irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / misc / mic / scif / scif_dma.c
blob95a13c629a8e976477235081b199a77a79391fb1
1 /*
2 * Intel MIC Platform Software Stack (MPSS)
4 * Copyright(c) 2015 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
15 * Intel SCIF driver.
18 #include "scif_main.h"
19 #include "scif_map.h"
22 * struct scif_dma_comp_cb - SCIF DMA completion callback
24 * @dma_completion_func: DMA completion callback
25 * @cb_cookie: DMA completion callback cookie
26 * @temp_buf: Temporary buffer
27 * @temp_buf_to_free: Temporary buffer to be freed
28 * @is_cache: Is a kmem_cache allocated buffer
29 * @dst_offset: Destination registration offset
30 * @dst_window: Destination registration window
31 * @len: Length of the temp buffer
32 * @temp_phys: DMA address of the temp buffer
33 * @sdev: The SCIF device
34 * @header_padding: padding for cache line alignment
36 struct scif_dma_comp_cb {
37 void (*dma_completion_func)(void *cookie);
38 void *cb_cookie;
39 u8 *temp_buf;
40 u8 *temp_buf_to_free;
41 bool is_cache;
42 s64 dst_offset;
43 struct scif_window *dst_window;
44 size_t len;
45 dma_addr_t temp_phys;
46 struct scif_dev *sdev;
47 int header_padding;
50 /**
51 * struct scif_copy_work - Work for DMA copy
53 * @src_offset: Starting source offset
54 * @dst_offset: Starting destination offset
55 * @src_window: Starting src registered window
56 * @dst_window: Starting dst registered window
57 * @loopback: true if this is a loopback DMA transfer
58 * @len: Length of the transfer
59 * @comp_cb: DMA copy completion callback
60 * @remote_dev: The remote SCIF peer device
61 * @fence_type: polling or interrupt based
62 * @ordered: is this a tail byte ordered DMA transfer
64 struct scif_copy_work {
65 s64 src_offset;
66 s64 dst_offset;
67 struct scif_window *src_window;
68 struct scif_window *dst_window;
69 int loopback;
70 size_t len;
71 struct scif_dma_comp_cb *comp_cb;
72 struct scif_dev *remote_dev;
73 int fence_type;
74 bool ordered;
77 #ifndef list_entry_next
78 #define list_entry_next(pos, member) \
79 list_entry(pos->member.next, typeof(*pos), member)
80 #endif
82 /**
83 * scif_reserve_dma_chan:
84 * @ep: Endpoint Descriptor.
86 * This routine reserves a DMA channel for a particular
87 * endpoint. All DMA transfers for an endpoint are always
88 * programmed on the same DMA channel.
90 int scif_reserve_dma_chan(struct scif_endpt *ep)
92 int err = 0;
93 struct scif_dev *scifdev;
94 struct scif_hw_dev *sdev;
95 struct dma_chan *chan;
97 /* Loopback DMAs are not supported on the management node */
98 if (!scif_info.nodeid && scifdev_self(ep->remote_dev))
99 return 0;
100 if (scif_info.nodeid)
101 scifdev = &scif_dev[0];
102 else
103 scifdev = ep->remote_dev;
104 sdev = scifdev->sdev;
105 if (!sdev->num_dma_ch)
106 return -ENODEV;
107 chan = sdev->dma_ch[scifdev->dma_ch_idx];
108 scifdev->dma_ch_idx = (scifdev->dma_ch_idx + 1) % sdev->num_dma_ch;
109 mutex_lock(&ep->rma_info.rma_lock);
110 ep->rma_info.dma_chan = chan;
111 mutex_unlock(&ep->rma_info.rma_lock);
112 return err;
115 #ifdef CONFIG_MMU_NOTIFIER
117 * scif_rma_destroy_tcw:
119 * This routine destroys temporary cached windows
121 static
122 void __scif_rma_destroy_tcw(struct scif_mmu_notif *mmn,
123 struct scif_endpt *ep,
124 u64 start, u64 len)
126 struct list_head *item, *tmp;
127 struct scif_window *window;
128 u64 start_va, end_va;
129 u64 end = start + len;
131 if (end <= start)
132 return;
134 list_for_each_safe(item, tmp, &mmn->tc_reg_list) {
135 window = list_entry(item, struct scif_window, list);
136 ep = (struct scif_endpt *)window->ep;
137 if (!len)
138 break;
139 start_va = window->va_for_temp;
140 end_va = start_va + (window->nr_pages << PAGE_SHIFT);
141 if (start < start_va && end <= start_va)
142 break;
143 if (start >= end_va)
144 continue;
145 __scif_rma_destroy_tcw_helper(window);
149 static void scif_rma_destroy_tcw(struct scif_mmu_notif *mmn, u64 start, u64 len)
151 struct scif_endpt *ep = mmn->ep;
153 spin_lock(&ep->rma_info.tc_lock);
154 __scif_rma_destroy_tcw(mmn, ep, start, len);
155 spin_unlock(&ep->rma_info.tc_lock);
158 static void scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
160 struct list_head *item, *tmp;
161 struct scif_mmu_notif *mmn;
163 list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
164 mmn = list_entry(item, struct scif_mmu_notif, list);
165 scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
169 static void __scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
171 struct list_head *item, *tmp;
172 struct scif_mmu_notif *mmn;
174 spin_lock(&ep->rma_info.tc_lock);
175 list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
176 mmn = list_entry(item, struct scif_mmu_notif, list);
177 __scif_rma_destroy_tcw(mmn, ep, 0, ULONG_MAX);
179 spin_unlock(&ep->rma_info.tc_lock);
182 static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
184 if ((cur_bytes >> PAGE_SHIFT) > scif_info.rma_tc_limit)
185 return false;
186 if ((atomic_read(&ep->rma_info.tcw_total_pages)
187 + (cur_bytes >> PAGE_SHIFT)) >
188 scif_info.rma_tc_limit) {
189 dev_info(scif_info.mdev.this_device,
190 "%s %d total=%d, current=%zu reached max\n",
191 __func__, __LINE__,
192 atomic_read(&ep->rma_info.tcw_total_pages),
193 (1 + (cur_bytes >> PAGE_SHIFT)));
194 scif_rma_destroy_tcw_invalid();
195 __scif_rma_destroy_tcw_ep(ep);
197 return true;
200 static void scif_mmu_notifier_release(struct mmu_notifier *mn,
201 struct mm_struct *mm)
203 struct scif_mmu_notif *mmn;
205 mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
206 scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
207 schedule_work(&scif_info.misc_work);
210 static void scif_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
211 struct mm_struct *mm,
212 unsigned long address)
214 struct scif_mmu_notif *mmn;
216 mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
217 scif_rma_destroy_tcw(mmn, address, PAGE_SIZE);
220 static void scif_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
221 struct mm_struct *mm,
222 unsigned long start,
223 unsigned long end)
225 struct scif_mmu_notif *mmn;
227 mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
228 scif_rma_destroy_tcw(mmn, start, end - start);
231 static void scif_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
232 struct mm_struct *mm,
233 unsigned long start,
234 unsigned long end)
237 * Nothing to do here, everything needed was done in
238 * invalidate_range_start.
242 static const struct mmu_notifier_ops scif_mmu_notifier_ops = {
243 .release = scif_mmu_notifier_release,
244 .clear_flush_young = NULL,
245 .invalidate_page = scif_mmu_notifier_invalidate_page,
246 .invalidate_range_start = scif_mmu_notifier_invalidate_range_start,
247 .invalidate_range_end = scif_mmu_notifier_invalidate_range_end};
249 static void scif_ep_unregister_mmu_notifier(struct scif_endpt *ep)
251 struct scif_endpt_rma_info *rma = &ep->rma_info;
252 struct scif_mmu_notif *mmn = NULL;
253 struct list_head *item, *tmp;
255 mutex_lock(&ep->rma_info.mmn_lock);
256 list_for_each_safe(item, tmp, &rma->mmn_list) {
257 mmn = list_entry(item, struct scif_mmu_notif, list);
258 mmu_notifier_unregister(&mmn->ep_mmu_notifier, mmn->mm);
259 list_del(item);
260 kfree(mmn);
262 mutex_unlock(&ep->rma_info.mmn_lock);
265 static void scif_init_mmu_notifier(struct scif_mmu_notif *mmn,
266 struct mm_struct *mm, struct scif_endpt *ep)
268 mmn->ep = ep;
269 mmn->mm = mm;
270 mmn->ep_mmu_notifier.ops = &scif_mmu_notifier_ops;
271 INIT_LIST_HEAD(&mmn->list);
272 INIT_LIST_HEAD(&mmn->tc_reg_list);
275 static struct scif_mmu_notif *
276 scif_find_mmu_notifier(struct mm_struct *mm, struct scif_endpt_rma_info *rma)
278 struct scif_mmu_notif *mmn;
279 struct list_head *item;
281 list_for_each(item, &rma->mmn_list) {
282 mmn = list_entry(item, struct scif_mmu_notif, list);
283 if (mmn->mm == mm)
284 return mmn;
286 return NULL;
289 static struct scif_mmu_notif *
290 scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
292 struct scif_mmu_notif *mmn
293 = kzalloc(sizeof(*mmn), GFP_KERNEL);
295 if (!mmn)
296 return ERR_PTR(ENOMEM);
298 scif_init_mmu_notifier(mmn, current->mm, ep);
299 if (mmu_notifier_register(&mmn->ep_mmu_notifier,
300 current->mm)) {
301 kfree(mmn);
302 return ERR_PTR(EBUSY);
304 list_add(&mmn->list, &ep->rma_info.mmn_list);
305 return mmn;
309 * Called from the misc thread to destroy temporary cached windows and
310 * unregister the MMU notifier for the SCIF endpoint.
