irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / mtd / nand / lpc32xx_mlc.c
blob3475109784840e265633b6db10e0e594602e888c
1 /*
2 * Driver for NAND MLC Controller in LPC32xx
4 * Author: Roland Stigge <stigge@antcom.de>
6 * Copyright © 2011 WORK Microwave GmbH
7 * Copyright © 2011, 2012 Roland Stigge
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 * NAND Flash Controller Operation:
21 * - Read: Auto Decode
22 * - Write: Auto Encode
23 * - Tested Page Sizes: 2048, 4096
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/delay.h>
35 #include <linux/completion.h>
36 #include <linux/interrupt.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_mlc.h>
41 #include <linux/io.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/dmaengine.h>
45 #include <linux/mtd/nand_ecc.h>
47 #define DRV_NAME "lpc32xx_mlc"
49 /**********************************************************************
50 * MLC NAND controller register offsets
51 **********************************************************************/
53 #define MLC_BUFF(x) (x + 0x00000)
54 #define MLC_DATA(x) (x + 0x08000)
55 #define MLC_CMD(x) (x + 0x10000)
56 #define MLC_ADDR(x) (x + 0x10004)
57 #define MLC_ECC_ENC_REG(x) (x + 0x10008)
58 #define MLC_ECC_DEC_REG(x) (x + 0x1000C)
59 #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
60 #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
61 #define MLC_RPR(x) (x + 0x10018)
62 #define MLC_WPR(x) (x + 0x1001C)
63 #define MLC_RUBP(x) (x + 0x10020)
64 #define MLC_ROBP(x) (x + 0x10024)
65 #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
66 #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
67 #define MLC_ICR(x) (x + 0x10030)
68 #define MLC_TIME_REG(x) (x + 0x10034)
69 #define MLC_IRQ_MR(x) (x + 0x10038)
70 #define MLC_IRQ_SR(x) (x + 0x1003C)
71 #define MLC_LOCK_PR(x) (x + 0x10044)
72 #define MLC_ISR(x) (x + 0x10048)
73 #define MLC_CEH(x) (x + 0x1004C)
75 /**********************************************************************
76 * MLC_CMD bit definitions
77 **********************************************************************/
78 #define MLCCMD_RESET 0xFF
80 /**********************************************************************
81 * MLC_ICR bit definitions
82 **********************************************************************/
83 #define MLCICR_WPROT (1 << 3)
84 #define MLCICR_LARGEBLOCK (1 << 2)
85 #define MLCICR_LONGADDR (1 << 1)
86 #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
88 /**********************************************************************
89 * MLC_TIME_REG bit definitions
90 **********************************************************************/
91 #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
92 #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
93 #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
94 #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
95 #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
96 #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
97 #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
99 /**********************************************************************
100 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
101 **********************************************************************/
102 #define MLCIRQ_NAND_READY (1 << 5)
103 #define MLCIRQ_CONTROLLER_READY (1 << 4)
104 #define MLCIRQ_DECODE_FAILURE (1 << 3)
105 #define MLCIRQ_DECODE_ERROR (1 << 2)
106 #define MLCIRQ_ECC_READY (1 << 1)
107 #define MLCIRQ_WRPROT_FAULT (1 << 0)
109 /**********************************************************************
110 * MLC_LOCK_PR bit definitions
111 **********************************************************************/
112 #define MLCLOCKPR_MAGIC 0xA25E
114 /**********************************************************************
115 * MLC_ISR bit definitions
116 **********************************************************************/
117 #define MLCISR_DECODER_FAILURE (1 << 6)
118 #define MLCISR_ERRORS ((1 << 4) | (1 << 5))
119 #define MLCISR_ERRORS_DETECTED (1 << 3)
120 #define MLCISR_ECC_READY (1 << 2)
121 #define MLCISR_CONTROLLER_READY (1 << 1)
122 #define MLCISR_NAND_READY (1 << 0)
124 /**********************************************************************
125 * MLC_CEH bit definitions
126 **********************************************************************/
127 #define MLCCEH_NORMAL (1 << 0)
129 struct lpc32xx_nand_cfg_mlc {
130 uint32_t tcea_delay;
131 uint32_t busy_delay;
132 uint32_t nand_ta;
133 uint32_t rd_high;
134 uint32_t rd_low;
135 uint32_t wr_high;
136 uint32_t wr_low;
137 int wp_gpio;
138 struct mtd_partition *parts;
139 unsigned num_parts;
142 static struct nand_ecclayout lpc32xx_nand_oob = {
143 .eccbytes = 40,
144 .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
145 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
146 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
147 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
