irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / md / raid5-cache.c
blobb887e04d7e5c2554b3112de0f9fa5e61b93ed40b
1 /*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
28 #define BLOCK_SECTORS (8)
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
37 struct r5l_log {
38 struct md_rdev *rdev;
40 u32 uuid_checksum;
42 sector_t device_size; /* log device size, round to
43 * BLOCK_SECTORS */
44 sector_t max_free_space; /* reclaim run if free space is at
45 * this size */
47 sector_t last_checkpoint; /* log tail. where recovery scan
48 * starts from */
49 u64 last_cp_seq; /* log tail sequence */
51 sector_t log_start; /* log head. where new data appends */
52 u64 seq; /* log head sequence */
54 sector_t next_checkpoint;
55 u64 next_cp_seq;
57 struct mutex io_mutex;
58 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
60 spinlock_t io_list_lock;
61 struct list_head running_ios; /* io_units which are still running,
62 * and have not yet been completely
63 * written to the log */
64 struct list_head io_end_ios; /* io_units which have been completely
65 * written to the log but not yet written
66 * to the RAID */
67 struct list_head flushing_ios; /* io_units which are waiting for log
68 * cache flush */
69 struct list_head finished_ios; /* io_units which settle down in log disk */
70 struct bio flush_bio;
72 struct kmem_cache *io_kc;
74 struct md_thread *reclaim_thread;
75 unsigned long reclaim_target; /* number of space that need to be
76 * reclaimed. if it's 0, reclaim spaces
77 * used by io_units which are in
78 * IO_UNIT_STRIPE_END state (eg, reclaim
79 * dones't wait for specific io_unit
80 * switching to IO_UNIT_STRIPE_END
81 * state) */
82 wait_queue_head_t iounit_wait;
84 struct list_head no_space_stripes; /* pending stripes, log has no space */
85 spinlock_t no_space_stripes_lock;
87 bool need_cache_flush;
88 bool in_teardown;
92 * an IO range starts from a meta data block and end at the next meta data
93 * block. The io unit's the meta data block tracks data/parity followed it. io
94 * unit is written to log disk with normal write, as we always flush log disk
95 * first and then start move data to raid disks, there is no requirement to
96 * write io unit with FLUSH/FUA
98 struct r5l_io_unit {
99 struct r5l_log *log;
101 struct page *meta_page; /* store meta block */
102 int meta_offset; /* current offset in meta_page */
104 struct bio *current_bio;/* current_bio accepting new data */
106 atomic_t pending_stripe;/* how many stripes not flushed to raid */
107 u64 seq; /* seq number of the metablock */
108 sector_t log_start; /* where the io_unit starts */
109 sector_t log_end; /* where the io_unit ends */
110 struct list_head log_sibling; /* log->running_ios */
111 struct list_head stripe_list; /* stripes added to the io_unit */
113 int state;
114 bool need_split_bio;
117 /* r5l_io_unit state */
118 enum r5l_io_unit_state {
119 IO_UNIT_RUNNING = 0, /* accepting new IO */
120 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
121 * don't accepting new bio */
122 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
123 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
126 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
128 start += inc;
129 if (start >= log->device_size)
130 start = start - log->device_size;
131 return start;
134 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
135 sector_t end)
137 if (end >= start)
138 return end - start;
139 else
140 return end + log->device_size - start;
143 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
145 sector_t used_size;
147 used_size = r5l_ring_distance(log, log->last_checkpoint,
148 log->log_start);
150 return log->device_size > used_size + size;
153 static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
155 __free_page(io->meta_page);
156 kmem_cache_free(log->io_kc, io);
159 static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
160 enum r5l_io_unit_state state)
162 struct r5l_io_unit *io;
164 while (!list_empty(from)) {
165 io = list_first_entry(from, struct r5l_io_unit, log_sibling);
166 /* don't change list order */
167 if (io->state >= state)
