2 * Handles the M-Systems DiskOnChip G3 chip
4 * Copyright (C) 2011 Robert Jarzmik
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/bitmap.h>
34 #include <linux/bitrev.h>
35 #include <linux/bch.h>
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
40 #define CREATE_TRACE_POINTS
44 * This driver handles the DiskOnChip G3 flash memory.
46 * As no specification is available from M-Systems/Sandisk, this drivers lacks
47 * several functions available on the chip, as :
50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
51 * the driver assumes a 16bits data bus.
53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
54 * - a 1 byte Hamming code stored in the OOB for each page
55 * - a 7 bytes BCH code stored in the OOB for each page
57 * - BCH is in GF(2^14)
58 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
60 * - BCH can correct up to 4 bits (t = 4)
61 * - BCH syndroms are calculated in hardware, and checked in hardware as well
65 static unsigned int reliable_mode
;
66 module_param(reliable_mode
, uint
, 0);
67 MODULE_PARM_DESC(reliable_mode
, "Set the docg3 mode (0=normal MLC, 1=fast, "
68 "2=reliable) : MLC normal operations are in normal mode");
71 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
72 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
73 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
74 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
75 * @oobavail: 8 available bytes remaining after ECC toll
77 static struct nand_ecclayout docg3_oobinfo
= {
79 .eccpos
= {7, 8, 9, 10, 11, 12, 13, 14},
80 .oobfree
= {{0, 7}, {15, 1} },
84 static inline u8
doc_readb(struct docg3
*docg3
, u16 reg
)
86 u8 val
= readb(docg3
->cascade
->base
+ reg
);
88 trace_docg3_io(0, 8, reg
, (int)val
);
92 static inline u16
doc_readw(struct docg3
*docg3
, u16 reg
)
94 u16 val
= readw(docg3
->cascade
->base
+ reg
);
96 trace_docg3_io(0, 16, reg
, (int)val
);
100 static inline void doc_writeb(struct docg3
*docg3
, u8 val
, u16 reg
)
102 writeb(val
, docg3
->cascade
->base
+ reg
);
103 trace_docg3_io(1, 8, reg
, val
);
106 static inline void doc_writew(struct docg3
*docg3
, u16 val
, u16 reg
)
108 writew(val
, docg3
->cascade
->base
+ reg
);
109 trace_docg3_io(1, 16, reg
, val
);
112 static inline void doc_flash_command(struct docg3
*docg3
, u8 cmd
)
114 doc_writeb(docg3
, cmd
, DOC_FLASHCOMMAND
);
117 static inline void doc_flash_sequence(struct docg3
*docg3
, u8 seq
)
119 doc_writeb(docg3
, seq
, DOC_FLASHSEQUENCE
);
122 static inline void doc_flash_address(struct docg3
*docg3
, u8 addr
)
124 doc_writeb(docg3
, addr
, DOC_FLASHADDRESS
);
127 static char const * const part_probes
[] = { "cmdlinepart", "saftlpart", NULL
};
129 static int doc_register_readb(struct docg3
*docg3
, int reg
)
133 doc_writew(docg3
, reg
, DOC_READADDRESS
);
134 val
= doc_readb(docg3
, reg
);
135 doc_vdbg("Read register %04x : %02x\n", reg
, val
);
139 static int doc_register_readw(struct docg3
*docg3
, int reg
)
143 doc_writew(docg3
, reg
, DOC_READADDRESS
);
144 val
= doc_readw(docg3
, reg
);
145 doc_vdbg("Read register %04x : %04x\n", reg
, val
);
150 * doc_delay - delay docg3 operations
152 * @nbNOPs: the number of NOPs to issue
154 * As no specification is available, the right timings between chip commands are
155 * unknown. The only available piece of information are the observed nops on a
156 * working docg3 chip.
157 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
158 * friendlier msleep() functions or blocking mdelay().
160 static void doc_delay(struct docg3
*docg3
, int nbNOPs
)
164 doc_vdbg("NOP x %d\n", nbNOPs
);
165 for (i
= 0; i
< nbNOPs
; i
++)
166 doc_writeb(docg3
, 0, DOC_NOP
);
169 static int is_prot_seq_error(struct docg3
*docg3
)
173 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
174 return ctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
);
177 static int doc_is_ready(struct docg3
*docg3
)
181 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
182 return ctrl
& DOC_CTRL_FLASHREADY
;
185 static int doc_wait_ready(struct docg3
*docg3
)
187 int maxWaitCycles
= 100;
192 } while (!doc_is_ready(docg3
) && maxWaitCycles
--);
194 if (maxWaitCycles
> 0)
200 static int doc_reset_seq(struct docg3
*docg3
)
204 doc_writeb(docg3
, 0x10, DOC_FLASHCONTROL
);
205 doc_flash_sequence(docg3
, DOC_SEQ_RESET
);
206 doc_flash_command(docg3
, DOC_CMD_RESET
);
208 ret
= doc_wait_ready(docg3
);
210 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret
? "false" : "true");
215 * doc_read_data_area - Read data from data area
217 * @buf: the buffer to fill in (might be NULL is dummy reads)
218 * @len: the length to read
219 * @first: first time read, DOC_READADDRESS should be set
221 * Reads bytes from flash data. Handles the single byte / even bytes reads.
223 static void doc_read_data_area(struct docg3
*docg3
, void *buf
, int len
,
230 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf
, len
);
235 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
237 for (i
= 0; i
< len4
; i
+= 2) {
238 data16
= doc_readw(docg3
, DOC_IOSPACE_DATA
);
246 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
250 for (i
= 0; i
< cdr
; i
++) {
251 data8
= doc_readb(docg3
, DOC_IOSPACE_DATA
);
261 * doc_write_data_area - Write data into data area
263 * @buf: the buffer to get input bytes from
264 * @len: the length to write
266 * Writes bytes into flash data. Handles the single byte / even bytes writes.
268 static void doc_write_data_area(struct docg3
*docg3
, const void *buf
, int len
)
274 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf
, len
);
278 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
280 for (i
= 0; i
< len4
; i
+= 2) {
281 doc_writew(docg3
, *src16
, DOC_IOSPACE_DATA
);
286 for (i
= 0; i
< cdr
; i
++) {
287 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
289 doc_writeb(docg3
, *src8
, DOC_IOSPACE_DATA
);
295 * doc_set_data_mode - Sets the flash to normal or reliable data mode
298 * The reliable data mode is a bit slower than the fast mode, but less errors
299 * occur. Entering the reliable mode cannot be done without entering the fast
302 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
303 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
304 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
305 * result, which is a logical and between bytes from page 0 and page 1 (which is
306 * consistent with the fact that writing to a page is _clearing_ bits of that
309 static void doc_set_reliable_mode(struct docg3
*docg3
)
311 static char *strmode
[] = { "normal", "fast", "reliable", "invalid" };
313 doc_dbg("doc_set_reliable_mode(%s)\n", strmode
[docg3
->reliable
]);
314 switch (docg3
->reliable
) {
318 doc_flash_sequence(docg3
, DOC_SEQ_SET_FASTMODE
);
319 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
322 doc_flash_sequence(docg3
, DOC_SEQ_SET_RELIABLEMODE
);
323 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
324 doc_flash_command(docg3
, DOC_CMD_RELIABLE_MODE
);
327 doc_err("doc_set_reliable_mode(): invalid mode\n");
334 * doc_set_asic_mode - Set the ASIC mode
338 * The ASIC can work in 3 modes :
339 * - RESET: all registers are zeroed
340 * - NORMAL: receives and handles commands
341 * - POWERDOWN: minimal poweruse, flash parts shut off
343 static void doc_set_asic_mode(struct docg3
*docg3
, u8 mode
)
347 for (i
= 0; i
< 12; i
++)
348 doc_readb(docg3
, DOC_IOSPACE_IPL
);
350 mode
|= DOC_ASICMODE_MDWREN
;
351 doc_dbg("doc_set_asic_mode(%02x)\n", mode
);
352 doc_writeb(docg3
, mode
, DOC_ASICMODE
);
353 doc_writeb(docg3
, ~mode
, DOC_ASICMODECONFIRM
);
358 * doc_set_device_id - Sets the devices id for cascaded G3 chips
360 * @id: the chip to select (amongst 0, 1, 2, 3)
362 * There can be 4 cascaded G3 chips. This function selects the one which will
363 * should be the active one.
