2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
24 #include <linux/slab.h>
26 #include <linux/of_device.h>
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
33 #define DRIVER_NAME "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS 5000
36 #define NAND_Ecc_P1e (1 << 0)
37 #define NAND_Ecc_P2e (1 << 1)
38 #define NAND_Ecc_P4e (1 << 2)
39 #define NAND_Ecc_P8e (1 << 3)
40 #define NAND_Ecc_P16e (1 << 4)
41 #define NAND_Ecc_P32e (1 << 5)
42 #define NAND_Ecc_P64e (1 << 6)
43 #define NAND_Ecc_P128e (1 << 7)
44 #define NAND_Ecc_P256e (1 << 8)
45 #define NAND_Ecc_P512e (1 << 9)
46 #define NAND_Ecc_P1024e (1 << 10)
47 #define NAND_Ecc_P2048e (1 << 11)
49 #define NAND_Ecc_P1o (1 << 16)
50 #define NAND_Ecc_P2o (1 << 17)
51 #define NAND_Ecc_P4o (1 << 18)
52 #define NAND_Ecc_P8o (1 << 19)
53 #define NAND_Ecc_P16o (1 << 20)
54 #define NAND_Ecc_P32o (1 << 21)
55 #define NAND_Ecc_P64o (1 << 22)
56 #define NAND_Ecc_P128o (1 << 23)
57 #define NAND_Ecc_P256o (1 << 24)
58 #define NAND_Ecc_P512o (1 << 25)
59 #define NAND_Ecc_P1024o (1 << 26)
60 #define NAND_Ecc_P2048o (1 << 27)
62 #define TF(value) (value ? 1 : 0)
64 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
73 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
82 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
91 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
100 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
103 #define PREFETCH_CONFIG1_CS_SHIFT 24
104 #define ECC_CONFIG_CS_SHIFT 1
106 #define ENABLE_PREFETCH (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT 2
108 #define ECCSIZE0_SHIFT 12
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
113 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY 0x00000001
119 #define OMAP24XX_DMA_GPMC 4
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 static u_char bch16_vector
[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
143 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 /* Shared among all NAND instances to synchronize access to the ECC Engine */
148 static struct nand_hw_control omap_gpmc_controller
= {
149 .lock
= __SPIN_LOCK_UNLOCKED(omap_gpmc_controller
.lock
),
150 .wq
= __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller
.wq
),
153 struct omap_nand_info
{
154 struct omap_nand_platform_data
*pdata
;
156 struct nand_chip nand
;
157 struct platform_device
*pdev
;
160 unsigned long phys_base
;
161 enum omap_ecc ecc_opt
;
162 struct completion comp
;
163 struct dma_chan
*dma
;
167 OMAP_NAND_IO_READ
= 0, /* read */
168 OMAP_NAND_IO_WRITE
, /* write */
172 struct gpmc_nand_regs reg
;
173 /* generated at runtime depending on ECC algorithm and layout selected */
174 struct nand_ecclayout oobinfo
;
175 /* fields specific for BCHx_HW ECC scheme */
176 struct device
*elm_dev
;
177 struct device_node
*of_node
;
181 * omap_prefetch_enable - configures and starts prefetch transfer
182 * @cs: cs (chip select) number
183 * @fifo_th: fifo threshold to be used for read/ write
184 * @dma_mode: dma mode enable (1) or disable (0)
185 * @u32_count: number of bytes to be transferred
186 * @is_write: prefetch read(0) or write post(1) mode
188 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
189 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
193 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
196 if (readl(info
->reg
.gpmc_prefetch_control
))
199 /* Set the amount of bytes to be prefetched */
200 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
202 /* Set dma/mpu mode, the prefetch read / post write and
203 * enable the engine. Set which cs is has requested for.
205 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
206 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
207 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (0x1 & is_write
));
208 writel(val
, info
->reg
.gpmc_prefetch_config1
);
210 /* Start the prefetch engine */
211 writel(0x1, info
->reg
.gpmc_prefetch_control
);
217 * omap_prefetch_reset - disables and stops the prefetch engine
219 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
223 /* check if the same module/cs is trying to reset */
224 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
225 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
228 /* Stop the PFPW engine */
229 writel(0x0, info
->reg
.gpmc_prefetch_control
);
231 /* Reset/disable the PFPW engine */
232 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
238 * omap_hwcontrol - hardware specific access to control-lines
239 * @mtd: MTD device structure
240 * @cmd: command to device
242 * NAND_NCE: bit 0 -> don't care
243 * NAND_CLE: bit 1 -> Command Latch
244 * NAND_ALE: bit 2 -> Address Latch
246 * NOTE: boards may use different bits for these!!
248 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
250 struct omap_nand_info
*info
= container_of(mtd
,
251 struct omap_nand_info
, mtd
);
253 if (cmd
!= NAND_CMD_NONE
) {
255 writeb(cmd
, info
->reg
.gpmc_nand_command
);
257 else if (ctrl
& NAND_ALE
)
258 writeb(cmd
, info
->reg
.gpmc_nand_address
);
261 writeb(cmd
, info
->reg
.gpmc_nand_data
);
266 * omap_read_buf8 - read data from NAND controller into buffer
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
271 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
273 struct nand_chip
*nand
= mtd
->priv
;
275 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
279 * omap_write_buf8 - write buffer to NAND controller
280 * @mtd: MTD device structure
282 * @len: number of bytes to write
284 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
286 struct omap_nand_info
*info
= container_of(mtd
,
287 struct omap_nand_info
, mtd
);
288 u_char
*p
= (u_char
*)buf
;
292 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
293 /* wait until buffer is available for write */
295 status
= readl(info
->reg
.gpmc_status
) &
302 * omap_read_buf16 - read data from NAND controller into buffer
303 * @mtd: MTD device structure
304 * @buf: buffer to store date
305 * @len: number of bytes to read
307 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
309 struct nand_chip
*nand
= mtd
->priv
;
311 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
315 * omap_write_buf16 - write buffer to NAND controller
316 * @mtd: MTD device structure
318 * @len: number of bytes to write
320 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
322 struct omap_nand_info
*info
= container_of(mtd
,
323 struct omap_nand_info
, mtd
);
324 u16
*p
= (u16
*) buf
;
326 /* FIXME try bursts of writesw() or DMA ... */
330 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
331 /* wait until buffer is available for write */
333 status
= readl(info
->reg
.gpmc_status
) &
340 * omap_read_buf_pref - read data from NAND controller into buffer
341 * @mtd: MTD device structure
342 * @buf: buffer to store date
343 * @len: number of bytes to read
345 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
347 struct omap_nand_info
*info
= container_of(mtd
,
348 struct omap_nand_info
, mtd
);
349 uint32_t r_count
= 0;
353 /* take care of subpage reads */
355 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
356 omap_read_buf16(mtd
, buf
