irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / mtd / nand / omap2.c
blob93f664cd1c906ade2deb3d16cb79ceae3e36024e
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
33 #define DRIVER_NAME "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS 5000
36 #define NAND_Ecc_P1e (1 << 0)
37 #define NAND_Ecc_P2e (1 << 1)
38 #define NAND_Ecc_P4e (1 << 2)
39 #define NAND_Ecc_P8e (1 << 3)
40 #define NAND_Ecc_P16e (1 << 4)
41 #define NAND_Ecc_P32e (1 << 5)
42 #define NAND_Ecc_P64e (1 << 6)
43 #define NAND_Ecc_P128e (1 << 7)
44 #define NAND_Ecc_P256e (1 << 8)
45 #define NAND_Ecc_P512e (1 << 9)
46 #define NAND_Ecc_P1024e (1 << 10)
47 #define NAND_Ecc_P2048e (1 << 11)
49 #define NAND_Ecc_P1o (1 << 16)
50 #define NAND_Ecc_P2o (1 << 17)
51 #define NAND_Ecc_P4o (1 << 18)
52 #define NAND_Ecc_P8o (1 << 19)
53 #define NAND_Ecc_P16o (1 << 20)
54 #define NAND_Ecc_P32o (1 << 21)
55 #define NAND_Ecc_P64o (1 << 22)
56 #define NAND_Ecc_P128o (1 << 23)
57 #define NAND_Ecc_P256o (1 << 24)
58 #define NAND_Ecc_P512o (1 << 25)
59 #define NAND_Ecc_P1024o (1 << 26)
60 #define NAND_Ecc_P2048o (1 << 27)
62 #define TF(value) (value ? 1 : 0)
64 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
73 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
82 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
91 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
100 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
103 #define PREFETCH_CONFIG1_CS_SHIFT 24
104 #define ECC_CONFIG_CS_SHIFT 1
105 #define CS_MASK 0x7
106 #define ENABLE_PREFETCH (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT 2
108 #define ECCSIZE0_SHIFT 12
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
112 #define ECC1 0x1
113 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY 0x00000001
119 #define OMAP24XX_DMA_GPMC 4
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142 0x07, 0x0e};
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 /* Shared among all NAND instances to synchronize access to the ECC Engine */
148 static struct nand_hw_control omap_gpmc_controller = {
149 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
150 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
153 struct omap_nand_info {
154 struct omap_nand_platform_data *pdata;
155 struct mtd_info mtd;
156 struct nand_chip nand;
157 struct platform_device *pdev;
159 int gpmc_cs;
160 unsigned long phys_base;
161 enum omap_ecc ecc_opt;
162 struct completion comp;
163 struct dma_chan *dma;
164 int gpmc_irq_fifo;
165 int gpmc_irq_count;
166 enum {
167 OMAP_NAND_IO_READ = 0, /* read */
168 OMAP_NAND_IO_WRITE, /* write */
169 } iomode;
170 u_char *buf;
171 int buf_len;
172 struct gpmc_nand_regs reg;
173 /* generated at runtime depending on ECC algorithm and layout selected */
174 struct nand_ecclayout oobinfo;
175 /* fields specific for BCHx_HW ECC scheme */
176 struct device *elm_dev;
177 struct device_node *of_node;
181 * omap_prefetch_enable - configures and starts prefetch transfer
182 * @cs: cs (chip select) number
183 * @fifo_th: fifo threshold to be used for read/ write
184 * @dma_mode: dma mode enable (1) or disable (0)
185 * @u32_count: number of bytes to be transferred
186 * @is_write: prefetch read(0) or write post(1) mode
188 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
189 unsigned int u32_count, int is_write, struct omap_nand_info *info)
191 u32 val;
193 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
194 return -1;
196 if (readl(info->reg.gpmc_prefetch_control))
197 return -EBUSY;
199 /* Set the amount of bytes to be prefetched */
200 writel(u32_count, info->reg.gpmc_prefetch_config2);
202 /* Set dma/mpu mode, the prefetch read / post write and
203 * enable the engine. Set which cs is has requested for.
205 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
206 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
207 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
208 writel(val, info->reg.gpmc_prefetch_config1);
210 /* Start the prefetch engine */
211 writel(0x1, info->reg.gpmc_prefetch_control);
213 return 0;
217 * omap_prefetch_reset - disables and stops the prefetch engine
219 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
221 u32 config1;
223 /* check if the same module/cs is trying to reset */
224 config1 = readl(info->reg.gpmc_prefetch_config1);
225 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
226 return -EINVAL;
228 /* Stop the PFPW engine */
229 writel(0x0, info->reg.gpmc_prefetch_control);
231 /* Reset/disable the PFPW engine */
232 writel(0x0, info->reg.gpmc_prefetch_config1);
234 return 0;
238 * omap_hwcontrol - hardware specific access to control-lines
239 * @mtd: MTD device structure
240 * @cmd: command to device
241 * @ctrl:
242 * NAND_NCE: bit 0 -> don't care
243 * NAND_CLE: bit 1 -> Command Latch
244 * NAND_ALE: bit 2 -> Address Latch
246 * NOTE: boards may use different bits for these!!
248 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
250 struct omap_nand_info *info = container_of(mtd,
251 struct omap_nand_info, mtd);
253 if (cmd != NAND_CMD_NONE) {
254 if (ctrl & NAND_CLE)
255 writeb(cmd, info->reg.gpmc_nand_command);
257 else if (ctrl & NAND_ALE)
258 writeb(cmd, info->reg.gpmc_nand_address);
260 else /* NAND_NCE */
261 writeb(cmd, info->reg.gpmc_nand_data);
266 * omap_read_buf8 - read data from NAND controller into buffer
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
271 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
273 struct nand_chip *nand = mtd->priv;
275 ioread8_rep(nand->IO_ADDR_R, buf, len);
279 * omap_write_buf8 - write buffer to NAND controller
280 * @mtd: MTD device structure
281 * @buf: data buffer
282 * @len: number of bytes to write
284 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
286 struct omap_nand_info *info = container_of(mtd,
287 struct omap_nand_info, mtd);
288 u_char *p = (u_char *)buf;
289 u32 status = 0;
291 while (len--) {
292 iowrite8(*p++, info->nand.IO_ADDR_W);
293 /* wait until buffer is available for write */
294 do {
295 status = readl(info->reg.gpmc_status) &
296 STATUS_BUFF_EMPTY;
297 } while (!status);
302 * omap_read_buf16 - read data from NAND controller into buffer
303 * @mtd: MTD device structure
304 * @buf: buffer to store date
305 * @len: number of bytes to read
307 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
309 struct nand_chip *nand = mtd->priv;
311 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
315 * omap_write_buf16 - write buffer to NAND controller
316 * @mtd: MTD device structure
317 * @buf: data buffer
318 * @len: number of bytes to write
320 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
322 struct omap_nand_info *info = container_of(mtd,
323 struct omap_nand_info, mtd);
324 u16 *p = (u16 *) buf;
325 u32 status = 0;
326 /* FIXME try bursts of writesw() or DMA ... */
327 len >>= 1;
329 while (len--) {
330 iowrite16(*p++, info->nand.IO_ADDR_W);
331 /* wait until buffer is available for write */
332 do {
333 status = readl(info->reg.gpmc_status) &
334 STATUS_BUFF_EMPTY;
335 } while (!status);
340 * omap_read_buf_pref - read data from NAND controller into buffer
341 * @mtd: MTD device structure
342 * @buf: buffer to store date
343 * @len: number of bytes to read
345 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
347 struct omap_nand_info *info = container_of(mtd,
348 struct omap_nand_info, mtd);
349 uint32_t r_count = 0;
