4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
15 * 3. Handle MMC errors better
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
69 #define DRIVER_NAME "sh_mmcif"
70 #define DRIVER_VERSION "2010-04-28"
73 #define CMD_MASK 0x3f000000
74 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY (1 << 21) /* R1b */
78 #define CMD_SET_CCSEN (1 << 20)
79 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH (1 << 5)
94 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
100 #define CMD_CTRL_BREAK (1 << 0)
103 #define BLOCK_SIZE_MASK 0x0000ffff
106 #define INT_CCSDE (1 << 29)
107 #define INT_CMD12DRE (1 << 26)
108 #define INT_CMD12RBE (1 << 25)
109 #define INT_CMD12CRE (1 << 24)
110 #define INT_DTRANE (1 << 23)
111 #define INT_BUFRE (1 << 22)
112 #define INT_BUFWEN (1 << 21)
113 #define INT_BUFREN (1 << 20)
114 #define INT_CCSRCV (1 << 19)
115 #define INT_RBSYE (1 << 17)
116 #define INT_CRSPE (1 << 16)
117 #define INT_CMDVIO (1 << 15)
118 #define INT_BUFVIO (1 << 14)
119 #define INT_WDATERR (1 << 11)
120 #define INT_RDATERR (1 << 10)
121 #define INT_RIDXERR (1 << 9)
122 #define INT_RSPERR (1 << 8)
123 #define INT_CCSTO (1 << 5)
124 #define INT_CRCSTO (1 << 4)
125 #define INT_WDATTO (1 << 3)
126 #define INT_RDATTO (1 << 2)
127 #define INT_RBSYTO (1 << 1)
128 #define INT_RSPTO (1 << 0)
129 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
134 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
138 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
141 #define MASK_ALL 0x00000000
142 #define MASK_MCCSDE (1 << 29)
143 #define MASK_MCMD12DRE (1 << 26)
144 #define MASK_MCMD12RBE (1 << 25)
145 #define MASK_MCMD12CRE (1 << 24)
146 #define MASK_MDTRANE (1 << 23)
147 #define MASK_MBUFRE (1 << 22)
148 #define MASK_MBUFWEN (1 << 21)
149 #define MASK_MBUFREN (1 << 20)
150 #define MASK_MCCSRCV (1 << 19)
151 #define MASK_MRBSYE (1 << 17)
152 #define MASK_MCRSPE (1 << 16)
153 #define MASK_MCMDVIO (1 << 15)
154 #define MASK_MBUFVIO (1 << 14)
155 #define MASK_MWDATERR (1 << 11)
156 #define MASK_MRDATERR (1 << 10)
157 #define MASK_MRIDXERR (1 << 9)
158 #define MASK_MRSPERR (1 << 8)
159 #define MASK_MCCSTO (1 << 5)
160 #define MASK_MCRCSTO (1 << 4)
161 #define MASK_MWDATTO (1 << 3)
162 #define MASK_MRDATTO (1 << 2)
163 #define MASK_MRBSYTO (1 << 1)
164 #define MASK_MRSPTO (1 << 0)
166 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
171 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
177 #define STS1_CMDSEQ (1 << 31)
180 #define STS2_CRCSTE (1 << 31)
181 #define STS2_CRC16E (1 << 30)
182 #define STS2_AC12CRCE (1 << 29)
183 #define STS2_RSPCRC7E (1 << 28)
184 #define STS2_CRCSTEBE (1 << 27)
185 #define STS2_RDATEBE (1 << 26)
186 #define STS2_AC12REBE (1 << 25)
187 #define STS2_RSPEBE (1 << 24)
188 #define STS2_AC12IDXE (1 << 23)
189 #define STS2_RSPIDXE (1 << 22)
190 #define STS2_CCSTO (1 << 15)
191 #define STS2_RDATTO (1 << 14)
192 #define STS2_DATBSYTO (1 << 13)
193 #define STS2_CRCSTTO (1 << 12)
194 #define STS2_AC12BSYTO (1 << 11)
195 #define STS2_RSPBSYTO (1 << 10)
196 #define STS2_AC12RSPTO (1 << 9)
197 #define STS2_RSPTO (1 << 8)
198 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
205 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207 #define CLKDEV_INIT 400000 /* 400 KHz */
209 enum sh_mmcif_state
{
216 enum sh_mmcif_wait_for
{
217 MMCIF_WAIT_FOR_REQUEST
,
219 MMCIF_WAIT_FOR_MREAD
,
220 MMCIF_WAIT_FOR_MWRITE
,
222 MMCIF_WAIT_FOR_WRITE
,
223 MMCIF_WAIT_FOR_READ_END
,
224 MMCIF_WAIT_FOR_WRITE_END
,
229 * difference for each SoC
231 struct sh_mmcif_host
{
232 struct mmc_host
*mmc
;
233 struct mmc_request
*mrq
;
234 struct platform_device
*pd
;
237 unsigned char timing
;
243 spinlock_t lock
; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state
;
245 enum sh_mmcif_wait_for wait_for
;
246 struct delayed_work timeout_work
;
252 bool ccs_enable
; /* Command Completion Signal support */
253 bool clk_ctrl2_enable
;
254 struct mutex thread_lock
;
255 u32 clkdiv_map
; /* see CE_CLK_CTRL::CLKDIV */
258 struct dma_chan
*chan_rx
;
259 struct dma_chan
*chan_tx
;
260 struct completion dma_complete
;
264 static const struct of_device_id sh_mmcif_of_match
[] = {
265 { .compatible
= "renesas,sh-mmcif" },
268 MODULE_DEVICE_TABLE(of
, sh_mmcif_of_match
);
270 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
272 static inline void sh_mmcif_bitset(struct sh_mmcif_host
*host
,
273 unsigned int reg
, u32 val
)
275 writel(val
| readl(host
->addr
+ reg
), host
->addr
+ reg
);
278 static inline void sh_mmcif_bitclr(struct sh_mmcif_host
*host
,
279 unsigned int reg
, u32 val
)
281 writel(~val
& readl(host
->addr
+ reg
), host
->addr
+ reg
);
284 static void sh_mmcif_dma_complete(void *arg
)
286 struct sh_mmcif_host