148 .oobfree = {
149 { .offset = 0,
150 .length = 6, },
151 { .offset = 16,
152 .length = 6, },
153 { .offset = 32,
154 .length = 6, },
155 { .offset = 48,
156 .length = 6, },
160 static struct nand_bbt_descr lpc32xx_nand_bbt = {
161 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
162 NAND_BBT_WRITE,
163 .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
166 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
167 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
168 NAND_BBT_WRITE,
169 .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
172 struct lpc32xx_nand_host {
173 struct nand_chip nand_chip;
174 struct lpc32xx_mlc_platform_data *pdata;
175 struct clk *clk;
176 struct mtd_info mtd;
177 void __iomem *io_base;
178 int irq;
179 struct lpc32xx_nand_cfg_mlc *ncfg;
180 struct completion comp_nand;
181 struct completion comp_controller;
182 uint32_t llptr;
184 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
186 dma_addr_t oob_buf_phy;
188 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
190 uint8_t *oob_buf;
191 /* Physical address of DMA base address */
192 dma_addr_t io_base_phy;
194 struct completion comp_dma;
195 struct dma_chan *dma_chan;
196 struct dma_slave_config dma_slave_config;
197 struct scatterlist sgl;
198 uint8_t *dma_buf;
199 uint8_t *dummy_buf;
200 int mlcsubpages; /* number of 512bytes-subpages */
204 * Activate/Deactivate DMA Operation:
206 * Using the PL080 DMA Controller for transferring the 512 byte subpages
207 * instead of doing readl() / writel() in a loop slows it down significantly.
208 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
210 * - readl() of 128 x 32 bits in a loop: ~20us
211 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
212 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
214 * This applies to the transfer itself. In the DMA case: only the
215 * wait_for_completion() (DMA setup _not_ included).
217 * Note that the 512 bytes subpage transfer is done directly from/to a
218 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
219 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
220 * controller transferring data between its internal buffer to/from the NAND
221 * chip.)
223 * Therefore, using the PL080 DMA is disabled by default, for now.
226 static int use_dma;
228 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
230 uint32_t clkrate, tmp;
232 /* Reset MLC controller */
233 writel(MLCCMD_RESET, MLC_CMD(host->io_base));
234 udelay(1000);
236 /* Get base clock for MLC block */
237 clkrate = clk_get_rate(host->clk);
238 if (clkrate == 0)
239 clkrate = 104000000;
241 /* Unlock MLC_ICR
242 * (among others, will be locked again automatically) */
243 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
245 /* Configure MLC Controller: Large Block, 5 Byte Address */
246 tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
247 writel(tmp, MLC_ICR(host->io_base));
249 /* Unlock MLC_TIME_REG
250 * (among others, will be locked again automatically) */
251 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
253 /* Compute clock setup values, see LPC and NAND manual */
254 tmp = 0;
255 tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
256 tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
257 tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
258 tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
259 tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
260 tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
261 tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
262 writel(tmp, MLC_TIME_REG(host->io_base));
264 /* Enable IRQ for CONTROLLER_READY and NAND_READY */
265 writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
266 MLC_IRQ_MR(host->io_base));
268 /* Normal nCE operation: nCE controlled by controller */
269 writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
273 * Hardware specific access to control lines
275 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
276 unsigned int ctrl)
278 struct nand_chip *nand_chip = mtd->priv;
279 struct lpc32xx_nand_host *host = nand_chip->priv;
281 if (cmd != NAND_CMD_NONE) {
282 if (ctrl & NAND_CLE)
283 writel(cmd, MLC_CMD(host->io_base));
284 else
285 writel(cmd, MLC_ADDR(host->io_base));
290 * Read Device Ready (NAND device _and_ controller ready)
292 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
294 struct nand_chip *nand_chip = mtd->priv;
295 struct lpc32xx_nand_host *host = nand_chip->priv;
297 if ((readb(MLC_ISR(host->io_base)) &
298 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
299 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
300 return 1;
302 return 0;
305 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
307 uint8_t sr;
309 /* Clear interrupt flag by reading status */
310 sr = readb(MLC_IRQ_SR(host->io_base));
311 if (sr & MLCIRQ_NAND_READY)
312 complete(&host->comp_nand);
313 if (sr & MLCIRQ_CONTROLLER_READY)
314 complete(&host->comp_controller);
316 return IRQ_HANDLED;