, len
% 4);
358 omap_read_buf8(mtd
, buf
, len
% 4);
359 p
= (u32
*) (buf
+ len
% 4);
363 /* configure and start prefetch transfer */
364 ret
= omap_prefetch_enable(info
->gpmc_cs
,
365 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
367 /* PFPW engine is busy, use cpu copy method */
368 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
369 omap_read_buf16(mtd
, (u_char
*)p
, len
);
371 omap_read_buf8(mtd
, (u_char
*)p
, len
);
374 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
375 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
376 r_count
= r_count
>> 2;
377 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
381 /* disable and stop the PFPW engine */
382 omap_prefetch_reset(info
->gpmc_cs
, info
);
387 * omap_write_buf_pref - write buffer to NAND controller
388 * @mtd: MTD device structure
390 * @len: number of bytes to write
392 static void omap_write_buf_pref(struct mtd_info
*mtd
,
393 const u_char
*buf
, int len
)
395 struct omap_nand_info
*info
= container_of(mtd
,
396 struct omap_nand_info
, mtd
);
397 uint32_t w_count
= 0;
400 unsigned long tim
, limit
;
403 /* take care of subpage writes */
405 writeb(*buf
, info
->nand
.IO_ADDR_W
);
406 p
= (u16
*)(buf
+ 1);
410 /* configure and start prefetch transfer */
411 ret
= omap_prefetch_enable(info
->gpmc_cs
,
412 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
414 /* PFPW engine is busy, use cpu copy method */
415 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
416 omap_write_buf16(mtd
, (u_char
*)p
, len
);
418 omap_write_buf8(mtd
, (u_char
*)p
, len
);
421 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
422 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
423 w_count
= w_count
>> 1;
424 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
425 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
427 /* wait for data to flushed-out before reset the prefetch */
429 limit
= (loops_per_jiffy
*
430 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
433 val
= readl(info
->reg
.gpmc_prefetch_status
);
434 val
= PREFETCH_STATUS_COUNT(val
);
435 } while (val
&& (tim
++ < limit
));
437 /* disable and stop the PFPW engine */
438 omap_prefetch_reset(info
->gpmc_cs
, info
);
443 * omap_nand_dma_callback: callback on the completion of dma transfer
444 * @data: pointer to completion data structure
446 static void omap_nand_dma_callback(void *data
)
448 complete((struct completion
*) data
);
452 * omap_nand_dma_transfer: configure and start dma transfer
453 * @mtd: MTD device structure
454 * @addr: virtual address in RAM of source/destination
455 * @len: number of data bytes to be transferred
456 * @is_write: flag for read/write operation
458 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
459 unsigned int len
, int is_write
)
461 struct omap_nand_info
*info
= container_of(mtd
,
462 struct omap_nand_info
, mtd
);
463 struct dma_async_tx_descriptor
*tx
;
464 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
466 struct scatterlist sg
;
467 unsigned long tim
, limit
;
472 if (addr
>= high_memory
) {
475 if (((size_t)addr
& PAGE_MASK
) !=
476 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
478 p1
= vmalloc_to_page(addr
);
481 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
484 sg_init_one(&sg
, addr
, len
);
485 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
487 dev_err(&info
->pdev
->dev
,
488 "Couldn't DMA map a %d byte buffer\n", len
);
492 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
493 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
494 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
498 tx
->callback
= omap_nand_dma_callback
;
499 tx
->callback_param
= &info
->comp
;
500 dmaengine_submit(tx
);
502 /* configure and start prefetch transfer */
503 ret
= omap_prefetch_enable(info
->gpmc_cs
,
504 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
506 /* PFPW engine is busy, use cpu copy method */
509 init_completion(&info
->comp
);
510 dma_async_issue_pending(info
->dma
);
512 /* setup and start DMA using dma_addr */
513 wait_for_completion(&info
->comp
);
515 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
519 val
= readl(info
->reg
.gpmc_prefetch_status
);
520 val
= PREFETCH_STATUS_COUNT(val
);
521 } while (val
&& (tim
++ < limit
));
523 /* disable and stop the PFPW engine */
524 omap_prefetch_reset(info
->gpmc_cs
, info
);
526 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
530 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
532 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
533 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
534 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
536 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
537 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
542 * omap_read_buf_dma_pref - read data from NAND controller into buffer
543 * @mtd: MTD device structure
544 * @buf: buffer to store date
545 * @len: number of bytes to read
547 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
549 if (len
<= mtd
->oobsize
)
550 omap_read_buf_pref(mtd
, buf
, len
);
552 /* start transfer in DMA mode */
553 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
557 * omap_write_buf_dma_pref - write buffer to NAND controller
558 * @mtd: MTD device structure
560 * @len: number of bytes to write
562 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
563 const u_char
*buf
, int len
)
565 if (len
<= mtd
->oobsize
)
566 omap_write_buf_pref(mtd
, buf
, len
);
568 /* start transfer in DMA mode */
569 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
573 * omap_nand_irq - GPMC irq handler
574 * @this_irq: gpmc irq number
575 * @dev: omap_nand_info structure pointer is passed here
577 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
579 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
582 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
583 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
584 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
585 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
586 if (this_irq
== info
->gpmc_irq_count
)
589 if (info
->buf_len
&& (info
->buf_len
< bytes
))
590 bytes
= info
->buf_len
;
591 else if (!info
->buf_len
)
593 iowrite32_rep(info
->nand
.IO_ADDR_W
,
594 (u32
*)info
->buf
, bytes
>> 2);
595 info
->buf
= info
->buf
+ bytes
;
596 info
->buf_len
-= bytes
;
599 ioread32_rep(info
->nand
.IO_ADDR_R
,
600 (u32
*)info
->buf
, bytes
>> 2);
601 info
->buf
= info
->buf
+ bytes
;
603 if (this_irq
== info
->gpmc_irq_count
)
610 complete(&info
->comp
);
612 disable_irq_nosync(info
->gpmc_irq_fifo
);
613 disable_irq_nosync(info
->gpmc_irq_count
);
619 * omap_read_buf_irq_pref - read data from NAND controller into buffer
620 * @mtd: MTD device structure
621 * @buf: buffer to store date
622 * @len: number of bytes to read
624 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
626 struct omap_nand_info
*info
= container_of(mtd
,
627 struct omap_nand_info
, mtd
);
630 if (len
<= mtd
->oobsize
) {
631 omap_read_buf_pref(mtd
, buf
, len
);
635 info
->iomode
= OMAP_NAND_IO_READ
;
637 init_completion(&info
->comp