168 list_move_tail(&io->log_sibling, to);
169 else
170 break;
174 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
175 enum r5l_io_unit_state state)
177 if (WARN_ON(io->state >= state))
178 return;
179 io->state = state;
182 static void r5l_io_run_stripes(struct r5l_io_unit *io)
184 struct stripe_head *sh, *next;
186 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
187 list_del_init(&sh->log_list);
188 set_bit(STRIPE_HANDLE, &sh->state);
189 raid5_release_stripe(sh);
193 static void r5l_log_run_stripes(struct r5l_log *log)
195 struct r5l_io_unit *io, *next;
197 assert_spin_locked(&log->io_list_lock);
199 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
200 /* don't change list order */
201 if (io->state < IO_UNIT_IO_END)
202 break;
204 list_move_tail(&io->log_sibling, &log->finished_ios);
205 r5l_io_run_stripes(io);
209 static void r5l_log_endio(struct bio *bio)
211 struct r5l_io_unit *io = bio->bi_private;
212 struct r5l_log *log = io->log;
213 unsigned long flags;
215 if (bio->bi_error)
216 md_error(log->rdev->mddev, log->rdev);
218 bio_put(bio);
220 spin_lock_irqsave(&log->io_list_lock, flags);
221 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
222 if (log->need_cache_flush)
223 r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
224 IO_UNIT_IO_END);
225 else
226 r5l_log_run_stripes(log);
227 spin_unlock_irqrestore(&log->io_list_lock, flags);
229 if (log->need_cache_flush)
230 md_wakeup_thread(log->rdev->mddev->thread);
233 static void r5l_submit_current_io(struct r5l_log *log)
235 struct r5l_io_unit *io = log->current_io;
236 struct r5l_meta_block *block;
237 unsigned long flags;
238 u32 crc;
240 if (!io)
241 return;
243 block = page_address(io->meta_page);
244 block->meta_size = cpu_to_le32(io->meta_offset);
245 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
246 block->checksum = cpu_to_le32(crc);
248 log->current_io = NULL;
249 spin_lock_irqsave(&log->io_list_lock, flags);
250 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
251 spin_unlock_irqrestore(&log->io_list_lock, flags);
253 submit_bio(WRITE, io->current_bio);
256 static struct bio *r5l_bio_alloc(struct r5l_log *log)
258 struct bio *bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
260 bio->bi_rw = WRITE;
261 bio->bi_bdev = log->rdev->bdev;
262 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
264 return bio;
267 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
269 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
272 * If we filled up the log device start from the beginning again,
273 * which will require a new bio.
275 * Note: for this to work properly the log size needs to me a multiple
276 * of BLOCK_SECTORS.
278 if (log->log_start == 0)
279 io->need_split_bio = true;
281 io->log_end = log->log_start;
284 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
286 struct r5l_io_unit *io;
287 struct r5l_meta_block *block;
289 /* We can't handle memory allocate failure so far */
290 io = kmem_cache_zalloc(log->io_kc, GFP_NOIO | __GFP_NOFAIL);
291 io->log = log;
292 INIT_LIST_HEAD(&io->log_sibling);
293 INIT_LIST_HEAD(&io->stripe_list);
294 io->state = IO_UNIT_RUNNING;
296 io->meta_page = alloc_page(GFP_NOIO | __GFP_NOFAIL | __GFP_ZERO);
297 block = page_address(io->meta_page);
298 block->magic = cpu_to_le32(R5LOG_MAGIC);
299 block->version = R5LOG_VERSION;
300 block->seq = cpu_to_le64(log->seq);
301 block->position = cpu_to_le64(log->log_start);
303 io->log_start = log->log_start;
304 io->meta_offset = sizeof(struct r5l_meta_block);
305 io->seq = log->seq++;
307 io->current_bio = r5l_bio_alloc(log);
308 io->current_bio->bi_end_io = r5l_log_endio;
309 io->current_bio->bi_private = io;
310 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
312 r5_reserve_log_entry(log, io);
314 spin_lock_irq(&log->io_list_lock);
315 list_add_tail(&io->log_sibling, &log->running_ios);
316 spin_unlock_irq(&log->io_list_lock);
318 return io;
321 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
323 if (log->current_io &&
324 log->current_io->meta_offset + payload_size > PAGE_SIZE)
325 r5l_submit_current_io(log);
327 if (!log->current_io)
328 log->current_io = r5l_new_meta(log);
