2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 * Intel PCIe NTB Linux driver
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
51 #include <linux/debugfs.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 #include <linux/pci.h>
57 #include <linux/random.h>
58 #include <linux/slab.h>
59 #include <linux/ntb.h>
61 #include "ntb_hw_intel.h"
63 #define NTB_NAME "ntb_hw_intel"
64 #define NTB_DESC "Intel(R) PCI-E Non-Transparent Bridge Driver"
67 MODULE_DESCRIPTION(NTB_DESC
);
68 MODULE_VERSION(NTB_VER
);
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Intel Corporation");
72 #define bar0_off(base, bar) ((base) + ((bar) << 2))
73 #define bar2_off(base, bar) bar0_off(base, (bar) - 2)
75 static const struct intel_ntb_reg atom_reg
;
76 static const struct intel_ntb_alt_reg atom_pri_reg
;
77 static const struct intel_ntb_alt_reg atom_sec_reg
;
78 static const struct intel_ntb_alt_reg atom_b2b_reg
;
79 static const struct intel_ntb_xlat_reg atom_pri_xlat
;
80 static const struct intel_ntb_xlat_reg atom_sec_xlat
;
81 static const struct intel_ntb_reg xeon_reg
;
82 static const struct intel_ntb_alt_reg xeon_pri_reg
;
83 static const struct intel_ntb_alt_reg xeon_sec_reg
;
84 static const struct intel_ntb_alt_reg xeon_b2b_reg
;
85 static const struct intel_ntb_xlat_reg xeon_pri_xlat
;
86 static const struct intel_ntb_xlat_reg xeon_sec_xlat
;
87 static struct intel_b2b_addr xeon_b2b_usd_addr
;
88 static struct intel_b2b_addr xeon_b2b_dsd_addr
;
89 static const struct ntb_dev_ops intel_ntb_ops
;
91 static const struct file_operations intel_ntb_debugfs_info
;
92 static struct dentry
*debugfs_dir
;
94 static int b2b_mw_idx
= -1;
95 module_param(b2b_mw_idx
, int, 0644);
96 MODULE_PARM_DESC(b2b_mw_idx
, "Use this mw idx to access the peer ntb. A "
97 "value of zero or positive starts from first mw idx, and a "
98 "negative value starts from last mw idx. Both sides MUST "
99 "set the same value here!");
101 static unsigned int b2b_mw_share
;
102 module_param(b2b_mw_share
, uint
, 0644);
103 MODULE_PARM_DESC(b2b_mw_share
, "If the b2b mw is large enough, configure the "
104 "ntb so that the peer ntb only occupies the first half of "
105 "the mw, so the second half can still be used as a mw. Both "
106 "sides MUST set the same value here!");
108 module_param_named(xeon_b2b_usd_bar2_addr64
,
109 xeon_b2b_usd_addr
.bar2_addr64
, ullong
, 0644);
110 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64
,
111 "XEON B2B USD BAR 2 64-bit address");
113 module_param_named(xeon_b2b_usd_bar4_addr64
,
114 xeon_b2b_usd_addr
.bar4_addr64
, ullong
, 0644);
115 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64
,
116 "XEON B2B USD BAR 4 64-bit address");
118 module_param_named(xeon_b2b_usd_bar4_addr32
,
119 xeon_b2b_usd_addr
.bar4_addr32
, ullong
, 0644);
120 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64
,
121 "XEON B2B USD split-BAR 4 32-bit address");
123 module_param_named(xeon_b2b_usd_bar5_addr32
,
124 xeon_b2b_usd_addr
.bar5_addr32
, ullong
, 0644);
125 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64
,
126 "XEON B2B USD split-BAR 5 32-bit address");
128 module_param_named(xeon_b2b_dsd_bar2_addr64
,
129 xeon_b2b_dsd_addr
.bar2_addr64
, ullong
, 0644);
130 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64
,
131 "XEON B2B DSD BAR 2 64-bit address");
133 module_param_named(xeon_b2b_dsd_bar4_addr64
,
134 xeon_b2b_dsd_addr
.bar4_addr64
, ullong
, 0644);
135 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64
,
136 "XEON B2B DSD BAR 4 64-bit address");
138 module_param_named(xeon_b2b_dsd_bar4_addr32
,
139 xeon_b2b_dsd_addr
.bar4_addr32
, ullong
, 0644);
140 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64
,
141 "XEON B2B DSD split-BAR 4 32-bit address");
143 module_param_named(xeon_b2b_dsd_bar5_addr32
,
144 xeon_b2b_dsd_addr
.bar5_addr32
, ullong
, 0644);
145 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64
,
146 "XEON B2B DSD split-BAR 5 32-bit address");
150 #define ioread64 readq
152 #define ioread64 _ioread64
153 static inline u64
_ioread64(void __iomem
*mmio
)
157 low
= ioread32(mmio
);
158 high
= ioread32(mmio
+ sizeof(u32
));
159 return low
| (high
<< 32);
166 #define iowrite64 writeq
168 #define iowrite64 _iowrite64
169 static inline void _iowrite64(u64 val
, void __iomem
*mmio
)
171 iowrite32(val
, mmio
);
172 iowrite32(val
>> 32, mmio
+ sizeof(u32
));
177 static inline int pdev_is_atom(struct pci_dev
*pdev
)
179 switch (pdev
->device
) {
180 case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD
:
186 static inline int pdev_is_xeon(struct pci_dev
*pdev
)
188 switch (pdev
->device
) {
189 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF
:
190 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB
:
191 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
192 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
193 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX
:
194 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF
:
195 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB
:
196 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
197 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
198 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX
:
199 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
:
200 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
:
201 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
202 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
203 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
:
209 static inline void ndev_reset_unsafe_flags(struct intel_ntb_dev
*ndev
)
211 ndev
->unsafe_flags
= 0;
212 ndev
->unsafe_flags_ignore
= 0;
214 /* Only B2B has a workaround to avoid SDOORBELL */
215 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
)
216 if (!ntb_topo_is_b2b(ndev
->ntb
.topo
))
217 ndev
->unsafe_flags
|= NTB_UNSAFE_DB
;
219 /* No low level workaround to avoid SB01BASE */
220 if (ndev
->hwerr_flags
& NTB_HWERR_SB01BASE_LOCKUP
) {
221 ndev
->unsafe_flags
|= NTB_UNSAFE_DB
;
222 ndev
->unsafe_flags
|= NTB_UNSAFE_SPAD
;
226 static inline int ndev_is_unsafe(struct intel_ntb_dev
*ndev
,
229 return !!(flag
& ndev
->unsafe_flags
& ~ndev
->unsafe_flags_ignore
);
232 static inline int ndev_ignore_unsafe(struct intel_ntb_dev
*ndev
,
235 flag
&= ndev
->unsafe_flags
;
236 ndev
->unsafe_flags_ignore
|= flag
;
241 static int ndev_mw_to_bar(struct intel_ntb_dev
*ndev
, int idx
)
243 if (idx
< 0 || idx
>= ndev
->mw_count
)
245 return ndev
->reg
->mw_bar
[idx
];
248 static inline int ndev_db_addr(struct intel_ntb_dev
*ndev
,
249 phys_addr_t
*db_addr
, resource_size_t
*db_size
,
250 phys_addr_t reg_addr
, unsigned long reg
)
252 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
253 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
256 *db_addr
= reg_addr
+ reg
;
257 dev_dbg(ndev_dev(ndev
), "Peer db addr %llx\n", *db_addr
);
261 *db_size
= ndev
->reg
->db_size
;
262 dev_dbg(ndev_dev(ndev
), "Peer db size %llx\n", *db_size
);
268 static inline u64
ndev_db_read(struct intel_ntb_dev
*ndev
,
271 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
272 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
274 return ndev
->reg
->db_ioread(mmio
);
277 static inline int ndev_db_write(struct intel_ntb_dev
*ndev
, u64 db_bits
,
280 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
281 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
283 if (db_bits
& ~ndev
->db_valid_mask
)
286 ndev
->reg
->db_iowrite(db_bits
, mmio
);
291 static inline int ndev_db_set_mask(struct intel_ntb_dev
*ndev
, u64 db_bits
,
294 unsigned long irqflags
;
296 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
297 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
299 if (db_bits
& ~ndev
->db_valid_mask
)
302 spin_lock_irqsave(&ndev
->db_mask_lock
, irqflags
);
304 ndev
->db_mask
|= db_bits
;
305 ndev
->reg
->db_iowrite(ndev
->db_mask
, mmio
);
307 spin_unlock_irqrestore(&ndev
->db_mask_lock
, irqflags
);
312 static inline int ndev_db_clear_mask(struct intel_ntb_dev
*ndev
, u64 db_bits
,
315 unsigned long irqflags
;
317 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
318 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
320 if (db_bits
& ~ndev
->db_valid_mask
)
323 spin_lock_irqsave(&ndev
->db_mask_lock
, irqflags
);
325 ndev
->db_mask
&= ~db_bits
;
326 ndev
->reg
->db_iowrite(ndev
->db_mask
, mmio
);
328 spin_unlock_irqrestore(&ndev
->db_mask_lock
, irqflags
);
333 static inline int ndev_vec_mask(struct intel_ntb_dev
*ndev
, int db_vector
)
337 shift
= ndev
->db_vec_shift
;
338 mask
= BIT_ULL(shift
) - 1;
340 return mask
<< (shift
* db_vector
);
343 static inline int ndev_spad_addr(struct intel_ntb_dev
*ndev
, int idx
,
344 phys_addr_t
*spad_addr
, phys_addr_t reg_addr
,
347 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_SPAD
))
348 pr_warn_once("%s: NTB unsafe scratchpad access", __func__
);
350 if (idx
< 0 || idx
>= ndev
->spad_count
)
354 *spad_addr
= reg_addr
+ reg
+ (idx
<< 2);
355 dev_dbg(ndev_dev(ndev
), "Peer spad addr %llx\n", *spad_addr
);
361 static inline u32
ndev_spad_read(struct intel_ntb_dev
*ndev
, int idx
,
364 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_SPAD
))
365 pr_warn_once("%s: NTB unsafe scratchpad access", __func__
);
367 if (idx
< 0 || idx
>= ndev
->spad_count
)
370 return ioread32(mmio
+ (idx
<< 2));
373 static inline int ndev_spad_write(struct intel_ntb_dev
*ndev
, int idx
, u32 val
,
376 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_SPAD
))