365 static void doc_set_device_id(struct docg3
*docg3
, int id
)
369 doc_dbg("doc_set_device_id(%d)\n", id
);
370 doc_writeb(docg3
, id
, DOC_DEVICESELECT
);
371 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
373 ctrl
&= ~DOC_CTRL_VIOLATION
;
375 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
379 * doc_set_extra_page_mode - Change flash page layout
382 * Normally, the flash page is split into the data (512 bytes) and the out of
383 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
384 * leveling counters are stored. To access this last area of 4 bytes, a special
385 * mode must be input to the flash ASIC.
387 * Returns 0 if no error occurred, -EIO else.
389 static int doc_set_extra_page_mode(struct docg3
*docg3
)
393 doc_dbg("doc_set_extra_page_mode()\n");
394 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SIZE_532
);
395 doc_flash_command(docg3
, DOC_CMD_PAGE_SIZE_532
);
398 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
399 if (fctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
))
406 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
408 * @sector: the sector
410 static void doc_setup_addr_sector(struct docg3
*docg3
, int sector
)
413 doc_flash_address(docg3
, sector
& 0xff);
414 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
415 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
420 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
422 * @sector: the sector
423 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
425 static void doc_setup_writeaddr_sector(struct docg3
*docg3
, int sector
, int ofs
)
429 doc_flash_address(docg3
, ofs
& 0xff);
430 doc_flash_address(docg3
, sector
& 0xff);
431 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
432 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
437 * doc_seek - Set both flash planes to the specified block, page for reading
439 * @block0: the first plane block index
440 * @block1: the second plane block index
441 * @page: the page index within the block
442 * @wear: if true, read will occur on the 4 extra bytes of the wear area
443 * @ofs: offset in page to read
445 * Programs the flash even and odd planes to the specific block and page.
446 * Alternatively, programs the flash to the wear area of the specified page.
448 static int doc_read_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
453 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
454 block0
, block1
, page
, ofs
, wear
);
456 if (!wear
&& (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
)) {
457 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
458 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
461 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
462 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
466 doc_set_reliable_mode(docg3
);
468 ret
= doc_set_extra_page_mode(docg3
);
472 doc_flash_sequence(docg3
, DOC_SEQ_READ
);
473 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
474 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
475 doc_setup_addr_sector(docg3
, sector
);
477 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
478 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
479 doc_setup_addr_sector(docg3
, sector
);
487 * doc_write_seek - Set both flash planes to the specified block, page for writing
489 * @block0: the first plane block index
490 * @block1: the second plane block index
491 * @page: the page index within the block
492 * @ofs: offset in page to write
494 * Programs the flash even and odd planes to the specific block and page.
495 * Alternatively, programs the flash to the wear area of the specified page.
497 static int doc_write_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
502 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
503 block0
, block1
, page
, ofs
);
505 doc_set_reliable_mode(docg3
);
507 if (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
) {
508 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
509 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
512 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
513 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
517 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SETUP
);
518 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
520 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
521 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
523 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE3
);
525 ret
= doc_wait_ready(docg3
);
529 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
530 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
531 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
540 * doc_read_page_ecc_init - Initialize hardware ECC engine
542 * @len: the number of bytes covered by the ECC (BCH covered)
544 * The function does initialize the hardware ECC engine to compute the Hamming
545 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
547 * Return 0 if succeeded, -EIO on error
549 static int doc_read_page_ecc_init(struct docg3
*docg3
, int len
)
551 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
552 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
553 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
556 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
557 return doc_wait_ready(docg3
);
561 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
563 * @len: the number of bytes covered by the ECC (BCH covered)
565 * The function does initialize the hardware ECC engine to compute the Hamming
566 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
568 * Return 0 if succeeded, -EIO on error
570 static int doc_write_page_ecc_init(struct docg3
*docg3
, int len
)
572 doc_writew(docg3
, DOC_ECCCONF0_WRITE_MODE
573 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
574 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
577 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
578 return doc_wait_ready(docg3
);
582 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
585 * Disables the hardware ECC generator and checker, for unchecked reads (as when
586 * reading OOB only or write status byte).
588 static void doc_ecc_disable(struct docg3
*docg3
)
590 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
, DOC_ECCCONF0
);
595 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
597 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
599 * This function programs the ECC hardware to compute the hamming code on the
600 * last provided N bytes to the hardware generator.
602 static void doc_hamming_ecc_init(struct docg3
*docg3
, int nb_bytes
)
606 ecc_conf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
607 ecc_conf1
&= ~DOC_ECCCONF1_HAMMING_BITS_MASK
;
608 ecc_conf1
|= (nb_bytes
& DOC_ECCCONF1_HAMMING_BITS_MASK
);
609 doc_writeb(docg3
, ecc_conf1
, DOC_ECCCONF1
);
613 * doc_ecc_bch_fix_data - Fix if need be read data from flash
615 * @buf: the buffer of read data (512 + 7 + 1 bytes)
616 * @hwecc: the hardware calculated ECC.
617 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
618 * area data, and calc_ecc the ECC calculated by the hardware generator.
620 * Checks if the received data matches the ECC, and if an error is detected,
621 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
622 * understands the (data, ecc, syndroms) in an inverted order in comparison to
623 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
624 * bit6 and bit 1, ...) for all ECC data.
626 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
627 * algorithm is used to decode this. However the hw operates on page
628 * data in a bit order that is the reverse of that of the bch alg,
629 * requiring that the bits be reversed on the result. Thanks to Ivan
630 * Djelic for his analysis.
632 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
633 * errors were detected and cannot be fixed.
635 static int doc_ecc_bch_fix_data(struct docg3
*docg3
, void *buf
, u8
*hwecc
)
637 u8 ecc
[DOC_ECC_BCH_SIZE
];
638 int errorpos
[DOC_ECC_BCH_T
], i
, numerrs
;
640 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
641 ecc
[i
] = bitrev8(hwecc
[i
]);
642 numerrs
= decode_bch(docg3
->cascade
->bch
, NULL
,
643 DOC_ECC_BCH_COVERED_BYTES
,
644 NULL
, ecc
, NULL
, errorpos
);
645 BUG_ON(numerrs
== -EINVAL
);
649 for (i
= 0; i
< numerrs
; i
++)
650 errorpos
[i
] = (errorpos
[i
] & ~7) | (7 - (errorpos
[i
] & 7));
651 for (i
= 0; i
< numerrs
; i
++)
652 if (errorpos
[i
] < DOC_ECC_BCH_COVERED_BYTES
*8)
653 /* error is located in data, correct it */
654 change_bit(errorpos
[i
], buf
);
656 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs
);
662 * doc_read_page_prepare - Prepares reading data from a flash page
664 * @block0: the first plane block index on flash memory
665 * @block1: the second plane block index on flash memory
666 * @page: the page index in the block
667 * @offset: the offset in the page (must be a multiple of 4)
669 * Prepares the page to be read in the flash memory :
670 * - tell ASIC to map the flash pages
671 * - tell ASIC to be in read mode
673 * After a call to this method, a call to doc_read_page_finish is mandatory,
674 * to end the read cycle of the flash.