);
639 /* configure and start prefetch transfer */
640 ret
= omap_prefetch_enable(info
->gpmc_cs
,
641 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
643 /* PFPW engine is busy, use cpu copy method */
648 enable_irq(info
->gpmc_irq_count
);
649 enable_irq(info
->gpmc_irq_fifo
);
651 /* waiting for read to complete */
652 wait_for_completion(&info
->comp
);
654 /* disable and stop the PFPW engine */
655 omap_prefetch_reset(info
->gpmc_cs
, info
);
659 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
660 omap_read_buf16(mtd
, buf
, len
);
662 omap_read_buf8(mtd
, buf
, len
);
666 * omap_write_buf_irq_pref - write buffer to NAND controller
667 * @mtd: MTD device structure
669 * @len: number of bytes to write
671 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
672 const u_char
*buf
, int len
)
674 struct omap_nand_info
*info
= container_of(mtd
,
675 struct omap_nand_info
, mtd
);
677 unsigned long tim
, limit
;
680 if (len
<= mtd
->oobsize
) {
681 omap_write_buf_pref(mtd
, buf
, len
);
685 info
->iomode
= OMAP_NAND_IO_WRITE
;
686 info
->buf
= (u_char
*) buf
;
687 init_completion(&info
->comp
);
689 /* configure and start prefetch transfer : size=24 */
690 ret
= omap_prefetch_enable(info
->gpmc_cs
,
691 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
693 /* PFPW engine is busy, use cpu copy method */
698 enable_irq(info
->gpmc_irq_count
);
699 enable_irq(info
->gpmc_irq_fifo
);
701 /* waiting for write to complete */
702 wait_for_completion(&info
->comp
);
704 /* wait for data to flushed-out before reset the prefetch */
706 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
708 val
= readl(info
->reg
.gpmc_prefetch_status
);
709 val
= PREFETCH_STATUS_COUNT(val
);
711 } while (val
&& (tim
++ < limit
));
713 /* disable and stop the PFPW engine */
714 omap_prefetch_reset(info
->gpmc_cs
, info
);
718 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
719 omap_write_buf16(mtd
, buf
, len
);
721 omap_write_buf8(mtd
, buf
, len
);
725 * gen_true_ecc - This function will generate true ECC value
726 * @ecc_buf: buffer to store ecc code
728 * This generated true ECC value can be used when correcting
729 * data read from NAND flash memory core
731 static void gen_true_ecc(u8
*ecc_buf
)
733 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
734 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
736 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
737 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
738 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
739 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
740 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
741 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
745 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
746 * @ecc_data1: ecc code from nand spare area
747 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
748 * @page_data: page data
750 * This function compares two ECC's and indicates if there is an error.
751 * If the error can be corrected it will be corrected to the buffer.
752 * If there is no error, %0 is returned. If there is an error but it
753 * was corrected, %1 is returned. Otherwise, %-1 is returned.
755 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
756 u8
*ecc_data2
, /* read from register */
760 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
761 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
768 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
770 gen_true_ecc(ecc_data1
);
771 gen_true_ecc(ecc_data2
);
773 for (i
= 0; i
<= 2; i
++) {
774 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
775 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
778 for (i
= 0; i
< 8; i
++) {
779 tmp0_bit
[i
] = *ecc_data1
% 2;
780 *ecc_data1
= *ecc_data1
/ 2;
783 for (i
= 0; i
< 8; i
++) {
784 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
785 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
788 for (i
= 0; i
< 8; i
++) {
789 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
790 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
793 for (i
= 0; i
< 8; i
++) {
794 comp0_bit
[i
] = *ecc_data2
% 2;
795 *ecc_data2
= *ecc_data2
/ 2;
798 for (i
= 0; i
< 8; i
++) {
799 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
800 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
803 for (i
= 0; i
< 8; i
++) {
804 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
805 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
808 for (i
= 0; i
< 6; i
++)
809 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
811 for (i
= 0; i
< 8; i
++)
812 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
814 for (i
= 0; i
< 8; i
++)
815 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
817 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
818 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
820 for (i
= 0; i
< 24; i
++)
821 ecc_sum
+= ecc_bit
[i
];
825 /* Not reached because this function is not called if
826 * ECC values are equal
831 /* Uncorrectable error */
832 pr_debug("ECC UNCORRECTED_ERROR 1\n");
836 /* UN-Correctable error */
837 pr_debug("ECC UNCORRECTED_ERROR B\n");
841 /* Correctable error */
842 find_byte
= (ecc_bit
[23] << 8) +
852 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
854 pr_debug("Correcting single bit ECC error at offset: "
855 "%d, bit: %d\n", find_byte
, find_bit
);
857 page_data
[find_byte
] ^= (1 << find_bit
);
862 if (ecc_data2
[0] == 0 &&
867 pr_debug("UNCORRECTED_ERROR default\n");
873 * omap_correct_data - Compares the ECC read with HW generated ECC
874 * @mtd: MTD device structure
876 * @read_ecc: ecc read from nand flash
877 * @calc_ecc: ecc read from HW ECC registers
879 * Compares the ecc read from nand spare area with ECC registers values
880 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
881 * detection and correction. If there are no errors, %0 is returned. If
882 * there were errors and all of the errors were corrected, the number of
883 * corrected errors is returned. If uncorrectable errors exist, %-1 is
886 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
887 u_char
*read_ecc
, u_char
*calc_ecc
)
889 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
891 int blockCnt
= 0, i
= 0, ret
= 0;
894 /* Ex NAND_ECC_HW12_2048 */
895 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
896 (info
->nand
.ecc
.size
== 2048))
901 for (i
= 0; i
< blockCnt
; i
++) {
902 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
903 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
906 /* keep track of the number of corrected errors */
917 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
918 * @mtd: MTD device structure
919 * @dat: The pointer to data on which ecc is computed
920 * @ecc_code: The ecc_code buffer
922 * Using noninverted ECC can be considered ugly since writing a blank
923 * page ie. padding will clear the ECC bytes. This is no problem as long
924 * nobody is trying to write data on the seemingly unused page. Reading
925 * an erased page will produce an ECC mismatch between generated and read
926 * ECC bytes that has to be dealt with separately.