*host
= arg
;
287 struct mmc_request
*mrq
= host
->mrq
;
288 struct device
*dev
= sh_mmcif_host_to_dev(host
);
290 dev_dbg(dev
, "Command completed\n");
292 if (WARN(!mrq
|| !mrq
->data
, "%s: NULL data in DMA completion!\n",
296 complete(&host
->dma_complete
);
299 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host
*host
)
301 struct mmc_data
*data
= host
->mrq
->data
;
302 struct scatterlist
*sg
= data
->sg
;
303 struct dma_async_tx_descriptor
*desc
= NULL
;
304 struct dma_chan
*chan
= host
->chan_rx
;
305 struct device
*dev
= sh_mmcif_host_to_dev(host
);
306 dma_cookie_t cookie
= -EINVAL
;
309 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
312 host
->dma_active
= true;
313 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
314 DMA_DEV_TO_MEM
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
318 desc
->callback
= sh_mmcif_dma_complete
;
319 desc
->callback_param
= host
;
320 cookie
= dmaengine_submit(desc
);
321 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
);
322 dma_async_issue_pending(chan
);
324 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
325 __func__
, data
->sg_len
, ret
, cookie
);
328 /* DMA failed, fall back to PIO */
331 host
->chan_rx
= NULL
;
332 host
->dma_active
= false;
333 dma_release_channel(chan
);
334 /* Free the Tx channel too */
335 chan
= host
->chan_tx
;
337 host
->chan_tx
= NULL
;
338 dma_release_channel(chan
);
341 "DMA failed: %d, falling back to PIO\n", ret
);
342 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
345 dev_dbg(dev
, "%s(): desc %p, cookie %d, sg[%d]\n", __func__
,
346 desc
, cookie
, data
->sg_len
);
349 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host
*host
)
351 struct mmc_data
*data
= host
->mrq
->data
;
352 struct scatterlist
*sg
= data
->sg
;
353 struct dma_async_tx_descriptor
*desc
= NULL
;
354 struct dma_chan
*chan
= host
->chan_tx
;
355 struct device
*dev
= sh_mmcif_host_to_dev(host
);
356 dma_cookie_t cookie
= -EINVAL
;
359 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
362 host
->dma_active
= true;
363 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
364 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
368 desc
->callback
= sh_mmcif_dma_complete
;
369 desc
->callback_param
= host
;
370 cookie
= dmaengine_submit(desc
);
371 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAWEN
);
372 dma_async_issue_pending(chan
);
374 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
375 __func__
, data
->sg_len
, ret
, cookie
);
378 /* DMA failed, fall back to PIO */
381 host
->chan_tx
= NULL
;
382 host
->dma_active
= false;
383 dma_release_channel(chan
);
384 /* Free the Rx channel too */
385 chan
= host
->chan_rx
;
387 host
->chan_rx
= NULL
;
388 dma_release_channel(chan
);
391 "DMA failed: %d, falling back to PIO\n", ret
);
392 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
395 dev_dbg(dev
, "%s(): desc %p, cookie %d\n", __func__
,
399 static struct dma_chan
*
400 sh_mmcif_request_dma_one(struct sh_mmcif_host
*host
,
401 struct sh_mmcif_plat_data
*pdata
,
402 enum dma_transfer_direction direction
)
404 struct dma_slave_config cfg
= { 0, };
405 struct dma_chan
*chan
;
406 void *slave_data
= NULL
;
407 struct resource
*res
;
408 struct device
*dev
= sh_mmcif_host_to_dev(host
);
413 dma_cap_set(DMA_SLAVE
, mask
);
416 slave_data
= direction
== DMA_MEM_TO_DEV
?
417 (void *)pdata
->slave_id_tx
:
418 (void *)pdata
->slave_id_rx
;
420 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
422 direction
== DMA_MEM_TO_DEV
? "tx" : "rx");
424 dev_dbg(dev
, "%s: %s: got channel %p\n", __func__
,
425 direction
== DMA_MEM_TO_DEV
? "TX" : "RX", chan
);
430 res
= platform_get_resource(host
->pd
, IORESOURCE_MEM
, 0);
432 cfg
.direction
= direction
;
434 if (direction
== DMA_DEV_TO_MEM
) {
435 cfg
.src_addr
= res
->start
+ MMCIF_CE_DATA
;
436 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
438 cfg
.dst_addr
= res
->start
+ MMCIF_CE_DATA
;
439 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
442 ret
= dmaengine_slave_config(chan
, &cfg
);
444 dma_release_channel(chan
);
451 static void sh_mmcif_request_dma(struct sh_mmcif_host
*host
,
452 struct sh_mmcif_plat_data
*pdata
)
454 struct device
*dev
= sh_mmcif_host_to_dev(host
);
455 host
->dma_active
= false;
458 if (pdata
->slave_id_tx
<= 0 || pdata
->slave_id_rx
<= 0)
460 } else if (!dev
->of_node
) {
464 /* We can only either use DMA for both Tx and Rx or not use it at all */
465 host
->chan_tx
= sh_mmcif_request_dma_one(host
, pdata
, DMA_MEM_TO_DEV
);
469 host
->chan_rx
= sh_mmcif_request_dma_one(host
, pdata
, DMA_DEV_TO_MEM
);
470 if (!host
->chan_rx
) {
471 dma_release_channel(host
->chan_tx
);
472 host
->chan_tx
= NULL
;