676 * Read data from a flash page. The length to be read must be between 0 and
677 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
678 * the extra bytes reading is not implemented).
680 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
682 * - one read of 512 bytes at offset 0
683 * - one read of 512 bytes at offset 512 + 16
685 * Returns 0 if successful, -EIO if a read error occurred.
687 static int doc_read_page_prepare(struct docg3
*docg3
, int block0
, int block1
,
688 int page
, int offset
)
690 int wear_area
= 0, ret
= 0;
692 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
693 block0
, block1
, page
, offset
);
694 if (offset
>= DOC_LAYOUT_WEAR_OFFSET
)
696 if (!wear_area
&& offset
> (DOC_LAYOUT_PAGE_OOB_SIZE
* 2))
699 doc_set_device_id(docg3
, docg3
->device_id
);
700 ret
= doc_reset_seq(docg3
);
704 /* Program the flash address block and page */
705 ret
= doc_read_seek(docg3
, block0
, block1
, page
, wear_area
, offset
);
709 doc_flash_command(docg3
, DOC_CMD_READ_ALL_PLANES
);
711 doc_wait_ready(docg3
);
713 doc_flash_command(docg3
, DOC_CMD_SET_ADDR_READ
);
715 if (offset
>= DOC_LAYOUT_PAGE_SIZE
* 2)
716 offset
-= 2 * DOC_LAYOUT_PAGE_SIZE
;
717 doc_flash_address(docg3
, offset
>> 2);
719 doc_wait_ready(docg3
);
721 doc_flash_command(docg3
, DOC_CMD_READ_FLASH
);
725 doc_writeb(docg3
, 0, DOC_DATAEND
);
731 * doc_read_page_getbytes - Reads bytes from a prepared page
733 * @len: the number of bytes to be read (must be a multiple of 4)
734 * @buf: the buffer to be filled in (or NULL is forget bytes)
735 * @first: 1 if first time read, DOC_READADDRESS should be set
736 * @last_odd: 1 if last read ended up on an odd byte
738 * Reads bytes from a prepared page. There is a trickery here : if the last read
739 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
740 * planes, the first byte must be read apart. If a word (16bit) read was used,
741 * the read would return the byte of plane 2 as low *and* high endian, which
742 * will mess the read.
745 static int doc_read_page_getbytes(struct docg3
*docg3
, int len
, u_char
*buf
,
746 int first
, int last_odd
)
748 if (last_odd
&& len
> 0) {
749 doc_read_data_area(docg3
, buf
, 1, first
);
750 doc_read_data_area(docg3
, buf
? buf
+ 1 : buf
, len
- 1, 0);
752 doc_read_data_area(docg3
, buf
, len
, first
);
759 * doc_write_page_putbytes - Writes bytes into a prepared page
761 * @len: the number of bytes to be written
762 * @buf: the buffer of input bytes
765 static void doc_write_page_putbytes(struct docg3
*docg3
, int len
,
768 doc_write_data_area(docg3
, buf
, len
);
773 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
775 * @hwecc: the array of 7 integers where the hardware ecc will be stored
777 static void doc_get_bch_hw_ecc(struct docg3
*docg3
, u8
*hwecc
)
781 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
782 hwecc
[i
] = doc_register_readb(docg3
, DOC_BCH_HW_ECC(i
));
786 * doc_page_finish - Ends reading/writing of a flash page
789 static void doc_page_finish(struct docg3
*docg3
)
791 doc_writeb(docg3
, 0, DOC_DATAEND
);
796 * doc_read_page_finish - Ends reading of a flash page
799 * As a side effect, resets the chip selector to 0. This ensures that after each
800 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
801 * reboot will boot on floor 0, where the IPL is.
803 static void doc_read_page_finish(struct docg3
*docg3
)
805 doc_page_finish(docg3
);
806 doc_set_device_id(docg3
, 0);
810 * calc_block_sector - Calculate blocks, pages and ofs.
812 * @from: offset in flash
813 * @block0: first plane block index calculated
814 * @block1: second plane block index calculated
815 * @page: page calculated
816 * @ofs: offset in page
817 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
820 * The calculation is based on the reliable/normal mode. In normal mode, the 64
821 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
822 * clones, only 32 pages per block are available.
824 static void calc_block_sector(loff_t from
, int *block0
, int *block1
, int *page
,
825 int *ofs
, int reliable
)
827 uint sector
, pages_biblock
;
829 pages_biblock
= DOC_LAYOUT_PAGES_PER_BLOCK
* DOC_LAYOUT_NBPLANES
;
830 if (reliable
== 1 || reliable
== 2)
833 sector
= from
/ DOC_LAYOUT_PAGE_SIZE
;
834 *block0
= sector
/ pages_biblock
* DOC_LAYOUT_NBPLANES
;
835 *block1
= *block0
+ 1;
836 *page
= sector
% pages_biblock
;
837 *page
/= DOC_LAYOUT_NBPLANES
;
838 if (reliable
== 1 || reliable
== 2)
841 *ofs
= DOC_LAYOUT_PAGE_OOB_SIZE
;
847 * doc_read_oob - Read out of band bytes from flash
849 * @from: the offset from first block and first page, in bytes, aligned on page
851 * @ops: the mtd oob structure
853 * Reads flash memory OOB area of pages.