312 void scif_mmu_notif_handler(struct work_struct *work)
314 struct list_head *pos, *tmpq;
315 struct scif_endpt *ep;
316 restart:
317 scif_rma_destroy_tcw_invalid();
318 spin_lock(&scif_info.rmalock);
319 list_for_each_safe(pos, tmpq, &scif_info.mmu_notif_cleanup) {
320 ep = list_entry(pos, struct scif_endpt, mmu_list);
321 list_del(&ep->mmu_list);
322 spin_unlock(&scif_info.rmalock);
323 scif_rma_destroy_tcw_ep(ep);
324 scif_ep_unregister_mmu_notifier(ep);
325 goto restart;
327 spin_unlock(&scif_info.rmalock);
330 static bool scif_is_set_reg_cache(int flags)
332 return !!(flags & SCIF_RMA_USECACHE);
334 #else
335 static struct scif_mmu_notif *
336 scif_find_mmu_notifier(struct mm_struct *mm,
337 struct scif_endpt_rma_info *rma)
339 return NULL;
342 static struct scif_mmu_notif *
343 scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
345 return NULL;
348 void scif_mmu_notif_handler(struct work_struct *work)
352 static bool scif_is_set_reg_cache(int flags)
354 return false;
357 static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
359 return false;
361 #endif
364 * scif_register_temp:
365 * @epd: End Point Descriptor.
366 * @addr: virtual address to/from which to copy
367 * @len: length of range to copy
368 * @out_offset: computed offset returned by reference.
369 * @out_window: allocated registered window returned by reference.
371 * Create a temporary registered window. The peer will not know about this
372 * window. This API is used for scif_vreadfrom()/scif_vwriteto() API's.
374 static int
375 scif_register_temp(scif_epd_t epd, unsigned long addr, size_t len, int prot,
376 off_t *out_offset, struct scif_window **out_window)
378 struct scif_endpt *ep = (struct scif_endpt *)epd;
379 int err;
380 scif_pinned_pages_t pinned_pages;
381 size_t aligned_len;
383 aligned_len = ALIGN(len, PAGE_SIZE);
385 err = __scif_pin_pages((void *)(addr & PAGE_MASK),
386 aligned_len, &prot, 0, &pinned_pages);
387 if (err)
388 return err;
390 pinned_pages->prot = prot;
392 /* Compute the offset for this registration */
393 err = scif_get_window_offset(ep, 0, 0,
394 aligned_len >> PAGE_SHIFT,
395 (s64 *)out_offset);
396 if (err)
397 goto error_unpin;
399 /* Allocate and prepare self registration window */
400 *out_window = scif_create_window(ep, aligned_len >> PAGE_SHIFT,
401 *out_offset, true);
402 if (!*out_window) {
403 scif_free_window_offset(ep, NULL, *out_offset);
404 err = -ENOMEM;
405 goto error_unpin;
408 (*out_window)->pinned_pages = pinned_pages;
409 (*out_window)->nr_pages = pinned_pages->nr_pages;
410 (*out_window)->prot = pinned_pages->prot;
412 (*out_window)->va_for_temp = addr & PAGE_MASK;
413 err = scif_map_window(ep->remote_dev, *out_window);
414 if (err) {
415 /* Something went wrong! Rollback */
416 scif_destroy_window(ep, *out_window);
417 *out_window = NULL;
418 } else {
419 *out_offset |= (addr - (*out_window)->va_for_temp);
421 return err;
422 error_unpin:
423 if (err)
424 dev_err(&ep->remote_dev->sdev->dev,
425 "%s %d err %d\n", __func__, __LINE__, err);
426 scif_unpin_pages(pinned_pages);
427 return err;
430 #define SCIF_DMA_TO (3 * HZ)
433 * scif_sync_dma - Program a DMA without an interrupt descriptor
435 * @dev - The address of the pointer to the device instance used
436 * for DMA registration.
437 * @chan - DMA channel to be used.
438 * @sync_wait: Wait for DMA to complete?
440 * Return 0 on success and -errno on error.
442 static int scif_sync_dma(struct scif_hw_dev *sdev, struct dma_chan *chan,
443 bool sync_wait)
445 int err = 0;
446 struct dma_async_tx_descriptor *tx = NULL;
447 enum dma_ctrl_flags flags = DMA_PREP_FENCE;
448 dma_cookie_t cookie;
449 struct dma_device *ddev;
451 if (!chan) {
452 err = -EIO;
453 dev_err(&sdev->dev, "%s %d err %d\n",
454 __func__, __LINE__, err);
455 return err;
457 ddev = chan->device;
459 tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
460 if (!tx) {
461 err = -ENOMEM;
462 dev_err(&sdev->dev, "%s %d err %d\n",
463 __func__, __LINE__, err);
464 goto release;
466 cookie = tx->tx_submit(tx);
468 if (dma_submit_error(cookie)) {
469 err = -ENOMEM;
470 dev_err(&sdev->dev, "%s %d err %d\n",
471 __func__, __LINE__, err);
472 goto release;
474 if (!sync_wait) {
475 dma_async_issue_pending(chan);
476 } else {
477 if (dma_sync_wait(chan, cookie) == DMA_COMPLETE) {
478 err = 0;
479 } else {
480 err = -EIO;
481 dev_err(&sdev->dev, "%s %d err %d\n",
482 __func__, __LINE__, err);
485 release:
486 return err;
489 static void scif_dma_callback(void *arg)
491 struct completion *done = (struct completion *)arg;
493 complete(done);
496 #define SCIF_DMA_SYNC_WAIT true
497 #define SCIF_DMA_POLL BIT(0)
498 #define SCIF_DMA_INTR BIT(1)
501 * scif_async_dma - Program a DMA with an interrupt descriptor
503 * @dev - The address of the pointer to the device instance used
504 * for DMA registration.
505 * @chan - DMA channel to be used.
506 * Return 0 on success and -errno on error.
508 static int scif_async_dma(struct scif_hw_dev *sdev, struct dma_chan *chan)
510 int err = 0;
511 struct dma_device *ddev;
512 struct dma_async_tx_descriptor *tx = NULL;
513 enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
514 DECLARE_COMPLETION_ONSTACK(done_wait);
515 dma_cookie_t cookie;
516 enum dma_status status;
518 if (!chan) {
519 err = -EIO;
520 dev_err(&sdev->dev, "%s %d err %d\n",
521 __func__, __LINE__, err);
522 return err;
524 ddev = chan->device;
526 tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
527 if (!tx) {
528 err = -ENOMEM;
529 dev_err(&sdev->dev, "%s %d err %d\n",
530 __func__, __LINE__, err);
531 goto release;
533 reinit_completion(&done_wait);
534 tx->callback = scif_dma_callback;
535 tx->callback_param = &done_wait;
536 cookie = tx->tx_submit(tx);
538 if (dma_submit_error(cookie)) {
539 err = -ENOMEM;
540 dev_err(&sdev->dev, "%s %d err %d\n",
541 __func__, __LINE__, err);
542 goto release;
544 dma_async_issue_pending(chan);
546 err = wait_for_completion_timeout(&done_wait, SCIF_DMA_TO);
547 if (!err) {
548 err = -EIO;
549 dev_err(&sdev->dev, "%s %d err %d\n",
550 __func__, __LINE__, err);
551 goto release;
553 err = 0;
554 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
555 if (status != DMA_COMPLETE) {
556 err = -EIO;
557 dev_err(&sdev->dev, "%s %d err %d\n",
558 __func__, __LINE__, err);
559 goto release;
561 release:
562 return err;
566 * scif_drain_dma_poll - Drain all outstanding DMA operations for a particular
567 * DMA channel via polling.
