_bio_nr
++)
1579 __clone_and_map_simple_bio(ci
, ti
, target_bio_nr
, len
);
1582 static int __send_empty_flush(struct clone_info
*ci
)
1584 unsigned target_nr
= 0;
1585 struct dm_target
*ti
;
1587 BUG_ON(bio_has_data(ci
->bio
));
1588 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1589 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1594 static void __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1595 sector_t sector
, unsigned *len
)
1597 struct bio
*bio
= ci
->bio
;
1598 struct dm_target_io
*tio
;
1599 unsigned target_bio_nr
;
1600 unsigned num_target_bios
= 1;
1603 * Does the target want to receive duplicate copies of the bio?
1605 if (bio_data_dir(bio
) == WRITE
&& ti
->num_write_bios
)
1606 num_target_bios
= ti
->num_write_bios(ti
, bio
);
1608 for (target_bio_nr
= 0; target_bio_nr
< num_target_bios
; target_bio_nr
++) {
1609 tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1611 clone_bio(tio
, bio
, sector
, *len
);
1616 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1618 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1620 return ti
->num_discard_bios
;
1623 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1625 return ti
->num_write_same_bios
;
1628 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1630 static bool is_split_required_for_discard(struct dm_target
*ti
)
1632 return ti
->split_discard_bios
;
1635 static int __send_changing_extent_only(struct clone_info
*ci
,
1636 get_num_bios_fn get_num_bios
,
1637 is_split_required_fn is_split_required
)
1639 struct dm_target
*ti
;
1644 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1645 if (!dm_target_is_valid(ti
))
1649 * Even though the device advertised support for this type of
1650 * request, that does not mean every target supports it, and
1651 * reconfiguration might also have changed that since the
1652 * check was performed.
1654 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1658 if (is_split_required
&& !is_split_required(ti
))
1659 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1661 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1663 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1666 } while (ci
->sector_count
-= len
);
1671 static int __send_discard(struct clone_info
*ci
)
1673 return __send_changing_extent_only(ci
, get_num_discard_bios
,
1674 is_split_required_for_discard
);
1677 static int __send_write_same(struct clone_info
*ci
)
1679 return __send_changing_extent_only(ci
, get_num_write_same_bios
, NULL
);
1683 * Select the correct strategy for processing a non-flush bio.
1685 static int __split_and_process_non_flush(struct clone_info
*ci
)
1687 struct bio
*bio
= ci
->bio
;
1688 struct dm_target
*ti
;
1691 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1692 return __send_discard(ci
);
1693 else if (unlikely(bio
->bi_rw
& REQ_WRITE_SAME
))
1694 return __send_write_same(ci
);
1696 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1697 if (!dm_target_is_valid(ti
))
1700 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1702 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1705 ci
->sector_count
-= len
;
1711 * Entry point to split a bio into clones and submit them to the targets.
1713 static void __split_and_process_bio(struct mapped_device
*md
,
1714 struct dm_table
*map
, struct bio
*bio
)
1716 struct clone_info ci
;
1719 if (unlikely(!map
)) {
1726 ci
.io
= alloc_io(md
);
1728 atomic_set(&ci
.io
->io_count
, 1);
1731 spin_lock_init(&ci
.io
->endio_lock
);
1732 ci
.sector
= bio
->bi_iter
.bi_sector
;
1734 start_io_acct(ci
.io
);
1736 if (bio
->bi_rw
& REQ_FLUSH
) {
1737 ci
.bio
= &ci
.md
->flush_bio
;
1738 ci
.sector_count
= 0;
1739 error
= __send_empty_flush(&ci
);
1740 /* dec_pending submits any data associated with flush */
1743 ci
.sector_count
= bio_sectors(bio
);
1744 while (ci
.sector_count
&& !error
)
1745 error
= __split_and_process_non_flush(&ci
);
1748 /* drop the extra reference count */
1749 dec_pending(ci
.io
, error
);
1751 /*-----------------------------------------------------------------
1753 *---------------------------------------------------------------*/
1756 * The request function that just remaps the bio built up by
1759 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1761 int rw
= bio_data_dir(bio
);
1762 struct mapped_device
*md
= q
->queuedata
;
1764 struct dm_table
*map
;
1766 map
= dm_get_live_table(md
, &srcu_idx
);
1768 generic_start_io_acct(rw
, bio_sectors(bio
), &dm_disk(md
)->part0
);
1770 /* if we're suspended, we have to queue this io for later */
1771 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1772 dm_put_live_table(md
, srcu_idx
);
1774 if (bio_rw(bio
) != READA
)
1778 return BLK_QC_T_NONE
;
1781 __split_and_process_bio(md
, map
, bio
);
1782 dm_put_live_table(md
, srcu_idx
);
1783 return BLK_QC_T_NONE
;
1786 int dm_request_based(struct mapped_device
*md
)
1788 return blk_queue_stackable(md
->queue
);
1791 static void dm_dispatch_clone_request(struct request
*clone
, struct request
*rq
)
1795 if (blk_queue_io_stat(clone
->q
))
1796 clone
->cmd_flags
|= REQ_IO_STAT
;
1798 clone
->start_time
= jiffies
;
1799 r
= blk_insert_cloned_request(clone
->q
, clone
);
1801 /* must complete clone in terms of original request */
1802 dm_complete_request(rq
, r
);
1805 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1808 struct dm_rq_target_io
*tio
= data
;
1809 struct dm_rq_clone_bio_info
*info
=
1810 container_of(bio
, struct dm_rq_clone_bio_info
, clone
);
1812 info
->orig
= bio_orig
;
1814 bio
->bi_end_io
= end_clone_bio
;
1819 static int setup_clone(struct request
*clone
, struct request
*rq
,
1820 struct dm_rq_target_io
*tio
, gfp_t gfp_mask
)
1824 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, gfp_mask
,
1825 dm_rq_bio_constructor
, tio
);
1829 clone
->cmd
= rq
->cmd
;
1830 clone
->cmd_len
= rq
->cmd_len
;
1831 clone
->sense
= rq
->sense
;
1832 clone
->end_io
= end_clone_request
;
1833 clone
->end_io_data
= tio
;
1840 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1841 struct dm_rq_target_io
*tio
, gfp_t gfp_mask
)
1844 * Do not allocate a clone if tio->clone was already set
1845 * (see: dm_mq_queue_rq).