855 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
857 static int doc_read_oob(struct mtd_info
*mtd
, loff_t from
,
858 struct mtd_oob_ops
*ops
)
860 struct docg3
*docg3
= mtd
->priv
;
861 int block0
, block1
, page
, ret
, skip
, ofs
= 0;
862 u8
*oobbuf
= ops
->oobbuf
;
863 u8
*buf
= ops
->datbuf
;
864 size_t len
, ooblen
, nbdata
, nboob
;
865 u8 hwecc
[DOC_ECC_BCH_SIZE
], eccconf1
;
866 int max_bitflips
= 0;
873 ooblen
= ops
->ooblen
;
877 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
878 oobbuf
+= ops
->ooboffs
;
880 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
881 from
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
882 if (ooblen
% DOC_LAYOUT_OOB_SIZE
)
885 if (from
+ len
> mtd
->size
)
891 skip
= from
% DOC_LAYOUT_PAGE_SIZE
;
892 mutex_lock(&docg3
->cascade
->lock
);
893 while (ret
>= 0 && (len
> 0 || ooblen
> 0)) {
894 calc_block_sector(from
- skip
, &block0
, &block1
, &page
, &ofs
,
896 nbdata
= min_t(size_t, len
, DOC_LAYOUT_PAGE_SIZE
- skip
);
897 nboob
= min_t(size_t, ooblen
, (size_t)DOC_LAYOUT_OOB_SIZE
);
898 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
, ofs
);
901 ret
= doc_read_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
904 ret
= doc_read_page_getbytes(docg3
, skip
, NULL
, 1, 0);
907 ret
= doc_read_page_getbytes(docg3
, nbdata
, buf
, 0, skip
% 2);
910 doc_read_page_getbytes(docg3
,
911 DOC_LAYOUT_PAGE_SIZE
- nbdata
- skip
,
912 NULL
, 0, (skip
+ nbdata
) % 2);
913 ret
= doc_read_page_getbytes(docg3
, nboob
, oobbuf
, 0, 0);
916 doc_read_page_getbytes(docg3
, DOC_LAYOUT_OOB_SIZE
- nboob
,
919 doc_get_bch_hw_ecc(docg3
, hwecc
);
920 eccconf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
922 if (nboob
>= DOC_LAYOUT_OOB_SIZE
) {
923 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf
);
924 doc_dbg("OOB - HAMMING: %02x\n", oobbuf
[7]);
925 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf
+ 8);
926 doc_dbg("OOB - UNUSED: %02x\n", oobbuf
[15]);
928 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1
);
929 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc
);
932 if (is_prot_seq_error(docg3
))
935 if ((block0
>= DOC_LAYOUT_BLOCK_FIRST_DATA
) &&
936 (eccconf1
& DOC_ECCCONF1_BCH_SYNDROM_ERR
) &&
937 (eccconf1
& DOC_ECCCONF1_PAGE_IS_WRITTEN
) &&
938 (ops
->mode
!= MTD_OPS_RAW
) &&
939 (nbdata
== DOC_LAYOUT_PAGE_SIZE
)) {
940 ret
= doc_ecc_bch_fix_data(docg3
, buf
, hwecc
);
942 mtd
->ecc_stats
.failed
++;
946 mtd
->ecc_stats
.corrected
+= ret
;
947 max_bitflips
= max(max_bitflips
, ret
);
952 doc_read_page_finish(docg3
);
953 ops
->retlen
+= nbdata
;
954 ops
->oobretlen
+= nboob
;
959 from
+= DOC_LAYOUT_PAGE_SIZE
;
964 mutex_unlock(&docg3
->cascade
->lock
);
967 doc_read_page_finish(docg3
);
972 * doc_read - Read bytes from flash
974 * @from: the offset from first block and first page, in bytes, aligned on page
976 * @len: the number of bytes to read (must be a multiple of 4)
977 * @retlen: the number of bytes actually read
978 * @buf: the filled in buffer
980 * Reads flash memory pages. This function does not read the OOB chunk, but only
983 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
985 static int doc_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
986 size_t *retlen
, u_char
*buf
)
988 struct mtd_oob_ops ops
;
991 memset(&ops
, 0, sizeof(ops
));
994 ops
.mode
= MTD_OPS_AUTO_OOB
;
996 ret
= doc_read_oob(mtd
, from
, &ops
);
997 *retlen
= ops
.retlen
;
1001 static int doc_reload_bbt(struct docg3
*docg3
)
1003 int block
= DOC_LAYOUT_BLOCK_BBT
;
1004 int ret
= 0, nbpages
, page
;
1005 u_char
*buf
= docg3
->bbt
;
1007 nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1, 8 * DOC_LAYOUT_PAGE_SIZE
);
1008 for (page
= 0; !ret
&& (page
< nbpages
); page
++) {
1009 ret
= doc_read_page_prepare(docg3
, block
, block
+ 1,
1010 page
+ DOC_LAYOUT_PAGE_BBT
, 0);
1012 ret
= doc_read_page_ecc_init(docg3
,
1013 DOC_LAYOUT_PAGE_SIZE
);
1015 doc_read_page_getbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
,
1017 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1019 doc_read_page_finish(docg3
);
1024 * doc_block_isbad - Checks whether a block is good or not
1026 * @from: the offset to find the correct block
1028 * Returns 1 if block is bad, 0 if block is good
1030 static int doc_block_isbad(struct mtd_info
*mtd
, loff_t from
)
1032 struct docg3
*docg3
= mtd
->priv
;
1033 int block0
, block1
, page
, ofs
, is_good
;
1035 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
,
1037 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1038 from
, block0
, block1
, page
, ofs
);
1040 if (block0
< DOC_LAYOUT_BLOCK_FIRST_DATA
)
1042 if (block1
> docg3
->max_block
)
1045 is_good
= docg3
->bbt
[block0
>> 3] & (1 << (block0
& 0x7));
1051 * doc_get_erase_count - Get block erase count
1052 * @docg3: the device
1053 * @from: the offset in which the block is.
1055 * Get the number of times a block was erased. The number is the maximum of
1056 * erase times between first and second plane (which should be equal normally).
1058 * Returns The number of erases, or -EINVAL or -EIO on error.
1060 static int doc_get_erase_count(struct docg3
*docg3
, loff_t from
)
1062 u8 buf
[DOC_LAYOUT_WEAR_SIZE
];
1063 int ret
, plane1_erase_count
, plane2_erase_count
;
1064 int block0
, block1
, page
, ofs
;
1066 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from
, buf
);
1067 if (from
% DOC_LAYOUT_PAGE_SIZE
)
1069 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1070 if (block1
> docg3
->max_block
)
1073 ret
= doc_reset_seq(docg3
);
1075 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
,
1076 ofs
+ DOC_LAYOUT_WEAR_OFFSET
, 0);
1078 ret
= doc_read_page_getbytes(docg3
, DOC_LAYOUT_WEAR_SIZE
,
1080 doc_read_page_finish(docg3
);
1082 if (ret
|| (buf
[0] != DOC_ERASE_MARK
) || (buf
[2] != DOC_ERASE_MARK
))
1084 plane1_erase_count
= (u8
)(~buf
[1]) | ((u8
)(~buf
[4]) << 8)
1085 | ((u8
)(~buf
[5]) << 16);
1086 plane2_erase_count
= (u8
)(~buf
[3]) | ((u8
)(~buf
[6]) << 8)
1087 | ((u8
)(~buf
[7]) << 16);
1089 return max(plane1_erase_count
, plane2_erase_count
);
1094 * doc_get_op_status - get erase/write operation status
1095 * @docg3: the device
1097 * Queries the status from the chip, and returns it
1099 * Returns the status (bits DOC_PLANES_STATUS_*)
1101 static int doc_get_op_status(struct docg3
*docg3
)
1105 doc_flash_sequence(docg3
, DOC_SEQ_PLANES_STATUS
);
1106 doc_flash_command(docg3
, DOC_CMD_PLANES_STATUS
);
1107 doc_delay(docg3
, 5);
1109 doc_ecc_disable(docg3
);
1110 doc_read_data_area(docg3
, &status
, 1, 1);
1115 * doc_write_erase_wait_status - wait for write or erase completion
1116 * @docg3: the device
1118 * Wait for the chip to be ready again after erase or write operation, and check
1119 * erase/write status.