319 static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
321 struct lpc32xx_nand_host *host = chip->priv;
323 if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
324 goto exit;
326 wait_for_completion(&host->comp_nand);
328 while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
329 /* Seems to be delayed sometimes by controller */
330 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
331 cpu_relax();
334 exit:
335 return NAND_STATUS_READY;
338 static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
339 struct nand_chip *chip)
341 struct lpc32xx_nand_host *host = chip->priv;
343 if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
344 goto exit;
346 wait_for_completion(&host->comp_controller);
348 while (!(readb(MLC_ISR(host->io_base)) &
349 MLCISR_CONTROLLER_READY)) {
350 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
351 cpu_relax();
354 exit:
355 return NAND_STATUS_READY;
358 static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
360 lpc32xx_waitfunc_nand(mtd, chip);
361 lpc32xx_waitfunc_controller(mtd, chip);
363 return NAND_STATUS_READY;
367 * Enable NAND write protect
369 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
371 if (gpio_is_valid(host->ncfg->wp_gpio))
372 gpio_set_value(host->ncfg->wp_gpio, 0);
376 * Disable NAND write protect
378 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
380 if (gpio_is_valid(host->ncfg->wp_gpio))
381 gpio_set_value(host->ncfg->wp_gpio, 1);
384 static void lpc32xx_dma_complete_func(void *completion)
386 complete(completion);
389 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
390 enum dma_transfer_direction dir)
392 struct nand_chip *chip = mtd->priv;
393 struct lpc32xx_nand_host *host = chip->priv;
394 struct dma_async_tx_descriptor *desc;
395 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
396 int res;
398 sg_init_one(&host->sgl, mem, len);
400 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
401 DMA_BIDIRECTIONAL);
402 if (res != 1) {
403 dev_err(mtd->dev.parent, "Failed to map sg list\n");
404 return -ENXIO;
406 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
407 flags);
408 if (!desc) {
409 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
410 goto out1;
413 init_completion(&host->comp_dma);
414 desc->callback = lpc32xx_dma_complete_func;
415 desc->callback_param = &host->comp_dma;
417 dmaengine_submit(desc);
418 dma_async_issue_pending(host->dma_chan);
420 wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
422 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
423 DMA_BIDIRECTIONAL);
424 return 0;
425 out1:
426 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
427 DMA_BIDIRECTIONAL);
428 return -ENXIO;
431 static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
432 uint8_t *buf, int oob_required, int page)
434 struct lpc32xx_nand_host *host = chip->priv;
435 int i, j;
436 uint8_t *oobbuf = chip->oob_poi;
437 uint32_t mlc_isr;
438 int res;
439 uint8_t *dma_buf;
440 bool dma_mapped;
442 if ((void *)buf <= high_memory) {
443 dma_buf = buf;
444 dma_mapped = true;
445 } else {
446 dma_buf = host->dma_buf;
447 dma_mapped = false;
450 /* Writing Command and Address */
451 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
453 /* For all sub-pages */
454 for (i = 0; i < host->mlcsubpages; i++) {
455 /* Start Auto Decode Command */
456 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
458 /* Wait for Controller Ready */
459 lpc32xx_waitfunc_controller(mtd, chip);
461 /* Check ECC Error status */
462 mlc_isr = readl(MLC_ISR(host->io_base));
463 if (mlc_isr & MLCISR_DECODER_FAILURE) {
464 mtd->ecc_stats.failed++;
465 dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
466 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
467 mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
470 /* Read 512 + 16 Bytes */
471 if (use_dma) {
472 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
473 DMA_DEV_TO_MEM);
474 if (res)
475 return res;
476 } else {
477 for (j = 0; j < (512 >> 2); j++) {
478 *((uint32_t *)(buf)) =
479 readl(MLC_BUFF(host->io_base));
480 buf += 4;
483 for (j = 0; j < (16 >> 2); j++) {
484 *((uint32_t *)(oobbuf)) =
485 readl(MLC_BUFF(host->io_base));
486 oobbuf += 4;
490 if (use_dma && !dma_mapped)
491 memcpy(buf, dma_buf, mtd->writesize);
493 return 0;
496 static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
497 struct nand_chip *chip,
498 const uint8_t *buf, int oob_required,
499 int page)
501 struct lpc32xx_nand_host *host = chip->priv;
502 const uint8_t *oobbuf = chip->oob_poi;
503 uint8_t *dma_buf = (uint8_t *)buf;
504 int res;
505 int i, j;
507 if (use_dma && (void *)buf >= high_memory) {
508 dma_buf = host->dma_buf;
509 memcpy(dma_buf, buf, mtd->writesize);
512 for (i = 0; i < host->mlcsubpages; i++) {
513 /* Start Encode */
514 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
516 /* Write 512 + 6 Bytes to Buffer */
517 if (use_dma) {
518 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