569 * @sdev - The SCIF device
570 * @chan - DMA channel
571 * Return 0 on success and -errno on error.
573 static int scif_drain_dma_poll(struct scif_hw_dev *sdev, struct dma_chan *chan)
575 if (!chan)
576 return -EINVAL;
577 return scif_sync_dma(sdev, chan, SCIF_DMA_SYNC_WAIT);
581 * scif_drain_dma_intr - Drain all outstanding DMA operations for a particular
582 * DMA channel via interrupt based blocking wait.
584 * @sdev - The SCIF device
585 * @chan - DMA channel
586 * Return 0 on success and -errno on error.
588 int scif_drain_dma_intr(struct scif_hw_dev *sdev, struct dma_chan *chan)
590 if (!chan)
591 return -EINVAL;
592 return scif_async_dma(sdev, chan);
596 * scif_rma_destroy_windows:
598 * This routine destroys all windows queued for cleanup
600 void scif_rma_destroy_windows(void)
602 struct list_head *item, *tmp;
603 struct scif_window *window;
604 struct scif_endpt *ep;
605 struct dma_chan *chan;
607 might_sleep();
608 restart:
609 spin_lock(&scif_info.rmalock);
610 list_for_each_safe(item, tmp, &scif_info.rma) {
611 window = list_entry(item, struct scif_window,
612 list);
613 ep = (struct scif_endpt *)window->ep;
614 chan = ep->rma_info.dma_chan;
616 list_del_init(&window->list);
617 spin_unlock(&scif_info.rmalock);
618 if (!chan || !scifdev_alive(ep) ||
619 !scif_drain_dma_intr(ep->remote_dev->sdev,
620 ep->rma_info.dma_chan))
621 /* Remove window from global list */
622 window->unreg_state = OP_COMPLETED;
623 else
624 dev_warn(&ep->remote_dev->sdev->dev,
625 "DMA engine hung?\n");
626 if (window->unreg_state == OP_COMPLETED) {
627 if (window->type == SCIF_WINDOW_SELF)
628 scif_destroy_window(ep, window);
629 else
630 scif_destroy_remote_window(window);
631 atomic_dec(&ep->rma_info.tw_refcount);
633 goto restart;
635 spin_unlock(&scif_info.rmalock);
639 * scif_rma_destroy_tcw:
641 * This routine destroys temporary cached registered windows
642 * which have been queued for cleanup.
644 void scif_rma_destroy_tcw_invalid(void)
646 struct list_head *item, *tmp;
647 struct scif_window *window;
648 struct scif_endpt *ep;
649 struct dma_chan *chan;
651 might_sleep();
652 restart:
653 spin_lock(&scif_info.rmalock);
654 list_for_each_safe(item, tmp, &scif_info.rma_tc) {
655 window = list_entry(item, struct scif_window, list);
656 ep = (struct scif_endpt *)window->ep;
657 chan = ep->rma_info.dma_chan;
658 list_del_init(&window->list);
659 spin_unlock(&scif_info.rmalock);
660 mutex_lock(&ep->rma_info.rma_lock);
661 if (!chan || !scifdev_alive(ep) ||
662 !scif_drain_dma_intr(ep->remote_dev->sdev,
663 ep->rma_info.dma_chan)) {
664 atomic_sub(window->nr_pages,
665 &ep->rma_info.tcw_total_pages);
666 scif_destroy_window(ep, window);
667 atomic_dec(&ep->rma_info.tcw_refcount);
668 } else {
669 dev_warn(&ep->remote_dev->sdev->dev,
670 "DMA engine hung?\n");
672 mutex_unlock(&ep->rma_info.rma_lock);
673 goto restart;
675 spin_unlock(&scif_info.rmalock);
678 static inline
679 void *_get_local_va(off_t off, struct scif_window *window, size_t len)
681 int page_nr = (off - window->offset) >> PAGE_SHIFT;
682 off_t page_off = off & ~PAGE_MASK;
683 void *va = NULL;
685 if (window->type == SCIF_WINDOW_SELF) {
686 struct page **pages = window->pinned_pages->pages;
688 va = page_address(pages[page_nr]) + page_off;
690 return va;
693 static inline
694 void *ioremap_remote(off_t off, struct scif_window *window,
695 size_t len, struct scif_dev *dev,
696 struct scif_window_iter *iter)
698 dma_addr_t phys = scif_off_to_dma_addr(window, off, NULL, iter);
701 * If the DMA address is not card relative then we need the DMA
702 * addresses to be an offset into the bar. The aperture base was already
703 * added so subtract it here since scif_ioremap is going to add it again
705 if (!scifdev_self(dev) && window->type == SCIF_WINDOW_PEER &&
706 dev->sdev->aper && !dev->sdev->card_rel_da)
707 phys = phys - dev->sdev->aper->pa;
708 return scif_ioremap(phys, len, dev);
711 static inline void
712 iounmap_remote(void *virt, size_t size, struct scif_copy_work *work)
714 scif_iounmap(virt, size, work->remote_dev);
718 * Takes care of ordering issue caused by
719 * 1. Hardware: Only in the case of cpu copy from mgmt node to card
720 * because of WC memory.
721 * 2. Software: If memcpy reorders copy instructions for optimization.
722 * This could happen at both mgmt node and card.
724 static inline void
725 scif_ordered_memcpy_toio(char *dst, const char *src, size_t count)
727 if (!count)
728 return;
730 memcpy_toio((void __iomem __force *)dst, src, --count);
731 /* Order the last byte with the previous stores */
732 wmb();
733 *(dst + count) = *(src + count);
736 static inline void scif_unaligned_cpy_toio(char *dst, const char *src,
737 size_t count, bool ordered)
739 if (ordered)
740 scif_ordered_memcpy_toio(dst, src, count);
741 else
742 memcpy_toio((void __iomem __force *)dst, src, count);
745 static inline
746 void scif_ordered_memcpy_fromio(char *dst, const char *src, size_t count)
748 if (!count)
749 return;
751 memcpy_fromio(dst, (void __iomem __force *)src, --count);
752 /* Order the last byte with the previous loads */
753 rmb();
754 *(dst + count) = *(src + count);
757 static inline void scif_unaligned_cpy_fromio(char *dst, const char *src,
758 size_t count, bool ordered)
760 if (ordered)
761 scif_ordered_memcpy_fromio(dst, src, count);
762 else
763 memcpy_fromio(dst, (void __iomem __force *)src, count);
766 #define SCIF_RMA_ERROR_CODE (~(dma_addr_t)0x0)
769 * scif_off_to_dma_addr:
770 * Obtain the dma_addr given the window and the offset.
771 * @window: Registered window.
772 * @off: Window offset.
773 * @nr_bytes: Return the number of contiguous bytes till next DMA addr index.
774 * @index: Return the index of the dma_addr array found.
775 * @start_off: start offset of index of the dma addr array found.
776 * The nr_bytes provides the callee an estimate of the maximum possible
777 * DMA xfer possible while the index/start_off provide faster lookups
778 * for the next iteration.