1847 bool alloc_clone
= !tio
->clone
;
1848 struct request
*clone
;
1851 clone
= alloc_clone_request(md
, gfp_mask
);
1857 blk_rq_init(NULL
, clone
);
1858 if (setup_clone(clone
, rq
, tio
, gfp_mask
)) {
1861 free_clone_request(md
, clone
);
1868 static void map_tio_request(struct kthread_work
*work
);
1870 static void init_tio(struct dm_rq_target_io
*tio
, struct request
*rq
,
1871 struct mapped_device
*md
)
1878 memset(&tio
->info
, 0, sizeof(tio
->info
));
1879 if (md
->kworker_task
)
1880 init_kthread_work(&tio
->work
, map_tio_request
);
1883 static struct dm_rq_target_io
*prep_tio(struct request
*rq
,
1884 struct mapped_device
*md
, gfp_t gfp_mask
)
1886 struct dm_rq_target_io
*tio
;
1888 struct dm_table
*table
;
1890 tio
= alloc_rq_tio(md
, gfp_mask
);
1894 init_tio(tio
, rq
, md
);
1896 table
= dm_get_live_table(md
, &srcu_idx
);
1897 if (!dm_table_mq_request_based(table
)) {
1898 if (!clone_rq(rq
, md
, tio
, gfp_mask
)) {
1899 dm_put_live_table(md
, srcu_idx
);
1904 dm_put_live_table(md
, srcu_idx
);
1910 * Called with the queue lock held.
1912 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1914 struct mapped_device
*md
= q
->queuedata
;
1915 struct dm_rq_target_io
*tio
;
1917 if (unlikely(rq
->special
)) {
1918 DMWARN("Already has something in rq->special.");
1919 return BLKPREP_KILL
;
1922 tio
= prep_tio(rq
, md
, GFP_ATOMIC
);
1924 return BLKPREP_DEFER
;
1927 rq
->cmd_flags
|= REQ_DONTPREP
;
1934 * 0 : the request has been processed
1935 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1936 * < 0 : the request was completed due to failure
1938 static int map_request(struct dm_rq_target_io
*tio
, struct request
*rq
,
1939 struct mapped_device
*md
)
1942 struct dm_target
*ti
= tio
->ti
;
1943 struct request
*clone
= NULL
;
1947 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1949 r
= ti
->type
->clone_and_map_rq(ti
, rq
, &tio
->info
, &clone
);
1951 /* The target wants to complete the I/O */
1952 dm_kill_unmapped_request(rq
, r
);
1955 if (r
!= DM_MAPIO_REMAPPED
)
1957 if (setup_clone(clone
, rq
, tio
, GFP_ATOMIC
)) {
1959 ti
->type
->release_clone_rq(clone
);
1960 return DM_MAPIO_REQUEUE
;
1965 case DM_MAPIO_SUBMITTED
:
1966 /* The target has taken the I/O to submit by itself later */
1968 case DM_MAPIO_REMAPPED
:
1969 /* The target has remapped the I/O so dispatch it */
1970 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1972 dm_dispatch_clone_request(clone
, rq
);
1974 case DM_MAPIO_REQUEUE
:
1975 /* The target wants to requeue the I/O */
1976 dm_requeue_original_request(md
, tio
->orig
);
1980 DMWARN("unimplemented target map return value: %d", r
);
1984 /* The target wants to complete the I/O */
1985 dm_kill_unmapped_request(rq
, r
);
1992 static void map_tio_request(struct kthread_work
*work
)
1994 struct dm_rq_target_io
*tio
= container_of(work
, struct dm_rq_target_io
, work
);
1995 struct request
*rq
= tio
->orig
;
1996 struct mapped_device
*md
= tio
->md
;
1998 if (map_request(tio
, rq
, md
) == DM_MAPIO_REQUEUE
)
1999 dm_requeue_original_request(md
, rq
);
2002 static void dm_start_request(struct mapped_device
*md
, struct request
*orig
)
2004 if (!orig
->q
->mq_ops
)
2005 blk_start_request(orig
);
2007 blk_mq_start_request(orig
);
2008 atomic_inc(&md
->pending
[rq_data_dir(orig
)]);
2010 if (md
->seq_rq_merge_deadline_usecs
) {
2011 md
->last_rq_pos
= rq_end_sector(orig
);
2012 md
->last_rq_rw
= rq_data_dir(orig
);
2013 md
->last_rq_start_time
= ktime_get();
2016 if (unlikely(dm_stats_used(&md
->stats
))) {
2017 struct dm_rq_target_io
*tio
= tio_from_request(orig
);
2018 tio
->duration_jiffies
= jiffies
;
2019 tio
->n_sectors
= blk_rq_sectors(orig
);
2020 dm_stats_account_io(&md
->stats
, orig
->cmd_flags
, blk_rq_pos(orig
),
2021 tio
->n_sectors
, false, 0, &tio
->stats_aux
);
2025 * Hold the md reference here for the in-flight I/O.
2026 * We can't rely on the reference count by device opener,
2027 * because the device may be closed during the request completion
2028 * when all bios are completed.
2029 * See the comment in rq_completed() too.
2034 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2036 ssize_t
dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device
*md
, char *buf
)
2038 return sprintf(buf
, "%u\n", md
->seq_rq_merge_deadline_usecs
);
2041 ssize_t
dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device
*md
,
2042 const char *buf
, size_t count
)
2046 if (!dm_request_based(md
) || md
->use_blk_mq
)
2049 if (kstrtouint(buf
, 10, &deadline
))
2052 if (deadline
> MAX_SEQ_RQ_MERGE_DEADLINE_USECS
)
2053 deadline
= MAX_SEQ_RQ_MERGE_DEADLINE_USECS
;
2055 md
->seq_rq_merge_deadline_usecs
= deadline
;
2060 static bool dm_request_peeked_before_merge_deadline(struct mapped_device
*md
)
2062 ktime_t kt_deadline
;
2064 if (!md
->seq_rq_merge_deadline_usecs
)
2067 kt_deadline
= ns_to_ktime((u64
)md
->seq_rq_merge_deadline_usecs
* NSEC_PER_USEC
);
2068 kt_deadline
= ktime_add_safe(md
->last_rq_start_time
, kt_deadline
);
2070 return !ktime_after(ktime_get(), kt_deadline
);
2074 * q->request_fn for request-based dm.
2075 * Called with the queue lock held.