928 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
931 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
935 val
= readl(info
->reg
.gpmc_ecc_config
);
936 if (((val
>> ECC_CONFIG_CS_SHIFT
) & CS_MASK
) != info
->gpmc_cs
)
939 /* read ecc result */
940 val
= readl(info
->reg
.gpmc_ecc1_result
);
941 *ecc_code
++ = val
; /* P128e, ..., P1e */
942 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
943 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
944 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
950 * omap_enable_hwecc - This function enables the hardware ecc functionality
951 * @mtd: MTD device structure
952 * @mode: Read/Write mode
954 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
956 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
958 struct nand_chip
*chip
= mtd
->priv
;
959 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
962 /* clear ecc and enable bits */
963 val
= ECCCLEAR
| ECC1
;
964 writel(val
, info
->reg
.gpmc_ecc_control
);
966 /* program ecc and result sizes */
967 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
969 writel(val
, info
->reg
.gpmc_ecc_size_config
);
974 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
976 case NAND_ECC_READSYN
:
977 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
980 dev_info(&info
->pdev
->dev
,
981 "error: unrecognized Mode[%d]!\n", mode
);
985 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
986 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
987 writel(val
, info
->reg
.gpmc_ecc_config
);
991 * omap_wait - wait until the command is done
992 * @mtd: MTD device structure
993 * @chip: NAND Chip structure
995 * Wait function is called during Program and erase operations and
996 * the way it is called from MTD layer, we should wait till the NAND
997 * chip is ready after the programming/erase operation has completed.
999 * Erase can take up to 400ms and program up to 20ms according to
1000 * general NAND and SmartMedia specs
1002 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1004 struct nand_chip
*this = mtd
->priv
;
1005 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1007 unsigned long timeo
= jiffies
;
1008 int status
, state
= this->state
;
1010 if (state
== FL_ERASING
)
1011 timeo
+= msecs_to_jiffies(400);
1013 timeo
+= msecs_to_jiffies(20);
1015 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
1016 while (time_before(jiffies
, timeo
)) {
1017 status
= readb(info
->reg
.gpmc_nand_data
);
1018 if (status
& NAND_STATUS_READY
)
1023 status
= readb(info
->reg
.gpmc_nand_data
);
1028 * omap_dev_ready - calls the platform specific dev_ready function
1029 * @mtd: MTD device structure
1031 static int omap_dev_ready(struct mtd_info
*mtd
)
1033 unsigned int val
= 0;
1034 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1037 val
= readl(info
->reg
.gpmc_status
);
1039 if ((val
& 0x100) == 0x100) {
1047 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1048 * @mtd: MTD device structure
1049 * @mode: Read/Write mode
1051 * When using BCH with SW correction (i.e. no ELM), sector size is set
1052 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1053 * for both reading and writing with:
1054 * eccsize0 = 0 (no additional protected byte in spare area)
1055 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1057 static void __maybe_unused
omap_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1059 unsigned int bch_type
;
1060 unsigned int dev_width
, nsectors
;
1061 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1063 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1064 struct nand_chip
*chip
= mtd
->priv
;
1066 unsigned int ecc_size1
, ecc_size0
;
1068 /* GPMC configurations for calculating ECC */
1070 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1073 wr_mode
= BCH_WRAPMODE_6
;
1074 ecc_size0
= BCH_ECC_SIZE0
;
1075 ecc_size1
= BCH_ECC_SIZE1
;
1077 case OMAP_ECC_BCH4_CODE_HW
:
1079 nsectors
= chip
->ecc
.steps
;
1080 if (mode
== NAND_ECC_READ
) {
1081 wr_mode
= BCH_WRAPMODE_1
;
1082 ecc_size0
= BCH4R_ECC_SIZE0
;
1083 ecc_size1
= BCH4R_ECC_SIZE1
;
1085 wr_mode
= BCH_WRAPMODE_6
;
1086 ecc_size0
= BCH_ECC_SIZE0
;
1087 ecc_size1
= BCH_ECC_SIZE1
;
1090 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1093 wr_mode
= BCH_WRAPMODE_6
;
1094 ecc_size0
= BCH_ECC_SIZE0
;
1095 ecc_size1
= BCH_ECC_SIZE1
;
1097 case OMAP_ECC_BCH8_CODE_HW
:
1099 nsectors
= chip
->ecc
.steps
;
1100 if (mode
== NAND_ECC_READ
) {
1101 wr_mode
= BCH_WRAPMODE_1
;
1102 ecc_size0
= BCH8R_ECC_SIZE0
;
1103 ecc_size1
= BCH8R_ECC_SIZE1
;
1105 wr_mode
= BCH_WRAPMODE_6
;
1106 ecc_size0
= BCH_ECC_SIZE0
;
1107 ecc_size1
= BCH_ECC_SIZE1
;
1110 case OMAP_ECC_BCH16_CODE_HW
:
1112 nsectors
= chip
->ecc
.steps
;
1113 if (mode
== NAND_ECC_READ
) {
1115 ecc_size0
= 52; /* ECC bits in nibbles per sector */
1116 ecc_size1
= 0; /* non-ECC bits in nibbles per sector */
1119 ecc_size0
= 0; /* extra bits in nibbles per sector */
1120 ecc_size1
= 52; /* OOB bits in nibbles per sector */
1127 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1129 /* Configure ecc size for BCH */
1130 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1131 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1133 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1135 /* BCH configuration */
1136 val
= ((1 << 16) | /* enable BCH */
1137 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1138 (wr_mode
<< 8) | /* wrap mode */
1139 (dev_width
<< 7) | /* bus width */
1140 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1141 (info
->gpmc_cs
<< 1) | /* ECC CS */
1142 (0x1)); /* enable ECC */
1144 writel(val
, info
->reg
.gpmc_ecc_config
);
1146 /* Clear ecc and enable bits */
1147 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1150 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1151 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1152 0x97, 0x79, 0xe5, 0x24, 0xb5};
1155 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1156 * @mtd: MTD device structure
1157 * @dat: The pointer to data on which ecc is computed
1158 * @ecc_code: The ecc_code buffer
1160 * Support calculating of BCH4/8 ecc vectors for the page
1162 static int __maybe_unused
omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1163 const u_char
*dat
, u_char
*ecc_calc
)
1165 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1167 int eccbytes
= info
->nand
.ecc
.bytes
;
1168 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1170 unsigned long nsectors
, bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1174 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1175 for (i
= 0; i
< nsectors
; i
++) {
1176 ecc_code
= ecc_calc
;
1177 switch (info
->ecc_opt
) {
1178 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1179 case OMAP_ECC_BCH8_CODE_HW
:
1180 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1181 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1182 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1183 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1184 *ecc_code