1121 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1124 static int doc_write_erase_wait_status(struct docg3
*docg3
)
1126 int i
, status
, ret
= 0;
1128 for (i
= 0; !doc_is_ready(docg3
) && i
< 5; i
++)
1130 if (!doc_is_ready(docg3
)) {
1131 doc_dbg("Timeout reached and the chip is still not ready\n");
1136 status
= doc_get_op_status(docg3
);
1137 if (status
& DOC_PLANES_STATUS_FAIL
) {
1138 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1144 doc_page_finish(docg3
);
1149 * doc_erase_block - Erase a couple of blocks
1150 * @docg3: the device
1151 * @block0: the first block to erase (leftmost plane)
1152 * @block1: the second block to erase (rightmost plane)
1154 * Erase both blocks, and return operation status
1156 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1157 * ready for too long
1159 static int doc_erase_block(struct docg3
*docg3
, int block0
, int block1
)
1163 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0
, block1
);
1164 ret
= doc_reset_seq(docg3
);
1168 doc_set_reliable_mode(docg3
);
1169 doc_flash_sequence(docg3
, DOC_SEQ_ERASE
);
1171 sector
= block0
<< DOC_ADDR_BLOCK_SHIFT
;
1172 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1173 doc_setup_addr_sector(docg3
, sector
);
1174 sector
= block1
<< DOC_ADDR_BLOCK_SHIFT
;
1175 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1176 doc_setup_addr_sector(docg3
, sector
);
1177 doc_delay(docg3
, 1);
1179 doc_flash_command(docg3
, DOC_CMD_ERASECYCLE2
);
1180 doc_delay(docg3
, 2);
1182 if (is_prot_seq_error(docg3
)) {
1183 doc_err("Erase blocks %d,%d error\n", block0
, block1
);
1187 return doc_write_erase_wait_status(docg3
);
1191 * doc_erase - Erase a portion of the chip
1193 * @info: the erase info
1195 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1196 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1198 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1201 static int doc_erase(struct mtd_info
*mtd
, struct erase_info
*info
)
1203 struct docg3
*docg3
= mtd
->priv
;
1205 int block0
, block1
, page
, ret
, ofs
= 0;
1207 doc_dbg("doc_erase(from=%lld, len=%lld\n", info
->addr
, info
->len
);
1209 info
->state
= MTD_ERASE_PENDING
;
1210 calc_block_sector(info
->addr
+ info
->len
, &block0
, &block1
, &page
,
1211 &ofs
, docg3
->reliable
);
1213 if (info
->addr
+ info
->len
> mtd
->size
|| page
|| ofs
)
1217 calc_block_sector(info
->addr
, &block0
, &block1
, &page
, &ofs
,
1219 mutex_lock(&docg3
->cascade
->lock
);
1220 doc_set_device_id(docg3
, docg3
->device_id
);
1221 doc_set_reliable_mode(docg3
);
1222 for (len
= info
->len
; !ret
&& len
> 0; len
-= mtd
->erasesize
) {
1223 info
->state
= MTD_ERASING
;
1224 ret
= doc_erase_block(docg3
, block0
, block1
);
1228 mutex_unlock(&docg3
->cascade
->lock
);
1233 info
->state
= MTD_ERASE_DONE
;
1237 info
->state
= MTD_ERASE_FAILED
;
1242 * doc_write_page - Write a single page to the chip
1243 * @docg3: the device
1244 * @to: the offset from first block and first page, in bytes, aligned on page
1246 * @buf: buffer to get bytes from
1247 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1249 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1250 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1251 * remaining ones are filled with hardware Hamming and BCH
1252 * computations. Its value is not meaningfull is oob == NULL.
1254 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1255 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1256 * BCH generator if autoecc is not null.
1258 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1260 static int doc_write_page(struct docg3
*docg3
, loff_t to
, const u_char
*buf
,
1261 const u_char
*oob
, int autoecc
)
1263 int block0
, block1
, page
, ret
, ofs
= 0;
1264 u8 hwecc
[DOC_ECC_BCH_SIZE
], hamming
;
1266 doc_dbg("doc_write_page(to=%lld)\n", to
);
1267 calc_block_sector(to
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1269 doc_set_device_id(docg3
, docg3
->device_id
);
1270 ret
= doc_reset_seq(docg3
);
1274 /* Program the flash address block and page */
1275 ret
= doc_write_seek(docg3
, block0
, block1
, page
, ofs
);
1279 doc_write_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
1280 doc_delay(docg3
, 2);
1281 doc_write_page_putbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
, buf
);
1283 if (oob
&& autoecc
) {
1284 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
, oob
);
1285 doc_delay(docg3
, 2);
1286 oob
+= DOC_LAYOUT_OOB_UNUSED_OFS
;
1288 hamming
= doc_register_readb(docg3
, DOC_HAMMINGPARITY
);
1289 doc_delay(docg3
, 2);
1290 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_HAMMING_SZ
,
1292 doc_delay(docg3
, 2);
1294 doc_get_bch_hw_ecc(docg3
, hwecc
);
1295 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_BCH_SZ
, hwecc
);
1296 doc_delay(docg3
, 2);
1298 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_UNUSED_SZ
, oob
);
1300 if (oob
&& !autoecc
)
1301 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_SIZE
, oob
);
1303 doc_delay(docg3
, 2);
1304 doc_page_finish(docg3
);
1305 doc_delay(docg3
, 2);
1306 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE2
);
1307 doc_delay(docg3
, 2);
1310 * The wait status will perform another doc_page_finish() call, but that
1311 * seems to please the docg3, so leave it.
1313 ret
= doc_write_erase_wait_status(docg3
);
1316 doc_read_page_finish(docg3
);
1321 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1322 * @ops: the oob operations
1324 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1326 static int doc_guess_autoecc(struct mtd_oob_ops
*ops
)
1330 switch (ops
->mode
) {
1331 case MTD_OPS_PLACE_OOB
:
1332 case MTD_OPS_AUTO_OOB
:
1345 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1346 * @dst: the target 16 bytes OOB buffer
1347 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1350 static void doc_fill_autooob(u8
*dst
, u8
*oobsrc
)
1352 memcpy(dst
, oobsrc
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1353 dst
[DOC_LAYOUT_OOB_UNUSED_OFS
] = oobsrc
[DOC_LAYOUT_OOB_PAGEINFO_SZ
];
1357 * doc_backup_oob - Backup OOB into docg3 structure
1358 * @docg3: the device
1359 * @to: the page offset in the chip
1360 * @ops: the OOB size and buffer
1362 * As the docg3 should write a page with its OOB in one pass, and some userland
1363 * applications do write_oob() to setup the OOB and then write(), store the OOB
1364 * into a temporary storage. This is very dangerous, as 2 concurrent
1365 * applications could store an OOB, and then write their pages (which will
1366 * result into one having its OOB corrupted).
1368 * The only reliable way would be for userland to call doc_write_oob() with both
1369 * the page data _and_ the OOB area.
1371 * Returns 0 if success, -EINVAL if ops content invalid
1373 static int doc_backup_oob(struct docg3
*docg3
, loff_t to
,
1374 struct mtd_oob_ops
*ops
)
1376 int ooblen
= ops
->ooblen
, autoecc
;
1378 if (ooblen
!= DOC_LAYOUT_OOB_SIZE
)
1380 autoecc
= doc_guess_autoecc(ops
);
1384 docg3
->oob_write_ofs
= to
;
1385 docg3
->oob_autoecc
= autoecc
;
1386 if (ops
->mode
== MTD_OPS_AUTO_OOB
) {
1387 doc_fill_autooob(docg3
->oob_write_buf
, ops
->oobbuf
);
1390 memcpy(docg3
->oob_write_buf
, ops
->oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1391 ops
->oobretlen
= DOC_LAYOUT_OOB_SIZE
;
1397 * doc_write_oob - Write out of band bytes to flash
1399 * @ofs: the offset from first block and first page, in bytes, aligned on page
1401 * @ops: the mtd oob structure
1403 * Either write OOB data into a temporary buffer, for the subsequent write
1404 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1405 * as well, issue the page write.
1406 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1407 * still be filled in if asked for).