2077 static void dm_request_fn(struct request_queue
*q
)
2079 struct mapped_device
*md
= q
->queuedata
;
2081 struct dm_table
*map
= dm_get_live_table(md
, &srcu_idx
);
2082 struct dm_target
*ti
;
2084 struct dm_rq_target_io
*tio
;
2088 * For suspend, check blk_queue_stopped() and increment
2089 * ->pending within a single queue_lock not to increment the
2090 * number of in-flight I/Os after the queue is stopped in
2093 while (!blk_queue_stopped(q
)) {
2094 rq
= blk_peek_request(q
);
2098 /* always use block 0 to find the target for flushes for now */
2100 if (!(rq
->cmd_flags
& REQ_FLUSH
))
2101 pos
= blk_rq_pos(rq
);
2103 ti
= dm_table_find_target(map
, pos
);
2104 if (!dm_target_is_valid(ti
)) {
2106 * Must perform setup, that rq_completed() requires,
2107 * before calling dm_kill_unmapped_request
2109 DMERR_LIMIT("request attempted access beyond the end of device");
2110 dm_start_request(md
, rq
);
2111 dm_kill_unmapped_request(rq
, -EIO
);
2115 if (dm_request_peeked_before_merge_deadline(md
) &&
2116 md_in_flight(md
) && rq
->bio
&& rq
->bio
->bi_vcnt
== 1 &&
2117 md
->last_rq_pos
== pos
&& md
->last_rq_rw
== rq_data_dir(rq
))
2120 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
2123 dm_start_request(md
, rq
);
2125 tio
= tio_from_request(rq
);
2126 /* Establish tio->ti before queuing work (map_tio_request) */
2128 queue_kthread_work(&md
->kworker
, &tio
->work
);
2129 BUG_ON(!irqs_disabled());
2135 blk_delay_queue(q
, HZ
/ 100);
2137 dm_put_live_table(md
, srcu_idx
);
2140 static int dm_any_congested(void *congested_data
, int bdi_bits
)
2143 struct mapped_device
*md
= congested_data
;
2144 struct dm_table
*map
;
2146 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2147 map
= dm_get_live_table_fast(md
);
2150 * Request-based dm cares about only own queue for
2151 * the query about congestion status of request_queue
2153 if (dm_request_based(md
))
2154 r
= md
->queue
->backing_dev_info
.wb
.state
&
2157 r
= dm_table_any_congested(map
, bdi_bits
);
2159 dm_put_live_table_fast(md
);
2165 /*-----------------------------------------------------------------
2166 * An IDR is used to keep track of allocated minor numbers.
2167 *---------------------------------------------------------------*/
2168 static void free_minor(int minor
)
2170 spin_lock(&_minor_lock
);
2171 idr_remove(&_minor_idr
, minor
);
2172 spin_unlock(&_minor_lock
);
2176 * See if the device with a specific minor # is free.
2178 static int specific_minor(int minor
)
2182 if (minor
>= (1 << MINORBITS
))
2185 idr_preload(GFP_KERNEL
);
2186 spin_lock(&_minor_lock
);
2188 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
2190 spin_unlock(&_minor_lock
);
2193 return r
== -ENOSPC
? -EBUSY
: r
;
2197 static int next_free_minor(int *minor
)
2201 idr_preload(GFP_KERNEL
);
2202 spin_lock(&_minor_lock
);
2204 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
2206 spin_unlock(&_minor_lock
);
2214 static const struct block_device_operations dm_blk_dops
;
2216 static void dm_wq_work(struct work_struct
*work
);
2218 static void dm_init_md_queue(struct mapped_device
*md
)
2221 * Request-based dm devices cannot be stacked on top of bio-based dm
2222 * devices. The type of this dm device may not have been decided yet.
2223 * The type is decided at the first table loading time.
2224 * To prevent problematic device stacking, clear the queue flag
2225 * for request stacking support until then.
2227 * This queue is new, so no concurrency on the queue_flags.
2229 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
2232 * Initialize data that will only be used by a non-blk-mq DM queue
2233 * - must do so here (in alloc_dev callchain) before queue is used
2235 md
->queue
->queuedata
= md
;
2236 md
->queue
->backing_dev_info
.congested_data
= md
;
2239 static void dm_init_old_md_queue(struct mapped_device
*md
)
2241 md
->use_blk_mq
= false;
2242 dm_init_md_queue(md
);
2245 * Initialize aspects of queue that aren't relevant for blk-mq
2247 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
2248 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
2251 static void cleanup_mapped_device(struct mapped_device
*md
)
2254 destroy_workqueue(md
->wq
);
2255 if (md
->kworker_task
)
2256 kthread_stop(md
->kworker_task
);
2257 mempool_destroy(md
->io_pool
);
2258 mempool_destroy(md
->rq_pool
);
2260 bioset_free(md
->bs
);
2262 cleanup_srcu_struct(&md
->io_barrier
);
2265 spin_lock(&_minor_lock
);
2266 md
->disk
->private_data
= NULL
;
2267 spin_unlock(&_minor_lock
);
2268 del_gendisk(md
->disk
);
2273 blk_cleanup_queue(md
->queue
);
2282 * Allocate and initialise a blank device with a given minor.