377 pr_warn_once("%s: NTB unsafe scratchpad access", __func__
);
379 if (idx
< 0 || idx
>= ndev
->spad_count
)
382 iowrite32(val
, mmio
+ (idx
<< 2));
387 static irqreturn_t
ndev_interrupt(struct intel_ntb_dev
*ndev
, int vec
)
391 vec_mask
= ndev_vec_mask(ndev
, vec
);
393 dev_dbg(ndev_dev(ndev
), "vec %d vec_mask %llx\n", vec
, vec_mask
);
395 ndev
->last_ts
= jiffies
;
397 if (vec_mask
& ndev
->db_link_mask
) {
398 if (ndev
->reg
->poll_link(ndev
))
399 ntb_link_event(&ndev
->ntb
);
402 if (vec_mask
& ndev
->db_valid_mask
)
403 ntb_db_event(&ndev
->ntb
, vec
);
408 static irqreturn_t
ndev_vec_isr(int irq
, void *dev
)
410 struct intel_ntb_vec
*nvec
= dev
;
412 return ndev_interrupt(nvec
->ndev
, nvec
->num
);
415 static irqreturn_t
ndev_irq_isr(int irq
, void *dev
)
417 struct intel_ntb_dev
*ndev
= dev
;
419 return ndev_interrupt(ndev
, irq
- ndev_pdev(ndev
)->irq
);
422 static int ndev_init_isr(struct intel_ntb_dev
*ndev
,
423 int msix_min
, int msix_max
,
424 int msix_shift
, int total_shift
)
426 struct pci_dev
*pdev
;
427 int rc
, i
, msix_count
, node
;
429 pdev
= ndev_pdev(ndev
);
431 node
= dev_to_node(&pdev
->dev
);
433 /* Mask all doorbell interrupts */
434 ndev
->db_mask
= ndev
->db_valid_mask
;
435 ndev
->reg
->db_iowrite(ndev
->db_mask
,
437 ndev
->self_reg
->db_mask
);
439 /* Try to set up msix irq */
441 ndev
->vec
= kzalloc_node(msix_max
* sizeof(*ndev
->vec
),
444 goto err_msix_vec_alloc
;
446 ndev
->msix
= kzalloc_node(msix_max
* sizeof(*ndev
->msix
),
451 for (i
= 0; i
< msix_max
; ++i
)
452 ndev
->msix
[i
].entry
= i
;
454 msix_count
= pci_enable_msix_range(pdev
, ndev
->msix
,
457 goto err_msix_enable
;
459 for (i
= 0; i
< msix_count
; ++i
) {
460 ndev
->vec
[i
].ndev
= ndev
;
461 ndev
->vec
[i
].num
= i
;
462 rc
= request_irq(ndev
->msix
[i
].vector
, ndev_vec_isr
, 0,
463 "ndev_vec_isr", &ndev
->vec
[i
]);
465 goto err_msix_request
;
468 dev_dbg(ndev_dev(ndev
), "Using msix interrupts\n");
469 ndev
->db_vec_count
= msix_count
;
470 ndev
->db_vec_shift
= msix_shift
;
475 free_irq(ndev
->msix
[i
].vector
, ndev
);
476 pci_disable_msix(pdev
);
485 /* Try to set up msi irq */
487 rc
= pci_enable_msi(pdev
);
491 rc
= request_irq(pdev
->irq
, ndev_irq_isr
, 0,
492 "ndev_irq_isr", ndev
);
494 goto err_msi_request
;
496 dev_dbg(ndev_dev(ndev
), "Using msi interrupts\n");
497 ndev
->db_vec_count
= 1;
498 ndev
->db_vec_shift
= total_shift
;
502 pci_disable_msi(pdev
);
505 /* Try to set up intx irq */
509 rc
= request_irq(pdev
->irq
, ndev_irq_isr
, IRQF_SHARED
,
510 "ndev_irq_isr", ndev
);
512 goto err_intx_request
;
514 dev_dbg(ndev_dev(ndev
), "Using intx interrupts\n");
515 ndev
->db_vec_count
= 1;
516 ndev
->db_vec_shift
= total_shift
;
523 static void ndev_deinit_isr(struct intel_ntb_dev
*ndev
)
525 struct pci_dev
*pdev
;
528 pdev
= ndev_pdev(ndev
);
530 /* Mask all doorbell interrupts */
531 ndev
->db_mask
= ndev
->db_valid_mask
;
532 ndev
->reg
->db_iowrite(ndev
->db_mask
,
534 ndev
->self_reg
->db_mask
);
537 i
= ndev
->db_vec_count
;
539 free_irq(ndev
->msix
[i
].vector
, &ndev
->vec
[i
]);
540 pci_disable_msix(pdev
);
544 free_irq(pdev
->irq
, ndev
);
545 if (pci_dev_msi_enabled(pdev
))
546 pci_disable_msi(pdev
);
550 static ssize_t
ndev_debugfs_read(struct file
*filp
, char __user
*ubuf
,
551 size_t count
, loff_t
*offp
)
553 struct intel_ntb_dev
*ndev
;
558 union { u64 v64
; u32 v32
; u16 v16
; } u
;
560 ndev
= filp
->private_data
;
561 mmio
= ndev
->self_mmio
;
563 buf_size
= min(count
, 0x800ul
);
565 buf
= kmalloc(buf_size
, GFP_KERNEL
);
571 off
+= scnprintf(buf
+ off
, buf_size
- off
,
572 "NTB Device Information:\n");
574 off
+= scnprintf(buf
+ off
, buf_size
- off
,
575 "Connection Topology -\t%s\n",
576 ntb_topo_string(ndev
->ntb
.topo
));
578 if (ndev
->b2b_idx
!= UINT_MAX
) {
579 off
+= scnprintf(buf
+ off
, buf_size
- off
,
580 "B2B MW Idx -\t\t%u\n", ndev
->b2b_idx
);
581 off
+= scnprintf(buf
+ off
, buf_size
- off
,
582 "B2B Offset -\t\t%#lx\n", ndev
->b2b_off
);
585 off
+= scnprintf(buf
+ off
, buf_size
- off
,
586 "BAR4 Split -\t\t%s\n",
587 ndev
->bar4_split
? "yes" : "no");
589 off
+= scnprintf(buf
+ off
, buf_size
- off
,
590 "NTB CTL -\t\t%#06x\n", ndev
->ntb_ctl
);
591 off
+= scnprintf(buf
+ off
, buf_size
- off
,
592 "LNK STA -\t\t%#06x\n", ndev
->lnk_sta
);
594 if (!ndev
->reg
->link_is_up(ndev
)) {
595 off
+= scnprintf(buf
+ off
, buf_size
- off
,
596 "Link Status -\t\tDown\n");
598 off
+= scnprintf(buf
+ off
, buf_size
- off
,
599 "Link Status -\t\tUp\n");
600 off
+= scnprintf(buf
+ off
, buf_size
- off
,
601 "Link Speed -\t\tPCI-E Gen %u\n",
602 NTB_LNK_STA_SPEED(ndev
->lnk_sta
));
603 off
+= scnprintf(buf
+ off
, buf_size
- off
,
604 "Link Width -\t\tx%u\n",
605 NTB_LNK_STA_WIDTH(ndev
->lnk_sta
));
608 off
+= scnprintf(buf