350 int ret = 0;
351 u32 *p = (u32 *)buf;
353 /* take care of subpage reads */
354 if (len % 4) {
355 if (info->nand.options & NAND_BUSWIDTH_16)
356 omap_read_buf16(mtd, buf, len % 4);
357 else
358 omap_read_buf8(mtd, buf, len % 4);
359 p = (u32 *) (buf + len % 4);
360 len -= len % 4;
363 /* configure and start prefetch transfer */
364 ret = omap_prefetch_enable(info->gpmc_cs,
365 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
366 if (ret) {
367 /* PFPW engine is busy, use cpu copy method */
368 if (info->nand.options & NAND_BUSWIDTH_16)
369 omap_read_buf16(mtd, (u_char *)p, len);
370 else
371 omap_read_buf8(mtd, (u_char *)p, len);
372 } else {
373 do {
374 r_count = readl(info->reg.gpmc_prefetch_status);
375 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
376 r_count = r_count >> 2;
377 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
378 p += r_count;
379 len -= r_count << 2;
380 } while (len);
381 /* disable and stop the PFPW engine */
382 omap_prefetch_reset(info->gpmc_cs, info);
387 * omap_write_buf_pref - write buffer to NAND controller
388 * @mtd: MTD device structure
389 * @buf: data buffer
390 * @len: number of bytes to write
392 static void omap_write_buf_pref(struct mtd_info *mtd,
393 const u_char *buf, int len)
395 struct omap_nand_info *info = container_of(mtd,
396 struct omap_nand_info, mtd);
397 uint32_t w_count = 0;
398 int i = 0, ret = 0;
399 u16 *p = (u16 *)buf;
400 unsigned long tim, limit;
401 u32 val;
403 /* take care of subpage writes */
404 if (len % 2 != 0) {
405 writeb(*buf, info->nand.IO_ADDR_W);
406 p = (u16 *)(buf + 1);
407 len--;
410 /* configure and start prefetch transfer */
411 ret = omap_prefetch_enable(info->gpmc_cs,
412 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
413 if (ret) {
414 /* PFPW engine is busy, use cpu copy method */
415 if (info->nand.options & NAND_BUSWIDTH_16)
416 omap_write_buf16(mtd, (u_char *)p, len);
417 else
418 omap_write_buf8(mtd, (u_char *)p, len);
419 } else {
420 while (len) {
421 w_count = readl(info->reg.gpmc_prefetch_status);
422 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
423 w_count = w_count >> 1;
424 for (i = 0; (i < w_count) && len; i++, len -= 2)
425 iowrite16(*p++, info->nand.IO_ADDR_W);
427 /* wait for data to flushed-out before reset the prefetch */
428 tim = 0;
429 limit = (loops_per_jiffy *
430 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
431 do {
432 cpu_relax();
433 val = readl(info->reg.gpmc_prefetch_status);
434 val = PREFETCH_STATUS_COUNT(val);
435 } while (val && (tim++ < limit));
437 /* disable and stop the PFPW engine */
438 omap_prefetch_reset(info->gpmc_cs, info);
443 * omap_nand_dma_callback: callback on the completion of dma transfer
444 * @data: pointer to completion data structure
446 static void omap_nand_dma_callback(void *data)
448 complete((struct completion *) data);
452 * omap_nand_dma_transfer: configure and start dma transfer
453 * @mtd: MTD device structure
454 * @addr: virtual address in RAM of source/destination
455 * @len: number of data bytes to be transferred
456 * @is_write: flag for read/write operation
458 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
459 unsigned int len, int is_write)
461 struct omap_nand_info *info = container_of(mtd,
462 struct omap_nand_info, mtd);
463 struct dma_async_tx_descriptor *tx;
464 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
465 DMA_FROM_DEVICE;
466 struct scatterlist sg;
467 unsigned long tim, limit;
468 unsigned n;
469 int ret;
470 u32 val;
472 if (addr >= high_memory) {
473 struct page *p1;
475 if (((size_t)addr & PAGE_MASK) !=
476 ((size_t)(addr + len - 1) & PAGE_MASK))
477 goto out_copy;
478 p1 = vmalloc_to_page(addr);
479 if (!p1)
480 goto out_copy;
481 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
484 sg_init_one(&sg, addr, len);
485 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
486 if (n == 0) {
487 dev_err(&info->pdev->dev,
488 "Couldn't DMA map a %d byte buffer\n", len);
489 goto out_copy;
492 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
493 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
494 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
495 if (!tx)
496 goto out_copy_unmap;
498 tx->callback = omap_nand_dma_callback;
499 tx->callback_param = &info->comp;
500 dmaengine_submit(tx);
502 /* configure and start prefetch transfer */
503 ret = omap_prefetch_enable(info->gpmc_cs,
504 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
505 if (ret)
506 /* PFPW engine is busy, use cpu copy method */
507 goto out_copy_unmap;
509 init_completion(&info->comp);
510 dma_async_issue_pending(info->dma);
512 /* setup and start DMA using dma_addr */
513 wait_for_completion(&info->comp);
514 tim = 0;
515 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
517 do {
518 cpu_relax();
519 val = readl(info->reg.gpmc_prefetch_status);
520 val = PREFETCH_STATUS_COUNT(val);
521 } while (val && (tim++ < limit));
523 /* disable and stop the PFPW engine */
524 omap_prefetch_reset(info->gpmc_cs, info);
526 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
527 return 0;
529 out_copy_unmap:
530 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
531 out_copy:
532 if (info->nand.options & NAND_BUSWIDTH_16)
533 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
534 : omap_write_buf16(mtd, (u_char *) addr, len);
535 else
536 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
537 : omap_write_buf8(mtd, (u_char *) addr, len);
538 return 0;
542 * omap_read_buf_dma_pref - read data from NAND controller into buffer
543 * @mtd: MTD device structure
544 * @buf: buffer to store date
545 * @len: number of bytes to read
547 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
549 if (len <= mtd->oobsize)
550 omap_read_buf_pref(mtd, buf, len);
551 else
552 /* start transfer in DMA mode */
553 omap_nand_dma_transfer(mtd, buf, len, 0x0);
557 * omap_write_buf_dma_pref - write buffer to NAND controller
558 * @mtd: MTD device structure
559 * @buf: data buffer
560 * @len: number of bytes to write
562 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
563 const u_char *buf, int len)
565 if (len <= mtd->oobsize)
566 omap_write_buf_pref(mtd, buf, len);
567 else
568 /* start transfer in DMA mode */
569 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
573 * omap_nand_irq - GPMC irq handler
574 * @this_irq: gpmc irq number
575 * @dev: omap_nand_info structure pointer is passed here
577 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
579 struct omap_nand_info *info = (struct omap_nand_info *) dev;
580 u32 bytes;
582 bytes = readl(info->reg.gpmc_prefetch_status);
583 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
584 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
585 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
586 if (this_irq == info->gpmc_irq_count)
587 goto done;
589 if (info->buf_len && (info->buf_len < bytes))
590 bytes = info->buf_len;
591 else if (!info->buf_len)
592 bytes = 0;
593 iowrite32_rep(info->nand.IO_ADDR_W,
594 (u32 *)info->buf, bytes >> 2);
595 info->buf = info->buf + bytes;
596 info->buf_len -= bytes;
598 } else {
599 ioread32_rep(info->nand.IO_ADDR_R,
600 (u32 *)info->buf, bytes >> 2);
601 info->buf = info->buf + bytes;
603 if (this_irq == info->gpmc_irq_count)
604 goto done;
607 return IRQ_HANDLED;
609 done:
610 complete(&info->comp);
612 disable_irq_nosync(info->gpmc_irq_fifo);