2284 static struct mapped_device
*alloc_dev(int minor
)
2287 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
2291 DMWARN("unable to allocate device, out of memory.");
2295 if (!try_module_get(THIS_MODULE
))
2296 goto bad_module_get
;
2298 /* get a minor number for the dev */
2299 if (minor
== DM_ANY_MINOR
)
2300 r
= next_free_minor(&minor
);
2302 r
= specific_minor(minor
);
2306 r
= init_srcu_struct(&md
->io_barrier
);
2308 goto bad_io_barrier
;
2310 md
->use_blk_mq
= use_blk_mq
;
2311 md
->type
= DM_TYPE_NONE
;
2312 mutex_init(&md
->suspend_lock
);
2313 mutex_init(&md
->type_lock
);
2314 mutex_init(&md
->table_devices_lock
);
2315 spin_lock_init(&md
->deferred_lock
);
2316 atomic_set(&md
->holders
, 1);
2317 atomic_set(&md
->open_count
, 0);
2318 atomic_set(&md
->event_nr
, 0);
2319 atomic_set(&md
->uevent_seq
, 0);
2320 INIT_LIST_HEAD(&md
->uevent_list
);
2321 INIT_LIST_HEAD(&md
->table_devices
);
2322 spin_lock_init(&md
->uevent_lock
);
2324 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
2328 dm_init_md_queue(md
);
2330 md
->disk
= alloc_disk(1);
2334 atomic_set(&md
->pending
[0], 0);
2335 atomic_set(&md
->pending
[1], 0);
2336 init_waitqueue_head(&md
->wait
);
2337 INIT_WORK(&md
->work
, dm_wq_work
);
2338 init_waitqueue_head(&md
->eventq
);
2339 init_completion(&md
->kobj_holder
.completion
);
2340 md
->kworker_task
= NULL
;
2342 md
->disk
->major
= _major
;
2343 md
->disk
->first_minor
= minor
;
2344 md
->disk
->fops
= &dm_blk_dops
;
2345 md
->disk
->queue
= md
->queue
;
2346 md
->disk
->private_data
= md
;
2347 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
2349 format_dev_t(md
->name
, MKDEV(_major
, minor
));
2351 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
2355 md
->bdev
= bdget_disk(md
->disk
, 0);
2359 bio_init(&md
->flush_bio
);
2360 md
->flush_bio
.bi_bdev
= md
->bdev
;
2361 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
2363 dm_stats_init(&md
->stats
);
2365 /* Populate the mapping, nobody knows we exist yet */
2366 spin_lock(&_minor_lock
);
2367 old_md
= idr_replace(&_minor_idr
, md
, minor
);
2368 spin_unlock(&_minor_lock
);
2370 BUG_ON(old_md
!= MINOR_ALLOCED
);
2375 cleanup_mapped_device(md
);
2379 module_put(THIS_MODULE
);
2385 static void unlock_fs(struct mapped_device
*md
);
2387 static void free_dev(struct mapped_device
*md
)
2389 int minor
= MINOR(disk_devt(md
->disk
));
2393 cleanup_mapped_device(md
);
2395 blk_mq_free_tag_set(&md
->tag_set
);
2397 free_table_devices(&md
->table_devices
);
2398 dm_stats_cleanup(&md
->stats
);
2401 module_put(THIS_MODULE
);
2405 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2407 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2410 /* The md already has necessary mempools. */
2411 if (dm_table_get_type(t
) == DM_TYPE_BIO_BASED
) {
2413 * Reload bioset because front_pad may have changed
2414 * because a different table was loaded.
2416 bioset_free(md
->bs
);
2421 * There's no need to reload with request-based dm
2422 * because the size of front_pad doesn't change.
2423 * Note for future: If you are to reload bioset,
2424 * prep-ed requests in the queue may refer
2425 * to bio from the old bioset, so you must walk
2426 * through the queue to unprep.
2431 BUG_ON(!p
|| md
->io_pool
|| md
->rq_pool
|| md
->bs
);
2433 md
->io_pool
= p
->io_pool
;
2435 md
->rq_pool
= p
->rq_pool
;
2441 /* mempool bind completed, no longer need any mempools in the table */
2442 dm_table_free_md_mempools(t
);
2446 * Bind a table to the device.
2448 static void event_callback(void *context
)
2450 unsigned long flags
;
2452 struct mapped_device
*md
= (struct mapped_device
*) context
;
2454 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2455 list_splice_init(&md
->uevent_list
, &uevents
);
2456 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2458 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2460 atomic_inc(&md
->event_nr
);
2461 wake_up(&md
->eventq
);
2465 * Protected by md->suspend_lock obtained by dm_swap_table().
2467 static void __set_size(struct mapped_device
*md
, sector_t size
)
2469 set_capacity(md
->disk
, size
);
2471 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2475 * Returns old map, which caller must destroy.
2477 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2478 struct queue_limits
*limits
)
2480 struct dm_table
*old_map
;
2481 struct request_queue
*q
= md
->queue
;
2484 size
= dm_table_get_size(t
);
2487 * Wipe any geometry if the size of the table changed.
2489 if (size
!= dm_get_size(md
))
2490 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2492 __set_size(md
, size
);
2494 dm_table_event_callback(t
, event_callback
, md
);
2497 * The queue hasn't been stopped yet, if the old table type wasn't
2498 * for request-based during suspension. So stop it to prevent
2499 * I/O mapping before resume.
2500 * This must be done before setting the queue restrictions,
2501 * because request-based dm may be run just after the setting.
2503 if (dm_table_request_based(t
))
2506 __bind_mempools(md
, t
);
2508 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2509 rcu_assign_pointer(md
->map
, t
);
2510 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2512 dm_table_set_restrictions(t
, q
, limits
);
2520 * Returns unbound table for the caller to free.
2522 static struct dm_table
*__unbind(struct mapped_device
*md
)
2524 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2529 dm_table_event_callback(map
, NULL
, NULL
);
2530 RCU_INIT_POINTER(md
->map
, NULL
);
2537 * Constructor for a new device.
2539 int dm_create(int minor
, struct mapped_device
**result
)
2541 struct mapped_device
*md
;
2543 md
= alloc_dev(minor
);
2554 * Functions to manage md->type.
2555 * All are required to hold md->type_lock.
2557 void dm_lock_md_type(struct mapped_device
*md
)
2559 mutex_lock(&md
->type_lock
);
2562 void dm_unlock_md_type(struct mapped_device
*md
)
2564 mutex_unlock(&md
->type_lock
);
2567 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2569 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2573 unsigned dm_get_md_type(struct mapped_device
*md
)
2575 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2579 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2581 return md
->immutable_target_type
;
2585 * The queue_limits are only valid as long as you have a reference
2588 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2590 BUG_ON(!atomic_read(&md
->holders
));
2591 return &md
->queue
->limits
;
2593 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2595 static void init_rq_based_worker_thread(struct mapped_device
*md
)
2597 /* Initialize the request-based DM worker thread */
2598 init_kthread_worker(&md
->kworker
);
2599 md
->kworker_task
= kthread_run(kthread_worker_fn
, &md
->kworker
,
2600 "kdmwork-%s", dm_device_name(md
));
2604 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2606 static int dm_init_request_based_queue(struct mapped_device
*md
)
2608 struct request_queue
*q
= NULL
;
2610 /* Fully initialize the queue */
2611 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2615 /* disable dm_request_fn's merge heuristic by default */
2616 md
->seq_rq_merge_deadline_usecs
= 0;
2619 dm_init_old_md_queue(md
);
2620 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2621 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2623 init_rq_based_worker_thread(md
);
2625 elv_register_queue(md
->queue
);
2630 static int dm_mq_init_request(void *data
, struct request
*rq
,
2631 unsigned int hctx_idx
, unsigned int request_idx
,
2632 unsigned int numa_node
)
2634 struct mapped_device
*md
= data
;
2635 struct dm_rq_target_io
*tio
= blk_mq_rq_to_pdu(rq
);
2638 * Must initialize md member of tio, otherwise it won't
2639 * be available in dm_mq_queue_rq.