780 dma_addr_t scif_off_to_dma_addr(struct scif_window *window, s64 off,
781 size_t *nr_bytes, struct scif_window_iter *iter)
783 int i, page_nr;
784 s64 start, end;
785 off_t page_off;
787 if (window->nr_pages == window->nr_contig_chunks) {
788 page_nr = (off - window->offset) >> PAGE_SHIFT;
789 page_off = off & ~PAGE_MASK;
791 if (nr_bytes)
792 *nr_bytes = PAGE_SIZE - page_off;
793 return window->dma_addr[page_nr] | page_off;
795 if (iter) {
796 i = iter->index;
797 start = iter->offset;
798 } else {
799 i = 0;
800 start = window->offset;
802 for (; i < window->nr_contig_chunks; i++) {
803 end = start + (window->num_pages[i] << PAGE_SHIFT);
804 if (off >= start && off < end) {
805 if (iter) {
806 iter->index = i;
807 iter->offset = start;
809 if (nr_bytes)
810 *nr_bytes = end - off;
811 return (window->dma_addr[i] + (off - start));
813 start += (window->num_pages[i] << PAGE_SHIFT);
815 dev_err(scif_info.mdev.this_device,
816 "%s %d BUG. Addr not found? window %p off 0x%llx\n",
817 __func__, __LINE__, window, off);
818 return SCIF_RMA_ERROR_CODE;
822 * Copy between rma window and temporary buffer
824 static void scif_rma_local_cpu_copy(s64 offset, struct scif_window *window,
825 u8 *temp, size_t rem_len, bool to_temp)
827 void *window_virt;
828 size_t loop_len;
829 int offset_in_page;
830 s64 end_offset;
832 offset_in_page = offset & ~PAGE_MASK;
833 loop_len = PAGE_SIZE - offset_in_page;
835 if (rem_len < loop_len)
836 loop_len = rem_len;
838 window_virt = _get_local_va(offset, window, loop_len);
839 if (!window_virt)
840 return;
841 if (to_temp)
842 memcpy(temp, window_virt, loop_len);
843 else
844 memcpy(window_virt, temp, loop_len);
846 offset += loop_len;
847 temp += loop_len;
848 rem_len -= loop_len;
850 end_offset = window->offset +
851 (window->nr_pages << PAGE_SHIFT);
852 while (rem_len) {
853 if (offset == end_offset) {
854 window = list_entry_next(window, list);
855 end_offset = window->offset +
856 (window->nr_pages << PAGE_SHIFT);
858 loop_len = min(PAGE_SIZE, rem_len);
859 window_virt = _get_local_va(offset, window, loop_len);
860 if (!window_virt)
861 return;
862 if (to_temp)
863 memcpy(temp, window_virt, loop_len);
864 else
865 memcpy(window_virt, temp, loop_len);
866 offset += loop_len;
867 temp += loop_len;
868 rem_len -= loop_len;
873 * scif_rma_completion_cb:
874 * @data: RMA cookie
876 * RMA interrupt completion callback.
878 static void scif_rma_completion_cb(void *data)
880 struct scif_dma_comp_cb *comp_cb = data;
882 /* Free DMA Completion CB. */
883 if (comp_cb->dst_window)
884 scif_rma_local_cpu_copy(comp_cb->dst_offset,
885 comp_cb->dst_window,
886 comp_cb->temp_buf +
887 comp_cb->header_padding,
888 comp_cb->len, false);
889 scif_unmap_single(comp_cb->temp_phys, comp_cb->sdev,
890 SCIF_KMEM_UNALIGNED_BUF_SIZE);
891 if (comp_cb->is_cache)
892 kmem_cache_free(unaligned_cache,
893 comp_cb->temp_buf_to_free);
894 else
895 kfree(comp_cb->temp_buf_to_free);
898 /* Copies between temporary buffer and offsets provided in work */
899 static int
900 scif_rma_list_dma_copy_unaligned(struct scif_copy_work *work,
901 u8 *temp, struct dma_chan *chan,
902 bool src_local)
904 struct scif_dma_comp_cb *comp_cb = work->comp_cb;
905 dma_addr_t window_dma_addr, temp_dma_addr;
906 dma_addr_t temp_phys = comp_cb->temp_phys;
907 size_t loop_len, nr_contig_bytes = 0, remaining_len = work->len;
908 int offset_in_ca, ret = 0;
909 s64 end_offset, offset;
910 struct scif_window *window;
911 void *window_virt_addr;
912 size_t tail_len;
913 struct dma_async_tx_descriptor *tx;
914 struct dma_device *dev = chan->device;
915 dma_cookie_t cookie;
917 if (src_local) {
918 offset = work->dst_offset;
919 window = work->dst_window;
920 } else {
921 offset = work->src_offset;
922 window = work->src_window;
925 offset_in_ca = offset & (L1_CACHE_BYTES - 1);
926 if (offset_in_ca) {
927 loop_len = L1_CACHE_BYTES - offset_in_ca;
928 loop_len = min(loop_len, remaining_len);
929 window_virt_addr = ioremap_remote(offset, window,
930 loop_len,
931 work->remote_dev,
932 NULL);
933 if (!window_virt_addr)
934 return -ENOMEM;
935 if (src_local)
936 scif_unaligned_cpy_toio(window_virt_addr, temp,
937 loop_len,
938 work->ordered &&
939 !(remaining_len - loop_len));
940 else
941 scif_unaligned_cpy_fromio(temp, window_virt_addr,
942 loop_len, work->ordered &&
943 !(remaining_len - loop_len));
944 iounmap_remote(window_virt_addr, loop_len, work);
946 offset += loop_len;
947 temp += loop_len;
948 temp_phys += loop_len;
949 remaining_len -= loop_len;
952 offset_in_ca = offset & ~PAGE_MASK;
953 end_offset = window->offset +
954 (window->nr_pages << PAGE_SHIFT);
956 tail_len = remaining_len & (L1_CACHE_BYTES - 1);
957 remaining_len -= tail_len;
958 while (remaining_len) {
959 if (offset == end_offset) {
960 window = list_entry_next(window, list);
961 end_offset = window->offset +
962 (window->nr_pages << PAGE_SHIFT);
964 if (scif_is_mgmt_node())
965 temp_dma_addr = temp_phys;
966 else
967 /* Fix if we ever enable IOMMU on the card */
968 temp_dma_addr = (dma_addr_t)virt_to_phys(temp);
969 window_dma_addr = scif_off_to_dma_addr(window, offset,
970 &nr_contig_bytes,
971 NULL);
972 loop_len = min(nr_contig_bytes, remaining_len);
973 if (src_local) {
974 if (work->ordered && !tail_len &&
975 !(remaining_len - loop_len) &&
976 loop_len != L1_CACHE_BYTES) {
978 * Break up the last chunk of the transfer into
979 * two steps. if there is no tail to guarantee
980 * DMA ordering. SCIF_DMA_POLLING inserts
981 * a status update descriptor in step 1 which
982 * acts as a double sided synchronization fence
983 * for the DMA engine to ensure that the last
984 * cache line in step 2 is updated last.
986 /* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
987 tx =
988 dev->device_prep_dma_memcpy(chan,
989 window_dma_addr,
990 temp_dma_addr,
991 loop_len -
992 L1_CACHE_BYTES,
993 DMA_PREP_FENCE);
994 if (!tx) {
995 ret = -ENOMEM;
996 goto err;
998 cookie = tx->tx_submit(tx);
999 if (dma_submit_error(cookie)) {
1000 ret = -ENOMEM;
1001 goto err;
1003 dma_async_issue_pending(chan);
1004 offset += (loop_len - L1_CACHE_BYTES);
1005 temp_dma_addr += (loop_len - L1_CACHE_BYTES);
1006 window_dma_addr += (loop_len - L1_CACHE_BYTES);
1007 remaining_len -= (loop_len - L1_CACHE_BYTES);
1008 loop_len = remaining_len;
1010 /* Step 2) DMA: L1_CACHE_BYTES */
1011 tx =
1012 dev->device_prep_dma_memcpy(chan,
1013 window_dma_addr,
1014 temp_dma_addr,
1015 loop_len, 0);
1016 if (!tx) {
1017 ret = -ENOMEM;
1018 goto err;
1020 cookie = tx->tx_submit(tx);
1021 if (dma_submit_error(cookie)) {
1022 ret = -ENOMEM;
1023 goto err;
1025 dma_async_issue_pending(chan);
1026 } else {
1027 tx =
1028 dev->device_prep_dma_memcpy(chan,
1029 window_dma_addr,
1030 temp_dma_addr,
1031 loop_len, 0);
1032 if (!tx) {
1033 ret = -ENOMEM;
1034 goto err;
1036 cookie = tx->tx_submit(tx);
1037 if (dma_submit_error(cookie)) {
1038 ret = -ENOMEM;
1039 goto err;
1041 dma_async_issue_pending(chan);
1043 } else {
1044 tx = dev->device_prep_dma_memcpy(chan, temp_dma_addr,
1045 window_dma_addr, loop_len, 0);
1046 if (!tx) {
1047 ret = -ENOMEM;
1048 goto err;
1050 cookie = tx->tx_submit(tx);
1051 if (dma_submit_error(cookie)) {
1052 ret = -ENOMEM;
1053 goto err;
1055 dma_async_issue_pending(chan);
1057 if (ret < 0)
1058 goto err;
1059 offset += loop_len;
1060 temp += loop_len;
1061 temp_phys += loop_len;
1062 remaining_len -= loop_len;
1063 offset_in_ca = 0;
1065 if (tail_len) {
1066 if (offset == end_offset) {
1067 window = list_entry_next(window, list);
1068 end_offset = window->offset +
1069 (window->nr_pages << PAGE_SHIFT);
1071 window_virt_addr = ioremap_remote(offset, window, tail_len,
1072 work->remote_dev,
1073 NULL);
1074 if (!window_virt_addr)
1075 return -ENOMEM;
1077 * The CPU copy for the tail bytes must be initiated only once
1078 * previous DMA transfers for this endpoint have completed
1079 * to guarantee ordering.