329 return 0;
332 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
333 sector_t location,
334 u32 checksum1, u32 checksum2,
335 bool checksum2_valid)
337 struct r5l_io_unit *io = log->current_io;
338 struct r5l_payload_data_parity *payload;
340 payload = page_address(io->meta_page) + io->meta_offset;
341 payload->header.type = cpu_to_le16(type);
342 payload->header.flags = cpu_to_le16(0);
343 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
344 (PAGE_SHIFT - 9));
345 payload->location = cpu_to_le64(location);
346 payload->checksum[0] = cpu_to_le32(checksum1);
347 if (checksum2_valid)
348 payload->checksum[1] = cpu_to_le32(checksum2);
350 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
351 sizeof(__le32) * (1 + !!checksum2_valid);
354 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
356 struct r5l_io_unit *io = log->current_io;
358 if (io->need_split_bio) {
359 struct bio *prev = io->current_bio;
361 io->current_bio = r5l_bio_alloc(log);
362 bio_chain(io->current_bio, prev);
364 submit_bio(WRITE, prev);
367 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
368 BUG();
370 r5_reserve_log_entry(log, io);
373 static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
374 int data_pages, int parity_pages)
376 int i;
377 int meta_size;
378 struct r5l_io_unit *io;
380 meta_size =
381 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
382 * data_pages) +
383 sizeof(struct r5l_payload_data_parity) +
384 sizeof(__le32) * parity_pages;
386 r5l_get_meta(log, meta_size);
387 io = log->current_io;
389 for (i = 0; i < sh->disks; i++) {
390 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
391 continue;
392 if (i == sh->pd_idx || i == sh->qd_idx)
393 continue;
394 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
395 raid5_compute_blocknr(sh, i, 0),
396 sh->dev[i].log_checksum, 0, false);
397 r5l_append_payload_page(log, sh->dev[i].page);
400 if (sh->qd_idx >= 0) {
401 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
402 sh->sector, sh->dev[sh->pd_idx].log_checksum,
403 sh->dev[sh->qd_idx].log_checksum, true);
404 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
405 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
406 } else {
407 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
408 sh->sector, sh->dev[sh->pd_idx].log_checksum,
409 0, false);
410 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
413 list_add_tail(&sh->log_list, &io->stripe_list);
414 atomic_inc(&io->pending_stripe);
415 sh->log_io = io;
418 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
420 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
421 * data from log to raid disks), so we shouldn't wait for reclaim here
423 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
425 int write_disks = 0;
426 int data_pages, parity_pages;
427 int meta_size;
428 int reserve;
429 int i;
431 if (!log)
432 return -EAGAIN;
433 /* Don't support stripe batch */
434 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
435 test_bit(STRIPE_SYNCING, &sh->state)) {
436 /* the stripe is written to log, we start writing it to raid */
437 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
438 return -EAGAIN;
441 for (i = 0; i < sh->disks; i++) {
442 void *addr;
444 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
445 continue;
446 write_disks++;
447 /* checksum is already calculated in last run */
448 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
449 continue;
450 addr = kmap_atomic(sh->dev[i].page);
451 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
452 addr, PAGE_SIZE);
453 kunmap_atomic(addr);
455 parity_pages = 1 + !!(sh->qd_idx >= 0);
456 data_pages = write_disks - parity_pages;
458 meta_size =
459 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
460 * data_pages) +
461 sizeof(struct r5l_payload_data_parity) +
462 sizeof(__le32) * parity_pages;
463 /* Doesn't work with very big raid array */
464 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
465 return -EINVAL;
467 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
469 * The stripe must enter state machine again to finish the write, so
470 * don't delay.