2646 static int dm_mq_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2647 const struct blk_mq_queue_data
*bd
)
2649 struct request
*rq
= bd
->rq
;
2650 struct dm_rq_target_io
*tio
= blk_mq_rq_to_pdu(rq
);
2651 struct mapped_device
*md
= tio
->md
;
2653 struct dm_table
*map
= dm_get_live_table(md
, &srcu_idx
);
2654 struct dm_target
*ti
;
2657 /* always use block 0 to find the target for flushes for now */
2659 if (!(rq
->cmd_flags
& REQ_FLUSH
))
2660 pos
= blk_rq_pos(rq
);
2662 ti
= dm_table_find_target(map
, pos
);
2663 if (!dm_target_is_valid(ti
)) {
2664 dm_put_live_table(md
, srcu_idx
);
2665 DMERR_LIMIT("request attempted access beyond the end of device");
2667 * Must perform setup, that rq_completed() requires,
2668 * before returning BLK_MQ_RQ_QUEUE_ERROR
2670 dm_start_request(md
, rq
);
2671 return BLK_MQ_RQ_QUEUE_ERROR
;
2673 dm_put_live_table(md
, srcu_idx
);
2675 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
2676 return BLK_MQ_RQ_QUEUE_BUSY
;
2678 dm_start_request(md
, rq
);
2680 /* Init tio using md established in .init_request */
2681 init_tio(tio
, rq
, md
);
2684 * Establish tio->ti before queuing work (map_tio_request)
2685 * or making direct call to map_request().
2689 /* Clone the request if underlying devices aren't blk-mq */
2690 if (dm_table_get_type(map
) == DM_TYPE_REQUEST_BASED
) {
2691 /* clone request is allocated at the end of the pdu */
2692 tio
->clone
= (void *)blk_mq_rq_to_pdu(rq
) + sizeof(struct dm_rq_target_io
);
2693 (void) clone_rq(rq
, md
, tio
, GFP_ATOMIC
);
2694 queue_kthread_work(&md
->kworker
, &tio
->work
);
2696 /* Direct call is fine since .queue_rq allows allocations */
2697 if (map_request(tio
, rq
, md
) == DM_MAPIO_REQUEUE
) {
2698 /* Undo dm_start_request() before requeuing */
2699 rq_end_stats(md
, rq
);
2700 rq_completed(md
, rq_data_dir(rq
), false);
2701 return BLK_MQ_RQ_QUEUE_BUSY
;
2705 return BLK_MQ_RQ_QUEUE_OK
;
2708 static struct blk_mq_ops dm_mq_ops
= {
2709 .queue_rq
= dm_mq_queue_rq
,
2710 .map_queue
= blk_mq_map_queue
,
2711 .complete
= dm_softirq_done
,
2712 .init_request
= dm_mq_init_request
,
2715 static int dm_init_request_based_blk_mq_queue(struct mapped_device
*md
)
2717 unsigned md_type
= dm_get_md_type(md
);
2718 struct request_queue
*q
;
2721 memset(&md
->tag_set
, 0, sizeof(md
->tag_set
));
2722 md
->tag_set
.ops
= &dm_mq_ops
;
2723 md
->tag_set
.queue_depth
= BLKDEV_MAX_RQ
;
2724 md
->tag_set
.numa_node
= NUMA_NO_NODE
;
2725 md
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
2726 md
->tag_set
.nr_hw_queues
= 1;
2727 if (md_type
== DM_TYPE_REQUEST_BASED
) {
2728 /* make the memory for non-blk-mq clone part of the pdu */
2729 md
->tag_set
.cmd_size
= sizeof(struct dm_rq_target_io
) + sizeof(struct request
);
2731 md
->tag_set
.cmd_size
= sizeof(struct dm_rq_target_io
);
2732 md
->tag_set
.driver_data
= md
;
2734 err
= blk_mq_alloc_tag_set(&md
->tag_set
);
2738 q
= blk_mq_init_allocated_queue(&md
->tag_set
, md
->queue
);
2744 dm_init_md_queue(md
);
2746 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2747 blk_mq_register_disk(md
->disk
);
2749 if (md_type
== DM_TYPE_REQUEST_BASED
)
2750 init_rq_based_worker_thread(md
);
2755 blk_mq_free_tag_set(&md
->tag_set
);
2759 static unsigned filter_md_type(unsigned type
, struct mapped_device
*md
)
2761 if (type
== DM_TYPE_BIO_BASED
)
2764 return !md
->use_blk_mq
? DM_TYPE_REQUEST_BASED
: DM_TYPE_MQ_REQUEST_BASED
;
2768 * Setup the DM device's queue based on md's type
2770 int dm_setup_md_queue(struct mapped_device
*md
)
2773 unsigned md_type
= filter_md_type(dm_get_md_type(md
), md
);
2776 case DM_TYPE_REQUEST_BASED
:
2777 r
= dm_init_request_based_queue(md
);
2779 DMWARN("Cannot initialize queue for request-based mapped device");
2783 case DM_TYPE_MQ_REQUEST_BASED
:
2784 r
= dm_init_request_based_blk_mq_queue(md
);
2786 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2790 case DM_TYPE_BIO_BASED
:
2791 dm_init_old_md_queue(md
);
2792 blk_queue_make_request(md
->queue
, dm_make_request
);
2794 * DM handles splitting bios as needed. Free the bio_split bioset
2795 * since it won't be used (saves 1 process per bio-based DM device).