613 disable_irq_nosync(info->gpmc_irq_count);
615 return IRQ_HANDLED;
619 * omap_read_buf_irq_pref - read data from NAND controller into buffer
620 * @mtd: MTD device structure
621 * @buf: buffer to store date
622 * @len: number of bytes to read
624 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
626 struct omap_nand_info *info = container_of(mtd,
627 struct omap_nand_info, mtd);
628 int ret = 0;
630 if (len <= mtd->oobsize) {
631 omap_read_buf_pref(mtd, buf, len);
632 return;
635 info->iomode = OMAP_NAND_IO_READ;
636 info->buf = buf;
637 init_completion(&info->comp);
639 /* configure and start prefetch transfer */
640 ret = omap_prefetch_enable(info->gpmc_cs,
641 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
642 if (ret)
643 /* PFPW engine is busy, use cpu copy method */
644 goto out_copy;
646 info->buf_len = len;
648 enable_irq(info->gpmc_irq_count);
649 enable_irq(info->gpmc_irq_fifo);
651 /* waiting for read to complete */
652 wait_for_completion(&info->comp);
654 /* disable and stop the PFPW engine */
655 omap_prefetch_reset(info->gpmc_cs, info);
656 return;
658 out_copy:
659 if (info->nand.options & NAND_BUSWIDTH_16)
660 omap_read_buf16(mtd, buf, len);
661 else
662 omap_read_buf8(mtd, buf, len);
666 * omap_write_buf_irq_pref - write buffer to NAND controller
667 * @mtd: MTD device structure
668 * @buf: data buffer
669 * @len: number of bytes to write
671 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
672 const u_char *buf, int len)
674 struct omap_nand_info *info = container_of(mtd,
675 struct omap_nand_info, mtd);
676 int ret = 0;
677 unsigned long tim, limit;
678 u32 val;
680 if (len <= mtd->oobsize) {
681 omap_write_buf_pref(mtd, buf, len);
682 return;
685 info->iomode = OMAP_NAND_IO_WRITE;
686 info->buf = (u_char *) buf;
687 init_completion(&info->comp);
689 /* configure and start prefetch transfer : size=24 */
690 ret = omap_prefetch_enable(info->gpmc_cs,
691 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
692 if (ret)
693 /* PFPW engine is busy, use cpu copy method */
694 goto out_copy;
696 info->buf_len = len;
698 enable_irq(info->gpmc_irq_count);
699 enable_irq(info->gpmc_irq_fifo);
701 /* waiting for write to complete */
702 wait_for_completion(&info->comp);
704 /* wait for data to flushed-out before reset the prefetch */
705 tim = 0;
706 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
707 do {
708 val = readl(info->reg.gpmc_prefetch_status);
709 val = PREFETCH_STATUS_COUNT(val);
710 cpu_relax();
711 } while (val && (tim++ < limit));
713 /* disable and stop the PFPW engine */
714 omap_prefetch_reset(info->gpmc_cs, info);
715 return;
717 out_copy:
718 if (info->nand.options & NAND_BUSWIDTH_16)
719 omap_write_buf16(mtd, buf, len);
720 else
721 omap_write_buf8(mtd, buf, len);
725 * gen_true_ecc - This function will generate true ECC value
726 * @ecc_buf: buffer to store ecc code
728 * This generated true ECC value can be used when correcting
729 * data read from NAND flash memory core
731 static void gen_true_ecc(u8 *ecc_buf)
733 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
734 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
736 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
737 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
738 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
739 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
740 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
741 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
745 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
746 * @ecc_data1: ecc code from nand spare area
747 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
748 * @page_data: page data
750 * This function compares two ECC's and indicates if there is an error.
751 * If the error can be corrected it will be corrected to the buffer.
752 * If there is no error, %0 is returned. If there is an error but it
753 * was corrected, %1 is returned. Otherwise, %-1 is returned.
755 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
756 u8 *ecc_data2, /* read from register */
757 u8 *page_data)
759 uint i;
760 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
761 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
762 u8 ecc_bit[24];
763 u8 ecc_sum = 0;
764 u8 find_bit = 0;
765 uint find_byte = 0;
766 int isEccFF;
768 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
770 gen_true_ecc(ecc_data1);
771 gen_true_ecc(ecc_data2);
773 for (i = 0; i <= 2; i++) {
774 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
775 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
778 for (i = 0; i < 8; i++) {
779 tmp0_bit[i] = *ecc_data1 % 2;
780 *ecc_data1 = *ecc_data1 / 2;
783 for (i = 0; i < 8; i++) {
784 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
785 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
788 for (i = 0; i < 8; i++) {
789 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
790 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
793 for (i = 0; i < 8; i++) {
794 comp0_bit[i] = *ecc_data2 % 2;
795 *ecc_data2 = *ecc_data2 / 2;
798 for (i = 0; i < 8; i++) {
799 comp1_bit[i] = *(ecc_data2 + 1) % 2;
800 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
803 for (i = 0; i < 8; i++) {
804 comp2_bit[i] = *(ecc_data2 + 2) % 2;
805 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
808 for (i = 0; i < 6; i++)
809 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
811 for (i = 0; i < 8; i++)
812 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
814 for (i = 0; i < 8; i++)
815 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
817 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
818 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
820 for (i = 0; i < 24; i++)
821 ecc_sum += ecc_bit[i];
823 switch (ecc_sum) {
824 case 0:
825 /* Not reached because this function is not called if
826 * ECC values are equal
828 return 0;
830 case 1:
831 /* Uncorrectable error */
832 pr_debug("ECC UNCORRECTED_ERROR 1\n");
833 return -1;
835 case 11:
836 /* UN-Correctable error */
837 pr_debug("ECC UNCORRECTED_ERROR B\n");
838 return -1;
840 case 12:
841 /* Correctable error */
842 find_byte = (ecc_bit[23] << 8) +
843 (ecc_bit[21] << 7) +
844 (ecc_bit[19] << 6) +
845 (ecc_bit[17] << 5) +
846 (ecc_bit[15] << 4) +
847 (ecc_bit[13] << 3) +
848 (ecc_bit[11] << 2) +
849 (ecc_bit[9] << 1) +
850 ecc_bit[7];
852 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
854 pr_debug("Correcting single bit ECC error at offset: "
855 "%d, bit: %d\n", find_byte, find_bit);
857 page_data[find_byte] ^= (1 << find_bit);
859 return 1;
860 default:
861 if (isEccFF) {
862 if (ecc_data2[0] == 0 &&
863 ecc_data2[1] == 0 &&
864 ecc_data2[2] == 0)
865 return 0;
867 pr_debug("UNCORRECTED_ERROR default\n");
868 return -1;
873 * omap_correct_data - Compares the ECC read with HW generated ECC
874 * @mtd: MTD device structure
875 * @dat: page data
876 * @read_ecc: ecc read from nand flash
877 * @calc_ecc: ecc read from HW ECC registers
879 * Compares the ecc read from nand spare area with ECC registers values
880 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
881 * detection and correction. If there are no errors, %0 is returned. If
882 * there were errors and all of the errors were corrected, the number of
883 * corrected errors is returned. If uncorrectable errors exist, %-1 is
884 * returned.