472 clear_bit(STRIPE_DELAYED, &sh->state);
473 atomic_inc(&sh->count);
475 mutex_lock(&log->io_mutex);
476 /* meta + data */
477 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
478 if (r5l_has_free_space(log, reserve))
479 r5l_log_stripe(log, sh, data_pages, parity_pages);
480 else {
481 spin_lock(&log->no_space_stripes_lock);
482 list_add_tail(&sh->log_list, &log->no_space_stripes);
483 spin_unlock(&log->no_space_stripes_lock);
485 r5l_wake_reclaim(log, reserve);
487 mutex_unlock(&log->io_mutex);
489 return 0;
492 void r5l_write_stripe_run(struct r5l_log *log)
494 if (!log)
495 return;
496 mutex_lock(&log->io_mutex);
497 r5l_submit_current_io(log);
498 mutex_unlock(&log->io_mutex);
501 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
503 if (!log)
504 return -ENODEV;
506 * we flush log disk cache first, then write stripe data to raid disks.
507 * So if bio is finished, the log disk cache is flushed already. The
508 * recovery guarantees we can recovery the bio from log disk, so we
509 * don't need to flush again
511 if (bio->bi_iter.bi_size == 0) {
512 bio_endio(bio);
513 return 0;
515 bio->bi_rw &= ~REQ_FLUSH;
516 return -EAGAIN;
519 /* This will run after log space is reclaimed */
520 static void r5l_run_no_space_stripes(struct r5l_log *log)
522 struct stripe_head *sh;
524 spin_lock(&log->no_space_stripes_lock);
525 while (!list_empty(&log->no_space_stripes)) {
526 sh = list_first_entry(&log->no_space_stripes,
527 struct stripe_head, log_list);
528 list_del_init(&sh->log_list);
529 set_bit(STRIPE_HANDLE, &sh->state);
530 raid5_release_stripe(sh);
532 spin_unlock(&log->no_space_stripes_lock);
535 static sector_t r5l_reclaimable_space(struct r5l_log *log)
537 return r5l_ring_distance(log, log->last_checkpoint,
538 log->next_checkpoint);
541 static bool r5l_complete_finished_ios(struct r5l_log *log)
543 struct r5l_io_unit *io, *next;
544 bool found = false;
546 assert_spin_locked(&log->io_list_lock);
548 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
549 /* don't change list order */
550 if (io->state < IO_UNIT_STRIPE_END)
551 break;
553 log->next_checkpoint = io->log_start;
554 log->next_cp_seq = io->seq;
556 list_del(&io->log_sibling);
557 r5l_free_io_unit(log, io);
559 found = true;
562 return found;
565 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
567 struct r5l_log *log = io->log;
568 unsigned long flags;
570 spin_lock_irqsave(&log->io_list_lock, flags);
571 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
573 if (!r5l_complete_finished_ios(log)) {
574 spin_unlock_irqrestore(&log->io_list_lock, flags);
575 return;
578 if (r5l_reclaimable_space(log) > log->max_free_space)
579 r5l_wake_reclaim(log, 0);
581 spin_unlock_irqrestore(&log->io_list_lock, flags);
582 wake_up(&log->iounit_wait);
585 void r5l_stripe_write_finished(struct stripe_head *sh)
587 struct r5l_io_unit *io;
589 io = sh->log_io;
590 sh->log_io = NULL;
592 if (io && atomic_dec_and_test(&io->pending_stripe))
593 __r5l_stripe_write_finished(io);
596 static void r5l_log_flush_endio(struct bio *bio)
598 struct r5l_log *log = container_of(bio, struct r5l_log,
599 flush_bio);
600 unsigned long flags;
601 struct r5l_io_unit *io;
603 if (bio->bi_error)
604 md_error(log->rdev->mddev, log->rdev);
606 spin_lock_irqsave(&log->io_list_lock, flags);
607 list_for_each_entry(io, &log->flushing_ios, log_sibling)
608 r5l_io_run_stripes(io);
609 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
610 spin_unlock_irqrestore(&log->io_list_lock, flags);
614 * Starting dispatch IO to raid.
615 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
616 * broken meta in the middle of a log causes recovery can't find meta at the
617 * head of log. If operations require meta at the head persistent in log, we
618 * must make sure meta before it persistent in log too. A case is:
620 * stripe data/parity is in log, we start write stripe to raid disks. stripe
621 * data/parity must be persistent in log before we do the write to raid disks.
623 * The solution is we restrictly maintain io_unit list order. In this case, we
624 * only write stripes of an io_unit to raid disks till the io_unit is the first
625 * one whose data/parity is in log.