1081 if (work->ordered) {
1082 struct scif_dev *rdev = work->remote_dev;
1084 ret = scif_drain_dma_intr(rdev->sdev, chan);
1085 if (ret)
1086 return ret;
1088 if (src_local)
1089 scif_unaligned_cpy_toio(window_virt_addr, temp,
1090 tail_len, work->ordered);
1091 else
1092 scif_unaligned_cpy_fromio(temp, window_virt_addr,
1093 tail_len, work->ordered);
1094 iounmap_remote(window_virt_addr, tail_len, work);
1096 tx = dev->device_prep_dma_memcpy(chan, 0, 0, 0, DMA_PREP_INTERRUPT);
1097 if (!tx) {
1098 ret = -ENOMEM;
1099 return ret;
1101 tx->callback = &scif_rma_completion_cb;
1102 tx->callback_param = comp_cb;
1103 cookie = tx->tx_submit(tx);
1105 if (dma_submit_error(cookie)) {
1106 ret = -ENOMEM;
1107 return ret;
1109 dma_async_issue_pending(chan);
1110 return 0;
1111 err:
1112 dev_err(scif_info.mdev.this_device,
1113 "%s %d Desc Prog Failed ret %d\n",
1114 __func__, __LINE__, ret);
1115 return ret;
1119 * _scif_rma_list_dma_copy_aligned:
1121 * Traverse all the windows and perform DMA copy.
1123 static int _scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
1124 struct dma_chan *chan)
1126 dma_addr_t src_dma_addr, dst_dma_addr;
1127 size_t loop_len, remaining_len, src_contig_bytes = 0;
1128 size_t dst_contig_bytes = 0;
1129 struct scif_window_iter src_win_iter;
1130 struct scif_window_iter dst_win_iter;
1131 s64 end_src_offset, end_dst_offset;
1132 struct scif_window *src_window = work->src_window;
1133 struct scif_window *dst_window = work->dst_window;
1134 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1135 int ret = 0;
1136 struct dma_async_tx_descriptor *tx;
1137 struct dma_device *dev = chan->device;
1138 dma_cookie_t cookie;
1140 remaining_len = work->len;
1142 scif_init_window_iter(src_window, &src_win_iter);
1143 scif_init_window_iter(dst_window, &dst_win_iter);
1144 end_src_offset = src_window->offset +
1145 (src_window->nr_pages << PAGE_SHIFT);
1146 end_dst_offset = dst_window->offset +
1147 (dst_window->nr_pages << PAGE_SHIFT);
1148 while (remaining_len) {
1149 if (src_offset == end_src_offset) {
1150 src_window = list_entry_next(src_window, list);
1151 end_src_offset = src_window->offset +
1152 (src_window->nr_pages << PAGE_SHIFT);
1153 scif_init_window_iter(src_window, &src_win_iter);
1155 if (dst_offset == end_dst_offset) {
1156 dst_window = list_entry_next(dst_window, list);
1157 end_dst_offset = dst_window->offset +
1158 (dst_window->nr_pages << PAGE_SHIFT);
1159 scif_init_window_iter(dst_window, &dst_win_iter);
1162 /* compute dma addresses for transfer */
1163 src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
1164 &src_contig_bytes,
1165 &src_win_iter);
1166 dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
1167 &dst_contig_bytes,
1168 &dst_win_iter);
1169 loop_len = min(src_contig_bytes, dst_contig_bytes);
1170 loop_len = min(loop_len, remaining_len);
1171 if (work->ordered && !(remaining_len - loop_len)) {
1173 * Break up the last chunk of the transfer into two
1174 * steps to ensure that the last byte in step 2 is
1175 * updated last.
1177 /* Step 1) DMA: Body Length - 1 */
1178 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1179 src_dma_addr,
1180 loop_len - 1,
1181 DMA_PREP_FENCE);
1182 if (!tx) {
1183 ret = -ENOMEM;
1184 goto err;
1186 cookie = tx->tx_submit(tx);
1187 if (dma_submit_error(cookie)) {
1188 ret = -ENOMEM;
1189 goto err;
1191 src_offset += (loop_len - 1);
1192 dst_offset += (loop_len - 1);
1193 src_dma_addr += (loop_len - 1);
1194 dst_dma_addr += (loop_len - 1);
1195 remaining_len -= (loop_len - 1);
1196 loop_len = remaining_len;
1198 /* Step 2) DMA: 1 BYTES */
1199 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1200 src_dma_addr, loop_len, 0);
1201 if (!tx) {
1202 ret = -ENOMEM;
1203 goto err;
1205 cookie = tx->tx_submit(tx);
1206 if (dma_submit_error(cookie)) {
1207 ret = -ENOMEM;
1208 goto err;
1210 dma_async_issue_pending(chan);
1211 } else {
1212 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1213 src_dma_addr, loop_len, 0);
1214 if (!tx) {
1215 ret = -ENOMEM;
1216 goto err;
1218 cookie = tx->tx_submit(tx);
1219 if (dma_submit_error(cookie)) {
1220 ret = -ENOMEM;
1221 goto err;
1224 src_offset += loop_len;
1225 dst_offset += loop_len;
1226 remaining_len -= loop_len;
1228 return ret;
1229 err:
1230 dev_err(scif_info.mdev.this_device,
1231 "%s %d Desc Prog Failed ret %d\n",
1232 __func__, __LINE__, ret);
1233 return ret;
1237 * scif_rma_list_dma_copy_aligned:
1239 * Traverse all the windows and perform DMA copy.
1241 static int scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
1242 struct dma_chan *chan)
1244 dma_addr_t src_dma_addr, dst_dma_addr;
1245 size_t loop_len, remaining_len, tail_len, src_contig_bytes = 0;
1246 size_t dst_contig_bytes = 0;
1247 int src_cache_off;
1248 s64 end_src_offset, end_dst_offset;
1249 struct scif_window_iter src_win_iter;
1250 struct scif_window_iter dst_win_iter;
1251 void *src_virt, *dst_virt;
1252 struct scif_window *src_window = work->src_window;
1253 struct scif_window *dst_window = work->dst_window;
1254 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1255 int ret = 0;
1256 struct dma_async_tx_descriptor *tx;
1257 struct dma_device *dev = chan->device;
1258 dma_cookie_t cookie;
1260 remaining_len = work->len;
1261 scif_init_window_iter(src_window, &src_win_iter);
1262 scif_init_window_iter(dst_window, &dst_win_iter);
1264 src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
1265 if (src_cache_off != 0) {
1266 /* Head */
1267 loop_len = L1_CACHE_BYTES - src_cache_off;
1268 loop_len = min(loop_len, remaining_len);
1269 src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
1270 dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
1271 if (src_window->type == SCIF_WINDOW_SELF)
1272 src_virt = _get_local_va(src_offset, src_window,
1273 loop_len);
1274 else
1275 src_virt = ioremap_remote(src_offset, src_window,
1276 loop_len,
1277 work->remote_dev, NULL);
1278 if (!src_virt)
1279 return -ENOMEM;
1280 if (dst_window->type == SCIF_WINDOW_SELF)
1281 dst_virt = _get_local_va(dst_offset, dst_window,
1282 loop_len);
1283 else
1284 dst_virt = ioremap_remote(dst_offset, dst_window,
1285 loop_len,
1286 work->remote_dev, NULL);
1287 if (!dst_virt) {
1288 if (src_window->type != SCIF_WINDOW_SELF)
1289 iounmap_remote(src_virt, loop_len, work);
1290 return -ENOMEM;
1292 if (src_window->type == SCIF_WINDOW_SELF)
1293 scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
1294 remaining_len == loop_len ?
1295 work->ordered : false);
1296 else
1297 scif_unaligned_cpy_fromio(dst_virt, src_virt, loop_len,
1298 remaining_len == loop_len ?