1409 * Returns 0 is successful, EINVAL if length is not 14 bytes
1411 static int doc_write_oob(struct mtd_info
*mtd
, loff_t ofs
,
1412 struct mtd_oob_ops
*ops
)
1414 struct docg3
*docg3
= mtd
->priv
;
1415 int ret
, autoecc
, oobdelta
;
1416 u8
*oobbuf
= ops
->oobbuf
;
1417 u8
*buf
= ops
->datbuf
;
1419 u8 oob
[DOC_LAYOUT_OOB_SIZE
];
1426 ooblen
= ops
->ooblen
;
1430 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
1431 oobbuf
+= ops
->ooboffs
;
1433 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1434 ofs
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
1435 switch (ops
->mode
) {
1436 case MTD_OPS_PLACE_OOB
:
1438 oobdelta
= mtd
->oobsize
;
1440 case MTD_OPS_AUTO_OOB
:
1441 oobdelta
= mtd
->ecclayout
->oobavail
;
1446 if ((len
% DOC_LAYOUT_PAGE_SIZE
) || (ooblen
% oobdelta
) ||
1447 (ofs
% DOC_LAYOUT_PAGE_SIZE
))
1449 if (len
&& ooblen
&&
1450 (len
/ DOC_LAYOUT_PAGE_SIZE
) != (ooblen
/ oobdelta
))
1452 if (ofs
+ len
> mtd
->size
)
1458 if (len
== 0 && ooblen
== 0)
1460 if (len
== 0 && ooblen
> 0)
1461 return doc_backup_oob(docg3
, ofs
, ops
);
1463 autoecc
= doc_guess_autoecc(ops
);
1467 mutex_lock(&docg3
->cascade
->lock
);
1468 while (!ret
&& len
> 0) {
1469 memset(oob
, 0, sizeof(oob
));
1470 if (ofs
== docg3
->oob_write_ofs
)
1471 memcpy(oob
, docg3
->oob_write_buf
, DOC_LAYOUT_OOB_SIZE
);
1472 else if (ooblen
> 0 && ops
->mode
== MTD_OPS_AUTO_OOB
)
1473 doc_fill_autooob(oob
, oobbuf
);
1474 else if (ooblen
> 0)
1475 memcpy(oob
, oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1476 ret
= doc_write_page(docg3
, ofs
, buf
, oob
, autoecc
);
1478 ofs
+= DOC_LAYOUT_PAGE_SIZE
;
1479 len
-= DOC_LAYOUT_PAGE_SIZE
;
1480 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1484 ops
->oobretlen
+= oobdelta
;
1486 ops
->retlen
+= DOC_LAYOUT_PAGE_SIZE
;
1489 doc_set_device_id(docg3
, 0);
1490 mutex_unlock(&docg3
->cascade
->lock
);
1495 * doc_write - Write a buffer to the chip
1497 * @to: the offset from first block and first page, in bytes, aligned on page
1499 * @len: the number of bytes to write (must be a full page size, ie. 512)
1500 * @retlen: the number of bytes actually written (0 or 512)
1501 * @buf: the buffer to get bytes from
1503 * Writes data to the chip.
1505 * Returns 0 if write successful, -EIO if write error
1507 static int doc_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1508 size_t *retlen
, const u_char
*buf
)
1510 struct docg3
*docg3
= mtd
->priv
;
1512 struct mtd_oob_ops ops
;
1514 doc_dbg("doc_write(to=%lld, len=%zu)\n", to
, len
);
1515 ops
.datbuf
= (char *)buf
;
1517 ops
.mode
= MTD_OPS_PLACE_OOB
;
1522 ret
= doc_write_oob(mtd
, to
, &ops
);
1523 *retlen
= ops
.retlen
;
1527 static struct docg3
*sysfs_dev2docg3(struct device
*dev
,
1528 struct device_attribute
*attr
)
1531 struct platform_device
*pdev
= to_platform_device(dev
);
1532 struct mtd_info
**docg3_floors
= platform_get_drvdata(pdev
);
1534 floor
= attr
->attr
.name
[1] - '0';
1535 if (floor
< 0 || floor
>= DOC_MAX_NBFLOORS
)
1538 return docg3_floors
[floor
]->priv
;
1541 static ssize_t
dps0_is_key_locked(struct device
*dev
,
1542 struct device_attribute
*attr
, char *buf
)
1544 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1547 mutex_lock(&docg3
->cascade
->lock
);
1548 doc_set_device_id(docg3
, docg3
->device_id
);
1549 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1550 doc_set_device_id(docg3
, 0);
1551 mutex_unlock(&docg3
->cascade
->lock
);
1553 return sprintf(buf
, "%d\n", !(dps0
& DOC_DPS_KEY_OK
));
1556 static ssize_t
dps1_is_key_locked(struct device
*dev
,
1557 struct device_attribute
*attr
, char *buf
)
1559 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1562 mutex_lock(&docg3
->cascade
->lock
);
1563 doc_set_device_id(docg3
, docg3
->device_id
);
1564 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1565 doc_set_device_id(docg3
, 0);
1566 mutex_unlock(&docg3
->cascade
->lock
);
1568 return sprintf(buf
, "%d\n", !(dps1
& DOC_DPS_KEY_OK
));
1571 static ssize_t
dps0_insert_key(struct device
*dev
,
1572 struct device_attribute
*attr
,
1573 const char *buf
, size_t count
)
1575 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1578 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1581 mutex_lock(&docg3
->cascade
->lock
);
1582 doc_set_device_id(docg3
, docg3
->device_id
);
1583 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1584 doc_writeb(docg3
, buf
[i
], DOC_DPS0_KEY
);
1585 doc_set_device_id(docg3
, 0);
1586 mutex_unlock(&docg3
->cascade
->lock
);
1590 static ssize_t
dps1_insert_key(struct device
*dev
,
1591 struct device_attribute
*attr
,
1592 const char *buf
, size_t count
)
1594 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1597 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1600 mutex_lock(&docg3
->cascade
->lock
);
1601 doc_set_device_id(docg3
, docg3
->device_id
);
1602 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1603 doc_writeb(docg3
, buf
[i
], DOC_DPS1_KEY
);
1604 doc_set_device_id(docg3
, 0);
1605 mutex_unlock(&docg3
->cascade
->lock
);
1609 #define FLOOR_SYSFS(id) { \
1610 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1611 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1612 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1613 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1616 static struct device_attribute doc_sys_attrs
[DOC_MAX_NBFLOORS
][4] = {
1617 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1620 static int doc_register_sysfs(struct platform_device
*pdev
,
1621 struct docg3_cascade
*cascade
)
1623 struct device
*dev
= &pdev
->dev
;
1629 floor
< DOC_MAX_NBFLOORS
&& cascade
->floors
[floor
];
1631 for (i
= 0; i
< 4; i
++) {
1632 ret
= device_create_file(dev
, &doc_sys_attrs
[floor
][i
]);
1643 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1645 } while (--floor
>= 0);
1650 static void doc_unregister_sysfs(struct platform_device
*pdev
,
1651 struct docg3_cascade
*cascade
)
1653 struct device
*dev
= &pdev
->dev
;
1656 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
&& cascade
->floors
[floor
];
1658 for (i
= 0; i
< 4; i
++)
1659 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1663 * Debug sysfs entries
1665 static int dbg_flashctrl_show(struct seq_file