+ off
, buf_size
- off
,
609 "Memory Window Count -\t%u\n", ndev
->mw_count
);
610 off
+= scnprintf(buf
+ off
, buf_size
- off
,
611 "Scratchpad Count -\t%u\n", ndev
->spad_count
);
612 off
+= scnprintf(buf
+ off
, buf_size
- off
,
613 "Doorbell Count -\t%u\n", ndev
->db_count
);
614 off
+= scnprintf(buf
+ off
, buf_size
- off
,
615 "Doorbell Vector Count -\t%u\n", ndev
->db_vec_count
);
616 off
+= scnprintf(buf
+ off
, buf_size
- off
,
617 "Doorbell Vector Shift -\t%u\n", ndev
->db_vec_shift
);
619 off
+= scnprintf(buf
+ off
, buf_size
- off
,
620 "Doorbell Valid Mask -\t%#llx\n", ndev
->db_valid_mask
);
621 off
+= scnprintf(buf
+ off
, buf_size
- off
,
622 "Doorbell Link Mask -\t%#llx\n", ndev
->db_link_mask
);
623 off
+= scnprintf(buf
+ off
, buf_size
- off
,
624 "Doorbell Mask Cached -\t%#llx\n", ndev
->db_mask
);
626 u
.v64
= ndev_db_read(ndev
, mmio
+ ndev
->self_reg
->db_mask
);
627 off
+= scnprintf(buf
+ off
, buf_size
- off
,
628 "Doorbell Mask -\t\t%#llx\n", u
.v64
);
630 u
.v64
= ndev_db_read(ndev
, mmio
+ ndev
->self_reg
->db_bell
);
631 off
+= scnprintf(buf
+ off
, buf_size
- off
,
632 "Doorbell Bell -\t\t%#llx\n", u
.v64
);
634 off
+= scnprintf(buf
+ off
, buf_size
- off
,
635 "\nNTB Incoming XLAT:\n");
637 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 2));
638 off
+= scnprintf(buf
+ off
, buf_size
- off
,
639 "XLAT23 -\t\t%#018llx\n", u
.v64
);
641 if (ndev
->bar4_split
) {
642 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 4));
643 off
+= scnprintf(buf
+ off
, buf_size
- off
,
644 "XLAT4 -\t\t\t%#06x\n", u
.v32
);
646 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 5));
647 off
+= scnprintf(buf
+ off
, buf_size
- off
,
648 "XLAT5 -\t\t\t%#06x\n", u
.v32
);
650 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 4));
651 off
+= scnprintf(buf
+ off
, buf_size
- off
,
652 "XLAT45 -\t\t%#018llx\n", u
.v64
);
655 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 2));
656 off
+= scnprintf(buf
+ off
, buf_size
- off
,
657 "LMT23 -\t\t\t%#018llx\n", u
.v64
);
659 if (ndev
->bar4_split
) {
660 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 4));
661 off
+= scnprintf(buf
+ off
, buf_size
- off
,
662 "LMT4 -\t\t\t%#06x\n", u
.v32
);
663 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 5));
664 off
+= scnprintf(buf
+ off
, buf_size
- off
,
665 "LMT5 -\t\t\t%#06x\n", u
.v32
);
667 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 4));
668 off
+= scnprintf(buf
+ off
, buf_size
- off
,
669 "LMT45 -\t\t\t%#018llx\n", u
.v64
);
672 if (pdev_is_xeon(ndev
->ntb
.pdev
)) {
673 if (ntb_topo_is_b2b(ndev
->ntb
.topo
)) {
674 off
+= scnprintf(buf
+ off
, buf_size
- off
,
675 "\nNTB Outgoing B2B XLAT:\n");
677 u
.v64
= ioread64(mmio
+ XEON_PBAR23XLAT_OFFSET
);
678 off
+= scnprintf(buf
+ off
, buf_size
- off
,
679 "B2B XLAT23 -\t\t%#018llx\n", u
.v64
);
681 if (ndev
->bar4_split
) {
682 u
.v32
= ioread32(mmio
+ XEON_PBAR4XLAT_OFFSET
);
683 off
+= scnprintf(buf
+ off
, buf_size
- off
,
684 "B2B XLAT4 -\t\t%#06x\n",
686 u
.v32
= ioread32(mmio
+ XEON_PBAR5XLAT_OFFSET
);
687 off
+= scnprintf(buf
+ off
, buf_size
- off
,
688 "B2B XLAT5 -\t\t%#06x\n",
691 u
.v64
= ioread64(mmio
+ XEON_PBAR45XLAT_OFFSET
);
692 off
+= scnprintf(buf
+ off
, buf_size
- off
,
693 "B2B XLAT45 -\t\t%#018llx\n",
697 u
.v64
= ioread64(mmio
+ XEON_PBAR23LMT_OFFSET
);
698 off
+= scnprintf(buf
+ off
, buf_size
- off
,
699 "B2B LMT23 -\t\t%#018llx\n", u
.v64
);
701 if (ndev
->bar4_split
) {
702 u
.v32
= ioread32(mmio
+ XEON_PBAR4LMT_OFFSET
);
703 off
+= scnprintf(buf
+ off
, buf_size
- off
,
704 "B2B LMT4 -\t\t%#06x\n",
706 u
.v32
= ioread32(mmio
+ XEON_PBAR5LMT_OFFSET
);
707 off
+= scnprintf(buf
+ off
, buf_size
- off
,
708 "B2B LMT5 -\t\t%#06x\n",
711 u
.v64
= ioread64(mmio
+ XEON_PBAR45LMT_OFFSET
);
712 off
+= scnprintf(buf
+ off
, buf_size
- off
,
713 "B2B LMT45 -\t\t%#018llx\n",
717 off
+= scnprintf(buf
+ off
, buf_size
- off
,
718 "\nNTB Secondary BAR:\n");
720 u
.v64
= ioread64(mmio
+ XEON_SBAR0BASE_OFFSET
);
721 off
+= scnprintf(buf
+ off
, buf_size
- off
,
722 "SBAR01 -\t\t%#018llx\n", u
.v64
);
724 u
.v64
= ioread64(mmio
+ XEON_SBAR23BASE_OFFSET
);
725 off
+= scnprintf(buf
+ off
, buf_size
- off
,
726 "SBAR23 -\t\t%#018llx\n", u
.v64
);
728 if (ndev
->bar4_split
) {
729 u
.v32
= ioread32(mmio
+ XEON_SBAR4BASE_OFFSET
);
730 off
+= scnprintf(buf
+ off
, buf_size
- off
,
731 "SBAR4 -\t\t\t%#06x\n", u
.v32
);
732 u
.v32
= ioread32(mmio
+ XEON_SBAR5BASE_OFFSET
);
733 off
+= scnprintf(buf
+ off
, buf_size
- off
,
734 "SBAR5 -\t\t\t%#06x\n", u
.v32
);
736 u
.v64
= ioread64(mmio
+ XEON_SBAR45BASE_OFFSET
);
737 off
+= scnprintf(buf
+ off
, buf_size
- off
,
738 "SBAR45 -\t\t%#018llx\n",
743 off
+= scnprintf(buf
+ off
, buf_size
- off
,
744 "\nXEON NTB Statistics:\n");