2797 bioset_free(md
->queue
->bio_split
);
2798 md
->queue
->bio_split
= NULL
;
2805 struct mapped_device
*dm_get_md(dev_t dev
)
2807 struct mapped_device
*md
;
2808 unsigned minor
= MINOR(dev
);
2810 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2813 spin_lock(&_minor_lock
);
2815 md
= idr_find(&_minor_idr
, minor
);
2817 if ((md
== MINOR_ALLOCED
||
2818 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2819 dm_deleting_md(md
) ||
2820 test_bit(DMF_FREEING
, &md
->flags
))) {
2828 spin_unlock(&_minor_lock
);
2832 EXPORT_SYMBOL_GPL(dm_get_md
);
2834 void *dm_get_mdptr(struct mapped_device
*md
)
2836 return md
->interface_ptr
;
2839 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2841 md
->interface_ptr
= ptr
;
2844 void dm_get(struct mapped_device
*md
)
2846 atomic_inc(&md
->holders
);
2847 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2850 int dm_hold(struct mapped_device
*md
)
2852 spin_lock(&_minor_lock
);
2853 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2854 spin_unlock(&_minor_lock
);
2858 spin_unlock(&_minor_lock
);
2861 EXPORT_SYMBOL_GPL(dm_hold
);
2863 const char *dm_device_name(struct mapped_device
*md
)
2867 EXPORT_SYMBOL_GPL(dm_device_name
);
2869 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2871 struct dm_table
*map
;
2876 spin_lock(&_minor_lock
);
2877 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2878 set_bit(DMF_FREEING
, &md
->flags
);
2879 spin_unlock(&_minor_lock
);
2881 if (dm_request_based(md
) && md
->kworker_task
)
2882 flush_kthread_worker(&md
->kworker
);
2885 * Take suspend_lock so that presuspend and postsuspend methods
2886 * do not race with internal suspend.
2888 mutex_lock(&md
->suspend_lock
);
2889 map
= dm_get_live_table(md
, &srcu_idx
);
2890 if (!dm_suspended_md(md
)) {
2891 dm_table_presuspend_targets(map
);
2892 dm_table_postsuspend_targets(map
);
2894 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2895 dm_put_live_table(md
, srcu_idx
);
2896 mutex_unlock(&md
->suspend_lock
);
2899 * Rare, but there may be I/O requests still going to complete,
2900 * for example. Wait for all references to disappear.
2901 * No one should increment the reference count of the mapped_device,
2902 * after the mapped_device state becomes DMF_FREEING.
2905 while (atomic_read(&md
->holders
))
2907 else if (atomic_read(&md
->holders
))
2908 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2909 dm_device_name(md
), atomic_read(&md
->holders
));
2912 dm_table_destroy(__unbind(md
));
2916 void dm_destroy(struct mapped_device
*md
)
2918 __dm_destroy(md
, true);
2921 void dm_destroy_immediate(struct mapped_device
*md
)
2923 __dm_destroy(md
, false);
2926 void dm_put(struct mapped_device
*md
)
2928 atomic_dec(&md
->holders
);
2930 EXPORT_SYMBOL_GPL(dm_put
);
2932 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2935 DECLARE_WAITQUEUE(wait
, current
);
2937 add_wait_queue(&md
->wait
, &wait
);
2940 set_current_state(interruptible
);
2942 if (!md_in_flight(md
))
2945 if (interruptible
== TASK_INTERRUPTIBLE
&&
2946 signal_pending(current
)) {
2953 set_current_state(TASK_RUNNING
);
2955 remove_wait_queue(&md
->wait
, &wait
);
2961 * Process the deferred bios
2963 static void dm_wq_work(struct work_struct
*work
)
2965 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2969 struct dm_table
*map
;
2971 map
= dm_get_live_table(md
, &srcu_idx
);
2973 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2974 spin_lock_irq(&md
->deferred_lock
);
2975 c
= bio_list_pop(&md
->deferred
);
2976 spin_unlock_irq(&md
->deferred_lock
);
2981 if (dm_request_based(md
))
2982 generic_make_request(c
);
2984 __split_and_process_bio(md
, map
, c
);
2987 dm_put_live_table(md
, srcu_idx
);
2990 static void dm_queue_flush(struct mapped_device
*md
)
2992 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2993 smp_mb__after_atomic();
2994 queue_work(md
->wq
, &md
->work
);
2998 * Swap in a new table, returning the old one for the caller to destroy.
3000 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
3002 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
3003 struct queue_limits limits
;
3006 mutex_lock(&md
->suspend_lock
);
3008 /* device must be suspended */
3009 if (!dm_suspended_md(md
))
3013 * If the new table has no data devices, retain the existing limits.
3014 * This helps multipath with queue_if_no_path if all paths disappear,
3015 * then new I/O is queued based on these limits, and then some paths
3018 if (dm_table_has_no_data_devices(table
)) {
3019 live_map
= dm_get_live_table_fast(md
);
3021 limits
= md
->queue
->limits
;
3022 dm_put_live_table_fast(md
);
3026 r
= dm_calculate_queue_limits(table
, &limits
);
3033 map
= __bind(md
, table
, &limits
);
3036 mutex_unlock(&md
->suspend_lock
);
3041 * Functions to lock and unlock any filesystem running on the
3044 static int lock_fs(struct mapped_device
*md
)
3048 WARN_ON(md
->frozen_sb
);
3050 md
->frozen_sb
= freeze_bdev(md
->bdev
);
3051 if (IS_ERR(md
->frozen_sb
)) {
3052 r
= PTR_ERR(md
->frozen_sb
);
3053 md
->frozen_sb
= NULL
;
3057 set_bit(DMF_FROZEN
, &md
->flags
);
3062 static void unlock_fs(struct mapped_device
*md
)
3064 if (!test_bit(DMF_FROZEN
, &md
->flags
))
3067 thaw_bdev(md
->bdev
, md
->frozen_sb
);
3068 md
->frozen_sb
= NULL
;
3069 clear_bit(DMF_FROZEN
, &md
->flags
);
3073 * If __dm_suspend returns 0, the device is completely quiescent
3074 * now. There is no request-processing activity. All new requests
3075 * are being added to md->deferred list.
3077 * Caller must hold md->suspend_lock
3079 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
3080 unsigned suspend_flags
, int interruptible
)
3082 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
3083 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
3087 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3088 * This flag is cleared before dm_suspend returns.
3091 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
3094 * This gets reverted if there's an error later and the targets
3095 * provide the .presuspend_undo hook.
3097 dm_table_presuspend_targets(map
);
3100 * Flush I/O to the device.
3101 * Any I/O submitted after lock_fs() may not be flushed.
3102 * noflush takes precedence over do_lockfs.
3103 * (lock_fs() flushes I/Os and waits for them to complete.)