627 void r5l_flush_stripe_to_raid(struct r5l_log *log)
629 bool do_flush;
631 if (!log || !log->need_cache_flush)
632 return;
634 spin_lock_irq(&log->io_list_lock);
635 /* flush bio is running */
636 if (!list_empty(&log->flushing_ios)) {
637 spin_unlock_irq(&log->io_list_lock);
638 return;
640 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
641 do_flush = !list_empty(&log->flushing_ios);
642 spin_unlock_irq(&log->io_list_lock);
644 if (!do_flush)
645 return;
646 bio_reset(&log->flush_bio);
647 log->flush_bio.bi_bdev = log->rdev->bdev;
648 log->flush_bio.bi_end_io = r5l_log_flush_endio;
649 submit_bio(WRITE_FLUSH, &log->flush_bio);
652 static void r5l_write_super(struct r5l_log *log, sector_t cp);
653 static void r5l_write_super_and_discard_space(struct r5l_log *log,
654 sector_t end)
656 struct block_device *bdev = log->rdev->bdev;
657 struct mddev *mddev;
659 r5l_write_super(log, end);
661 if (!blk_queue_discard(bdev_get_queue(bdev)))
662 return;
664 mddev = log->rdev->mddev;
666 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
667 * wait for this thread to finish. This thread waits for
668 * MD_CHANGE_PENDING clear, which is supposed to be done in
669 * md_check_recovery(). md_check_recovery() tries to get
670 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
671 * md_check_recovery() fails, so the PENDING never get cleared. The
672 * in_teardown check workaround this issue.
674 if (!log->in_teardown) {
675 set_bit(MD_CHANGE_DEVS, &mddev->flags);
676 set_bit(MD_CHANGE_PENDING, &mddev->flags);
677 md_wakeup_thread(mddev->thread);
678 wait_event(mddev->sb_wait,
679 !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
680 log->in_teardown);
682 * r5l_quiesce could run after in_teardown check and hold
683 * mutex first. Superblock might get updated twice.
685 if (log->in_teardown)
686 md_update_sb(mddev, 1);
687 } else {
688 WARN_ON(!mddev_is_locked(mddev));
689 md_update_sb(mddev, 1);
692 /* discard IO error really doesn't matter, ignore it */
693 if (log->last_checkpoint < end) {
694 blkdev_issue_discard(bdev,
695 log->last_checkpoint + log->rdev->data_offset,
696 end - log->last_checkpoint, GFP_NOIO, 0);
697 } else {
698 blkdev_issue_discard(bdev,
699 log->last_checkpoint + log->rdev->data_offset,
700 log->device_size - log->last_checkpoint,
701 GFP_NOIO, 0);
702 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
703 GFP_NOIO, 0);
708 static void r5l_do_reclaim(struct r5l_log *log)
710 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
711 sector_t reclaimable;
712 sector_t next_checkpoint;
713 u64 next_cp_seq;
715 spin_lock_irq(&log->io_list_lock);
717 * move proper io_unit to reclaim list. We should not change the order.