*s
, void *p
)
1667 struct docg3
*docg3
= (struct docg3
*)s
->private;
1671 mutex_lock(&docg3
->cascade
->lock
);
1672 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
1673 mutex_unlock(&docg3
->cascade
->lock
);
1675 seq_printf(s
, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1677 fctrl
& DOC_CTRL_VIOLATION
? "protocol violation" : "-",
1678 fctrl
& DOC_CTRL_CE
? "active" : "inactive",
1679 fctrl
& DOC_CTRL_PROTECTION_ERROR
? "protection error" : "-",
1680 fctrl
& DOC_CTRL_SEQUENCE_ERROR
? "sequence error" : "-",
1681 fctrl
& DOC_CTRL_FLASHREADY
? "ready" : "not ready");
1685 DEBUGFS_RO_ATTR(flashcontrol
, dbg_flashctrl_show
);
1687 static int dbg_asicmode_show(struct seq_file
*s
, void *p
)
1689 struct docg3
*docg3
= (struct docg3
*)s
->private;
1693 mutex_lock(&docg3
->cascade
->lock
);
1694 pctrl
= doc_register_readb(docg3
, DOC_ASICMODE
);
1695 mode
= pctrl
& 0x03;
1696 mutex_unlock(&docg3
->cascade
->lock
);
1699 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1701 pctrl
& DOC_ASICMODE_RAM_WE
? 1 : 0,
1702 pctrl
& DOC_ASICMODE_RSTIN_RESET
? 1 : 0,
1703 pctrl
& DOC_ASICMODE_BDETCT_RESET
? 1 : 0,
1704 pctrl
& DOC_ASICMODE_MDWREN
? 1 : 0,
1705 pctrl
& DOC_ASICMODE_POWERDOWN
? 1 : 0,
1706 mode
>> 1, mode
& 0x1);
1709 case DOC_ASICMODE_RESET
:
1710 seq_puts(s
, "reset");
1712 case DOC_ASICMODE_NORMAL
:
1713 seq_puts(s
, "normal");
1715 case DOC_ASICMODE_POWERDOWN
:
1716 seq_puts(s
, "powerdown");
1722 DEBUGFS_RO_ATTR(asic_mode
, dbg_asicmode_show
);
1724 static int dbg_device_id_show(struct seq_file
*s
, void *p
)
1726 struct docg3
*docg3
= (struct docg3
*)s
->private;
1729 mutex_lock(&docg3
->cascade
->lock
);
1730 id
= doc_register_readb(docg3
, DOC_DEVICESELECT
);
1731 mutex_unlock(&docg3
->cascade
->lock
);
1733 seq_printf(s
, "DeviceId = %d\n", id
);
1736 DEBUGFS_RO_ATTR(device_id
, dbg_device_id_show
);
1738 static int dbg_protection_show(struct seq_file
*s
, void *p
)
1740 struct docg3
*docg3
= (struct docg3
*)s
->private;
1741 int protect
, dps0
, dps0_low
, dps0_high
, dps1
, dps1_low
, dps1_high
;
1743 mutex_lock(&docg3
->cascade
->lock
);
1744 protect
= doc_register_readb(docg3
, DOC_PROTECTION
);
1745 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1746 dps0_low
= doc_register_readw(docg3
, DOC_DPS0_ADDRLOW
);
1747 dps0_high
= doc_register_readw(docg3
, DOC_DPS0_ADDRHIGH
);
1748 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1749 dps1_low
= doc_register_readw(docg3
, DOC_DPS1_ADDRLOW
);
1750 dps1_high
= doc_register_readw(docg3
, DOC_DPS1_ADDRHIGH
);
1751 mutex_unlock(&docg3
->cascade
->lock
);
1753 seq_printf(s
, "Protection = 0x%02x (", protect
);
1754 if (protect
& DOC_PROTECT_FOUNDRY_OTP_LOCK
)
1755 seq_puts(s
, "FOUNDRY_OTP_LOCK,");
1756 if (protect
& DOC_PROTECT_CUSTOMER_OTP_LOCK
)
1757 seq_puts(s
, "CUSTOMER_OTP_LOCK,");
1758 if (protect
& DOC_PROTECT_LOCK_INPUT
)
1759 seq_puts(s
, "LOCK_INPUT,");
1760 if (protect
& DOC_PROTECT_STICKY_LOCK
)
1761 seq_puts(s
, "STICKY_LOCK,");
1762 if (protect
& DOC_PROTECT_PROTECTION_ENABLED
)
1763 seq_puts(s
, "PROTECTION ON,");
1764 if (protect
& DOC_PROTECT_IPL_DOWNLOAD_LOCK
)
1765 seq_puts(s
, "IPL_DOWNLOAD_LOCK,");
1766 if (protect
& DOC_PROTECT_PROTECTION_ERROR
)
1767 seq_puts(s
, "PROTECT_ERR,");
1769 seq_puts(s
, "NO_PROTECT_ERR");
1772 seq_printf(s
, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1773 dps0
, dps0_low
, dps0_high
,
1774 !!(dps0
& DOC_DPS_OTP_PROTECTED
),
1775 !!(dps0
& DOC_DPS_READ_PROTECTED
),
1776 !!(dps0
& DOC_DPS_WRITE_PROTECTED
),
1777 !!(dps0
& DOC_DPS_HW_LOCK_ENABLED
),
1778 !!(dps0
& DOC_DPS_KEY_OK
));
1779 seq_printf(s
, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1780 dps1
, dps1_low
, dps1_high
,
1781 !!(dps1
& DOC_DPS_OTP_PROTECTED
),
1782 !!(dps1
& DOC_DPS_READ_PROTECTED
),
1783 !!(dps1
& DOC_DPS_WRITE_PROTECTED
),
1784 !!(dps1
& DOC_DPS_HW_LOCK_ENABLED
),
1785 !!(dps1
& DOC_DPS_KEY_OK
));
1788 DEBUGFS_RO_ATTR(protection
, dbg_protection_show
);
1790 static int __init
doc_dbg_register(struct docg3
*docg3
)
1792 struct dentry
*root
, *entry
;
1794 root
= debugfs_create_dir("docg3", NULL
);
1798 entry
= debugfs_create_file("flashcontrol", S_IRUSR
, root
, docg3
,
1799 &flashcontrol_fops
);
1801 entry
= debugfs_create_file("asic_mode", S_IRUSR
, root
,
1802 docg3
, &asic_mode_fops
);
1804 entry
= debugfs_create_file("device_id", S_IRUSR
, root
,
1805 docg3
, &device_id_fops
);
1807 entry
= debugfs_create_file("protection", S_IRUSR
, root
,
1808 docg3
, &protection_fops
);
1810 docg3
->debugfs_root
= root
;
1813 debugfs_remove_recursive(root
);
1818 static void doc_dbg_unregister(struct docg3
*docg3
)
1820 debugfs_remove_recursive(docg3
->debugfs_root
);
1824 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1825 * @chip_id: The chip ID of the supported chip
1826 * @mtd: The structure to fill
1828 static int __init
doc_set_driver_info(int chip_id
, struct mtd_info
*mtd
)
1830 struct docg3
*docg3
= mtd
->priv
;
1833 cfg
= doc_register_readb(docg3
, DOC_CONFIGURATION
);
1834 docg3
->if_cfg
= (cfg
& DOC_CONF_IF_CFG
? 1 : 0);
1835 docg3
->reliable
= reliable_mode
;
1839 mtd
->name
= kasprintf(GFP_KERNEL
, "docg3.%d",
1843 docg3
->max_block
= 2047;
1846 mtd
->type
= MTD_NANDFLASH
;
1847 mtd
->flags
= MTD_CAP_NANDFLASH
;
1848 mtd
->size
= (docg3
->max_block
+ 1) * DOC_LAYOUT_BLOCK_SIZE
;
1849 if (docg3
->reliable
== 2)
1851 mtd
->erasesize
= DOC_LAYOUT_BLOCK_SIZE
* DOC_LAYOUT_NBPLANES
;
1852 if (docg3
->reliable
== 2)
1853 mtd
->erasesize
/= 2;
1854 mtd
->writebufsize
= mtd
->writesize
= DOC_LAYOUT_PAGE_SIZE
;
1855 mtd
->oobsize
= DOC_LAYOUT_OOB_SIZE
;
1856 mtd
->_erase
= doc_erase
;
1857 mtd
->_read
= doc_read
;
1858 mtd
->_write
= doc_write
;
1859 mtd
->_read_oob
= doc_read_oob
;
1860 mtd
->_write_oob
= doc_write_oob
;
1861 mtd
->_block_isbad
= doc_block_isbad
;
1862 mtd
->ecclayout
= &docg3_oobinfo
;
1863 mtd
->ecc_strength
= DOC_ECC_BCH_T
;
1869 * doc_probe_device - Check if a device is available
1870 * @base: the io space where the device is probed
1871 * @floor: the floor of the probed device
1873 * @cascade: the cascade of chips this devices will belong to
1875 * Checks whether a device at the specified IO range, and floor is available.