519 DMA_MEM_TO_DEV);
520 if (res)
521 return res;
522 } else {
523 for (j = 0; j < (512 >> 2); j++) {
524 writel(*((uint32_t *)(buf)),
525 MLC_BUFF(host->io_base));
526 buf += 4;
529 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
530 oobbuf += 4;
531 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
532 oobbuf += 12;
534 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
535 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
537 /* Wait for Controller Ready */
538 lpc32xx_waitfunc_controller(mtd, chip);
540 return 0;
543 static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
544 int page)
546 struct lpc32xx_nand_host *host = chip->priv;
548 /* Read whole page - necessary with MLC controller! */
549 lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
551 return 0;
554 static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
555 int page)
557 /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
558 return 0;
561 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
562 static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
564 /* Always enabled! */
567 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
569 struct mtd_info *mtd = &host->mtd;
570 dma_cap_mask_t mask;
572 if (!host->pdata || !host->pdata->dma_filter) {
573 dev_err(mtd->dev.parent, "no DMA platform data\n");
574 return -ENOENT;
577 dma_cap_zero(mask);
578 dma_cap_set(DMA_SLAVE, mask);
579 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
580 "nand-mlc");
581 if (!host->dma_chan) {
582 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
583 return -EBUSY;
587 * Set direction to a sensible value even if the dmaengine driver
588 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
589 * driver criticizes it as "alien transfer direction".
591 host->dma_slave_config.direction = DMA_DEV_TO_MEM;
592 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
593 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
594 host->dma_slave_config.src_maxburst = 128;
595 host->dma_slave_config.dst_maxburst = 128;
596 /* DMA controller does flow control: */
597 host->dma_slave_config.device_fc = false;
598 host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
599 host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
600 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
601 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
602 goto out1;
605 return 0;
606 out1:
607 dma_release_channel(host->dma_chan);
608 return -ENXIO;
611 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
613 struct lpc32xx_nand_cfg_mlc *ncfg;
614 struct device_node *np = dev->of_node;
616 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
617 if (!ncfg)
618 return NULL;
620 of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
621 of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
622 of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
623 of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
624 of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
625 of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
626 of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
628 if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
629 !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
630 !ncfg->wr_low) {
631 dev_err(dev, "chip parameters not specified correctly\n");
632 return NULL;
635 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
637 return ncfg;
641 * Probe for NAND controller
643 static int lpc32xx_nand_probe(struct platform_device *pdev)
645 struct lpc32xx_nand_host *host;
646 struct mtd_info *mtd;
647 struct nand_chip *nand_chip;
648 struct resource *rc;
649 int res;
650 struct mtd_part_parser_data ppdata = {};
652 /* Allocate memory for the device structure (and zero it) */
653 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
654 if (!host)
655 return -ENOMEM;
657 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
658 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
659 if (IS_ERR(host->io_base))
660 return PTR_ERR(host->io_base);
662 host->io_base_phy = rc->start;
664 mtd = &host->mtd;
665 nand_chip = &host->nand_chip;
666 if (pdev->dev.of_node)
667 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
668 if (!host->ncfg) {
669 dev_err(&pdev->dev,
670 "Missing or bad NAND config from device tree\n");
671 return -ENOENT;
673 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
674 return -EPROBE_DEFER;
675 if (gpio_is_valid(host->ncfg->wp_gpio) &&
676 gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
677 dev_err(&pdev->dev, "GPIO not available\n");
678 return -EBUSY;
680 lpc32xx_wp_disable(host);
682 host->pdata = dev_get_platdata(&pdev->dev);
684 nand_chip->priv = host; /* link the private data structures */
685 mtd->priv = nand_chip;
686 mtd->dev.parent = &pdev->dev;
688 /* Get NAND clock */
689 host->clk = clk_get(&pdev->dev, NULL);
690 if (IS_ERR(host->clk)) {
691 dev_err(&pdev->dev, "Clock initialization failure\n");