718 * reclaimable/unreclaimable io_unit can be mixed in the list, we
719 * shouldn't reuse space of an unreclaimable io_unit
721 while (1) {
722 reclaimable = r5l_reclaimable_space(log);
723 if (reclaimable >= reclaim_target ||
724 (list_empty(&log->running_ios) &&
725 list_empty(&log->io_end_ios) &&
726 list_empty(&log->flushing_ios) &&
727 list_empty(&log->finished_ios)))
728 break;
730 md_wakeup_thread(log->rdev->mddev->thread);
731 wait_event_lock_irq(log->iounit_wait,
732 r5l_reclaimable_space(log) > reclaimable,
733 log->io_list_lock);
736 next_checkpoint = log->next_checkpoint;
737 next_cp_seq = log->next_cp_seq;
738 spin_unlock_irq(&log->io_list_lock);
740 BUG_ON(reclaimable < 0);
741 if (reclaimable == 0)
742 return;
745 * write_super will flush cache of each raid disk. We must write super
746 * here, because the log area might be reused soon and we don't want to
747 * confuse recovery
749 r5l_write_super_and_discard_space(log, next_checkpoint);
751 mutex_lock(&log->io_mutex);
752 log->last_checkpoint = next_checkpoint;
753 log->last_cp_seq = next_cp_seq;
754 mutex_unlock(&log->io_mutex);
756 r5l_run_no_space_stripes(log);
759 static void r5l_reclaim_thread(struct md_thread *thread)
761 struct mddev *mddev = thread->mddev;
762 struct r5conf *conf = mddev->private;
763 struct r5l_log *log = conf->log;
765 if (!log)
766 return;
767 r5l_do_reclaim(log);
770 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
772 unsigned long target;
773 unsigned long new = (unsigned long)space; /* overflow in theory */
775 do {
776 target = log->reclaim_target;
777 if (new < target)
778 return;
779 } while (cmpxchg(&log->reclaim_target, target, new) != target);
780 md_wakeup_thread(log->reclaim_thread);
783 void r5l_quiesce(struct r5l_log *log, int state)
785 struct mddev *mddev;
786 if (!log || state == 2)
787 return;
788 if (state == 0) {
789 log->in_teardown = 0;
790 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
791 log->rdev->mddev, "reclaim");
792 } else if (state == 1) {
794 * at this point all stripes are finished, so io_unit is at
795 * least in STRIPE_END state
797 log->in_teardown = 1;
798 /* make sure r5l_write_super_and_discard_space exits */
799 mddev = log->rdev->mddev;
800 wake_up(&mddev->sb_wait);
801 r5l_wake_reclaim(log, -1L);
802 md_unregister_thread(&log->reclaim_thread);
803 r5l_do_reclaim(log);
807 bool r5l_log_disk_error(struct r5conf *conf)
809 /* don't allow write if journal disk is missing */
810 if (!conf->log)
811 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
812 return test_bit(Faulty, &conf->log->rdev->flags);
815 struct r5l_recovery_ctx {
816 struct page *meta_page; /* current meta */
817 sector_t meta_total_blocks; /* total size of current meta and data */
818 sector_t pos; /* recovery position */
819 u64 seq; /* recovery position seq */
822 static int r5l_read_meta_block(struct r5l_log *log,
823 struct r5l_recovery_ctx *ctx)
825 struct page *page = ctx->meta_page;
826 struct r5l_meta_block *mb;
827 u32 crc, stored_crc;
829 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
830 return -EIO;
832 mb = page_address(page);
833 stored_crc = le32_to_cpu(mb->checksum);
834 mb->checksum = 0;
836 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
837 le64_to_cpu(mb->seq) != ctx->seq ||
838 mb->version != R5LOG_VERSION ||
839 le64_to_cpu(mb->position) != ctx->pos)
840 return -EINVAL;
842 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
843 if (stored_crc != crc)
844 return -EINVAL;
846 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
847 return -EINVAL;
849 ctx->meta_total_blocks = BLOCK_SECTORS;
851 return 0;
854 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
855 struct r5l_recovery_ctx *ctx,
856 sector_t stripe_sect,
857 int *offset, sector_t *log_offset)
859 struct r5conf *conf = log->rdev->mddev->private;
860 struct stripe_head *sh;
861 struct r5l_payload_data_parity *payload;
862 int disk_index;
864 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
865 while (1) {
866 payload = page_address(ctx->meta_page) + *offset;
868 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
869 raid5_compute_sector(conf,
870 le64_to_cpu(payload->location), 0,
871 &disk_index, sh);
873 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
874 sh->dev[disk_index].page, READ, false);
875 sh->dev[disk_index].log_checksum =
876 le32_to_cpu(payload->checksum[0]);
877 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
878 ctx->meta_total_blocks += BLOCK_SECTORS;
879 } else {
880 disk_index = sh->pd_idx;
881 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