746 u
.v16
= ioread16(mmio
+ XEON_USMEMMISS_OFFSET
);
747 off
+= scnprintf(buf
+ off
, buf_size
- off
,
748 "Upstream Memory Miss -\t%u\n", u
.v16
);
750 off
+= scnprintf(buf
+ off
, buf_size
- off
,
751 "\nXEON NTB Hardware Errors:\n");
753 if (!pci_read_config_word(ndev
->ntb
.pdev
,
754 XEON_DEVSTS_OFFSET
, &u
.v16
))
755 off
+= scnprintf(buf
+ off
, buf_size
- off
,
756 "DEVSTS -\t\t%#06x\n", u
.v16
);
758 if (!pci_read_config_word(ndev
->ntb
.pdev
,
759 XEON_LINK_STATUS_OFFSET
, &u
.v16
))
760 off
+= scnprintf(buf
+ off
, buf_size
- off
,
761 "LNKSTS -\t\t%#06x\n", u
.v16
);
763 if (!pci_read_config_dword(ndev
->ntb
.pdev
,
764 XEON_UNCERRSTS_OFFSET
, &u
.v32
))
765 off
+= scnprintf(buf
+ off
, buf_size
- off
,
766 "UNCERRSTS -\t\t%#06x\n", u
.v32
);
768 if (!pci_read_config_dword(ndev
->ntb
.pdev
,
769 XEON_CORERRSTS_OFFSET
, &u
.v32
))
770 off
+= scnprintf(buf
+ off
, buf_size
- off
,
771 "CORERRSTS -\t\t%#06x\n", u
.v32
);
774 ret
= simple_read_from_buffer(ubuf
, count
, offp
, buf
, off
);
779 static void ndev_init_debugfs(struct intel_ntb_dev
*ndev
)
782 ndev
->debugfs_dir
= NULL
;
783 ndev
->debugfs_info
= NULL
;
786 debugfs_create_dir(ndev_name(ndev
), debugfs_dir
);
787 if (!ndev
->debugfs_dir
)
788 ndev
->debugfs_info
= NULL
;
791 debugfs_create_file("info", S_IRUSR
,
792 ndev
->debugfs_dir
, ndev
,
793 &intel_ntb_debugfs_info
);
797 static void ndev_deinit_debugfs(struct intel_ntb_dev
*ndev
)
799 debugfs_remove_recursive(ndev
->debugfs_dir
);
802 static int intel_ntb_mw_count(struct ntb_dev
*ntb
)
804 return ntb_ndev(ntb
)->mw_count
;
807 static int intel_ntb_mw_get_range(struct ntb_dev
*ntb
, int idx
,
809 resource_size_t
*size
,
810 resource_size_t
*align
,
811 resource_size_t
*align_size
)
813 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
816 if (idx
>= ndev
->b2b_idx
&& !ndev
->b2b_off
)
819 bar
= ndev_mw_to_bar(ndev
, idx
);
824 *base
= pci_resource_start(ndev
->ntb
.pdev
, bar
) +
825 (idx
== ndev
->b2b_idx
? ndev
->b2b_off
: 0);
828 *size
= pci_resource_len(ndev
->ntb
.pdev
, bar
) -
829 (idx
== ndev
->b2b_idx
? ndev
->b2b_off
: 0);
832 *align
= pci_resource_len(ndev
->ntb
.pdev
, bar
);
840 static int intel_ntb_mw_set_trans(struct ntb_dev
*ntb
, int idx
,
841 dma_addr_t addr
, resource_size_t size
)
843 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
844 unsigned long base_reg
, xlat_reg
, limit_reg
;
845 resource_size_t bar_size
, mw_size
;
847 u64 base
, limit
, reg_val
;
850 if (idx
>= ndev
->b2b_idx
&& !ndev
->b2b_off
)
853 bar
= ndev_mw_to_bar(ndev
, idx
);
857 bar_size
= pci_resource_len(ndev
->ntb
.pdev
, bar
);
859 if (idx
== ndev
->b2b_idx
)
860 mw_size
= bar_size
- ndev
->b2b_off
;
864 /* hardware requires that addr is aligned to bar size */
865 if (addr
& (bar_size
- 1))
868 /* make sure the range fits in the usable mw size */
872 mmio
= ndev
->self_mmio
;
873 base_reg
= bar0_off(ndev
->xlat_reg
->bar0_base
, bar
);
874 xlat_reg
= bar2_off(ndev
->xlat_reg
->bar2_xlat
, bar
);
875 limit_reg
= bar2_off(ndev
->xlat_reg
->bar2_limit
, bar
);
877 if (bar
< 4 || !ndev
->bar4_split
) {
878 base
= ioread64(mmio
+ base_reg
);
880 /* Set the limit if supported, if size is not mw_size */
881 if (limit_reg
&& size
!= mw_size
)
886 /* set and verify setting the translation address */
887 iowrite64(addr
, mmio
+ xlat_reg
);
888 reg_val
= ioread64(mmio
+ xlat_reg
);
889 if (reg_val
!= addr
) {
890 iowrite64(0, mmio
+ xlat_reg
);
894 /* set and verify setting the limit */
895 iowrite64(limit
, mmio
+ limit_reg
);
896 reg_val
= ioread64(mmio
+ limit_reg
);
897 if (reg_val
!= limit
) {
898 iowrite64(base
, mmio
+ limit_reg
);
899 iowrite64(0, mmio
+ xlat_reg
);
903 /* split bar addr range must all be 32 bit */
904 if (addr
& (~0ull << 32))
906 if ((addr
+ size
) & (~0ull << 32))
909 base
= ioread32(mmio
+ base_reg
);
911 /* Set the limit if supported, if size is not mw_size */
912 if (limit_reg
&& size
!= mw_size
)
917 /* set and verify setting the translation address */
918 iowrite32(addr
, mmio
+ xlat_reg
);
919 reg_val
= ioread32(mmio
+ xlat_reg
);
920 if (reg_val
!= addr
) {
921 iowrite32(0, mmio
+ xlat_reg
);
925 /* set and verify setting the limit */
926 iowrite32(limit
, mmio
+ limit_reg
);
927 reg_val
= ioread32(mmio
+ limit_reg
);
928 if (reg_val
!= limit
) {
929 iowrite32(base
, mmio
+ limit_reg
);
930 iowrite32(0, mmio
+ xlat_reg
);
938 static int intel_ntb_link_is_up(struct ntb_dev
*ntb
,
939 enum ntb_speed
*speed
,
940 enum ntb_width
*width
)
942 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
944 if (ndev
->reg
->link_is_up(ndev
)) {
946 *speed
= NTB_LNK_STA_SPEED(ndev
->lnk_sta
);
948 *width
= NTB_LNK_STA_WIDTH(ndev
->lnk_sta
);
951 /* TODO MAYBE: is it possible to observe the link speed and