3105 if (!noflush
&& do_lockfs
) {
3108 dm_table_presuspend_undo_targets(map
);
3114 * Here we must make sure that no processes are submitting requests
3115 * to target drivers i.e. no one may be executing
3116 * __split_and_process_bio. This is called from dm_request and
3119 * To get all processes out of __split_and_process_bio in dm_request,
3120 * we take the write lock. To prevent any process from reentering
3121 * __split_and_process_bio from dm_request and quiesce the thread
3122 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3123 * flush_workqueue(md->wq).
3125 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
3127 synchronize_srcu(&md
->io_barrier
);
3130 * Stop md->queue before flushing md->wq in case request-based
3131 * dm defers requests to md->wq from md->queue.
3133 if (dm_request_based(md
)) {
3134 stop_queue(md
->queue
);
3135 if (md
->kworker_task
)
3136 flush_kthread_worker(&md
->kworker
);
3139 flush_workqueue(md
->wq
);
3142 * At this point no more requests are entering target request routines.
3143 * We call dm_wait_for_completion to wait for all existing requests
3146 r
= dm_wait_for_completion(md
, interruptible
);
3149 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
3151 synchronize_srcu(&md
->io_barrier
);
3153 /* were we interrupted ? */
3157 if (dm_request_based(md
))
3158 start_queue(md
->queue
);
3161 dm_table_presuspend_undo_targets(map
);
3162 /* pushback list is already flushed, so skip flush */
3169 * We need to be able to change a mapping table under a mounted
3170 * filesystem. For example we might want to move some data in
3171 * the background. Before the table can be swapped with
3172 * dm_bind_table, dm_suspend must be called to flush any in
3173 * flight bios and ensure that any further io gets deferred.
3176 * Suspend mechanism in request-based dm.
3178 * 1. Flush all I/Os by lock_fs() if needed.
3179 * 2. Stop dispatching any I/O by stopping the request_queue.
3180 * 3. Wait for all in-flight I/Os to be completed or requeued.
3182 * To abort suspend, start the request_queue.
3184 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
3186 struct dm_table
*map
= NULL
;
3190 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
3192 if (dm_suspended_md(md
)) {
3197 if (dm_suspended_internally_md(md
)) {
3198 /* already internally suspended, wait for internal resume */
3199 mutex_unlock(&md
->suspend_lock
);
3200 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
3206 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3208 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
);
3212 set_bit(DMF_SUSPENDED
, &md
->flags
);
3214 dm_table_postsuspend_targets(map
);
3217 mutex_unlock(&md
->suspend_lock
);
3221 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
3224 int r
= dm_table_resume_targets(map
);
3232 * Flushing deferred I/Os must be done after targets are resumed
3233 * so that mapping of targets can work correctly.
3234 * Request-based dm is queueing the deferred I/Os in its request_queue.
3236 if (dm_request_based(md
))
3237 start_queue(md
->queue
);
3244 int dm_resume(struct mapped_device
*md
)
3247 struct dm_table
*map
= NULL
;
3250 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
3252 if (!dm_suspended_md(md
))
3255 if (dm_suspended_internally_md(md
)) {
3256 /* already internally suspended, wait for internal resume */
3257 mutex_unlock(&md
->suspend_lock
);
3258 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
3264 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3265 if (!map
|| !dm_table_get_size(map
))
3268 r
= __dm_resume(md
, map
);
3272 clear_bit(DMF_SUSPENDED
, &md
->flags
);
3276 mutex_unlock(&md
->suspend_lock
);
3282 * Internal suspend/resume works like userspace-driven suspend. It waits
3283 * until all bios finish and prevents issuing new bios to the target drivers.
3284 * It may be used only from the kernel.
3287 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
3289 struct dm_table
*map
= NULL
;
3291 if (md
->internal_suspend_count
++)
3292 return; /* nested internal suspend */
3294 if (dm_suspended_md(md
)) {
3295 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3296 return; /* nest suspend */
3299 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3302 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3303 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3304 * would require changing .presuspend to return an error -- avoid this
3305 * until there is a need for more elaborate variants of internal suspend.
3307 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
);
3309 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3311 dm_table_postsuspend_targets(map
);
3314 static void __dm_internal_resume(struct mapped_device
*md
)
3316 BUG_ON(!md
->internal_suspend_count
);
3318 if (--md
->internal_suspend_count
)
3319 return; /* resume from nested internal suspend */
3321 if (dm_suspended_md(md
))
3322 goto done
; /* resume from nested suspend */
3325 * NOTE: existing callers don't need to call dm_table_resume_targets
3326 * (which may fail -- so best to avoid it for now by passing NULL map)
3328 (void) __dm_resume(md
, NULL
);
3331 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3332 smp_mb__after_atomic();
3333 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
3336 void dm_internal_suspend_noflush(struct mapped_device
*md
)
3338 mutex_lock(&md
->suspend_lock
);
3339 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
3340 mutex_unlock(&md
->suspend_lock
);
3342 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
3344 void dm_internal_resume(struct mapped_device
*md
)
3346 mutex_lock(&md
->suspend_lock
);
3347 __dm_internal_resume(md
);
3348 mutex_unlock(&md
->suspend_lock
);
3350 EXPORT_SYMBOL_GPL(dm_internal_resume
);
3353 * Fast variants of internal suspend/resume hold md->suspend_lock,
3354 * which prevents interaction with userspace-driven suspend.
3357 void dm_internal_suspend_fast(struct mapped_device
*md
)
3359 mutex_lock(&md
->suspend_lock
);
3360 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
3363 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
3364 synchronize_srcu(&md
->io_barrier
);
3365 flush_workqueue(md
->wq
);
3366 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
3368 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
3370 void dm_internal_resume_fast(struct mapped_device
*md
)
3372 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
3378 mutex_unlock(&md
->suspend_lock
);
3380 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
3382 /*-----------------------------------------------------------------
3383 * Event notification.