1299 work->ordered : false);
1300 if (src_window->type != SCIF_WINDOW_SELF)
1301 iounmap_remote(src_virt, loop_len, work);
1302 if (dst_window->type != SCIF_WINDOW_SELF)
1303 iounmap_remote(dst_virt, loop_len, work);
1304 src_offset += loop_len;
1305 dst_offset += loop_len;
1306 remaining_len -= loop_len;
1309 end_src_offset = src_window->offset +
1310 (src_window->nr_pages << PAGE_SHIFT);
1311 end_dst_offset = dst_window->offset +
1312 (dst_window->nr_pages << PAGE_SHIFT);
1313 tail_len = remaining_len & (L1_CACHE_BYTES - 1);
1314 remaining_len -= tail_len;
1315 while (remaining_len) {
1316 if (src_offset == end_src_offset) {
1317 src_window = list_entry_next(src_window, list);
1318 end_src_offset = src_window->offset +
1319 (src_window->nr_pages << PAGE_SHIFT);
1320 scif_init_window_iter(src_window, &src_win_iter);
1322 if (dst_offset == end_dst_offset) {
1323 dst_window = list_entry_next(dst_window, list);
1324 end_dst_offset = dst_window->offset +
1325 (dst_window->nr_pages << PAGE_SHIFT);
1326 scif_init_window_iter(dst_window, &dst_win_iter);
1329 /* compute dma addresses for transfer */
1330 src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
1331 &src_contig_bytes,
1332 &src_win_iter);
1333 dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
1334 &dst_contig_bytes,
1335 &dst_win_iter);
1336 loop_len = min(src_contig_bytes, dst_contig_bytes);
1337 loop_len = min(loop_len, remaining_len);
1338 if (work->ordered && !tail_len &&
1339 !(remaining_len - loop_len)) {
1341 * Break up the last chunk of the transfer into two
1342 * steps. if there is no tail to gurantee DMA ordering.
1343 * Passing SCIF_DMA_POLLING inserts a status update
1344 * descriptor in step 1 which acts as a double sided
1345 * synchronization fence for the DMA engine to ensure
1346 * that the last cache line in step 2 is updated last.
1348 /* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
1349 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1350 src_dma_addr,
1351 loop_len -
1352 L1_CACHE_BYTES,
1353 DMA_PREP_FENCE);
1354 if (!tx) {
1355 ret = -ENOMEM;
1356 goto err;
1358 cookie = tx->tx_submit(tx);
1359 if (dma_submit_error(cookie)) {
1360 ret = -ENOMEM;
1361 goto err;
1363 dma_async_issue_pending(chan);
1364 src_offset += (loop_len - L1_CACHE_BYTES);
1365 dst_offset += (loop_len - L1_CACHE_BYTES);
1366 src_dma_addr += (loop_len - L1_CACHE_BYTES);
1367 dst_dma_addr += (loop_len - L1_CACHE_BYTES);
1368 remaining_len -= (loop_len - L1_CACHE_BYTES);
1369 loop_len = remaining_len;
1371 /* Step 2) DMA: L1_CACHE_BYTES */
1372 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1373 src_dma_addr,
1374 loop_len, 0);
1375 if (!tx) {
1376 ret = -ENOMEM;
1377 goto err;
1379 cookie = tx->tx_submit(tx);
1380 if (dma_submit_error(cookie)) {
1381 ret = -ENOMEM;
1382 goto err;
1384 dma_async_issue_pending(chan);
1385 } else {
1386 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1387 src_dma_addr,
1388 loop_len, 0);
1389 if (!tx) {
1390 ret = -ENOMEM;
1391 goto err;
1393 cookie = tx->tx_submit(tx);
1394 if (dma_submit_error(cookie)) {
1395 ret = -ENOMEM;
1396 goto err;
1398 dma_async_issue_pending(chan);
1400 src_offset += loop_len;
1401 dst_offset += loop_len;
1402 remaining_len -= loop_len;
1404 remaining_len = tail_len;
1405 if (remaining_len) {
1406 loop_len = remaining_len;
1407 if (src_offset == end_src_offset)
1408 src_window = list_entry_next(src_window, list);
1409 if (dst_offset == end_dst_offset)
1410 dst_window = list_entry_next(dst_window, list);
1412 src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
1413 dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
1415 * The CPU copy for the tail bytes must be initiated only once
1416 * previous DMA transfers for this endpoint have completed to
1417 * guarantee ordering.
1419 if (work->ordered) {
1420 struct scif_dev *rdev = work->remote_dev;
1422 ret = scif_drain_dma_poll(rdev->sdev, chan);
1423 if (ret)
1424 return ret;
1426 if (src_window->type == SCIF_WINDOW_SELF)
1427 src_virt = _get_local_va(src_offset, src_window,
1428 loop_len);
1429 else
1430 src_virt = ioremap_remote(src_offset, src_window,
1431 loop_len,
1432 work->remote_dev, NULL);
1433 if (!src_virt)
1434 return -ENOMEM;
1436 if (dst_window->type == SCIF_WINDOW_SELF)
1437 dst_virt = _get_local_va(dst_offset, dst_window,
1438 loop_len);
1439 else
1440 dst_virt = ioremap_remote(dst_offset, dst_window,
1441 loop_len,
1442 work->remote_dev, NULL);
1443 if (!dst_virt) {
1444 if (src_window->type != SCIF_WINDOW_SELF)
1445 iounmap_remote(src_virt, loop_len, work);
1446 return -ENOMEM;
1449 if (src_window->type == SCIF_WINDOW_SELF)
1450 scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
1451 work->ordered);
1452 else
1453 scif_unaligned_cpy_fromio(dst_virt, src_virt,
1454 loop_len, work->ordered);
1455 if (src_window->type != SCIF_WINDOW_SELF)
1456 iounmap_remote(src_virt, loop_len, work);
1458 if (dst_window->type != SCIF_WINDOW_SELF)
1459 iounmap_remote(dst_virt, loop_len, work);
1460 remaining_len -= loop_len;
1462 return ret;
1463 err:
1464 dev_err(scif_info.mdev.this_device,
1465 "%s %d Desc Prog Failed ret %d\n",
1466 __func__, __LINE__, ret);
1467 return ret;
1471 * scif_rma_list_cpu_copy:
1473 * Traverse all the windows and perform CPU copy.