1877 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1878 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1881 static struct mtd_info
* __init
1882 doc_probe_device(struct docg3_cascade
*cascade
, int floor
, struct device
*dev
)
1884 int ret
, bbt_nbpages
;
1885 u16 chip_id
, chip_id_inv
;
1886 struct docg3
*docg3
;
1887 struct mtd_info
*mtd
;
1890 docg3
= kzalloc(sizeof(struct docg3
), GFP_KERNEL
);
1893 mtd
= kzalloc(sizeof(struct mtd_info
), GFP_KERNEL
);
1897 mtd
->dev
.parent
= dev
;
1898 bbt_nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1,
1899 8 * DOC_LAYOUT_PAGE_SIZE
);
1900 docg3
->bbt
= kzalloc(bbt_nbpages
* DOC_LAYOUT_PAGE_SIZE
, GFP_KERNEL
);
1905 docg3
->device_id
= floor
;
1906 docg3
->cascade
= cascade
;
1907 doc_set_device_id(docg3
, docg3
->device_id
);
1909 doc_set_asic_mode(docg3
, DOC_ASICMODE_RESET
);
1910 doc_set_asic_mode(docg3
, DOC_ASICMODE_NORMAL
);
1912 chip_id
= doc_register_readw(docg3
, DOC_CHIPID
);
1913 chip_id_inv
= doc_register_readw(docg3
, DOC_CHIPID_INV
);
1916 if (chip_id
!= (u16
)(~chip_id_inv
)) {
1922 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1923 docg3
->cascade
->base
, floor
);
1926 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id
);
1930 ret
= doc_set_driver_info(chip_id
, mtd
);
1934 doc_hamming_ecc_init(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1935 doc_reload_bbt(docg3
);
1945 return ERR_PTR(ret
);
1949 * doc_release_device - Release a docg3 floor
1952 static void doc_release_device(struct mtd_info
*mtd
)
1954 struct docg3
*docg3
= mtd
->priv
;
1956 mtd_device_unregister(mtd
);
1964 * docg3_resume - Awakens docg3 floor
1965 * @pdev: platfrom device
1967 * Returns 0 (always successful)
1969 static int docg3_resume(struct platform_device
*pdev
)
1972 struct docg3_cascade
*cascade
;
1973 struct mtd_info
**docg3_floors
, *mtd
;
1974 struct docg3
*docg3
;
1976 cascade
= platform_get_drvdata(pdev
);
1977 docg3_floors
= cascade
->floors
;
1978 mtd
= docg3_floors
[0];
1981 doc_dbg("docg3_resume()\n");
1982 for (i
= 0; i
< 12; i
++)
1983 doc_readb(docg3
, DOC_IOSPACE_IPL
);
1988 * docg3_suspend - Put in low power mode the docg3 floor
1989 * @pdev: platform device
1990 * @state: power state
1992 * Shuts off most of docg3 circuitery to lower power consumption.
1994 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1996 static int docg3_suspend(struct platform_device
*pdev
, pm_message_t state
)
1999 struct docg3_cascade
*cascade
;
2000 struct mtd_info
**docg3_floors
, *mtd
;
2001 struct docg3
*docg3
;
2004 cascade
= platform_get_drvdata(pdev
);
2005 docg3_floors
= cascade
->floors
;
2006 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
2007 mtd
= docg3_floors
[floor
];
2012 doc_writeb(docg3
, floor
, DOC_DEVICESELECT
);
2013 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
2014 ctrl
&= ~DOC_CTRL_VIOLATION
& ~DOC_CTRL_CE
;
2015 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
2017 for (i
= 0; i
< 10; i
++) {
2018 usleep_range(3000, 4000);
2019 pwr_down
= doc_register_readb(docg3
, DOC_POWERMODE
);
2020 if (pwr_down
& DOC_POWERDOWN_READY
)
2023 if (pwr_down
& DOC_POWERDOWN_READY
) {
2024 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2027 doc_err("docg3_suspend(): floor %d powerdown failed\n",
2033 mtd
= docg3_floors
[0];
2035 doc_set_asic_mode(docg3
, DOC_ASICMODE_POWERDOWN
);
2040 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2041 * @pdev: platform device
2043 * Probes for a G3 chip at the specified IO space in the platform data
2044 * ressources. The floor 0 must be available.
2046 * Returns 0 on success, -ENOMEM, -ENXIO on error
2048 static int __init
docg3_probe(struct platform_device
*pdev
)
2050 struct device
*dev
= &pdev
->dev
;
2051 struct mtd_info
*mtd
;
2052 struct resource
*ress
;
2055 struct docg3_cascade
*cascade
;
2058 ress
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2060 dev_err(dev
, "No I/O memory resource defined\n");
2063 base
= devm_ioremap(dev
, ress
->start
, DOC_IOSPACE_SIZE
);
2066 cascade
= devm_kzalloc(dev
, sizeof(*cascade
) * DOC_MAX_NBFLOORS
,
2070 cascade
->base
= base
;
2071 mutex_init(&cascade
->lock
);
2072 cascade
->bch
= init_bch(DOC_ECC_BCH_M
, DOC_ECC_BCH_T
,
2073 DOC_ECC_BCH_PRIMPOLY
);
2077 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
2078 mtd
= doc_probe_device(cascade
, floor
, dev
);
2089 cascade
->floors
[floor
] = mtd
;
2090 ret
= mtd_device_parse_register(mtd
, part_probes
, NULL
, NULL
,
2096 ret
= doc_register_sysfs(pdev
, cascade
);
2100 platform_set_drvdata(pdev
, cascade
);
2101 doc_dbg_register(cascade
->floors
[0]->priv
);
2106 dev_info(dev
, "No supported DiskOnChip found\n");
2108 free_bch(cascade
->bch
);
2109 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2110 if (cascade
->floors
[floor
])
2111 doc_release_device(cascade
->floors
[floor
]);
2116 * docg3_release - Release the driver
2117 * @pdev: the platform device
2121 static int docg3_release(struct platform_device
*pdev
)
2123 struct docg3_cascade
*cascade
= platform_get_drvdata(pdev
);
2124 struct docg3
*docg3
= cascade
->floors
[0]->priv
;
2127 doc_unregister_sysfs(pdev
, cascade
);
2128 doc_dbg_unregister(docg3
);
2129 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2130 if (cascade
->floors
[floor
])
2131 doc_release_device(cascade
->floors
[floor
]);
2133 free_bch(docg3
->cascade
->bch
);
2138 static const struct of_device_id docg3_dt_ids
[] = {
2139 { .compatible
= "m-systems,diskonchip-g3" },
2142 MODULE_DEVICE_TABLE(of
, docg3_dt_ids
);
2145 static struct platform_driver g3_driver
= {
2148 .of_match_table
= of_match_ptr(docg3_dt_ids
),
2150 .suspend
= docg3_suspend
,
2151 .resume
= docg3_resume
,
2152 .remove
= docg3_release
,
2155 module_platform_driver_probe(g3_driver
, docg3_probe
);
2157 MODULE_LICENSE("GPL");
2158 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2159 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");