3384 *---------------------------------------------------------------*/
3385 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
3388 char udev_cookie
[DM_COOKIE_LENGTH
];
3389 char *envp
[] = { udev_cookie
, NULL
};
3392 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
3394 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
3395 DM_COOKIE_ENV_VAR_NAME
, cookie
);
3396 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
3401 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
3403 return atomic_add_return(1, &md
->uevent_seq
);
3406 uint32_t dm_get_event_nr(struct mapped_device
*md
)
3408 return atomic_read(&md
->event_nr
);
3411 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
3413 return wait_event_interruptible(md
->eventq
,
3414 (event_nr
!= atomic_read(&md
->event_nr
)));
3417 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
3419 unsigned long flags
;
3421 spin_lock_irqsave(&md
->uevent_lock
, flags
);
3422 list_add(elist
, &md
->uevent_list
);
3423 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
3427 * The gendisk is only valid as long as you have a reference
3430 struct gendisk
*dm_disk(struct mapped_device
*md
)
3434 EXPORT_SYMBOL_GPL(dm_disk
);
3436 struct kobject
*dm_kobject(struct mapped_device
*md
)
3438 return &md
->kobj_holder
.kobj
;
3441 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
3443 struct mapped_device
*md
;
3445 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
3447 if (test_bit(DMF_FREEING
, &md
->flags
) ||
3455 int dm_suspended_md(struct mapped_device
*md
)
3457 return test_bit(DMF_SUSPENDED
, &md
->flags
);
3460 int dm_suspended_internally_md(struct mapped_device
*md
)
3462 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3465 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
3467 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
3470 int dm_suspended(struct dm_target
*ti
)
3472 return dm_suspended_md(dm_table_get_md(ti
->table
));
3474 EXPORT_SYMBOL_GPL(dm_suspended
);
3476 int dm_noflush_suspending(struct dm_target
*ti
)
3478 return __noflush_suspending(dm_table_get_md(ti
->table
));
3480 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
3482 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, unsigned type
,
3483 unsigned integrity
, unsigned per_bio_data_size
)
3485 struct dm_md_mempools
*pools
= kzalloc(sizeof(*pools
), GFP_KERNEL
);
3486 struct kmem_cache
*cachep
= NULL
;
3487 unsigned int pool_size
= 0;
3488 unsigned int front_pad
;
3493 type
= filter_md_type(type
, md
);
3496 case DM_TYPE_BIO_BASED
:
3498 pool_size
= dm_get_reserved_bio_based_ios();
3499 front_pad
= roundup(per_bio_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
3501 case DM_TYPE_REQUEST_BASED
:
3502 cachep
= _rq_tio_cache
;
3503 pool_size
= dm_get_reserved_rq_based_ios();
3504 pools
->rq_pool
= mempool_create_slab_pool(pool_size
, _rq_cache
);
3505 if (!pools
->rq_pool
)
3507 /* fall through to setup remaining rq-based pools */
3508 case DM_TYPE_MQ_REQUEST_BASED
:
3510 pool_size
= dm_get_reserved_rq_based_ios();
3511 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
3512 /* per_bio_data_size is not used. See __bind_mempools(). */
3513 WARN_ON(per_bio_data_size
!= 0);
3520 pools
->io_pool
= mempool_create_slab_pool(pool_size
, cachep
);
3521 if (!pools
->io_pool
)
3525 pools
->bs
= bioset_create_nobvec(pool_size
, front_pad
);
3529 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
3535 dm_free_md_mempools(pools
);
3540 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3545 mempool_destroy(pools
->io_pool
);
3546 mempool_destroy(pools
->rq_pool
);
3549 bioset_free(pools
->bs
);
3554 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3557 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3558 const struct pr_ops
*ops
;
3559 struct dm_target
*tgt
;
3563 r
= dm_get_live_table_for_ioctl(md
, &tgt
, &bdev
, &mode
, &srcu_idx
);
3567 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3568 if (ops
&& ops
->pr_register
)
3569 r
= ops
->pr_register(bdev
, old_key
, new_key
, flags
);
3573 dm_put_live_table(md
, srcu_idx
);
3577 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3580 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3581 const struct pr_ops
*ops
;
3582 struct dm_target
*tgt
;
3586 r
= dm_get_live_table_for_ioctl(md
, &tgt
, &bdev
, &mode
, &srcu_idx
);
3590 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3591 if (ops
&& ops
->pr_reserve
)
3592 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3596 dm_put_live_table(md
, srcu_idx
);
3600 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3602 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3603 const struct pr_ops
*ops
;
3604 struct dm_target
*tgt
;
3608 r
= dm_get_live_table_for_ioctl(md
, &tgt
, &bdev
, &mode
, &srcu_idx
);
3612 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3613 if (ops
&& ops
->pr_release
)
3614 r
= ops
->pr_release(bdev
, key
, type
);
3618 dm_put_live_table(md
, srcu_idx
);
3622 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3623 enum pr_type type
, bool abort
)
3625 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3626 const struct pr_ops
*ops
;
3627 struct dm_target
*tgt
;
3631 r
= dm_get_live_table_for_ioctl(md
, &tgt
, &bdev
, &mode
, &srcu_idx
);
3635 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3636 if (ops
&& ops
->pr_preempt
)
3637 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3641 dm_put_live_table(md
, srcu_idx
);
3645 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3647 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3648 const struct pr_ops
*ops
;
3649 struct dm_target
*tgt
;
3653 r
= dm_get_live_table_for_ioctl(md
, &tgt
, &bdev
, &mode
, &srcu_idx
);
3657 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3658 if (ops
&& ops
->pr_clear
)
3659 r
= ops
->pr_clear(bdev
, key
);
3663 dm_put_live_table(md
, srcu_idx
);
3667 static const struct pr_ops dm_pr_ops
= {
3668 .pr_register
= dm_pr_register
,
3669 .pr_reserve
= dm_pr_reserve
,
3670 .pr_release
= dm_pr_release
,
3671 .pr_preempt
= dm_pr_preempt
,
3672 .pr_clear
= dm_pr_clear
,
3675 static const struct block_device_operations dm_blk_dops
= {
3676 .open
= dm_blk_open
,
3677 .release
= dm_blk_close
,
3678 .ioctl
= dm_blk_ioctl
,
3679 .getgeo
= dm_blk_getgeo
,
3680 .pr_ops
= &dm_pr_ops
,
3681 .owner
= THIS_MODULE
3687 module_init(dm_init
);
3688 module_exit(dm_exit
);
3690 module_param(major
, uint
, 0);
3691 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3693 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3694 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3696 module_param(reserved_rq_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3697 MODULE_PARM_DESC(reserved_rq_based_ios
, "Reserved IOs in request-based mempools");
3699 module_param(use_blk_mq
, bool, S_IRUGO
| S_IWUSR
);
3700 MODULE_PARM_DESC(use_blk_mq
, "Use block multiqueue for request-based DM devices");
3702 MODULE_DESCRIPTION(DM_NAME
" driver");
3703 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3704 MODULE_LICENSE("GPL");