886 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
887 u_char *read_ecc, u_char *calc_ecc)
889 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
890 mtd);
891 int blockCnt = 0, i = 0, ret = 0;
892 int stat = 0;
894 /* Ex NAND_ECC_HW12_2048 */
895 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
896 (info->nand.ecc.size == 2048))
897 blockCnt = 4;
898 else
899 blockCnt = 1;
901 for (i = 0; i < blockCnt; i++) {
902 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
903 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
904 if (ret < 0)
905 return ret;
906 /* keep track of the number of corrected errors */
907 stat += ret;
909 read_ecc += 3;
910 calc_ecc += 3;
911 dat += 512;
913 return stat;
917 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
918 * @mtd: MTD device structure
919 * @dat: The pointer to data on which ecc is computed
920 * @ecc_code: The ecc_code buffer
922 * Using noninverted ECC can be considered ugly since writing a blank
923 * page ie. padding will clear the ECC bytes. This is no problem as long
924 * nobody is trying to write data on the seemingly unused page. Reading
925 * an erased page will produce an ECC mismatch between generated and read
926 * ECC bytes that has to be dealt with separately.
928 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
929 u_char *ecc_code)
931 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
932 mtd);
933 u32 val;
935 val = readl(info->reg.gpmc_ecc_config);
936 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
937 return -EINVAL;
939 /* read ecc result */
940 val = readl(info->reg.gpmc_ecc1_result);
941 *ecc_code++ = val; /* P128e, ..., P1e */
942 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
943 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
944 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
946 return 0;
950 * omap_enable_hwecc - This function enables the hardware ecc functionality
951 * @mtd: MTD device structure
952 * @mode: Read/Write mode
954 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
956 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
957 mtd);
958 struct nand_chip *chip = mtd->priv;
959 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
960 u32 val;
962 /* clear ecc and enable bits */
963 val = ECCCLEAR | ECC1;
964 writel(val, info->reg.gpmc_ecc_control);
966 /* program ecc and result sizes */
967 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
968 ECC1RESULTSIZE);
969 writel(val, info->reg.gpmc_ecc_size_config);
971 switch (mode) {
972 case NAND_ECC_READ:
973 case NAND_ECC_WRITE:
974 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
975 break;
976 case NAND_ECC_READSYN:
977 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
978 break;
979 default:
980 dev_info(&info->pdev->dev,
981 "error: unrecognized Mode[%d]!\n", mode);
982 break;
985 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
986 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
987 writel(val, info->reg.gpmc_ecc_config);
991 * omap_wait - wait until the command is done
992 * @mtd: MTD device structure
993 * @chip: NAND Chip structure
995 * Wait function is called during Program and erase operations and
996 * the way it is called from MTD layer, we should wait till the NAND
997 * chip is ready after the programming/erase operation has completed.
999 * Erase can take up to 400ms and program up to 20ms according to
1000 * general NAND and SmartMedia specs
1002 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1004 struct nand_chip *this = mtd->priv;
1005 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1006 mtd);
1007 unsigned long timeo = jiffies;
1008 int status, state = this->state;
1010 if (state == FL_ERASING)
1011 timeo += msecs_to_jiffies(400);
1012 else
1013 timeo += msecs_to_jiffies(20);
1015 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1016 while (time_before(jiffies, timeo)) {
1017 status = readb(info->reg.gpmc_nand_data);
1018 if (status & NAND_STATUS_READY)
1019 break;
1020 cond_resched();
1023 status = readb(info->reg.gpmc_nand_data);
1024 return status;
1028 * omap_dev_ready - calls the platform specific dev_ready function
1029 * @mtd: MTD device structure
1031 static int omap_dev_ready(struct mtd_info *mtd)
1033 unsigned int val = 0;
1034 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1035 mtd);
1037 val = readl(info->reg.gpmc_status);
1039 if ((val & 0x100) == 0x100) {
1040 return 1;
1041 } else {
1042 return 0;
1047 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1048 * @mtd: MTD device structure
1049 * @mode: Read/Write mode
1051 * When using BCH with SW correction (i.e. no ELM), sector size is set
1052 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1053 * for both reading and writing with:
1054 * eccsize0 = 0 (no additional protected byte in spare area)
1055 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1057 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1059 unsigned int bch_type;
1060 unsigned int dev_width, nsectors;
1061 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1062 mtd);
1063 enum omap_ecc ecc_opt = info->ecc_opt;
1064 struct nand_chip *chip = mtd->priv;
1065 u32 val, wr_mode;
1066 unsigned int ecc_size1, ecc_size0;
1068 /* GPMC configurations for calculating ECC */
1069 switch (ecc_opt) {
1070 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1071 bch_type = 0;
1072 nsectors = 1;
1073 wr_mode = BCH_WRAPMODE_6;
1074 ecc_size0 = BCH_ECC_SIZE0;
1075 ecc_size1 = BCH_ECC_SIZE1;
1076 break;
1077 case OMAP_ECC_BCH4_CODE_HW:
1078 bch_type = 0;
1079 nsectors = chip->ecc.steps;
1080 if (mode == NAND_ECC_READ) {
1081 wr_mode = BCH_WRAPMODE_1;
1082 ecc_size0 = BCH4R_ECC_SIZE0;
1083 ecc_size1 = BCH4R_ECC_SIZE1;
1084 } else {
1085 wr_mode = BCH_WRAPMODE_6;
1086 ecc_size0 = BCH_ECC_SIZE0;
1087 ecc_size1 = BCH_ECC_SIZE1;
1089 break;
1090 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1091 bch_type = 1;
1092 nsectors = 1;
1093 wr_mode = BCH_WRAPMODE_6;
1094 ecc_size0 = BCH_ECC_SIZE0;
1095 ecc_size1 = BCH_ECC_SIZE1;
1096 break;
1097 case OMAP_ECC_BCH8_CODE_HW:
1098 bch_type = 1;
1099 nsectors = chip->ecc.steps;
1100 if (mode == NAND_ECC_READ) {
1101 wr_mode = BCH_WRAPMODE_1;
1102 ecc_size0 = BCH8R_ECC_SIZE0;
1103 ecc_size1 = BCH8R_ECC_SIZE1;
1104 } else {
1105 wr_mode = BCH_WRAPMODE_6;
1106 ecc_size0 = BCH_ECC_SIZE0;
1107 ecc_size1 = BCH_ECC_SIZE1;
1109 break;
1110 case OMAP_ECC_BCH16_CODE_HW:
1111 bch_type = 0x2;
1112 nsectors = chip->ecc.steps;
1113 if (mode == NAND_ECC_READ) {
1114 wr_mode = 0x01;
1115 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1116 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1117 } else {
1118 wr_mode = 0x01;
1119 ecc_size0 = 0; /* extra bits in nibbles per sector */
1120 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1122 break;
1123 default:
1124 return;
1127 writel(ECC1, info->reg.gpmc_ecc_control);
1129 /* Configure ecc size for BCH */
1130 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1131 writel(val, info->reg.gpmc_ecc_size_config);
1133 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1135 /* BCH configuration */
1136 val = ((1 << 16) | /* enable BCH */
1137 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
1138 (wr_mode << 8) | /* wrap mode */
1139 (dev_width << 7) | /* bus width */
1140 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1141 (info->gpmc_cs << 1) | /* ECC CS */
1142 (0x1)); /* enable ECC */
1144 writel(val, info->reg.gpmc_ecc_config);
1146 /* Clear ecc and enable bits */
1147 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1150 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1151 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1152 0x97, 0x79, 0xe5, 0x24, 0xb5};