692 res = -ENOENT;
693 goto err_exit1;
695 clk_prepare_enable(host->clk);
697 nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
698 nand_chip->dev_ready = lpc32xx_nand_device_ready;
699 nand_chip->chip_delay = 25; /* us */
700 nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
701 nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
703 /* Init NAND controller */
704 lpc32xx_nand_setup(host);
706 platform_set_drvdata(pdev, host);
708 /* Initialize function pointers */
709 nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
710 nand_chip->ecc.read_page_raw = lpc32xx_read_page;
711 nand_chip->ecc.read_page = lpc32xx_read_page;
712 nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
713 nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
714 nand_chip->ecc.write_oob = lpc32xx_write_oob;
715 nand_chip->ecc.read_oob = lpc32xx_read_oob;
716 nand_chip->ecc.strength = 4;
717 nand_chip->waitfunc = lpc32xx_waitfunc;
719 nand_chip->options = NAND_NO_SUBPAGE_WRITE;
720 nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
721 nand_chip->bbt_td = &lpc32xx_nand_bbt;
722 nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
724 if (use_dma) {
725 res = lpc32xx_dma_setup(host);
726 if (res) {
727 res = -EIO;
728 goto err_exit2;
733 * Scan to find existance of the device and
734 * Get the type of NAND device SMALL block or LARGE block
736 if (nand_scan_ident(mtd, 1, NULL)) {
737 res = -ENXIO;
738 goto err_exit3;
741 host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
742 if (!host->dma_buf) {
743 res = -ENOMEM;
744 goto err_exit3;
747 host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
748 if (!host->dummy_buf) {
749 res = -ENOMEM;
750 goto err_exit3;
753 nand_chip->ecc.mode = NAND_ECC_HW;
754 nand_chip->ecc.size = mtd->writesize;
755 nand_chip->ecc.layout = &lpc32xx_nand_oob;
756 host->mlcsubpages = mtd->writesize / 512;
758 /* initially clear interrupt status */
759 readb(MLC_IRQ_SR(host->io_base));
761 init_completion(&host->comp_nand);
762 init_completion(&host->comp_controller);
764 host->irq = platform_get_irq(pdev, 0);
765 if ((host->irq < 0) || (host->irq >= NR_IRQS)) {
766 dev_err(&pdev->dev, "failed to get platform irq\n");
767 res = -EINVAL;
768 goto err_exit3;
771 if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
772 IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
773 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
774 res = -ENXIO;
775 goto err_exit3;
779 * Fills out all the uninitialized function pointers with the defaults
780 * And scans for a bad block table if appropriate.
782 if (nand_scan_tail(mtd)) {
783 res = -ENXIO;
784 goto err_exit4;
787 mtd->name = DRV_NAME;
789 ppdata.of_node = pdev->dev.of_node;
790 res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
791 host->ncfg->num_parts);
792 if (!res)
793 return res;
795 nand_release(mtd);
797 err_exit4:
798 free_irq(host->irq, host);
799 err_exit3:
800 if (use_dma)
801 dma_release_channel(host->dma_chan);
802 err_exit2:
803 clk_disable_unprepare(host->clk);
804 clk_put(host->clk);
805 err_exit1:
806 lpc32xx_wp_enable(host);
807 gpio_free(host->ncfg->wp_gpio);
809 return res;
813 * Remove NAND device
815 static int lpc32xx_nand_remove(struct platform_device *pdev)
817 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
818 struct mtd_info *mtd = &host->mtd;
820 nand_release(mtd);
821 free_irq(host->irq, host);
822 if (use_dma)
823 dma_release_channel(host->dma_chan);
825 clk_disable_unprepare(host->clk);
826 clk_put(host->clk);
828 lpc32xx_wp_enable(host);
829 gpio_free(host->ncfg->wp_gpio);
831 return 0;
834 #ifdef CONFIG_PM
835 static int lpc32xx_nand_resume(struct platform_device *pdev)
837 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
839 /* Re-enable NAND clock */
840 clk_prepare_enable(host->clk);
842 /* Fresh init of NAND controller */
843 lpc32xx_nand_setup(host);
845 /* Disable write protect */
846 lpc32xx_wp_disable(host);
848 return 0;
851 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
853 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
855 /* Enable write protect for safety */
856 lpc32xx_wp_enable(host);
858 /* Disable clock */
859 clk_disable_unprepare(host->clk);
860 return 0;
863 #else
864 #define lpc32xx_nand_resume NULL
865 #define lpc32xx_nand_suspend NULL
866 #endif
868 static const struct of_device_id lpc32xx_nand_match[] = {
869 { .compatible = "nxp,lpc3220-mlc" },
870 { /* sentinel */ },
872 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
874 static struct platform_driver lpc32xx_nand_driver = {
875 .probe = lpc32xx_nand_probe,
876 .remove = lpc32xx_nand_remove,
877 .resume = lpc32xx_nand_resume,
878 .suspend = lpc32xx_nand_suspend,
879 .driver = {
880 .name = DRV_NAME,
881 .of_match_table = lpc32xx_nand_match,
885 module_platform_driver(lpc32xx_nand_driver);
887 MODULE_LICENSE("GPL");
888 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
889 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");