952 * width while link is training? */
954 *speed
= NTB_SPEED_NONE
;
956 *width
= NTB_WIDTH_NONE
;
961 static int intel_ntb_link_enable(struct ntb_dev
*ntb
,
962 enum ntb_speed max_speed
,
963 enum ntb_width max_width
)
965 struct intel_ntb_dev
*ndev
;
968 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
970 if (ndev
->ntb
.topo
== NTB_TOPO_SEC
)
973 dev_dbg(ndev_dev(ndev
),
974 "Enabling link with max_speed %d max_width %d\n",
975 max_speed
, max_width
);
976 if (max_speed
!= NTB_SPEED_AUTO
)
977 dev_dbg(ndev_dev(ndev
), "ignoring max_speed %d\n", max_speed
);
978 if (max_width
!= NTB_WIDTH_AUTO
)
979 dev_dbg(ndev_dev(ndev
), "ignoring max_width %d\n", max_width
);
981 ntb_ctl
= ioread32(ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
982 ntb_ctl
&= ~(NTB_CTL_DISABLE
| NTB_CTL_CFG_LOCK
);
983 ntb_ctl
|= NTB_CTL_P2S_BAR2_SNOOP
| NTB_CTL_S2P_BAR2_SNOOP
;
984 ntb_ctl
|= NTB_CTL_P2S_BAR4_SNOOP
| NTB_CTL_S2P_BAR4_SNOOP
;
985 if (ndev
->bar4_split
)
986 ntb_ctl
|= NTB_CTL_P2S_BAR5_SNOOP
| NTB_CTL_S2P_BAR5_SNOOP
;
987 iowrite32(ntb_ctl
, ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
992 static int intel_ntb_link_disable(struct ntb_dev
*ntb
)
994 struct intel_ntb_dev
*ndev
;
997 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
999 if (ndev
->ntb
.topo
== NTB_TOPO_SEC
)
1002 dev_dbg(ndev_dev(ndev
), "Disabling link\n");
1004 /* Bring NTB link down */
1005 ntb_cntl
= ioread32(ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1006 ntb_cntl
&= ~(NTB_CTL_P2S_BAR2_SNOOP
| NTB_CTL_S2P_BAR2_SNOOP
);
1007 ntb_cntl
&= ~(NTB_CTL_P2S_BAR4_SNOOP
| NTB_CTL_S2P_BAR4_SNOOP
);
1008 if (ndev
->bar4_split
)
1009 ntb_cntl
&= ~(NTB_CTL_P2S_BAR5_SNOOP
| NTB_CTL_S2P_BAR5_SNOOP
);
1010 ntb_cntl
|= NTB_CTL_DISABLE
| NTB_CTL_CFG_LOCK
;
1011 iowrite32(ntb_cntl
, ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1016 static int intel_ntb_db_is_unsafe(struct ntb_dev
*ntb
)
1018 return ndev_ignore_unsafe(ntb_ndev(ntb
), NTB_UNSAFE_DB
);
1021 static u64
intel_ntb_db_valid_mask(struct ntb_dev
*ntb
)
1023 return ntb_ndev(ntb
)->db_valid_mask
;
1026 static int intel_ntb_db_vector_count(struct ntb_dev
*ntb
)
1028 struct intel_ntb_dev
*ndev
;
1030 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
1032 return ndev
->db_vec_count
;
1035 static u64
intel_ntb_db_vector_mask(struct ntb_dev
*ntb
, int db_vector
)
1037 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1039 if (db_vector
< 0 || db_vector
> ndev
->db_vec_count
)
1042 return ndev
->db_valid_mask
& ndev_vec_mask(ndev
, db_vector
);
1045 static u64
intel_ntb_db_read(struct ntb_dev
*ntb
)
1047 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1049 return ndev_db_read(ndev
,
1051 ndev
->self_reg
->db_bell
);
1054 static int intel_ntb_db_clear(struct ntb_dev
*ntb
, u64 db_bits
)
1056 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1058 return ndev_db_write(ndev
, db_bits
,
1060 ndev
->self_reg
->db_bell
);
1063 static int intel_ntb_db_set_mask(struct ntb_dev
*ntb
, u64 db_bits
)
1065 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1067 return ndev_db_set_mask(ndev
, db_bits
,
1069 ndev
->self_reg
->db_mask
);
1072 static int intel_ntb_db_clear_mask(struct ntb_dev
*ntb
, u64 db_bits
)
1074 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1076 return ndev_db_clear_mask(ndev
, db_bits
,
1078 ndev
->self_reg
->db_mask
);
1081 static int intel_ntb_peer_db_addr(struct ntb_dev
*ntb
,
1082 phys_addr_t
*db_addr
,
1083 resource_size_t
*db_size
)
1085 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1087 return ndev_db_addr(ndev
, db_addr
, db_size
, ndev
->peer_addr
,
1088 ndev
->peer_reg
->db_bell
);
1091 static int intel_ntb_peer_db_set(struct ntb_dev
*ntb
, u64 db_bits
)
1093 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1095 return ndev_db_write(ndev
, db_bits
,
1097 ndev
->peer_reg
->db_bell
);
1100 static int intel_ntb_spad_is_unsafe(struct ntb_dev
*ntb
)
1102 return ndev_ignore_unsafe(ntb_ndev(ntb
), NTB_UNSAFE_SPAD
);
1105 static int intel_ntb_spad_count(struct ntb_dev
*ntb
)
1107 struct intel_ntb_dev
*ndev
;
1109 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
1111 return ndev
->spad_count
;
1114 static u32
intel_ntb_spad_read(struct ntb_dev
*ntb
, int idx
)
1116 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1118 return ndev_spad_read(ndev
, idx
,
1120 ndev
->self_reg
->spad
);
1123 static int intel_ntb_spad_write(struct ntb_dev
*ntb
,
1126 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1128 return ndev_spad_write(ndev
, idx
, val
,
1130 ndev
->self_reg
->spad
);
1133 static int intel_ntb_peer_spad_addr(struct ntb_dev
*ntb
, int idx
,
1134 phys_addr_t
*spad_addr
)
1136 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1138 return ndev_spad_addr(ndev
, idx
, spad_addr