1155 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1156 * @mtd: MTD device structure
1157 * @dat: The pointer to data on which ecc is computed
1158 * @ecc_code: The ecc_code buffer
1160 * Support calculating of BCH4/8 ecc vectors for the page
1162 static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1163 const u_char *dat, u_char *ecc_calc)
1165 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1166 mtd);
1167 int eccbytes = info->nand.ecc.bytes;
1168 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1169 u8 *ecc_code;
1170 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1171 u32 val;
1172 int i, j;
1174 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1175 for (i = 0; i < nsectors; i++) {
1176 ecc_code = ecc_calc;
1177 switch (info->ecc_opt) {
1178 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1179 case OMAP_ECC_BCH8_CODE_HW:
1180 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1183 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1184 *ecc_code++ = (bch_val4 & 0xFF);
1185 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1186 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1187 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1188 *ecc_code++ = (bch_val3 & 0xFF);
1189 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1190 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1191 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1192 *ecc_code++ = (bch_val2 & 0xFF);
1193 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1194 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1195 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1196 *ecc_code++ = (bch_val1 & 0xFF);
1197 break;
1198 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1199 case OMAP_ECC_BCH4_CODE_HW:
1200 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1201 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1202 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1203 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1204 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1205 ((bch_val1 >> 28) & 0xF);
1206 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1207 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1208 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1209 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1210 break;
1211 case OMAP_ECC_BCH16_CODE_HW:
1212 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1213 ecc_code[0] = ((val >> 8) & 0xFF);
1214 ecc_code[1] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1216 ecc_code[2] = ((val >> 24) & 0xFF);
1217 ecc_code[3] = ((val >> 16) & 0xFF);
1218 ecc_code[4] = ((val >> 8) & 0xFF);
1219 ecc_code[5] = ((val >> 0) & 0xFF);
1220 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1221 ecc_code[6] = ((val >> 24) & 0xFF);
1222 ecc_code[7] = ((val >> 16) & 0xFF);
1223 ecc_code[8] = ((val >> 8) & 0xFF);
1224 ecc_code[9] = ((val >> 0) & 0xFF);
1225 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1226 ecc_code[10] = ((val >> 24) & 0xFF);
1227 ecc_code[11] = ((val >> 16) & 0xFF);
1228 ecc_code[12] = ((val >> 8) & 0xFF);
1229 ecc_code[13] = ((val >> 0) & 0xFF);
1230 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1231 ecc_code[14] = ((val >> 24) & 0xFF);
1232 ecc_code[15] = ((val >> 16) & 0xFF);
1233 ecc_code[16] = ((val >> 8) & 0xFF);
1234 ecc_code[17] = ((val >> 0) & 0xFF);
1235 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1236 ecc_code[18] = ((val >> 24) & 0xFF);
1237 ecc_code[19] = ((val >> 16) & 0xFF);
1238 ecc_code[20] = ((val >> 8) & 0xFF);
1239 ecc_code[21] = ((val >> 0) & 0xFF);
1240 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1241 ecc_code[22] = ((val >> 24) & 0xFF);
1242 ecc_code[23] = ((val >> 16) & 0xFF);
1243 ecc_code[24] = ((val >> 8) & 0xFF);
1244 ecc_code[25] = ((val >> 0) & 0xFF);
1245 break;
1246 default:
1247 return -EINVAL;
1250 /* ECC scheme specific syndrome customizations */
1251 switch (info->ecc_opt) {
1252 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1253 /* Add constant polynomial to remainder, so that
1254 * ECC of blank pages results in 0x0 on reading back */
1255 for (j = 0; j < eccbytes; j++)
1256 ecc_calc[j] ^= bch4_polynomial[j];
1257 break;
1258 case OMAP_ECC_BCH4_CODE_HW:
1259 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1260 ecc_calc[eccbytes - 1] = 0x0;
1261 break;
1262 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1263 /* Add constant polynomial to remainder, so that
1264 * ECC of blank pages results in 0x0 on reading back */
1265 for (j = 0; j < eccbytes; j++)
1266 ecc_calc[j] ^= bch8_polynomial[j];
1267 break;
1268 case OMAP_ECC_BCH8_CODE_HW:
1269 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1270 ecc_calc[eccbytes - 1] = 0x0;
1271 break;
1272 case OMAP_ECC_BCH16_CODE_HW:
1273 break;
1274 default:
1275 return -EINVAL;
1278 ecc_calc += eccbytes;
1281 return 0;
1285 * erased_sector_bitflips - count bit flips
1286 * @data: data sector buffer
1287 * @oob: oob buffer
1288 * @info: omap_nand_info
1290 * Check the bit flips in erased page falls below correctable level.
1291 * If falls below, report the page as erased with correctable bit
1292 * flip, else report as uncorrectable page.
1294 static int erased_sector_bitflips(u_char *data, u_char *oob,
1295 struct omap_nand_info *info)
1297 int flip_bits = 0, i;
1299 for (i = 0; i < info->nand.ecc.size; i++) {
1300 flip_bits += hweight8(~data[i]);
1301 if (flip_bits > info->nand.ecc.strength)
1302 return 0;
1305 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1306 flip_bits += hweight8(~oob[i]);
1307 if (flip_bits > info->nand.ecc.strength)
1308 return 0;
1312 * Bit flips falls in correctable level.
1313 * Fill data area with 0xFF
1315 if (flip_bits) {
1316 memset(data, 0xFF, info->nand.ecc.size);
1317 memset(oob, 0xFF, info->nand.ecc.bytes);
1320 return flip_bits;
1324 * omap_elm_correct_data - corrects page data area in case error reported
1325 * @mtd: MTD device structure
1326 * @data: page data
1327 * @read_ecc: ecc read from nand flash
1328 * @calc_ecc: ecc read from HW ECC registers
1330 * Calculated ecc vector reported as zero in case of non-error pages.
1331 * In case of non-zero ecc vector, first filter out erased-pages, and
1332 * then process data via ELM to detect bit-flips.
1334 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1335 u_char *read_ecc, u_char *calc_ecc)
1337 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1338 mtd);
1339 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1340 int eccsteps = info->nand.ecc.steps;
1341 int i , j, stat = 0;
1342 int eccflag, actual_eccbytes;
1343 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1344 u_char *ecc_vec = calc_ecc;
1345 u_char *spare_ecc = read_ecc;
1346 u_char *erased_ecc_vec;
1347 u_char *buf;
1348 int bitflip_count;
1349 bool is_error_reported = false;
1350 u32 bit_pos, byte_pos, error_max, pos;
1351 int err;
1353 switch (info->ecc_opt) {
1354 case OMAP_ECC_BCH4_CODE_HW:
1355 /* omit 7th ECC byte reserved for ROM code compatibility */
1356 actual_eccbytes = ecc->bytes - 1;
1357 erased_ecc_vec = bch4_vector;
1358 break;
1359 case OMAP_ECC_BCH8_CODE_HW:
1360 /* omit 14th ECC byte reserved for ROM code compatibility */
1361 actual_eccbytes = ecc->bytes - 1;
1362 erased_ecc_vec = bch8_vector;
1363 break;
1364 case OMAP_ECC_BCH16_CODE_HW:
1365 actual_eccbytes = ecc->bytes;
1366 erased_ecc_vec = bch16_vector;
1367 break;
1368 default:
1369 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1370 return -EINVAL;
1373 /* Initialize elm error vector to zero */
1374 memset(err_vec, 0, sizeof(err_vec));
1376 for (i = 0; i < eccsteps ; i++) {
1377 eccflag = 0; /* initialize eccflag */
1380 * Check any error reported,
1381 * In case of error, non zero ecc reported.