882 sh->dev[disk_index].page, READ, false);
883 sh->dev[disk_index].log_checksum =
884 le32_to_cpu(payload->checksum[0]);
885 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
887 if (sh->qd_idx >= 0) {
888 disk_index = sh->qd_idx;
889 sync_page_io(log->rdev,
890 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
891 PAGE_SIZE, sh->dev[disk_index].page,
892 READ, false);
893 sh->dev[disk_index].log_checksum =
894 le32_to_cpu(payload->checksum[1]);
895 set_bit(R5_Wantwrite,
896 &sh->dev[disk_index].flags);
898 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
901 *log_offset = r5l_ring_add(log, *log_offset,
902 le32_to_cpu(payload->size));
903 *offset += sizeof(struct r5l_payload_data_parity) +
904 sizeof(__le32) *
905 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
906 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
907 break;
910 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
911 void *addr;
912 u32 checksum;
914 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
915 continue;
916 addr = kmap_atomic(sh->dev[disk_index].page);
917 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
918 kunmap_atomic(addr);
919 if (checksum != sh->dev[disk_index].log_checksum)
920 goto error;
923 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
924 struct md_rdev *rdev, *rrdev;
926 if (!test_and_clear_bit(R5_Wantwrite,
927 &sh->dev[disk_index].flags))
928 continue;
930 /* in case device is broken */
931 rdev = rcu_dereference(conf->disks[disk_index].rdev);
932 if (rdev)
933 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
934 sh->dev[disk_index].page, WRITE, false);
935 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
936 if (rrdev)
937 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
938 sh->dev[disk_index].page, WRITE, false);
940 raid5_release_stripe(sh);
941 return 0;
943 error:
944 for (disk_index = 0; disk_index < sh->disks; disk_index++)
945 sh->dev[disk_index].flags = 0;
946 raid5_release_stripe(sh);
947 return -EINVAL;
950 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
951 struct r5l_recovery_ctx *ctx)
953 struct r5conf *conf = log->rdev->mddev->private;
954 struct r5l_payload_data_parity *payload;
955 struct r5l_meta_block *mb;
956 int offset;
957 sector_t log_offset;
958 sector_t stripe_sector;
960 mb = page_address(ctx->meta_page);
961 offset = sizeof(struct r5l_meta_block);
962 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
964 while (offset < le32_to_cpu(mb->meta_size)) {
965 int dd;
967 payload = (void *)mb + offset;
968 stripe_sector = raid5_compute_sector(conf,
969 le64_to_cpu(payload->location), 0, &dd, NULL);
970 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
971 &offset, &log_offset))
972 return -EINVAL;
974 return 0;
977 /* copy data/parity from log to raid disks */
978 static void r5l_recovery_flush_log(struct r5l_log *log,
979 struct r5l_recovery_ctx *ctx)
981 while (1) {
982 if (r5l_read_meta_block(log, ctx))
983 return;
984 if (r5l_recovery_flush_one_meta(log, ctx))
985 return;
986 ctx->seq++;
987 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
991 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
992 u64 seq)
994 struct page *page;
995 struct r5l_meta_block *mb;
996 u32 crc;
998 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
999 if (!page)
1000 return -ENOMEM;
1001 mb = page_address(page);
1002 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1003 mb->version = R5LOG_VERSION;
1004 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1005 mb->seq = cpu_to_le64(seq);
1006 mb->position = cpu_to_le64(pos);
1007 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1008 mb->checksum = cpu_to_le32(crc);
1010 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1011 __free_page(page);
1012 return -EIO;
1014 __free_page(page);
1015 return 0;
1018 static int r5l_recovery_log(struct r5l_log *log)
1020 struct r5l_recovery_ctx ctx;
1022 ctx.pos = log->last_checkpoint;
1023 ctx.seq = log->last_cp_seq;
1024 ctx.meta_page = alloc_page(GFP_KERNEL);
1025 if (!ctx.meta_page)
1026 return -ENOMEM;
1028 r5l_recovery_flush_log(log, &ctx);
1029 __free_page(ctx.meta_page);
1032 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1033 * log will start here. but we can't let superblock point to last valid
1034 * meta block. The log might looks like:
1035 * | meta 1| meta 2| meta 3|
1036 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1037 * superblock points to meta 1, we write a new valid meta 2n. if crash
1038 * happens again, new recovery will start from meta 1. Since meta 2n is
1039 * valid now, recovery will think meta 3 is valid, which is wrong.