, ndev
->peer_addr
,
1139 ndev
->peer_reg
->spad
);
1142 static u32
intel_ntb_peer_spad_read(struct ntb_dev
*ntb
, int idx
)
1144 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1146 return ndev_spad_read(ndev
, idx
,
1148 ndev
->peer_reg
->spad
);
1151 static int intel_ntb_peer_spad_write(struct ntb_dev
*ntb
,
1154 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1156 return ndev_spad_write(ndev
, idx
, val
,
1158 ndev
->peer_reg
->spad
);
1163 static u64
atom_db_ioread(void __iomem
*mmio
)
1165 return ioread64(mmio
);
1168 static void atom_db_iowrite(u64 bits
, void __iomem
*mmio
)
1170 iowrite64(bits
, mmio
);
1173 static int atom_poll_link(struct intel_ntb_dev
*ndev
)
1177 ntb_ctl
= ioread32(ndev
->self_mmio
+ ATOM_NTBCNTL_OFFSET
);
1179 if (ntb_ctl
== ndev
->ntb_ctl
)
1182 ndev
->ntb_ctl
= ntb_ctl
;
1184 ndev
->lnk_sta
= ioread32(ndev
->self_mmio
+ ATOM_LINK_STATUS_OFFSET
);
1189 static int atom_link_is_up(struct intel_ntb_dev
*ndev
)
1191 return ATOM_NTB_CTL_ACTIVE(ndev
->ntb_ctl
);
1194 static int atom_link_is_err(struct intel_ntb_dev
*ndev
)
1196 if (ioread32(ndev
->self_mmio
+ ATOM_LTSSMSTATEJMP_OFFSET
)
1197 & ATOM_LTSSMSTATEJMP_FORCEDETECT
)
1200 if (ioread32(ndev
->self_mmio
+ ATOM_IBSTERRRCRVSTS0_OFFSET
)
1201 & ATOM_IBIST_ERR_OFLOW
)
1207 static inline enum ntb_topo
atom_ppd_topo(struct intel_ntb_dev
*ndev
, u32 ppd
)
1209 switch (ppd
& ATOM_PPD_TOPO_MASK
) {
1210 case ATOM_PPD_TOPO_B2B_USD
:
1211 dev_dbg(ndev_dev(ndev
), "PPD %d B2B USD\n", ppd
);
1212 return NTB_TOPO_B2B_USD
;
1214 case ATOM_PPD_TOPO_B2B_DSD
:
1215 dev_dbg(ndev_dev(ndev
), "PPD %d B2B DSD\n", ppd
);
1216 return NTB_TOPO_B2B_DSD
;
1218 case ATOM_PPD_TOPO_PRI_USD
:
1219 case ATOM_PPD_TOPO_PRI_DSD
: /* accept bogus PRI_DSD */
1220 case ATOM_PPD_TOPO_SEC_USD
:
1221 case ATOM_PPD_TOPO_SEC_DSD
: /* accept bogus SEC_DSD */
1222 dev_dbg(ndev_dev(ndev
), "PPD %d non B2B disabled\n", ppd
);
1223 return NTB_TOPO_NONE
;
1226 dev_dbg(ndev_dev(ndev
), "PPD %d invalid\n", ppd
);
1227 return NTB_TOPO_NONE
;
1230 static void atom_link_hb(struct work_struct
*work
)
1232 struct intel_ntb_dev
*ndev
= hb_ndev(work
);
1233 unsigned long poll_ts
;
1237 poll_ts
= ndev
->last_ts
+ ATOM_LINK_HB_TIMEOUT
;
1239 /* Delay polling the link status if an interrupt was received,
1240 * unless the cached link status says the link is down.
1242 if (time_after(poll_ts
, jiffies
) && atom_link_is_up(ndev
)) {
1243 schedule_delayed_work(&ndev
->hb_timer
, poll_ts
- jiffies
);
1247 if (atom_poll_link(ndev
))
1248 ntb_link_event(&ndev
->ntb
);
1250 if (atom_link_is_up(ndev
) || !atom_link_is_err(ndev
)) {
1251 schedule_delayed_work(&ndev
->hb_timer
, ATOM_LINK_HB_TIMEOUT
);
1255 /* Link is down with error: recover the link! */
1257 mmio
= ndev
->self_mmio
;
1259 /* Driver resets the NTB ModPhy lanes - magic! */
1260 iowrite8(0xe0, mmio
+ ATOM_MODPHY_PCSREG6
);
1261 iowrite8(0x40, mmio
+ ATOM_MODPHY_PCSREG4
);
1262 iowrite8(0x60, mmio
+ ATOM_MODPHY_PCSREG4
);
1263 iowrite8(0x60, mmio
+ ATOM_MODPHY_PCSREG6
);
1265 /* Driver waits 100ms to allow the NTB ModPhy to settle */
1268 /* Clear AER Errors, write to clear */
1269 status32
= ioread32(mmio
+ ATOM_ERRCORSTS_OFFSET
);
1270 dev_dbg(ndev_dev(ndev
), "ERRCORSTS = %x\n", status32
);
1271 status32
&= PCI_ERR_COR_REP_ROLL
;
1272 iowrite32(status32
, mmio
+ ATOM_ERRCORSTS_OFFSET
);
1274 /* Clear unexpected electrical idle event in LTSSM, write to clear */
1275 status32
= ioread32(mmio
+ ATOM_LTSSMERRSTS0_OFFSET
);
1276 dev_dbg(ndev_dev(ndev
), "LTSSMERRSTS0 = %x\n", status32
);
1277 status32
|= ATOM_LTSSMERRSTS0_UNEXPECTEDEI
;
1278 iowrite32(status32
, mmio
+ ATOM_LTSSMERRSTS0_OFFSET
);
1280 /* Clear DeSkew Buffer error, write to clear */
1281 status32
= ioread32(mmio
+ ATOM_DESKEWSTS_OFFSET
);
1282 dev_dbg(ndev_dev(ndev
), "DESKEWSTS = %x\n", status32
);
1283 status32
|= ATOM_DESKEWSTS_DBERR
;
1284 iowrite32(status32
, mmio
+ ATOM_DESKEWSTS_OFFSET
);
1286 status32
= ioread32(mmio
+ ATOM_IBSTERRRCRVSTS0_OFFSET
);
1287 dev_dbg(ndev_dev(ndev
), "IBSTERRRCRVSTS0 = %x\n", status32
);
1288 status32
&= ATOM_IBIST_ERR_OFLOW
;
1289 iowrite32(status32
, mmio
+ ATOM_IBSTERRRCRVSTS0_OFFSET
);
1291 /* Releases the NTB state machine to allow the link to retrain */
1292 status32
= ioread32(mmio
+ ATOM_LTSSMSTATEJMP_OFFSET
);
1293 dev_dbg(ndev_dev(ndev
), "LTSSMSTATEJMP = %x\n", status32
);
1294 status32
&= ~ATOM_LTSSMSTATEJMP_FORCEDETECT
;
1295 iowrite32(status32
, mmio
+ ATOM_LTSSMSTATEJMP_OFFSET
);
1297 /* There is a potential race between the 2 NTB devices recovering at the
1298 * same time. If the times are the same, the link will not recover and
1299 * the driver will be stuck in this loop forever. Add a random interval
1300 * to the recovery time to prevent this race.