1383 for (j = 0; j < actual_eccbytes; j++) {
1384 if (calc_ecc[j] != 0) {
1385 eccflag = 1; /* non zero ecc, error present */
1386 break;
1390 if (eccflag == 1) {
1391 if (memcmp(calc_ecc, erased_ecc_vec,
1392 actual_eccbytes) == 0) {
1394 * calc_ecc[] matches pattern for ECC(all 0xff)
1395 * so this is definitely an erased-page
1397 } else {
1398 buf = &data[info->nand.ecc.size * i];
1400 * count number of 0-bits in read_buf.
1401 * This check can be removed once a similar
1402 * check is introduced in generic NAND driver
1404 bitflip_count = erased_sector_bitflips(
1405 buf, read_ecc, info);
1406 if (bitflip_count) {
1408 * number of 0-bits within ECC limits
1409 * So this may be an erased-page
1411 stat += bitflip_count;
1412 } else {
1414 * Too many 0-bits. It may be a
1415 * - programmed-page, OR
1416 * - erased-page with many bit-flips
1417 * So this page requires check by ELM
1419 err_vec[i].error_reported = true;
1420 is_error_reported = true;
1425 /* Update the ecc vector */
1426 calc_ecc += ecc->bytes;
1427 read_ecc += ecc->bytes;
1430 /* Check if any error reported */
1431 if (!is_error_reported)
1432 return stat;
1434 /* Decode BCH error using ELM module */
1435 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1437 err = 0;
1438 for (i = 0; i < eccsteps; i++) {
1439 if (err_vec[i].error_uncorrectable) {
1440 dev_err(&info->pdev->dev,
1441 "uncorrectable bit-flips found\n");
1442 err = -EBADMSG;
1443 } else if (err_vec[i].error_reported) {
1444 for (j = 0; j < err_vec[i].error_count; j++) {
1445 switch (info->ecc_opt) {
1446 case OMAP_ECC_BCH4_CODE_HW:
1447 /* Add 4 bits to take care of padding */
1448 pos = err_vec[i].error_loc[j] +
1449 BCH4_BIT_PAD;
1450 break;
1451 case OMAP_ECC_BCH8_CODE_HW:
1452 case OMAP_ECC_BCH16_CODE_HW:
1453 pos = err_vec[i].error_loc[j];
1454 break;
1455 default:
1456 return -EINVAL;
1458 error_max = (ecc->size + actual_eccbytes) * 8;
1459 /* Calculate bit position of error */
1460 bit_pos = pos % 8;
1462 /* Calculate byte position of error */
1463 byte_pos = (error_max - pos - 1) / 8;
1465 if (pos < error_max) {
1466 if (byte_pos < 512) {
1467 pr_debug("bitflip@dat[%d]=%x\n",
1468 byte_pos, data[byte_pos]);
1469 data[byte_pos] ^= 1 << bit_pos;
1470 } else {
1471 pr_debug("bitflip@oob[%d]=%x\n",
1472 (byte_pos - 512),
1473 spare_ecc[byte_pos - 512]);
1474 spare_ecc[byte_pos - 512] ^=
1475 1 << bit_pos;
1477 } else {
1478 dev_err(&info->pdev->dev,
1479 "invalid bit-flip @ %d:%d\n",
1480 byte_pos, bit_pos);
1481 err = -EBADMSG;
1486 /* Update number of correctable errors */
1487 stat += err_vec[i].error_count;
1489 /* Update page data with sector size */
1490 data += ecc->size;
1491 spare_ecc += ecc->bytes;
1494 return (err) ? err : stat;
1498 * omap_write_page_bch - BCH ecc based write page function for entire page
1499 * @mtd: mtd info structure
1500 * @chip: nand chip info structure
1501 * @buf: data buffer
1502 * @oob_required: must write chip->oob_poi to OOB
1503 * @page: page
1505 * Custom write page method evolved to support multi sector writing in one shot
1507 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1508 const uint8_t *buf, int oob_required, int page)
1510 int i;
1511 uint8_t *ecc_calc = chip->buffers->ecccalc;
1512 uint32_t *eccpos = chip->ecc.layout->eccpos;
1514 /* Enable GPMC ecc engine */
1515 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1517 /* Write data */
1518 chip->write_buf(mtd, buf, mtd->writesize);
1520 /* Update ecc vector from GPMC result registers */
1521 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1523 for (i = 0; i < chip->ecc.total; i++)
1524 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1526 /* Write ecc vector to OOB area */
1527 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1528 return 0;
1532 * omap_read_page_bch - BCH ecc based page read function for entire page
1533 * @mtd: mtd info structure
1534 * @chip: nand chip info structure
1535 * @buf: buffer to store read data
1536 * @oob_required: caller requires OOB data read to chip->oob_poi
1537 * @page: page number to read
1539 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1540 * used for error correction.
1541 * Custom method evolved to support ELM error correction & multi sector
1542 * reading. On reading page data area is read along with OOB data with
1543 * ecc engine enabled. ecc vector updated after read of OOB data.
1544 * For non error pages ecc vector reported as zero.
1546 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1547 uint8_t *buf, int oob_required, int page)
1549 uint8_t *ecc_calc = chip->buffers->ecccalc;
1550 uint8_t *ecc_code = chip->buffers->ecccode;
1551 uint32_t *eccpos = chip->ecc.layout->eccpos;
1552 uint8_t *oob = &chip->oob_poi[eccpos[0]];
1553 uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1554 int stat;
1555 unsigned int max_bitflips = 0;
1557 /* Enable GPMC ecc engine */
1558 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1560 /* Read data */
1561 chip->read_buf(mtd, buf, mtd->writesize);
1563 /* Read oob bytes */
1564 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1565 chip->read_buf(mtd, oob, chip->ecc.total);
1567 /* Calculate ecc bytes */
1568 chip->ecc.calculate(mtd, buf, ecc_calc);
1570 memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1572 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1574 if (stat < 0) {
1575 mtd->ecc_stats.failed++;
1576 } else {
1577 mtd->ecc_stats.corrected += stat;
1578 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1581 return max_bitflips;
1585 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1586 * @omap_nand_info: NAND device structure containing platform data
1588 static bool is_elm_present(struct omap_nand_info *info,
1589 struct device_node *elm_node)
1591 struct platform_device *pdev;
1593 /* check whether elm-id is passed via DT */
1594 if (!elm_node) {
1595 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1596 return false;
1598 pdev = of_find_device_by_node(elm_node);
1599 /* check whether ELM device is registered */
1600 if (!pdev) {
1601 dev_err(&info->pdev->dev, "ELM device not found\n");
1602 return false;
1604 /* ELM module available, now configure it */
1605 info->elm_dev = &pdev->dev;
1606 return true;
1609 static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1610 struct omap_nand_platform_data *pdata)
1612 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1614 switch (info->ecc_opt) {
1615 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1616 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1617 ecc_needs_omap_bch = false;
1618 ecc_needs_bch = true;
1619 ecc_needs_elm = false;
1620 break;
1621 case OMAP_ECC_BCH4_CODE_HW:
1622 case OMAP_ECC_BCH8_CODE_HW:
1623 case OMAP_ECC_BCH16_CODE_HW:
1624 ecc_needs_omap_bch = true;
1625 ecc_needs_bch = false;
1626 ecc_needs_elm = true;
1627 break;
1628 default:
1629 ecc_needs_omap_bch = false;
1630 ecc_needs_bch = false;
1631 ecc_needs_elm = false;
1632 break;
1635 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1636 dev_err(&info->pdev->dev,
1637 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1638 return false;