++ = (bch_val4
& 0xFF);
1185 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1186 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1187 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1188 *ecc_code
++ = (bch_val3
& 0xFF);
1189 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1190 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1191 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1192 *ecc_code
++ = (bch_val2
& 0xFF);
1193 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1194 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1195 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1196 *ecc_code
++ = (bch_val1
& 0xFF);
1198 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1199 case OMAP_ECC_BCH4_CODE_HW
:
1200 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1201 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1202 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1203 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1204 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1205 ((bch_val1
>> 28) & 0xF);
1206 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1207 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1208 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1209 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1211 case OMAP_ECC_BCH16_CODE_HW
:
1212 val
= readl(gpmc_regs
->gpmc_bch_result6
[i
]);
1213 ecc_code
[0] = ((val
>> 8) & 0xFF);
1214 ecc_code
[1] = ((val
>> 0) & 0xFF);
1215 val
= readl(gpmc_regs
->gpmc_bch_result5
[i
]);
1216 ecc_code
[2] = ((val
>> 24) & 0xFF);
1217 ecc_code
[3] = ((val
>> 16) & 0xFF);
1218 ecc_code
[4] = ((val
>> 8) & 0xFF);
1219 ecc_code
[5] = ((val
>> 0) & 0xFF);
1220 val
= readl(gpmc_regs
->gpmc_bch_result4
[i
]);
1221 ecc_code
[6] = ((val
>> 24) & 0xFF);
1222 ecc_code
[7] = ((val
>> 16) & 0xFF);
1223 ecc_code
[8] = ((val
>> 8) & 0xFF);
1224 ecc_code
[9] = ((val
>> 0) & 0xFF);
1225 val
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1226 ecc_code
[10] = ((val
>> 24) & 0xFF);
1227 ecc_code
[11] = ((val
>> 16) & 0xFF);
1228 ecc_code
[12] = ((val
>> 8) & 0xFF);
1229 ecc_code
[13] = ((val
>> 0) & 0xFF);
1230 val
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1231 ecc_code
[14] = ((val
>> 24) & 0xFF);
1232 ecc_code
[15] = ((val
>> 16) & 0xFF);
1233 ecc_code
[16] = ((val
>> 8) & 0xFF);
1234 ecc_code
[17] = ((val
>> 0) & 0xFF);
1235 val
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1236 ecc_code
[18] = ((val
>> 24) & 0xFF);
1237 ecc_code
[19] = ((val
>> 16) & 0xFF);
1238 ecc_code
[20] = ((val
>> 8) & 0xFF);
1239 ecc_code
[21] = ((val
>> 0) & 0xFF);
1240 val
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1241 ecc_code
[22] = ((val
>> 24) & 0xFF);
1242 ecc_code
[23] = ((val
>> 16) & 0xFF);
1243 ecc_code
[24] = ((val
>> 8) & 0xFF);
1244 ecc_code
[25] = ((val
>> 0) & 0xFF);
1250 /* ECC scheme specific syndrome customizations */
1251 switch (info
->ecc_opt
) {
1252 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1253 /* Add constant polynomial to remainder, so that
1254 * ECC of blank pages results in 0x0 on reading back */
1255 for (j
= 0; j
< eccbytes
; j
++)
1256 ecc_calc
[j
] ^= bch4_polynomial
[j
];
1258 case OMAP_ECC_BCH4_CODE_HW
:
1259 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1260 ecc_calc
[eccbytes
- 1] = 0x0;
1262 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1263 /* Add constant polynomial to remainder, so that
1264 * ECC of blank pages results in 0x0 on reading back */
1265 for (j
= 0; j
< eccbytes
; j
++)
1266 ecc_calc
[j
] ^= bch8_polynomial
[j
];
1268 case OMAP_ECC_BCH8_CODE_HW
:
1269 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1270 ecc_calc
[eccbytes
- 1] = 0x0;
1272 case OMAP_ECC_BCH16_CODE_HW
:
1278 ecc_calc
+= eccbytes
;
1285 * erased_sector_bitflips - count bit flips
1286 * @data: data sector buffer
1288 * @info: omap_nand_info
1290 * Check the bit flips in erased page falls below correctable level.
1291 * If falls below, report the page as erased with correctable bit
1292 * flip, else report as uncorrectable page.
1294 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1295 struct omap_nand_info
*info
)
1297 int flip_bits
= 0, i
;
1299 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1300 flip_bits
+= hweight8(~data
[i
]);
1301 if (flip_bits
> info
->nand
.ecc
.strength
)
1305 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1306 flip_bits
+= hweight8(~oob
[i
]);
1307 if (flip_bits
> info
->nand
.ecc
.strength
)
1312 * Bit flips falls in correctable level.
1313 * Fill data area with 0xFF
1316 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1317 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1324 * omap_elm_correct_data - corrects page data area in case error reported
1325 * @mtd: MTD device structure
1327 * @read_ecc: ecc read from nand flash
1328 * @calc_ecc: ecc read from HW ECC registers
1330 * Calculated ecc vector reported as zero in case of non-error pages.
1331 * In case of non-zero ecc vector, first filter out erased-pages, and
1332 * then process data via ELM to detect bit-flips.
1334 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1335 u_char
*read_ecc
, u_char
*calc_ecc
)
1337 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1339 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1340 int eccsteps
= info
->nand
.ecc
.steps
;
1341 int i
, j
, stat
= 0;
1342 int eccflag
, actual_eccbytes
;
1343 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1344 u_char
*ecc_vec
= calc_ecc
;
1345 u_char
*spare_ecc
= read_ecc
;
1346 u_char
*erased_ecc_vec
;
1349 bool is_error_reported
= false;
1350 u32 bit_pos
, byte_pos
, error_max
, pos
;
1353 switch (info
->ecc_opt
) {
1354 case OMAP_ECC_BCH4_CODE_HW
:
1355 /* omit 7th ECC byte reserved for ROM code compatibility */
1356 actual_eccbytes
= ecc
->bytes
- 1;
1357 erased_ecc_vec
= bch4_vector
;
1359 case OMAP_ECC_BCH8_CODE_HW
:
1360 /* omit 14th ECC byte reserved for ROM code compatibility */
1361 actual_eccbytes
= ecc
->bytes
- 1;
1362 erased_ecc_vec
= bch8_vector
;
1364 case OMAP_ECC_BCH16_CODE_HW
:
1365 actual_eccbytes
= ecc
->bytes
;
1366 erased_ecc_vec
= bch16_vector
;
1369 dev_err(&info
->pdev
->dev
, "invalid driver configuration\n");
1373 /* Initialize elm error vector to zero */
1374 memset(err_vec
, 0, sizeof(err_vec
));
1376 for (i
= 0; i
< eccsteps
; i
++) {
1377 eccflag
= 0; /* initialize eccflag */
1380 * Check any error reported,
1381 * In case of error, non zero ecc reported.
1383 for (j
= 0; j
< actual_eccbytes
; j
++) {
1384 if (calc_ecc
[j
] != 0) {
1385 eccflag
= 1; /* non zero ecc, error present */
1391 if (memcmp(calc_ecc
, erased_ecc_vec
,
1392 actual_eccbytes
) == 0) {
1394 * calc_ecc[] matches pattern for ECC(all 0xff)
1395 * so this is definitely an erased-page
1398 buf
= &data
[info
->nand
.ecc
.size
* i
];
1400 * count number of 0-bits in read_buf.