1040 * The solution is we create a new meta in meta2 with its seq == meta
1041 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1042 * not think meta 3 is a valid meta, because its seq doesn't match
1044 if (ctx.seq > log->last_cp_seq + 1) {
1045 int ret;
1047 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1048 if (ret)
1049 return ret;
1050 log->seq = ctx.seq + 11;
1051 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1052 r5l_write_super(log, ctx.pos);
1053 } else {
1054 log->log_start = ctx.pos;
1055 log->seq = ctx.seq;
1057 return 0;
1060 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1062 struct mddev *mddev = log->rdev->mddev;
1064 log->rdev->journal_tail = cp;
1065 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1068 static int r5l_load_log(struct r5l_log *log)
1070 struct md_rdev *rdev = log->rdev;
1071 struct page *page;
1072 struct r5l_meta_block *mb;
1073 sector_t cp = log->rdev->journal_tail;
1074 u32 stored_crc, expected_crc;
1075 bool create_super = false;
1076 int ret;
1078 /* Make sure it's valid */
1079 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1080 cp = 0;
1081 page = alloc_page(GFP_KERNEL);
1082 if (!page)
1083 return -ENOMEM;
1085 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1086 ret = -EIO;
1087 goto ioerr;
1089 mb = page_address(page);
1091 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1092 mb->version != R5LOG_VERSION) {
1093 create_super = true;
1094 goto create;
1096 stored_crc = le32_to_cpu(mb->checksum);
1097 mb->checksum = 0;
1098 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1099 if (stored_crc != expected_crc) {
1100 create_super = true;
1101 goto create;
1103 if (le64_to_cpu(mb->position) != cp) {
1104 create_super = true;
1105 goto create;
1107 create:
1108 if (create_super) {
1109 log->last_cp_seq = prandom_u32();
1110 cp = 0;
1112 * Make sure super points to correct address. Log might have
1113 * data very soon. If super hasn't correct log tail address,
1114 * recovery can't find the log
1116 r5l_write_super(log, cp);
1117 } else
1118 log->last_cp_seq = le64_to_cpu(mb->seq);
1120 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1121 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1122 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1123 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1124 log->last_checkpoint = cp;
1126 __free_page(page);
1128 return r5l_recovery_log(log);
1129 ioerr:
1130 __free_page(page);
1131 return ret;
1134 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1136 struct r5l_log *log;
1138 if (PAGE_SIZE != 4096)
1139 return -EINVAL;
1140 log = kzalloc(sizeof(*log), GFP_KERNEL);
1141 if (!log)
1142 return -ENOMEM;
1143 log->rdev = rdev;
1145 log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1147 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1148 sizeof(rdev->mddev->uuid));
1150 mutex_init(&log->io_mutex);
1152 spin_lock_init(&log->io_list_lock);
1153 INIT_LIST_HEAD(&log->running_ios);
1154 INIT_LIST_HEAD(&log->io_end_ios);
1155 INIT_LIST_HEAD(&log->flushing_ios);
1156 INIT_LIST_HEAD(&log->finished_ios);
1157 bio_init(&log->flush_bio);
1159 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1160 if (!log->io_kc)
1161 goto io_kc;
1163 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1164 log->rdev->mddev, "reclaim");
1165 if (!log->reclaim_thread)
1166 goto reclaim_thread;
1167 init_waitqueue_head(&log->iounit_wait);
1169 INIT_LIST_HEAD(&log->no_space_stripes);
1170 spin_lock_init(&log->no_space_stripes_lock);
1172 if (r5l_load_log(log))
1173 goto error;
1175 conf->log = log;
1176 return 0;
1177 error:
1178 md_unregister_thread(&log->reclaim_thread);
1179 reclaim_thread:
1180 kmem_cache_destroy(log->io_kc);
1181 io_kc:
1182 kfree(log);
1183 return -EINVAL;
1186 void r5l_exit_log(struct r5l_log *log)
1188 md_unregister_thread(&log->reclaim_thread);
1189 kmem_cache_destroy(log->io_kc);
1190 kfree(log);