1640 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1641 dev_err(&info->pdev->dev,
1642 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1643 return false;
1645 if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
1646 dev_err(&info->pdev->dev, "ELM not available\n");
1647 return false;
1650 return true;
1653 static int omap_nand_probe(struct platform_device *pdev)
1655 struct omap_nand_info *info;
1656 struct omap_nand_platform_data *pdata;
1657 struct mtd_info *mtd;
1658 struct nand_chip *nand_chip;
1659 struct nand_ecclayout *ecclayout;
1660 int err;
1661 int i;
1662 dma_cap_mask_t mask;
1663 unsigned sig;
1664 unsigned oob_index;
1665 struct resource *res;
1666 struct mtd_part_parser_data ppdata = {};
1668 pdata = dev_get_platdata(&pdev->dev);
1669 if (pdata == NULL) {
1670 dev_err(&pdev->dev, "platform data missing\n");
1671 return -ENODEV;
1674 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1675 GFP_KERNEL);
1676 if (!info)
1677 return -ENOMEM;
1679 platform_set_drvdata(pdev, info);
1681 info->pdev = pdev;
1682 info->gpmc_cs = pdata->cs;
1683 info->reg = pdata->reg;
1684 info->of_node = pdata->of_node;
1685 info->ecc_opt = pdata->ecc_opt;
1686 mtd = &info->mtd;
1687 mtd->priv = &info->nand;
1688 mtd->dev.parent = &pdev->dev;
1689 nand_chip = &info->nand;
1690 nand_chip->ecc.priv = NULL;
1692 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1693 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1694 if (IS_ERR(nand_chip->IO_ADDR_R))
1695 return PTR_ERR(nand_chip->IO_ADDR_R);
1697 info->phys_base = res->start;
1699 nand_chip->controller = &omap_gpmc_controller;
1701 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1702 nand_chip->cmd_ctrl = omap_hwcontrol;
1705 * If RDY/BSY line is connected to OMAP then use the omap ready
1706 * function and the generic nand_wait function which reads the status
1707 * register after monitoring the RDY/BSY line. Otherwise use a standard
1708 * chip delay which is slightly more than tR (AC Timing) of the NAND
1709 * device and read status register until you get a failure or success
1711 if (pdata->dev_ready) {
1712 nand_chip->dev_ready = omap_dev_ready;
1713 nand_chip->chip_delay = 0;
1714 } else {
1715 nand_chip->waitfunc = omap_wait;
1716 nand_chip->chip_delay = 50;
1719 if (pdata->flash_bbt)
1720 nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1721 else
1722 nand_chip->options |= NAND_SKIP_BBTSCAN;
1724 /* scan NAND device connected to chip controller */
1725 nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1726 if (nand_scan_ident(mtd, 1, NULL)) {
1727 dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
1728 err = -ENXIO;
1729 goto return_error;
1732 /* re-populate low-level callbacks based on xfer modes */
1733 switch (pdata->xfer_type) {
1734 case NAND_OMAP_PREFETCH_POLLED:
1735 nand_chip->read_buf = omap_read_buf_pref;
1736 nand_chip->write_buf = omap_write_buf_pref;
1737 break;
1739 case NAND_OMAP_POLLED:
1740 /* Use nand_base defaults for {read,write}_buf */
1741 break;
1743 case NAND_OMAP_PREFETCH_DMA:
1744 dma_cap_zero(mask);
1745 dma_cap_set(DMA_SLAVE, mask);
1746 sig = OMAP24XX_DMA_GPMC;
1747 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1748 if (!info->dma) {
1749 dev_err(&pdev->dev, "DMA engine request failed\n");
1750 err = -ENXIO;
1751 goto return_error;
1752 } else {
1753 struct dma_slave_config cfg;
1755 memset(&cfg, 0, sizeof(cfg));
1756 cfg.src_addr = info->phys_base;
1757 cfg.dst_addr = info->phys_base;
1758 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1759 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1760 cfg.src_maxburst = 16;
1761 cfg.dst_maxburst = 16;
1762 err = dmaengine_slave_config(info->dma, &cfg);
1763 if (err) {
1764 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1765 err);
1766 goto return_error;
1768 nand_chip->read_buf = omap_read_buf_dma_pref;
1769 nand_chip->write_buf = omap_write_buf_dma_pref;
1771 break;
1773 case NAND_OMAP_PREFETCH_IRQ:
1774 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1775 if (info->gpmc_irq_fifo <= 0) {
1776 dev_err(&pdev->dev, "error getting fifo irq\n");
1777 err = -ENODEV;
1778 goto return_error;
1780 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1781 omap_nand_irq, IRQF_SHARED,
1782 "gpmc-nand-fifo", info);
1783 if (err) {
1784 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1785 info->gpmc_irq_fifo, err);
1786 info->gpmc_irq_fifo = 0;
1787 goto return_error;
1790 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1791 if (info->gpmc_irq_count <= 0) {
1792 dev_err(&pdev->dev, "error getting count irq\n");
1793 err = -ENODEV;
1794 goto return_error;
1796 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1797 omap_nand_irq, IRQF_SHARED,
1798 "gpmc-nand-count", info);
1799 if (err) {
1800 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1801 info->gpmc_irq_count, err);
1802 info->gpmc_irq_count = 0;
1803 goto return_error;
1806 nand_chip->read_buf = omap_read_buf_irq_pref;
1807 nand_chip->write_buf = omap_write_buf_irq_pref;
1809 break;
1811 default:
1812 dev_err(&pdev->dev,
1813 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1814 err = -EINVAL;
1815 goto return_error;
1818 if (!omap2_nand_ecc_check(info, pdata)) {
1819 err = -EINVAL;
1820 goto return_error;
1823 /* populate MTD interface based on ECC scheme */
1824 ecclayout = &info->oobinfo;
1825 switch (info->ecc_opt) {
1826 case OMAP_ECC_HAM1_CODE_SW:
1827 nand_chip->ecc.mode = NAND_ECC_SOFT;
1828 break;
1830 case OMAP_ECC_HAM1_CODE_HW:
1831 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1832 nand_chip->ecc.mode = NAND_ECC_HW;
1833 nand_chip->ecc.bytes = 3;
1834 nand_chip->ecc.size = 512;
1835 nand_chip->ecc.strength = 1;
1836 nand_chip->ecc.calculate = omap_calculate_ecc;
1837 nand_chip->ecc.hwctl = omap_enable_hwecc;
1838 nand_chip->ecc.correct = omap_correct_data;
1839 /* define ECC layout */
1840 ecclayout->eccbytes = nand_chip->ecc.bytes *
1841 (mtd->writesize /
1842 nand_chip->ecc.size);
1843 if (nand_chip->options & NAND_BUSWIDTH_16)
1844 oob_index = BADBLOCK_MARKER_LENGTH;
1845 else
1846 oob_index = 1;
1847 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1848 ecclayout->eccpos[i] = oob_index;
1849 /* no reserved-marker in ecclayout for this ecc-scheme */
1850 ecclayout->oobfree->offset =
1851 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1852 break;
1854 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1855 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1856 nand_chip->ecc.mode = NAND_ECC_HW;
1857 nand_chip->ecc.size = 512;
1858 nand_chip->ecc.bytes = 7;
1859 nand_chip->ecc.strength = 4;
1860 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
1861 nand_chip->ecc.correct = nand_bch_correct_data;
1862 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
1863 /* define ECC layout */
1864 ecclayout->eccbytes = nand_chip->ecc.bytes *
1865 (mtd->writesize /
1866 nand_chip->ecc.size);
1867 oob_index = BADBLOCK_MARKER_LENGTH;
1868 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1869 ecclayout->eccpos[i] = oob_index;
1870 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1871 oob_index++;
1873 /* include reserved-marker in ecclayout->oobfree calculation */