476 static void sh_mmcif_release_dma(struct sh_mmcif_host
*host
)
478 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
479 /* Descriptors are freed automatically */
481 struct dma_chan
*chan
= host
->chan_tx
;
482 host
->chan_tx
= NULL
;
483 dma_release_channel(chan
);
486 struct dma_chan
*chan
= host
->chan_rx
;
487 host
->chan_rx
= NULL
;
488 dma_release_channel(chan
);
491 host
->dma_active
= false;
494 static void sh_mmcif_clock_control(struct sh_mmcif_host
*host
, unsigned int clk
)
496 struct device
*dev
= sh_mmcif_host_to_dev(host
);
497 struct sh_mmcif_plat_data
*p
= dev
->platform_data
;
498 bool sup_pclk
= p
? p
->sup_pclk
: false;
499 unsigned int current_clk
= clk_get_rate(host
->clk
);
502 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
503 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
);
508 if (host
->clkdiv_map
) {
509 unsigned int freq
, best_freq
, myclk
, div
, diff_min
, diff
;
515 for (i
= 31; i
>= 0; i
--) {
516 if (!((1 << i
) & host
->clkdiv_map
))
520 * clk = parent_freq / div
521 * -> parent_freq = clk x div
525 freq
= clk_round_rate(host
->clk
, clk
* div
);
527 diff
= (myclk
> clk
) ? myclk
- clk
: clk
- myclk
;
529 if (diff
<= diff_min
) {
536 dev_dbg(dev
, "clk %u/%u (%u, 0x%x)\n",
537 (best_freq
/ (1 << (clkdiv
+ 1))), clk
,
540 clk_set_rate(host
->clk
, best_freq
);
541 clkdiv
= clkdiv
<< 16;
542 } else if (sup_pclk
&& clk
== current_clk
) {
543 clkdiv
= CLK_SUP_PCLK
;
545 clkdiv
= (fls(DIV_ROUND_UP(current_clk
, clk
) - 1) - 1) << 16;
548 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
& clkdiv
);
549 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
552 static void sh_mmcif_sync_reset(struct sh_mmcif_host
*host
)
556 tmp
= 0x010f0000 & sh_mmcif_readl(host
->addr
, MMCIF_CE_CLK_CTRL
);
558 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_ON
);
559 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_OFF
);
560 if (host
->ccs_enable
)
562 if (host
->clk_ctrl2_enable
)
563 sh_mmcif_writel(host
->addr
, MMCIF_CE_CLK_CTRL2
, 0x0F0F0000);
564 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, tmp
|
565 SRSPTO_256
| SRBSYTO_29
| SRWDTO_29
);
567 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_ATYP
);
570 static int sh_mmcif_error_manage(struct sh_mmcif_host
*host
)
572 struct device
*dev
= sh_mmcif_host_to_dev(host
);
576 host
->sd_error
= false;
578 state1
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
);
579 state2
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS2
);
580 dev_dbg(dev
, "ERR HOST_STS1 = %08x\n", state1
);
581 dev_dbg(dev
, "ERR HOST_STS2 = %08x\n", state2
);
583 if (state1
& STS1_CMDSEQ
) {
584 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, CMD_CTRL_BREAK
);
585 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, ~CMD_CTRL_BREAK
);
586 for (timeout
= 10000000; timeout
; timeout
--) {
587 if (!(sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
)
594 "Forced end of command sequence timeout err\n");
597 sh_mmcif_sync_reset(host
);
598 dev_dbg(dev
, "Forced end of command sequence\n");
602 if (state2
& STS2_CRC_ERR
) {
603 dev_err(dev
, " CRC error: state %u, wait %u\n",
604 host
->state
, host
->wait_for
);
606 } else if (state2
& STS2_TIMEOUT_ERR
) {
607 dev_err(dev
, " Timeout: state %u, wait %u\n",
608 host
->state
, host
->wait_for
);
611 dev_dbg(dev
, " End/Index error: state %u, wait %u\n",
612 host
->state
, host
->wait_for
);
618 static bool sh_mmcif_next_block(struct sh_mmcif_host
*host
, u32
*p
)
620 struct mmc_data
*data
= host
->mrq
->data
;
622 host
->sg_blkidx
+= host
->blocksize
;
624 /* data->sg->length must be a multiple of host->blocksize? */
625 BUG_ON(host
->sg_blkidx
> data
->sg
->length
);
627 if (host
->sg_blkidx
== data
->sg
->length
) {
629 if (++host
->sg_idx
< data
->sg_len
)
630 host
->pio_ptr
= sg_virt(++data
->sg
);
635 return host
->sg_idx
!= data
->sg_len
;
638 static void sh_mmcif_single_read(struct sh_mmcif_host
*host
,
639 struct mmc_request
*mrq
)
641 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
642 BLOCK_SIZE_MASK
) + 3;
644 host
->wait_for
= MMCIF_WAIT_FOR_READ
;
646 /* buf read enable */
647 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
650 static bool sh_mmcif_read_block(struct sh_mmcif_host
*host
)
652 struct device
*dev
= sh_mmcif_host_to_dev(host
);
653 struct mmc_data
*data
= host
->mrq
->data
;
654 u32
*p
= sg_virt(data
->sg
);
657 if (host
->sd_error
) {
658 data
->error
= sh_mmcif_error_manage(host
);
659 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
663 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
664 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
666 /* buffer read end */
667 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFRE
);
668 host
->wait_for
= MMCIF_WAIT_FOR_READ_END
;
673 static void sh_mmcif_multi_read(struct sh_mmcif_host
*host
,
674 struct mmc_request
*mrq
)
676 struct mmc_data
*data
= mrq
->data
;
678 if (!data
->sg_len
|| !data
->sg
->length
)
681 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
684 host
->wait_for
= MMCIF_WAIT_FOR_MREAD
;
687 host
->pio_ptr
= sg_virt(data
->sg
);
689 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
692 static bool sh_mmcif_mread_block(struct sh_mmcif_host
*host
)
694 struct device
*dev
= sh_mmcif_host_to_dev(host
);
695 struct mmc_data
*data
= host
->mrq
->data
;
696 u32
*p
= host
->pio_ptr
;
699 if (host
->sd_error
) {
700 data
->error
= sh_mmcif_error_manage(host
);
701 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
705 BUG_ON(!data
->sg
->length
);
707 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
708 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
710 if (!sh_mmcif_next_block(host
, p
))
713 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
718 static void sh_mmcif_single_write(struct sh_mmcif_host
*host
,
719 struct mmc_request
*mrq
)
721 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
722 BLOCK_SIZE_MASK
) + 3;
724 host
->wait_for
= MMCIF_WAIT_FOR_WRITE
;
726 /* buf write enable */
727 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
730 static bool sh_mmcif_write_block(struct sh_mmcif_host
*host
)
732 struct device
*dev
= sh_mmcif_host_to_dev(host
);
733 struct mmc_data
*data
= host
->mrq
->data
;
734 u32
*p
= sg_virt(data
->sg
);
737 if (host
->sd_error
) {
738 data
->error
= sh_mmcif_error_manage(host
);
739 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
743 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
744 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
746 /* buffer write end */
747 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MDTRANE
);
748 host
->wait_for
= MMCIF_WAIT_FOR_WRITE_END
;
753 static void sh_mmcif_multi_write(struct sh_mmcif_host
*host
,
754 struct mmc_request
*mrq
)
756 struct mmc_data
*data
= mrq
->data
;
758 if (!data
->sg_len
|| !data
->sg
->length
)
761 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
764 host
->wait_for
= MMCIF_WAIT_FOR_MWRITE
;
767 host
->pio_ptr
= sg_virt(data
->sg
);
769 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
772 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host
*host
)
774 struct device
*dev
= sh_mmcif_host_to_dev(host
);
775 struct mmc_data
*data
= host
->mrq
->data
;
776 u32
*p
= host
->pio_ptr
;
779 if (host
->sd_error
) {
780 data
->error
= sh_mmcif_error_manage(host
);
781 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
785 BUG_ON(!data
->sg
->length
);
787 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
788 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
790 if (!sh_mmcif_next_block(host
, p
))
793 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
798 static void sh_mmcif_get_response(struct sh_mmcif_host
*host
,
799 struct mmc_command
*cmd
)
801 if (cmd
->flags
& MMC_RSP_136
) {
802 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP3
);
803 cmd
->resp
[1] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP2
);
804 cmd
->resp
[2] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP1
);
805 cmd
->resp
[3] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
807 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
810 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host
*host
,
811 struct mmc_command
*cmd
)
813 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP_CMD12
);
816 static u32
sh_mmcif_set_cmd(struct sh_mmcif_host
*host
,
817 struct mmc_request
*mrq
)
819 struct device
*dev
= sh_mmcif_host_to_dev(host
);
820 struct mmc_data
*data
= mrq
->data
;
821 struct mmc_command
*cmd
= mrq
->cmd
;
822 u32 opc
= cmd
->opcode
;
825 /* Response Type check */
826 switch (mmc_resp_type(cmd
)) {
828 tmp
|= CMD_SET_RTYP_NO
;
833 tmp
|= CMD_SET_RTYP_6B
;
836 tmp
|= CMD_SET_RTYP_17B
;
839 dev_err(dev
, "Unsupported response type.\n");
844 case MMC_SLEEP_AWAKE
:
846 case MMC_STOP_TRANSMISSION
:
847 case MMC_SET_WRITE_PROT
:
848 case MMC_CLR_WRITE_PROT
:
856 switch (host
->bus_width
) {
857 case MMC_BUS_WIDTH_1
:
858 tmp
|= CMD_SET_DATW_1
;
860 case MMC_BUS_WIDTH_4
:
861 tmp
|= CMD_SET_DATW_4
;
863 case MMC_BUS_WIDTH_8
:
864 tmp
|= CMD_SET_DATW_8
;
867 dev_err(dev
, "Unsupported bus width.\n");
870 switch (host
->timing
) {
871 case MMC_TIMING_MMC_DDR52
:
873 * MMC core will only set this timing, if the host
874 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
875 * capability. MMCIF implementations with this
876 * capability, e.g. sh73a0, will have to set it
877 * in their platform data.