1401 * This check can be removed once a similar
1402 * check is introduced in generic NAND driver
1404 bitflip_count
= erased_sector_bitflips(
1405 buf
, read_ecc
, info
);
1406 if (bitflip_count
) {
1408 * number of 0-bits within ECC limits
1409 * So this may be an erased-page
1411 stat
+= bitflip_count
;
1414 * Too many 0-bits. It may be a
1415 * - programmed-page, OR
1416 * - erased-page with many bit-flips
1417 * So this page requires check by ELM
1419 err_vec
[i
].error_reported
= true;
1420 is_error_reported
= true;
1425 /* Update the ecc vector */
1426 calc_ecc
+= ecc
->bytes
;
1427 read_ecc
+= ecc
->bytes
;
1430 /* Check if any error reported */
1431 if (!is_error_reported
)
1434 /* Decode BCH error using ELM module */
1435 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1438 for (i
= 0; i
< eccsteps
; i
++) {
1439 if (err_vec
[i
].error_uncorrectable
) {
1440 dev_err(&info
->pdev
->dev
,
1441 "uncorrectable bit-flips found\n");
1443 } else if (err_vec
[i
].error_reported
) {
1444 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1445 switch (info
->ecc_opt
) {
1446 case OMAP_ECC_BCH4_CODE_HW
:
1447 /* Add 4 bits to take care of padding */
1448 pos
= err_vec
[i
].error_loc
[j
] +
1451 case OMAP_ECC_BCH8_CODE_HW
:
1452 case OMAP_ECC_BCH16_CODE_HW
:
1453 pos
= err_vec
[i
].error_loc
[j
];
1458 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1459 /* Calculate bit position of error */
1462 /* Calculate byte position of error */
1463 byte_pos
= (error_max
- pos
- 1) / 8;
1465 if (pos
< error_max
) {
1466 if (byte_pos
< 512) {
1467 pr_debug("bitflip@dat[%d]=%x\n",
1468 byte_pos
, data
[byte_pos
]);
1469 data
[byte_pos
] ^= 1 << bit_pos
;
1471 pr_debug("bitflip@oob[%d]=%x\n",
1473 spare_ecc
[byte_pos
- 512]);
1474 spare_ecc
[byte_pos
- 512] ^=
1478 dev_err(&info
->pdev
->dev
,
1479 "invalid bit-flip @ %d:%d\n",
1486 /* Update number of correctable errors */
1487 stat
+= err_vec
[i
].error_count
;
1489 /* Update page data with sector size */
1491 spare_ecc
+= ecc
->bytes
;
1494 return (err
) ? err
: stat
;
1498 * omap_write_page_bch - BCH ecc based write page function for entire page
1499 * @mtd: mtd info structure
1500 * @chip: nand chip info structure
1502 * @oob_required: must write chip->oob_poi to OOB
1505 * Custom write page method evolved to support multi sector writing in one shot
1507 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1508 const uint8_t *buf
, int oob_required
, int page
)
1511 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1512 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1514 /* Enable GPMC ecc engine */
1515 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1518 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1520 /* Update ecc vector from GPMC result registers */
1521 chip
->ecc
.calculate(mtd
, buf
, &ecc_calc
[0]);
1523 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1524 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1526 /* Write ecc vector to OOB area */
1527 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1532 * omap_read_page_bch - BCH ecc based page read function for entire page
1533 * @mtd: mtd info structure
1534 * @chip: nand chip info structure
1535 * @buf: buffer to store read data
1536 * @oob_required: caller requires OOB data read to chip->oob_poi
1537 * @page: page number to read
1539 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1540 * used for error correction.
1541 * Custom method evolved to support ELM error correction & multi sector
1542 * reading. On reading page data area is read along with OOB data with
1543 * ecc engine enabled. ecc vector updated after read of OOB data.
1544 * For non error pages ecc vector reported as zero.
1546 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1547 uint8_t *buf
, int oob_required
, int page
)
1549 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1550 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1551 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1552 uint8_t *oob
= &chip
->oob_poi
[eccpos
[0]];
1553 uint32_t oob_pos
= mtd
->writesize
+ chip
->ecc
.layout
->eccpos
[0];
1555 unsigned int max_bitflips
= 0;
1557 /* Enable GPMC ecc engine */
1558 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1561 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1563 /* Read oob bytes */
1564 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, oob_pos
, -1);
1565 chip
->read_buf(mtd
, oob
, chip
->ecc
.total
);
1567 /* Calculate ecc bytes */
1568 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
1570 memcpy(ecc_code
, &chip
->oob_poi
[eccpos
[0]], chip
->ecc
.total
);
1572 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1575 mtd
->ecc_stats
.failed
++;
1577 mtd
->ecc_stats
.corrected
+= stat
;
1578 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1581 return max_bitflips
;
1585 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1586 * @omap_nand_info: NAND device structure containing platform data
1588 static bool is_elm_present(struct omap_nand_info
*info
,
1589 struct device_node
*elm_node
)
1591 struct platform_device
*pdev
;
1593 /* check whether elm-id is passed via DT */
1595 dev_err(&info
->pdev
->dev
, "ELM devicetree node not found\n");
1598 pdev
= of_find_device_by_node(elm_node
);
1599 /* check whether ELM device is registered */
1601 dev_err(&info
->pdev
->dev
, "ELM device not found\n");
1604 /* ELM module available, now configure it */
1605 info
->elm_dev
= &pdev
->dev
;
1609 static bool omap2_nand_ecc_check(struct omap_nand_info
*info
,
1610 struct omap_nand_platform_data
*pdata
)
1612 bool ecc_needs_bch
, ecc_needs_omap_bch
, ecc_needs_elm
;
1614 switch (info
->ecc_opt
) {
1615 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1616 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1617 ecc_needs_omap_bch
= false;
1618 ecc_needs_bch
= true;
1619 ecc_needs_elm
= false;
1621 case OMAP_ECC_BCH4_CODE_HW
:
1622 case OMAP_ECC_BCH8_CODE_HW
:
1623 case OMAP_ECC_BCH16_CODE_HW
:
1624 ecc_needs_omap_bch
= true;
1625 ecc_needs_bch
= false;
1626 ecc_needs_elm
= true;
1629 ecc_needs_omap_bch
= false;
1630 ecc_needs_bch
= false;
1631 ecc_needs_elm
= false;
1635 if (ecc_needs_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH
)) {
1636 dev_err(&info
->pdev
->dev
,
1637 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1640 if (ecc_needs_omap_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH
)) {
1641 dev_err(&info
->pdev
->dev
,
1642 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1645 if (ecc_needs_elm
&& !is_elm_present(info
, pdata
->elm_of_node
)) {