1874 ecclayout->oobfree->offset = 1 +
1875 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1876 /* software bch library is used for locating errors */
1877 nand_chip->ecc.priv = nand_bch_init(mtd,
1878 nand_chip->ecc.size,
1879 nand_chip->ecc.bytes,
1880 &ecclayout);
1881 if (!nand_chip->ecc.priv) {
1882 dev_err(&info->pdev->dev, "unable to use BCH library\n");
1883 err = -EINVAL;
1884 goto return_error;
1886 break;
1888 case OMAP_ECC_BCH4_CODE_HW:
1889 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1890 nand_chip->ecc.mode = NAND_ECC_HW;
1891 nand_chip->ecc.size = 512;
1892 /* 14th bit is kept reserved for ROM-code compatibility */
1893 nand_chip->ecc.bytes = 7 + 1;
1894 nand_chip->ecc.strength = 4;
1895 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
1896 nand_chip->ecc.correct = omap_elm_correct_data;
1897 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
1898 nand_chip->ecc.read_page = omap_read_page_bch;
1899 nand_chip->ecc.write_page = omap_write_page_bch;
1900 /* define ECC layout */
1901 ecclayout->eccbytes = nand_chip->ecc.bytes *
1902 (mtd->writesize /
1903 nand_chip->ecc.size);
1904 oob_index = BADBLOCK_MARKER_LENGTH;
1905 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1906 ecclayout->eccpos[i] = oob_index;
1907 /* reserved marker already included in ecclayout->eccbytes */
1908 ecclayout->oobfree->offset =
1909 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1911 err = elm_config(info->elm_dev, BCH4_ECC,
1912 info->mtd.writesize / nand_chip->ecc.size,
1913 nand_chip->ecc.size, nand_chip->ecc.bytes);
1914 if (err < 0)
1915 goto return_error;
1916 break;
1918 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1919 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1920 nand_chip->ecc.mode = NAND_ECC_HW;
1921 nand_chip->ecc.size = 512;
1922 nand_chip->ecc.bytes = 13;
1923 nand_chip->ecc.strength = 8;
1924 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
1925 nand_chip->ecc.correct = nand_bch_correct_data;
1926 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
1927 /* define ECC layout */
1928 ecclayout->eccbytes = nand_chip->ecc.bytes *
1929 (mtd->writesize /
1930 nand_chip->ecc.size);
1931 oob_index = BADBLOCK_MARKER_LENGTH;
1932 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1933 ecclayout->eccpos[i] = oob_index;
1934 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1935 oob_index++;
1937 /* include reserved-marker in ecclayout->oobfree calculation */
1938 ecclayout->oobfree->offset = 1 +
1939 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1940 /* software bch library is used for locating errors */
1941 nand_chip->ecc.priv = nand_bch_init(mtd,
1942 nand_chip->ecc.size,
1943 nand_chip->ecc.bytes,
1944 &ecclayout);
1945 if (!nand_chip->ecc.priv) {
1946 dev_err(&info->pdev->dev, "unable to use BCH library\n");
1947 err = -EINVAL;
1948 goto return_error;
1950 break;
1952 case OMAP_ECC_BCH8_CODE_HW:
1953 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1954 nand_chip->ecc.mode = NAND_ECC_HW;
1955 nand_chip->ecc.size = 512;
1956 /* 14th bit is kept reserved for ROM-code compatibility */
1957 nand_chip->ecc.bytes = 13 + 1;
1958 nand_chip->ecc.strength = 8;
1959 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
1960 nand_chip->ecc.correct = omap_elm_correct_data;
1961 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
1962 nand_chip->ecc.read_page = omap_read_page_bch;
1963 nand_chip->ecc.write_page = omap_write_page_bch;
1965 err = elm_config(info->elm_dev, BCH8_ECC,
1966 info->mtd.writesize / nand_chip->ecc.size,
1967 nand_chip->ecc.size, nand_chip->ecc.bytes);
1968 if (err < 0)
1969 goto return_error;
1971 /* define ECC layout */
1972 ecclayout->eccbytes = nand_chip->ecc.bytes *
1973 (mtd->writesize /
1974 nand_chip->ecc.size);
1975 oob_index = BADBLOCK_MARKER_LENGTH;
1976 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1977 ecclayout->eccpos[i] = oob_index;
1978 /* reserved marker already included in ecclayout->eccbytes */
1979 ecclayout->oobfree->offset =
1980 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1981 break;
1983 case OMAP_ECC_BCH16_CODE_HW:
1984 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1985 nand_chip->ecc.mode = NAND_ECC_HW;
1986 nand_chip->ecc.size = 512;
1987 nand_chip->ecc.bytes = 26;
1988 nand_chip->ecc.strength = 16;
1989 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
1990 nand_chip->ecc.correct = omap_elm_correct_data;
1991 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
1992 nand_chip->ecc.read_page = omap_read_page_bch;
1993 nand_chip->ecc.write_page = omap_write_page_bch;
1995 err = elm_config(info->elm_dev, BCH16_ECC,
1996 info->mtd.writesize / nand_chip->ecc.size,
1997 nand_chip->ecc.size, nand_chip->ecc.bytes);
1998 if (err < 0)
1999 goto return_error;
2001 /* define ECC layout */
2002 ecclayout->eccbytes = nand_chip->ecc.bytes *
2003 (mtd->writesize /
2004 nand_chip->ecc.size);
2005 oob_index = BADBLOCK_MARKER_LENGTH;
2006 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2007 ecclayout->eccpos[i] = oob_index;
2008 /* reserved marker already included in ecclayout->eccbytes */
2009 ecclayout->oobfree->offset =
2010 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
2011 break;
2012 default:
2013 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2014 err = -EINVAL;
2015 goto return_error;
2018 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW)
2019 goto scan_tail;
2021 /* all OOB bytes from oobfree->offset till end off OOB are free */
2022 ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2023 /* check if NAND device's OOB is enough to store ECC signatures */
2024 if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2025 dev_err(&info->pdev->dev,
2026 "not enough OOB bytes required = %d, available=%d\n",
2027 ecclayout->eccbytes, mtd->oobsize);
2028 err = -EINVAL;
2029 goto return_error;
2031 nand_chip->ecc.layout = ecclayout;
2033 scan_tail:
2034 /* second phase scan */
2035 if (nand_scan_tail(mtd)) {
2036 err = -ENXIO;
2037 goto return_error;
2040 ppdata.of_node = pdata->of_node;
2041 mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2042 pdata->nr_parts);
2044 platform_set_drvdata(pdev, mtd);
2046 return 0;
2048 return_error:
2049 if (info->dma)
2050 dma_release_channel(info->dma);
2051 if (nand_chip->ecc.priv) {
2052 nand_bch_free(nand_chip->ecc.priv);
2053 nand_chip->ecc.priv = NULL;
2055 return err;
2058 static int omap_nand_remove(struct platform_device *pdev)
2060 struct mtd_info *mtd = platform_get_drvdata(pdev);
2061 struct nand_chip *nand_chip = mtd->priv;
2062 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2063 mtd);
2064 if (nand_chip->ecc.priv) {
2065 nand_bch_free(nand_chip->ecc.priv);
2066 nand_chip->ecc.priv = NULL;
2068 if (info->dma)
2069 dma_release_channel(info->dma);
2070 nand_release(mtd);
2071 return 0;
2074 static struct platform_driver omap_nand_driver = {
2075 .probe = omap_nand_probe,
2076 .remove = omap_nand_remove,
2077 .driver = {
2078 .name = DRIVER_NAME,
2082 module_platform_driver(omap_nand_driver);
2084 MODULE_ALIAS("platform:" DRIVER_NAME);
2085 MODULE_LICENSE("GPL");
2086 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");