884 if (opc
== MMC_WRITE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
)
887 if (opc
== MMC_READ_MULTIPLE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
) {
888 tmp
|= CMD_SET_CMLTE
| CMD_SET_CMD12EN
;
889 sh_mmcif_bitset(host
, MMCIF_CE_BLOCK_SET
,
892 /* RIDXC[1:0] check bits */
893 if (opc
== MMC_SEND_OP_COND
|| opc
== MMC_ALL_SEND_CID
||
894 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
895 tmp
|= CMD_SET_RIDXC_BITS
;
896 /* RCRC7C[1:0] check bits */
897 if (opc
== MMC_SEND_OP_COND
)
898 tmp
|= CMD_SET_CRC7C_BITS
;
899 /* RCRC7C[1:0] internal CRC7 */
900 if (opc
== MMC_ALL_SEND_CID
||
901 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
902 tmp
|= CMD_SET_CRC7C_INTERNAL
;
904 return (opc
<< 24) | tmp
;
907 static int sh_mmcif_data_trans(struct sh_mmcif_host
*host
,
908 struct mmc_request
*mrq
, u32 opc
)
910 struct device
*dev
= sh_mmcif_host_to_dev(host
);
913 case MMC_READ_MULTIPLE_BLOCK
:
914 sh_mmcif_multi_read(host
, mrq
);
916 case MMC_WRITE_MULTIPLE_BLOCK
:
917 sh_mmcif_multi_write(host
, mrq
);
919 case MMC_WRITE_BLOCK
:
920 sh_mmcif_single_write(host
, mrq
);
922 case MMC_READ_SINGLE_BLOCK
:
923 case MMC_SEND_EXT_CSD
:
924 sh_mmcif_single_read(host
, mrq
);
927 dev_err(dev
, "Unsupported CMD%d\n", opc
);
932 static void sh_mmcif_start_cmd(struct sh_mmcif_host
*host
,
933 struct mmc_request
*mrq
)
935 struct mmc_command
*cmd
= mrq
->cmd
;
936 u32 opc
= cmd
->opcode
;
941 /* response busy check */
942 case MMC_SLEEP_AWAKE
:
944 case MMC_STOP_TRANSMISSION
:
945 case MMC_SET_WRITE_PROT
:
946 case MMC_CLR_WRITE_PROT
:
948 mask
= MASK_START_CMD
| MASK_MRBSYE
;
951 mask
= MASK_START_CMD
| MASK_MCRSPE
;
955 if (host
->ccs_enable
)
959 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
, 0);
960 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
,
963 opc
= sh_mmcif_set_cmd(host
, mrq
);
965 if (host
->ccs_enable
)
966 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0);
968 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0 | INT_CCS
);
969 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, mask
);
971 sh_mmcif_writel(host
->addr
, MMCIF_CE_ARG
, cmd
->arg
);
973 spin_lock_irqsave(&host
->lock
, flags
);
974 sh_mmcif_writel(host
->addr
, MMCIF_CE_CMD_SET
, opc
);
976 host
->wait_for
= MMCIF_WAIT_FOR_CMD
;
977 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
978 spin_unlock_irqrestore(&host
->lock
, flags
);
981 static void sh_mmcif_stop_cmd(struct sh_mmcif_host
*host
,
982 struct mmc_request
*mrq
)
984 struct device
*dev
= sh_mmcif_host_to_dev(host
);
986 switch (mrq
->cmd
->opcode
) {
987 case MMC_READ_MULTIPLE_BLOCK
:
988 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12DRE
);
990 case MMC_WRITE_MULTIPLE_BLOCK
:
991 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12RBE
);
994 dev_err(dev
, "unsupported stop cmd\n");
995 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
999 host
->wait_for
= MMCIF_WAIT_FOR_STOP
;
1002 static void sh_mmcif_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1004 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1005 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1006 unsigned long flags
;
1008 spin_lock_irqsave(&host
->lock
, flags
);
1009 if (host
->state
!= STATE_IDLE
) {
1010 dev_dbg(dev
, "%s() rejected, state %u\n",
1011 __func__
, host
->state
);
1012 spin_unlock_irqrestore(&host
->lock
, flags
);
1013 mrq
->cmd
->error
= -EAGAIN
;
1014 mmc_request_done(mmc
, mrq
);
1018 host
->state
= STATE_REQUEST
;
1019 spin_unlock_irqrestore(&host
->lock
, flags
);
1021 switch (mrq
->cmd
->opcode
) {
1022 /* MMCIF does not support SD/SDIO command */
1023 case MMC_SLEEP_AWAKE
: /* = SD_IO_SEND_OP_COND (5) */
1024 case MMC_SEND_EXT_CSD
: /* = SD_SEND_IF_COND (8) */
1025 if ((mrq
->cmd
->flags
& MMC_CMD_MASK
) != MMC_CMD_BCR
)
1028 case SD_IO_RW_DIRECT
:
1029 host
->state
= STATE_IDLE
;
1030 mrq
->cmd
->error
= -ETIMEDOUT
;
1031 mmc_request_done(mmc
, mrq
);
1039 sh_mmcif_start_cmd(host
, mrq
);
1042 static void sh_mmcif_clk_setup(struct sh_mmcif_host
*host
)
1044 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1046 if (host
->mmc
->f_max
) {
1047 unsigned int f_max
, f_min
= 0, f_min_old
;
1049 f_max
= host
->mmc
->f_max
;
1050 for (f_min_old
= f_max
; f_min_old
> 2;) {
1051 f_min
= clk_round_rate(host
->clk
, f_min_old
/ 2);
1052 if (f_min
== f_min_old
)
1058 * This driver assumes this SoC is R-Car Gen2 or later
1060 host
->clkdiv_map
= 0x3ff;
1062 host
->mmc
->f_max
= f_max
/ (1 << ffs(host
->clkdiv_map
));
1063 host
->mmc
->f_min
= f_min
/ (1 << fls(host
->clkdiv_map
));
1065 unsigned int clk
= clk_get_rate(host
->clk
);
1067 host
->mmc
->f_max
= clk
/ 2;
1068 host
->mmc
->f_min
= clk
/ 512;
1071 dev_dbg(dev
, "clk max/min = %d/%d\n",
1072 host
->mmc
->f_max
, host
->mmc