1646 dev_err(&info
->pdev
->dev
, "ELM not available\n");
1653 static int omap_nand_probe(struct platform_device
*pdev
)
1655 struct omap_nand_info
*info
;
1656 struct omap_nand_platform_data
*pdata
;
1657 struct mtd_info
*mtd
;
1658 struct nand_chip
*nand_chip
;
1659 struct nand_ecclayout
*ecclayout
;
1662 dma_cap_mask_t mask
;
1665 struct resource
*res
;
1666 struct mtd_part_parser_data ppdata
= {};
1668 pdata
= dev_get_platdata(&pdev
->dev
);
1669 if (pdata
== NULL
) {
1670 dev_err(&pdev
->dev
, "platform data missing\n");
1674 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
1679 platform_set_drvdata(pdev
, info
);
1682 info
->gpmc_cs
= pdata
->cs
;
1683 info
->reg
= pdata
->reg
;
1684 info
->of_node
= pdata
->of_node
;
1685 info
->ecc_opt
= pdata
->ecc_opt
;
1687 mtd
->priv
= &info
->nand
;
1688 mtd
->dev
.parent
= &pdev
->dev
;
1689 nand_chip
= &info
->nand
;
1690 nand_chip
->ecc
.priv
= NULL
;
1692 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1693 nand_chip
->IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
1694 if (IS_ERR(nand_chip
->IO_ADDR_R
))
1695 return PTR_ERR(nand_chip
->IO_ADDR_R
);
1697 info
->phys_base
= res
->start
;
1699 nand_chip
->controller
= &omap_gpmc_controller
;
1701 nand_chip
->IO_ADDR_W
= nand_chip
->IO_ADDR_R
;
1702 nand_chip
->cmd_ctrl
= omap_hwcontrol
;
1705 * If RDY/BSY line is connected to OMAP then use the omap ready
1706 * function and the generic nand_wait function which reads the status
1707 * register after monitoring the RDY/BSY line. Otherwise use a standard
1708 * chip delay which is slightly more than tR (AC Timing) of the NAND
1709 * device and read status register until you get a failure or success
1711 if (pdata
->dev_ready
) {
1712 nand_chip
->dev_ready
= omap_dev_ready
;
1713 nand_chip
->chip_delay
= 0;
1715 nand_chip
->waitfunc
= omap_wait
;
1716 nand_chip
->chip_delay
= 50;
1719 if (pdata
->flash_bbt
)
1720 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
| NAND_BBT_NO_OOB
;
1722 nand_chip
->options
|= NAND_SKIP_BBTSCAN
;
1724 /* scan NAND device connected to chip controller */
1725 nand_chip
->options
|= pdata
->devsize
& NAND_BUSWIDTH_16
;
1726 if (nand_scan_ident(mtd
, 1, NULL
)) {
1727 dev_err(&info
->pdev
->dev
, "scan failed, may be bus-width mismatch\n");
1732 /* re-populate low-level callbacks based on xfer modes */
1733 switch (pdata
->xfer_type
) {
1734 case NAND_OMAP_PREFETCH_POLLED
:
1735 nand_chip
->read_buf
= omap_read_buf_pref
;
1736 nand_chip
->write_buf
= omap_write_buf_pref
;
1739 case NAND_OMAP_POLLED
:
1740 /* Use nand_base defaults for {read,write}_buf */
1743 case NAND_OMAP_PREFETCH_DMA
:
1745 dma_cap_set(DMA_SLAVE
, mask
);
1746 sig
= OMAP24XX_DMA_GPMC
;
1747 info
->dma
= dma_request_channel(mask
, omap_dma_filter_fn
, &sig
);
1749 dev_err(&pdev
->dev
, "DMA engine request failed\n");
1753 struct dma_slave_config cfg
;
1755 memset(&cfg
, 0, sizeof(cfg
));
1756 cfg
.src_addr
= info
->phys_base
;
1757 cfg
.dst_addr
= info
->phys_base
;
1758 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1759 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1760 cfg
.src_maxburst
= 16;
1761 cfg
.dst_maxburst
= 16;
1762 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1764 dev_err(&pdev
->dev
, "DMA engine slave config failed: %d\n",
1768 nand_chip
->read_buf
= omap_read_buf_dma_pref
;
1769 nand_chip
->write_buf
= omap_write_buf_dma_pref
;
1773 case NAND_OMAP_PREFETCH_IRQ
:
1774 info
->gpmc_irq_fifo
= platform_get_irq(pdev
, 0);
1775 if (info
->gpmc_irq_fifo
<= 0) {
1776 dev_err(&pdev
->dev
, "error getting fifo irq\n");
1780 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_fifo
,
1781 omap_nand_irq
, IRQF_SHARED
,
1782 "gpmc-nand-fifo", info
);
1784 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1785 info
->gpmc_irq_fifo
, err
);
1786 info
->gpmc_irq_fifo
= 0;
1790 info
->gpmc_irq_count
= platform_get_irq(pdev
, 1);
1791 if (info
->gpmc_irq_count
<= 0) {
1792 dev_err(&pdev
->dev
, "error getting count irq\n");
1796 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_count
,
1797 omap_nand_irq
, IRQF_SHARED
,
1798 "gpmc-nand-count", info
);
1800 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1801 info
->gpmc_irq_count
, err
);
1802 info
->gpmc_irq_count
= 0;
1806 nand_chip
->read_buf
= omap_read_buf_irq_pref
;
1807 nand_chip
->write_buf
= omap_write_buf_irq_pref
;
1813 "xfer_type(%d) not supported!\n", pdata
->xfer_type
);
1818 if (!omap2_nand_ecc_check(info
, pdata
)) {
1823 /* populate MTD interface based on ECC scheme */
1824 ecclayout
= &info
->oobinfo
;
1825 switch (info
->ecc_opt
) {
1826 case OMAP_ECC_HAM1_CODE_SW
:
1827 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1830 case OMAP_ECC_HAM1_CODE_HW
:
1831 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1832 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1833 nand_chip
->ecc
.bytes
= 3;
1834 nand_chip
->ecc
.size
= 512;
1835 nand_chip
->ecc
.strength
= 1;
1836 nand_chip
->ecc
.calculate
= omap_calculate_ecc
;
1837 nand_chip
->ecc
.hwctl
= omap_enable_hwecc
;
1838 nand_chip
->ecc
.correct
= omap_correct_data
;
1839 /* define ECC layout */
1840 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1842 nand_chip
->ecc
.size
);
1843 if (nand_chip
->options
& NAND_BUSWIDTH_16
)
1844 oob_index
= BADBLOCK_MARKER_LENGTH
;
1847 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1848 ecclayout
->eccpos
[i
] = oob_index
;
1849 /* no reserved-marker in ecclayout for this ecc-scheme */
1850 ecclayout
->oobfree
->offset
=
1851 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1854 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1855 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1856 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1857 nand_chip
->ecc
.size
= 512;
1858 nand_chip
->ecc
.bytes
= 7;
1859 nand_chip
->ecc
.strength
= 4;
1860 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1861 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1862 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1863 /* define ECC layout */
1864 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1866 nand_chip
->ecc
.size
);
1867 oob_index
= BADBLOCK_MARKER_LENGTH
;
1868 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1869 ecclayout
->eccpos
[i
] = oob_index
;
1870 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1873 /* include reserved-marker in ecclayout->oobfree calculation */
1874 ecclayout
->oobfree
->offset
= 1 +
1875 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1876 /* software bch library is used for locating errors */
1877 nand_chip
->ecc
.priv
= nand_bch_init(mtd