1475 static int scif_rma_list_cpu_copy(struct scif_copy_work *work)
1477 void *src_virt, *dst_virt;
1478 size_t loop_len, remaining_len;
1479 int src_page_off, dst_page_off;
1480 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1481 struct scif_window *src_window = work->src_window;
1482 struct scif_window *dst_window = work->dst_window;
1483 s64 end_src_offset, end_dst_offset;
1484 int ret = 0;
1485 struct scif_window_iter src_win_iter;
1486 struct scif_window_iter dst_win_iter;
1488 remaining_len = work->len;
1490 scif_init_window_iter(src_window, &src_win_iter);
1491 scif_init_window_iter(dst_window, &dst_win_iter);
1492 while (remaining_len) {
1493 src_page_off = src_offset & ~PAGE_MASK;
1494 dst_page_off = dst_offset & ~PAGE_MASK;
1495 loop_len = min(PAGE_SIZE -
1496 max(src_page_off, dst_page_off),
1497 remaining_len);
1499 if (src_window->type == SCIF_WINDOW_SELF)
1500 src_virt = _get_local_va(src_offset, src_window,
1501 loop_len);
1502 else
1503 src_virt = ioremap_remote(src_offset, src_window,
1504 loop_len,
1505 work->remote_dev,
1506 &src_win_iter);
1507 if (!src_virt) {
1508 ret = -ENOMEM;
1509 goto error;
1512 if (dst_window->type == SCIF_WINDOW_SELF)
1513 dst_virt = _get_local_va(dst_offset, dst_window,
1514 loop_len);
1515 else
1516 dst_virt = ioremap_remote(dst_offset, dst_window,
1517 loop_len,
1518 work->remote_dev,
1519 &dst_win_iter);
1520 if (!dst_virt) {
1521 if (src_window->type == SCIF_WINDOW_PEER)
1522 iounmap_remote(src_virt, loop_len, work);
1523 ret = -ENOMEM;
1524 goto error;
1527 if (work->loopback) {
1528 memcpy(dst_virt, src_virt, loop_len);
1529 } else {
1530 if (src_window->type == SCIF_WINDOW_SELF)
1531 memcpy_toio((void __iomem __force *)dst_virt,
1532 src_virt, loop_len);
1533 else
1534 memcpy_fromio(dst_virt,
1535 (void __iomem __force *)src_virt,
1536 loop_len);
1538 if (src_window->type == SCIF_WINDOW_PEER)
1539 iounmap_remote(src_virt, loop_len, work);
1541 if (dst_window->type == SCIF_WINDOW_PEER)
1542 iounmap_remote(dst_virt, loop_len, work);
1544 src_offset += loop_len;
1545 dst_offset += loop_len;
1546 remaining_len -= loop_len;
1547 if (remaining_len) {
1548 end_src_offset = src_window->offset +
1549 (src_window->nr_pages << PAGE_SHIFT);
1550 end_dst_offset = dst_window->offset +
1551 (dst_window->nr_pages << PAGE_SHIFT);
1552 if (src_offset == end_src_offset) {
1553 src_window = list_entry_next(src_window, list);
1554 scif_init_window_iter(src_window,
1555 &src_win_iter);
1557 if (dst_offset == end_dst_offset) {
1558 dst_window = list_entry_next(dst_window, list);
1559 scif_init_window_iter(dst_window,
1560 &dst_win_iter);
1564 error:
1565 return ret;
1568 static int scif_rma_list_dma_copy_wrapper(struct scif_endpt *epd,
1569 struct scif_copy_work *work,
1570 struct dma_chan *chan, off_t loffset)
1572 int src_cache_off, dst_cache_off;
1573 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1574 u8 *temp = NULL;
1575 bool src_local = true, dst_local = false;
1576 struct scif_dma_comp_cb *comp_cb;
1577 dma_addr_t src_dma_addr, dst_dma_addr;
1578 int err;
1580 if (is_dma_copy_aligned(chan->device, 1, 1, 1))
1581 return _scif_rma_list_dma_copy_aligned(work, chan);
1583 src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
1584 dst_cache_off = dst_offset & (L1_CACHE_BYTES - 1);
1586 if (dst_cache_off == src_cache_off)
1587 return scif_rma_list_dma_copy_aligned(work, chan);
1589 if (work->loopback)
1590 return scif_rma_list_cpu_copy(work);
1591 src_dma_addr = __scif_off_to_dma_addr(work->src_window, src_offset);
1592 dst_dma_addr = __scif_off_to_dma_addr(work->dst_window, dst_offset);
1593 src_local = work->src_window->type == SCIF_WINDOW_SELF;
1594 dst_local = work->dst_window->type == SCIF_WINDOW_SELF;
1596 dst_local = dst_local;
1597 /* Allocate dma_completion cb */
1598 comp_cb = kzalloc(sizeof(*comp_cb), GFP_KERNEL);
1599 if (!comp_cb)
1600 goto error;
1602 work->comp_cb = comp_cb;
1603 comp_cb->cb_cookie = comp_cb;
1604 comp_cb->dma_completion_func = &scif_rma_completion_cb;
1606 if (work->len + (L1_CACHE_BYTES << 1) < SCIF_KMEM_UNALIGNED_BUF_SIZE) {
1607 comp_cb->is_cache = false;
1608 /* Allocate padding bytes to align to a cache line */
1609 temp = kmalloc(work->len + (L1_CACHE_BYTES << 1),
1610 GFP_KERNEL);
1611 if (!temp)
1612 goto free_comp_cb;
1613 comp_cb->temp_buf_to_free = temp;
1614 /* kmalloc(..) does not guarantee cache line alignment */
1615 if (!IS_ALIGNED((u64)temp, L1_CACHE_BYTES))
1616 temp = PTR_ALIGN(temp, L1_CACHE_BYTES);
1617 } else {
1618 comp_cb->is_cache = true;
1619 temp = kmem_cache_alloc(unaligned_cache, GFP_KERNEL);
1620 if (!temp)
1621 goto free_comp_cb;
1622 comp_cb->temp_buf_to_free = temp;
1625 if (src_local) {
1626 temp += dst_cache_off;
1627 scif_rma_local_cpu_copy(work->src_offset, work->src_window,
1628 temp, work->len, true);
1629 } else {
1630 comp_cb->dst_window = work->dst_window;
1631 comp_cb->dst_offset = work->dst_offset;
1632 work->src_offset = work->src_offset - src_cache_off;
1633 comp_cb->len = work->len;
1634 work->len = ALIGN(work->len + src_cache_off, L1_CACHE_BYTES);
1635 comp_cb->header_padding = src_cache_off;
1637 comp_cb->temp_buf = temp;
1639 err = scif_map_single(&comp_cb->temp_phys, temp,
1640 work->remote_dev, SCIF_KMEM_UNALIGNED_BUF_SIZE);
1641 if (err)
1642 goto free_temp_buf;
1643 comp_cb->sdev = work->remote_dev;
1644 if (scif_rma_list_dma_copy_unaligned(work, temp, chan, src_local) < 0)
1645 goto free_temp_buf;
1646 if (!src_local)
1647 work->fence_type = SCIF_DMA_INTR;
1648 return 0;
1649 free_temp_buf:
1650 if (comp_cb->is_cache)
1651 kmem_cache_free(unaligned_cache, comp_cb->temp_buf_to_free);
1652 else
1653 kfree(comp_cb->temp_buf_to_free);
1654 free_comp_cb:
1655 kfree(comp_cb);
1656 error:
1657 return -ENOMEM;
1661 * scif_rma_copy:
1662 * @epd: end point descriptor.
1663 * @loffset: offset in local registered address space to/from which to copy
1664 * @addr: user virtual address to/from which to copy
1665 * @len: length of range to copy
1666 * @roffset: offset in remote registered address space to/from which to copy
1667 * @flags: flags
1668 * @dir: LOCAL->REMOTE or vice versa.
1669 * @last_chunk: true if this is the last chunk of a larger transfer
1671 * Validate parameters, check if src/dst registered ranges requested for copy
1672 * are valid and initiate either CPU or DMA copy.
1674 static int scif_rma_copy(scif_epd_t epd, off_t loffset, unsigned long addr,
1675 size_t len, off_t roffset, int flags,
1676 enum scif_rma_dir dir, bool last_chunk)
1678 struct scif_endpt *ep = (struct scif_endpt *)epd;
1679 struct scif_rma_req remote_req;
1680 struct scif_rma_req req;
1681 struct scif_window *local_window = NULL;
1682 struct scif_window *remote_window = NULL;
1683 struct scif_copy_work copy_work;
1684 bool loopback;
1685 int err = 0;
1686 struct dma_chan *chan;
1687 struct scif_mmu_notif *mmn = NULL;
1688 bool cache = false;
1689 struct device *spdev;
1691 err = scif_verify_epd(ep);
1692 if (err)
1693 return err;
1695 if (flags && !(flags & (SCIF_RMA_USECPU | SCIF_RMA_USECACHE |
1696 SCIF_RMA_SYNC | SCIF_RMA_ORDERED)))
1697 return -EINVAL;
1699 loopback = scifdev_self(ep->remote_dev) ? true : false;
1700 copy_work.fence_type = ((flags & SCIF_RMA_SYNC) && last_chunk) ?
1701 SCIF_DMA_POLL : 0;
1702 copy_work.ordered = !!((flags & SCIF_RMA_ORDERED) && last_chunk);
1704 /* Use CPU for Mgmt node <-> Mgmt node copies */
1705 if (loopback && scif_is_mgmt_node()) {
1706 flags |= SCIF_RMA_USECPU;
1707 copy_work.fence_type = 0x0;
1710 cache = scif_is_set_reg_cache(flags);
1712 remote_req.out_window = &remote_window;
1713 remote_req.offset = roffset;
1714 remote_req.nr_bytes = len;
1716 * If transfer is from local to remote then the remote window
1717 * must be writeable and vice versa.
1719 remote_req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_WRITE : VM_READ;
1720 remote_req.type = SCIF_WINDOW_PARTIAL;
1721 remote_req.head = &ep->rma_info.remote_reg_list;
1723 spdev = scif_get_peer_dev(ep->remote_dev);
1724 if (IS_ERR(spdev)) {
1725 err = PTR_ERR(spdev);
1726 return err;
1729 if (addr && cache) {
1730 mutex_lock(&ep->rma_info.mmn_lock);
1731 mmn = scif_find_mmu_notifier(current->mm, &ep->rma_info);
1732 if (!mmn)
1733 scif_add_mmu_notifier(current->mm, ep);
1734 mutex_unlock(&ep->rma_info.mmn_lock);
1735 if (IS_ERR(mmn)) {
1736 scif_put_peer_dev(spdev);
1737 return PTR_ERR(mmn);
1739 cache = cache && !scif_rma_tc_can_cache(ep, len);
1741 mutex_lock(&ep->rma_info.rma_lock);
1742 if (addr) {
1743 req.out_window = &local_window;
1744 req.nr_bytes = ALIGN(len + (addr & ~PAGE_MASK),
1745 PAGE_SIZE);
1746 req.va_for_temp = addr & PAGE_MASK;
1747 req.prot = (dir == SCIF_LOCAL_TO_REMOTE ?