->f_min
);
1075 static void sh_mmcif_set_power(struct sh_mmcif_host
*host
, struct mmc_ios
*ios
)
1077 struct mmc_host
*mmc
= host
->mmc
;
1079 if (!IS_ERR(mmc
->supply
.vmmc
))
1080 /* Errors ignored... */
1081 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
,
1082 ios
->power_mode
? ios
->vdd
: 0);
1085 static void sh_mmcif_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1087 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1088 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1089 unsigned long flags
;
1091 spin_lock_irqsave(&host
->lock
, flags
);
1092 if (host
->state
!= STATE_IDLE
) {
1093 dev_dbg(dev
, "%s() rejected, state %u\n",
1094 __func__
, host
->state
);
1095 spin_unlock_irqrestore(&host
->lock
, flags
);
1099 host
->state
= STATE_IOS
;
1100 spin_unlock_irqrestore(&host
->lock
, flags
);
1102 if (ios
->power_mode
== MMC_POWER_UP
) {
1103 if (!host
->card_present
) {
1104 /* See if we also get DMA */
1105 sh_mmcif_request_dma(host
, dev
->platform_data
);
1106 host
->card_present
= true;
1108 sh_mmcif_set_power(host
, ios
);
1109 } else if (ios
->power_mode
== MMC_POWER_OFF
|| !ios
->clock
) {
1111 sh_mmcif_clock_control(host
, 0);
1112 if (ios
->power_mode
== MMC_POWER_OFF
) {
1113 if (host
->card_present
) {
1114 sh_mmcif_release_dma(host
);
1115 host
->card_present
= false;
1119 pm_runtime_put_sync(dev
);
1120 clk_disable_unprepare(host
->clk
);
1121 host
->power
= false;
1122 if (ios
->power_mode
== MMC_POWER_OFF
)
1123 sh_mmcif_set_power(host
, ios
);
1125 host
->state
= STATE_IDLE
;
1131 clk_prepare_enable(host
->clk
);
1133 pm_runtime_get_sync(dev
);
1135 sh_mmcif_sync_reset(host
);
1137 sh_mmcif_clock_control(host
, ios
->clock
);
1140 host
->timing
= ios
->timing
;
1141 host
->bus_width
= ios
->bus_width
;
1142 host
->state
= STATE_IDLE
;
1145 static int sh_mmcif_get_cd(struct mmc_host
*mmc
)
1147 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1148 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1149 struct sh_mmcif_plat_data
*p
= dev
->platform_data
;
1150 int ret
= mmc_gpio_get_cd(mmc
);
1155 if (!p
|| !p
->get_cd
)
1158 return p
->get_cd(host
->pd
);
1161 static struct mmc_host_ops sh_mmcif_ops
= {
1162 .request
= sh_mmcif_request
,
1163 .set_ios
= sh_mmcif_set_ios
,
1164 .get_cd
= sh_mmcif_get_cd
,
1167 static bool sh_mmcif_end_cmd(struct sh_mmcif_host
*host
)
1169 struct mmc_command
*cmd
= host
->mrq
->cmd
;
1170 struct mmc_data
*data
= host
->mrq
->data
;
1171 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1174 if (host
->sd_error
) {
1175 switch (cmd
->opcode
) {
1176 case MMC_ALL_SEND_CID
:
1177 case MMC_SELECT_CARD
:
1179 cmd
->error
= -ETIMEDOUT
;
1182 cmd
->error
= sh_mmcif_error_manage(host
);
1185 dev_dbg(dev
, "CMD%d error %d\n",
1186 cmd
->opcode
, cmd
->error
);
1187 host
->sd_error
= false;
1190 if (!(cmd
->flags
& MMC_RSP_PRESENT
)) {
1195 sh_mmcif_get_response(host
, cmd
);
1201 * Completion can be signalled from DMA callback and error, so, have to
1202 * reset here, before setting .dma_active
1204 init_completion(&host
->dma_complete
);
1206 if (data
->flags
& MMC_DATA_READ
) {
1208 sh_mmcif_start_dma_rx(host
);
1211 sh_mmcif_start_dma_tx(host
);
1214 if (!host
->dma_active
) {
1215 data
->error
= sh_mmcif_data_trans(host
, host
->mrq
, cmd
->opcode
);
1216 return !data
->error
;
1219 /* Running in the IRQ thread, can sleep */
1220 time
= wait_for_completion_interruptible_timeout(&host
->dma_complete
,
1223 if (data
->flags
& MMC_DATA_READ
)
1224 dma_unmap_sg(host
->chan_rx
->device
->dev
,
1225 data
->sg
, data
->sg_len
,
1228 dma_unmap_sg(host
->chan_tx
->device
->dev
,
1229 data
->sg
, data
->sg_len
,
1232 if (host
->sd_error
) {
1233 dev_err(host
->mmc
->parent
,
1234 "Error IRQ while waiting for DMA completion!\n");
1235 /* Woken up by an error IRQ: abort DMA */
1236 data
->error
= sh_mmcif_error_manage(host
);
1238 dev_err(host
->mmc
->parent
, "DMA timeout!\n");
1239 data
->error
= -ETIMEDOUT
;
1240 } else if (time
< 0) {
1241 dev_err(host
->mmc
->parent
,
1242 "wait_for_completion_...() error %ld!\n", time
);
1245 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
,
1246 BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
1247 host
->dma_active
= false;
1250 data
->bytes_xfered
= 0;
1252 if (data
->flags
& MMC_DATA_READ
)
1253 dmaengine_terminate_all(host
->chan_rx
);
1255 dmaengine_terminate_all(host
->chan_tx
);
1261 static irqreturn_t
sh_mmcif_irqt(int irq
, void *dev_id
)
1263 struct sh_mmcif_host
*host
= dev_id
;
1264 struct mmc_request
*mrq
;
1265 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1267 unsigned long flags
;
1270 spin_lock_irqsave(&host
->lock
, flags
);
1271 wait_work
= host
->wait_for
;
1272 spin_unlock_irqrestore(&host
->lock
, flags
);
1274 cancel_delayed_work_sync(&host