,
1878 nand_chip
->ecc
.size
,
1879 nand_chip
->ecc
.bytes
,
1881 if (!nand_chip
->ecc
.priv
) {
1882 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
1888 case OMAP_ECC_BCH4_CODE_HW
:
1889 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1890 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1891 nand_chip
->ecc
.size
= 512;
1892 /* 14th bit is kept reserved for ROM-code compatibility */
1893 nand_chip
->ecc
.bytes
= 7 + 1;
1894 nand_chip
->ecc
.strength
= 4;
1895 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1896 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1897 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1898 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1899 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1900 /* define ECC layout */
1901 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1903 nand_chip
->ecc
.size
);
1904 oob_index
= BADBLOCK_MARKER_LENGTH
;
1905 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1906 ecclayout
->eccpos
[i
] = oob_index
;
1907 /* reserved marker already included in ecclayout->eccbytes */
1908 ecclayout
->oobfree
->offset
=
1909 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1911 err
= elm_config(info
->elm_dev
, BCH4_ECC
,
1912 info
->mtd
.writesize
/ nand_chip
->ecc
.size
,
1913 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
1918 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1919 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1920 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1921 nand_chip
->ecc
.size
= 512;
1922 nand_chip
->ecc
.bytes
= 13;
1923 nand_chip
->ecc
.strength
= 8;
1924 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1925 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1926 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1927 /* define ECC layout */
1928 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1930 nand_chip
->ecc
.size
);
1931 oob_index
= BADBLOCK_MARKER_LENGTH
;
1932 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1933 ecclayout
->eccpos
[i
] = oob_index
;
1934 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1937 /* include reserved-marker in ecclayout->oobfree calculation */
1938 ecclayout
->oobfree
->offset
= 1 +
1939 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1940 /* software bch library is used for locating errors */
1941 nand_chip
->ecc
.priv
= nand_bch_init(mtd
,
1942 nand_chip
->ecc
.size
,
1943 nand_chip
->ecc
.bytes
,
1945 if (!nand_chip
->ecc
.priv
) {
1946 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
1952 case OMAP_ECC_BCH8_CODE_HW
:
1953 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1954 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1955 nand_chip
->ecc
.size
= 512;
1956 /* 14th bit is kept reserved for ROM-code compatibility */
1957 nand_chip
->ecc
.bytes
= 13 + 1;
1958 nand_chip
->ecc
.strength
= 8;
1959 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1960 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1961 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1962 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1963 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1965 err
= elm_config(info
->elm_dev
, BCH8_ECC
,
1966 info
->mtd
.writesize
/ nand_chip
->ecc
.size
,
1967 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
1971 /* define ECC layout */
1972 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1974 nand_chip
->ecc
.size
);
1975 oob_index
= BADBLOCK_MARKER_LENGTH
;
1976 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1977 ecclayout
->eccpos
[i
] = oob_index
;
1978 /* reserved marker already included in ecclayout->eccbytes */
1979 ecclayout
->oobfree
->offset
=
1980 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1983 case OMAP_ECC_BCH16_CODE_HW
:
1984 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1985 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1986 nand_chip
->ecc
.size
= 512;
1987 nand_chip
->ecc
.bytes
= 26;
1988 nand_chip
->ecc
.strength
= 16;
1989 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1990 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1991 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1992 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1993 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1995 err
= elm_config(info
->elm_dev
, BCH16_ECC
,
1996 info
->mtd
.writesize
/ nand_chip
->ecc
.size
,
1997 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
2001 /* define ECC layout */
2002 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
2004 nand_chip
->ecc
.size
);
2005 oob_index
= BADBLOCK_MARKER_LENGTH
;
2006 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
2007 ecclayout
->eccpos
[i
] = oob_index
;
2008 /* reserved marker already included in ecclayout->eccbytes */
2009 ecclayout
->oobfree
->offset
=
2010 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
2013 dev_err(&info
->pdev
->dev
, "invalid or unsupported ECC scheme\n");
2018 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_SW
)
2021 /* all OOB bytes from oobfree->offset till end off OOB are free */
2022 ecclayout
->oobfree
->length
= mtd
->oobsize
- ecclayout
->oobfree
->offset
;
2023 /* check if NAND device's OOB is enough to store ECC signatures */
2024 if (mtd
->oobsize
< (ecclayout
->eccbytes
+ BADBLOCK_MARKER_LENGTH
)) {
2025 dev_err(&info
->pdev
->dev
,
2026 "not enough OOB bytes required = %d, available=%d\n",
2027 ecclayout
->eccbytes
, mtd
->oobsize
);
2031 nand_chip
->ecc
.layout
= ecclayout
;
2034 /* second phase scan */
2035 if (nand_scan_tail(mtd
)) {
2040 ppdata
.of_node
= pdata
->of_node
;
2041 mtd_device_parse_register(mtd
, NULL
, &ppdata
, pdata
->parts
,
2044 platform_set_drvdata(pdev
, mtd
);
2050 dma_release_channel(info
->dma
);
2051 if (nand_chip
->ecc
.priv
) {
2052 nand_bch_free(nand_chip
->ecc
.priv
);
2053 nand_chip
->ecc
.priv
= NULL
;
2058 static int omap_nand_remove(struct platform_device
*pdev
)
2060 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2061 struct nand_chip
*nand_chip
= mtd
->priv
;
2062 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
2064 if (nand_chip
->ecc
.priv
) {
2065 nand_bch_free(nand_chip
->ecc
.priv
);
2066 nand_chip
->ecc
.priv
= NULL
;
2069 dma_release_channel(info
->dma
);
2074 static struct platform_driver omap_nand_driver
= {
2075 .probe
= omap_nand_probe
,
2076 .remove
= omap_nand_remove
,
2078 .name
= DRIVER_NAME
,
2082 module_platform_driver(omap_nand_driver
);
2084 MODULE_ALIAS("platform:" DRIVER_NAME
);
2085 MODULE_LICENSE("GPL");
2086 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");