1748 VM_READ : VM_WRITE | VM_READ);
1749 /* Does a valid local window exist? */
1750 if (mmn) {
1751 spin_lock(&ep->rma_info.tc_lock);
1752 req.head = &mmn->tc_reg_list;
1753 err = scif_query_tcw(ep, &req);
1754 spin_unlock(&ep->rma_info.tc_lock);
1756 if (!mmn || err) {
1757 err = scif_register_temp(epd, req.va_for_temp,
1758 req.nr_bytes, req.prot,
1759 &loffset, &local_window);
1760 if (err) {
1761 mutex_unlock(&ep->rma_info.rma_lock);
1762 goto error;
1764 if (!cache)
1765 goto skip_cache;
1766 atomic_inc(&ep->rma_info.tcw_refcount);
1767 atomic_add_return(local_window->nr_pages,
1768 &ep->rma_info.tcw_total_pages);
1769 if (mmn) {
1770 spin_lock(&ep->rma_info.tc_lock);
1771 scif_insert_tcw(local_window,
1772 &mmn->tc_reg_list);
1773 spin_unlock(&ep->rma_info.tc_lock);
1776 skip_cache:
1777 loffset = local_window->offset +
1778 (addr - local_window->va_for_temp);
1779 } else {
1780 req.out_window = &local_window;
1781 req.offset = loffset;
1783 * If transfer is from local to remote then the self window
1784 * must be readable and vice versa.
1786 req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_READ : VM_WRITE;
1787 req.nr_bytes = len;
1788 req.type = SCIF_WINDOW_PARTIAL;
1789 req.head = &ep->rma_info.reg_list;
1790 /* Does a valid local window exist? */
1791 err = scif_query_window(&req);
1792 if (err) {
1793 mutex_unlock(&ep->rma_info.rma_lock);
1794 goto error;
1798 /* Does a valid remote window exist? */
1799 err = scif_query_window(&remote_req);
1800 if (err) {
1801 mutex_unlock(&ep->rma_info.rma_lock);
1802 goto error;
1806 * Prepare copy_work for submitting work to the DMA kernel thread
1807 * or CPU copy routine.
1809 copy_work.len = len;
1810 copy_work.loopback = loopback;
1811 copy_work.remote_dev = ep->remote_dev;
1812 if (dir == SCIF_LOCAL_TO_REMOTE) {
1813 copy_work.src_offset = loffset;
1814 copy_work.src_window = local_window;
1815 copy_work.dst_offset = roffset;
1816 copy_work.dst_window = remote_window;
1817 } else {
1818 copy_work.src_offset = roffset;
1819 copy_work.src_window = remote_window;
1820 copy_work.dst_offset = loffset;
1821 copy_work.dst_window = local_window;
1824 if (flags & SCIF_RMA_USECPU) {
1825 scif_rma_list_cpu_copy(&copy_work);
1826 } else {
1827 chan = ep->rma_info.dma_chan;
1828 err = scif_rma_list_dma_copy_wrapper(epd, &copy_work,
1829 chan, loffset);
1831 if (addr && !cache)
1832 atomic_inc(&ep->rma_info.tw_refcount);
1834 mutex_unlock(&ep->rma_info.rma_lock);
1836 if (last_chunk) {
1837 struct scif_dev *rdev = ep->remote_dev;
1839 if (copy_work.fence_type == SCIF_DMA_POLL)
1840 err = scif_drain_dma_poll(rdev->sdev,
1841 ep->rma_info.dma_chan);
1842 else if (copy_work.fence_type == SCIF_DMA_INTR)
1843 err = scif_drain_dma_intr(rdev->sdev,
1844 ep->rma_info.dma_chan);
1847 if (addr && !cache)
1848 scif_queue_for_cleanup(local_window, &scif_info.rma);
1849 scif_put_peer_dev(spdev);
1850 return err;
1851 error:
1852 if (err) {
1853 if (addr && local_window && !cache)
1854 scif_destroy_window(ep, local_window);
1855 dev_err(scif_info.mdev.this_device,
1856 "%s %d err %d len 0x%lx\n",
1857 __func__, __LINE__, err, len);
1859 scif_put_peer_dev(spdev);
1860 return err;
1863 int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len,
1864 off_t roffset, int flags)
1866 int err;
1868 dev_dbg(scif_info.mdev.this_device,
1869 "SCIFAPI readfrom: ep %p loffset 0x%lx len 0x%lx offset 0x%lx flags 0x%x\n",
1870 epd, loffset, len, roffset, flags);
1871 if (scif_unaligned(loffset, roffset)) {
1872 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1873 err = scif_rma_copy(epd, loffset, 0x0,
1874 SCIF_MAX_UNALIGNED_BUF_SIZE,
1875 roffset, flags,
1876 SCIF_REMOTE_TO_LOCAL, false);
1877 if (err)
1878 goto readfrom_err;
1879 loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1880 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1881 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1884 err = scif_rma_copy(epd, loffset, 0x0, len,
1885 roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
1886 readfrom_err:
1887 return err;
1889 EXPORT_SYMBOL_GPL(scif_readfrom);
1891 int scif_writeto(scif_epd_t epd, off_t loffset, size_t len,
1892 off_t roffset, int flags)
1894 int err;
1896 dev_dbg(scif_info.mdev.this_device,
1897 "SCIFAPI writeto: ep %p loffset 0x%lx len 0x%lx roffset 0x%lx flags 0x%x\n",
1898 epd, loffset, len, roffset, flags);
1899 if (scif_unaligned(loffset, roffset)) {
1900 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1901 err = scif_rma_copy(epd, loffset, 0x0,
1902 SCIF_MAX_UNALIGNED_BUF_SIZE,
1903 roffset, flags,
1904 SCIF_LOCAL_TO_REMOTE, false);
1905 if (err)
1906 goto writeto_err;
1907 loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1908 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1909 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1912 err = scif_rma_copy(epd, loffset, 0x0, len,
1913 roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
1914 writeto_err:
1915 return err;
1917 EXPORT_SYMBOL_GPL(scif_writeto);
1919 int scif_vreadfrom(scif_epd_t epd, void *addr, size_t len,
1920 off_t roffset, int flags)
1922 int err;
1924 dev_dbg(scif_info.mdev.this_device,
1925 "SCIFAPI vreadfrom: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
1926 epd, addr, len, roffset, flags);
1927 if (scif_unaligned((off_t __force)addr, roffset)) {
1928 if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
1929 flags &= ~SCIF_RMA_USECACHE;
1931 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1932 err = scif_rma_copy(epd, 0, (u64)addr,
1933 SCIF_MAX_UNALIGNED_BUF_SIZE,
1934 roffset, flags,
1935 SCIF_REMOTE_TO_LOCAL, false);
1936 if (err)
1937 goto vreadfrom_err;
1938 addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
1939 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1940 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1943 err = scif_rma_copy(epd, 0, (u64)addr, len,
1944 roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
1945 vreadfrom_err:
1946 return err;
1948 EXPORT_SYMBOL_GPL(scif_vreadfrom);
1950 int scif_vwriteto(scif_epd_t epd, void *addr, size_t len,
1951 off_t roffset, int flags)
1953 int err;
1955 dev_dbg(scif_info.mdev.this_device,
1956 "SCIFAPI vwriteto: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
1957 epd, addr, len, roffset, flags);
1958 if (scif_unaligned((off_t __force)addr, roffset)) {
1959 if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
1960 flags &= ~SCIF_RMA_USECACHE;
1962 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1963 err = scif_rma_copy(epd, 0, (u64)addr,
1964 SCIF_MAX_UNALIGNED_BUF_SIZE,
1965 roffset, flags,
1966 SCIF_LOCAL_TO_REMOTE, false);
1967 if (err)
1968 goto vwriteto_err;
1969 addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
1970 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1971 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1974 err = scif_rma_copy(epd, 0, (u64)addr, len,
1975 roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
1976 vwriteto_err:
1977 return err;
1979 EXPORT_SYMBOL_GPL(scif_vwriteto);