->timeout_work
);
1276 mutex_lock(&host
->thread_lock
);
1280 dev_dbg(dev
, "IRQ thread state %u, wait %u: NULL mrq!\n",
1281 host
->state
, host
->wait_for
);
1282 mutex_unlock(&host
->thread_lock
);
1287 * All handlers return true, if processing continues, and false, if the
1288 * request has to be completed - successfully or not
1290 switch (wait_work
) {
1291 case MMCIF_WAIT_FOR_REQUEST
:
1292 /* We're too late, the timeout has already kicked in */
1293 mutex_unlock(&host
->thread_lock
);
1295 case MMCIF_WAIT_FOR_CMD
:
1296 /* Wait for data? */
1297 wait
= sh_mmcif_end_cmd(host
);
1299 case MMCIF_WAIT_FOR_MREAD
:
1300 /* Wait for more data? */
1301 wait
= sh_mmcif_mread_block(host
);
1303 case MMCIF_WAIT_FOR_READ
:
1304 /* Wait for data end? */
1305 wait
= sh_mmcif_read_block(host
);
1307 case MMCIF_WAIT_FOR_MWRITE
:
1308 /* Wait data to write? */
1309 wait
= sh_mmcif_mwrite_block(host
);
1311 case MMCIF_WAIT_FOR_WRITE
:
1312 /* Wait for data end? */
1313 wait
= sh_mmcif_write_block(host
);
1315 case MMCIF_WAIT_FOR_STOP
:
1316 if (host
->sd_error
) {
1317 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1318 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->stop
->error
);
1321 sh_mmcif_get_cmd12response(host
, mrq
->stop
);
1322 mrq
->stop
->error
= 0;
1324 case MMCIF_WAIT_FOR_READ_END
:
1325 case MMCIF_WAIT_FOR_WRITE_END
:
1326 if (host
->sd_error
) {
1327 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1328 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->data
->error
);
1336 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1337 /* Wait for more data */
1338 mutex_unlock(&host
->thread_lock
);
1342 if (host
->wait_for
!= MMCIF_WAIT_FOR_STOP
) {
1343 struct mmc_data
*data
= mrq
->data
;
1344 if (!mrq
->cmd
->error
&& data
&& !data
->error
)
1345 data
->bytes_xfered
=
1346 data
->blocks
* data
->blksz
;
1348 if (mrq
->stop
&& !mrq
->cmd
->error
&& (!data
|| !data
->error
)) {
1349 sh_mmcif_stop_cmd(host
, mrq
);
1350 if (!mrq
->stop
->error
) {
1351 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1352 mutex_unlock(&host
->thread_lock
);
1358 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1359 host
->state
= STATE_IDLE
;
1361 mmc_request_done(host
->mmc
, mrq
);
1363 mutex_unlock(&host
->thread_lock
);
1368 static irqreturn_t
sh_mmcif_intr(int irq
, void *dev_id
)
1370 struct sh_mmcif_host
*host
= dev_id
;
1371 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1374 state
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT
);
1375 mask
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT_MASK
);
1376 if (host
->ccs_enable
)
1377 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, ~(state
& mask
));
1379 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, INT_CCS
| ~(state
& mask
));
1380 sh_mmcif_bitclr(host
, MMCIF_CE_INT_MASK
, state
& MASK_CLEAN
);
1382 if (state
& ~MASK_CLEAN
)
1383 dev_dbg(dev
, "IRQ state = 0x%08x incompletely cleared\n",
1386 if (state
& INT_ERR_STS
|| state
& ~INT_ALL
) {
1387 host
->sd_error
= true;
1388 dev_dbg(dev
, "int err state = 0x%08x\n", state
);
1390 if (state
& ~(INT_CMD12RBE
| INT_CMD12CRE
)) {
1392 dev_dbg(dev
, "NULL IRQ state = 0x%08x\n", state
);
1393 if (!host
->dma_active
)
1394 return IRQ_WAKE_THREAD
;
1395 else if (host
->sd_error
)
1396 sh_mmcif_dma_complete(host
);
1398 dev_dbg(dev
, "Unexpected IRQ 0x%x\n", state
);
1404 static void sh_mmcif_timeout_work(struct work_struct
*work
)
1406 struct delayed_work
*d
= container_of(work
, struct delayed_work
, work
);
1407 struct sh_mmcif_host
*host
= container_of(d
, struct sh_mmcif_host
, timeout_work
);
1408 struct mmc_request
*mrq
= host
->mrq
;
1409 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1410 unsigned long flags
;
1413 /* Don't run after mmc_remove_host() */
1416 spin_lock_irqsave(&host
->lock
, flags
);
1417 if (host
->state
== STATE_IDLE
) {
1418 spin_unlock_irqrestore(&host
->lock
, flags
);
1422 dev_err(dev
, "Timeout waiting for %u on CMD%u\n",
1423 host
->wait_for
, mrq
->cmd
->opcode
);
1425 host
->state
= STATE_TIMEOUT
;
1426 spin_unlock_irqrestore(&host
->lock
, flags
);
1429 * Handle races with cancel_delayed_work(), unless
1430 * cancel_delayed_work_sync() is used
1432 switch (host
->wait_for
) {
1433 case MMCIF_WAIT_FOR_CMD
:
1434 mrq
->cmd
->error
= sh_mmcif_error_manage(host
);
1436 case MMCIF_WAIT_FOR_STOP
:
1437 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1439 case MMCIF_WAIT_FOR_MREAD
:
1440 case MMCIF_WAIT_FOR_MWRITE
:
1441 case MMCIF_WAIT_FOR_READ
:
1442 case MMCIF_WAIT_FOR_WRITE
:
1443 case MMCIF_WAIT_FOR_READ_END
:
1444 case MMCIF_WAIT_FOR_WRITE_END
:
1445 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1451 host
->state
= STATE_IDLE
;
1452 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1454 mmc_request_done(host
->mmc
, mrq
);
1457 static void sh_mmcif_init_ocr(struct sh_mmcif_host
*host
)
1459 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1460 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1461 struct mmc_host
*mmc
= host
->mmc
;
1463 mmc_regulator_get_supply(mmc
);
1468 if (!mmc
->ocr_avail
)
1469 mmc
->ocr_avail
= pd
->ocr
;
1471 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1474 static int sh_mmcif_probe(struct platform_device
*pdev
)
1476 int ret
= 0, irq
[2];
1477 struct mmc_host
*mmc
;
1478 struct sh_mmcif_host
*host
;
1479 struct device
*dev
= &pdev
->dev
;
1480 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1481 struct resource
*res
;
1485 irq
[0] = platform_get_irq(pdev
, 0);
1486 irq
[1] = platform_get_irq(pdev
, 1);
1488 dev_err(dev
, "Get irq error\n");
1492 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1493 reg
= devm_ioremap_resource(dev
, res
);
1495 return PTR_ERR(reg
);
1497 mmc
= mmc_alloc_host(sizeof(struct sh_mmcif_host
), dev
);
1501 ret
= mmc_of_parse(mmc
);
1505 host
= mmc_priv(mmc
);
1508 host
->timeout
= msecs_to_jiffies(10000);
1509 host
->ccs_enable
= !pd
|| !pd
->ccs_unsupported
;
1510 host
->clk_ctrl2_enable
= pd
&& pd
->clk_ctrl2_present
;
1514 spin_lock_init(&host
->lock
);
1516 mmc
->ops
= &sh_mmcif_ops
;
1517 sh_mmcif_init_ocr(host
);
1519 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
| MMC_CAP_WAIT_WHILE_BUSY
;
1521 mmc
->caps
|= pd
->caps
;
1523 mmc
->max_blk_size
= 512;
1524 mmc
->max_req_size
= PAGE_CACHE_SIZE
* mmc
->max_segs
;
1525 mmc
->max_blk_count
= mmc
->max_req_size
/ mmc
->max_blk_size
;
1526 mmc
->max_seg_size
= mmc
->max_req_size
;
1528 platform_set_drvdata(pdev
, host
);
1530 pm_runtime_enable(dev
);
1531 host
->power
= false;
1533 host
->clk
= devm_clk_get(dev
, NULL
);
1534 if (IS_ERR(host
->clk
)) {
1535 ret
= PTR_ERR(host
->clk
);
1536 dev_err(dev
, "cannot get clock: %d\n", ret
);
1540 ret
= clk_prepare_enable(host
->clk
);
1544 sh_mmcif_clk_setup(host
);
1546 ret
= pm_runtime_resume(dev
);
1550 INIT_DELAYED_WORK(&host
->timeout_work
, sh_mmcif_timeout_work
);
1552 sh_mmcif_sync_reset(host
);
1553 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1555 name
= irq
[1] < 0 ? dev_name(dev
) : "sh_mmc:error";
1556 ret
= devm_request_threaded_irq(dev
, irq
[0], sh_mmcif_intr
,
1557 sh_mmcif_irqt
, 0, name
, host
);
1559 dev_err(dev
, "request_irq error (%s)\n", name
);
1563 ret
= devm_request_threaded_irq(dev
, irq
[1],
1564 sh_mmcif_intr
, sh_mmcif_irqt
,
1565 0, "sh_mmc:int", host
);
1567 dev_err(dev
, "request_irq error (sh_mmc:int)\n");
1572 if (pd
&& pd
->use_cd_gpio
) {
1573 ret
= mmc_gpio_request_cd(mmc
, pd
->cd_gpio
, 0);
1578 mutex_init(&host
->thread_lock
);
1580 ret
= mmc_add_host(mmc
);
1584 dev_pm_qos_expose_latency_limit(dev
, 100);
1586 dev_info(dev
, "Chip version 0x%04x, clock rate %luMHz\n",
1587 sh_mmcif_readl(host
->addr
, MMCIF_CE_VERSION
) & 0xffff,
1588 clk_get_rate(host
->clk
) / 1000000UL);
1590 clk_disable_unprepare(host
->clk
);
1594 clk_disable_unprepare(host
->clk
);
1596 pm_runtime_disable(dev
);
1602 static int sh_mmcif_remove(struct platform_device
*pdev
)
1604 struct sh_mmcif_host
*host
= platform_get_drvdata(pdev
);
1607 clk_prepare_enable(host
->clk
);
1608 pm_runtime_get_sync(&pdev
->dev
);
1610 dev_pm_qos_hide_latency_limit(&pdev
->dev
);
1612 mmc_remove_host(host
->mmc
);
1613 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1616 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1617 * mmc_remove_host() call above. But swapping order doesn't help either
1618 * (a query on the linux-mmc mailing list didn't bring any replies).
1620 cancel_delayed_work_sync(&host
->timeout_work
);
1622 clk_disable_unprepare(host
->clk
);
1623 mmc_free_host(host
->mmc
);
1624 pm_runtime_put_sync(&pdev
->dev
);
1625 pm_runtime_disable(&pdev
->dev
);
1630 #ifdef CONFIG_PM_SLEEP
1631 static int sh_mmcif_suspend(struct device
*dev
)
1633 struct sh_mmcif_host
*host
= dev_get_drvdata(dev
);
1635 pm_runtime_get_sync(dev
);
1636 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1637 pm_runtime_put(dev
);
1642 static int sh_mmcif_resume(struct device
*dev
)
1648 static const struct dev_pm_ops sh_mmcif_dev_pm_ops
= {
1649 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend
, sh_mmcif_resume
)
1652 static struct platform_driver sh_mmcif_driver
= {
1653 .probe
= sh_mmcif_probe
,
1654 .remove
= sh_mmcif_remove
,
1656 .name
= DRIVER_NAME
,
1657 .pm
= &sh_mmcif_dev_pm_ops
,
1658 .of_match_table
= sh_mmcif_of_match
,
1662 module_platform_driver(sh_mmcif_driver
);
1664 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1665 MODULE_LICENSE("GPL");
1666 MODULE_ALIAS("platform:" DRIVER_NAME
);
1667 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");