1302 schedule_delayed_work(&ndev
->hb_timer
, ATOM_LINK_RECOVERY_TIME
1303 + prandom_u32() % ATOM_LINK_RECOVERY_TIME
);
1306 static int atom_init_isr(struct intel_ntb_dev
*ndev
)
1310 rc
= ndev_init_isr(ndev
, 1, ATOM_DB_MSIX_VECTOR_COUNT
,
1311 ATOM_DB_MSIX_VECTOR_SHIFT
, ATOM_DB_TOTAL_SHIFT
);
1315 /* ATOM doesn't have link status interrupt, poll on that platform */
1316 ndev
->last_ts
= jiffies
;
1317 INIT_DELAYED_WORK(&ndev
->hb_timer
, atom_link_hb
);
1318 schedule_delayed_work(&ndev
->hb_timer
, ATOM_LINK_HB_TIMEOUT
);
1323 static void atom_deinit_isr(struct intel_ntb_dev
*ndev
)
1325 cancel_delayed_work_sync(&ndev
->hb_timer
);
1326 ndev_deinit_isr(ndev
);
1329 static int atom_init_ntb(struct intel_ntb_dev
*ndev
)
1331 ndev
->mw_count
= ATOM_MW_COUNT
;
1332 ndev
->spad_count
= ATOM_SPAD_COUNT
;
1333 ndev
->db_count
= ATOM_DB_COUNT
;
1335 switch (ndev
->ntb
.topo
) {
1336 case NTB_TOPO_B2B_USD
:
1337 case NTB_TOPO_B2B_DSD
:
1338 ndev
->self_reg
= &atom_pri_reg
;
1339 ndev
->peer_reg
= &atom_b2b_reg
;
1340 ndev
->xlat_reg
= &atom_sec_xlat
;
1342 /* Enable Bus Master and Memory Space on the secondary side */
1343 iowrite16(PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER
,
1344 ndev
->self_mmio
+ ATOM_SPCICMD_OFFSET
);
1352 ndev
->db_valid_mask
= BIT_ULL(ndev
->db_count
) - 1;
1357 static int atom_init_dev(struct intel_ntb_dev
*ndev
)
1362 rc
= pci_read_config_dword(ndev
->ntb
.pdev
, ATOM_PPD_OFFSET
, &ppd
);
1366 ndev
->ntb
.topo
= atom_ppd_topo(ndev
, ppd
);
1367 if (ndev
->ntb
.topo
== NTB_TOPO_NONE
)
1370 rc
= atom_init_ntb(ndev
);
1374 rc
= atom_init_isr(ndev
);
1378 if (ndev
->ntb
.topo
!= NTB_TOPO_SEC
) {
1379 /* Initiate PCI-E link training */
1380 rc
= pci_write_config_dword(ndev
->ntb
.pdev
, ATOM_PPD_OFFSET
,
1381 ppd
| ATOM_PPD_INIT_LINK
);
1389 static void atom_deinit_dev(struct intel_ntb_dev
*ndev
)
1391 atom_deinit_isr(ndev
);
1396 static u64
xeon_db_ioread(void __iomem
*mmio
)
1398 return (u64
)ioread16(mmio
);
1401 static void xeon_db_iowrite(u64 bits
, void __iomem
*mmio
)
1403 iowrite16((u16
)bits
, mmio
);
1406 static int xeon_poll_link(struct intel_ntb_dev
*ndev
)
1411 ndev
->reg
->db_iowrite(ndev
->db_link_mask
,
1413 ndev
->self_reg
->db_bell
);
1415 rc
= pci_read_config_word(ndev
->ntb
.pdev
,
1416 XEON_LINK_STATUS_OFFSET
, ®_val
);
1420 if (reg_val
== ndev
->lnk_sta
)
1423 ndev
->lnk_sta
= reg_val
;
1428 static int xeon_link_is_up(struct intel_ntb_dev
*ndev
)
1430 if (ndev
->ntb
.topo
== NTB_TOPO_SEC
)
1433 return NTB_LNK_STA_ACTIVE(ndev
->lnk_sta
);
1436 static inline enum ntb_topo
xeon_ppd_topo(struct intel_ntb_dev
*ndev
, u8 ppd
)
1438 switch (ppd
& XEON_PPD_TOPO_MASK
) {
1439 case XEON_PPD_TOPO_B2B_USD
:
1440 return NTB_TOPO_B2B_USD
;
1442 case XEON_PPD_TOPO_B2B_DSD
:
1443 return NTB_TOPO_B2B_DSD
;
1445 case XEON_PPD_TOPO_PRI_USD
:
1446 case XEON_PPD_TOPO_PRI_DSD
: /* accept bogus PRI_DSD */
1447 return NTB_TOPO_PRI
;
1449 case XEON_PPD_TOPO_SEC_USD
:
1450 case XEON_PPD_TOPO_SEC_DSD
: /* accept bogus SEC_DSD */
1451 return NTB_TOPO_SEC
;
1454 return NTB_TOPO_NONE
;
1457 static inline int xeon_ppd_bar4_split(struct intel_ntb_dev
*ndev
, u8 ppd
)
1459 if (ppd
& XEON_PPD_SPLIT_BAR_MASK
) {
1460 dev_dbg(ndev_dev(ndev
), "PPD %d split bar\n", ppd
);
1466 static int xeon_init_isr(struct intel_ntb_dev
*ndev
)
1468 return ndev_init_isr(ndev
, XEON_DB_MSIX_VECTOR_COUNT
,
1469 XEON_DB_MSIX_VECTOR_COUNT
,
1470 XEON_DB_MSIX_VECTOR_SHIFT
,
1471 XEON_DB_TOTAL_SHIFT
);
1474 static void xeon_deinit_isr(struct intel_ntb_dev
*ndev
)
1476 ndev_deinit_isr(ndev
);
1479 static int xeon_setup_b2b_mw(struct intel_ntb_dev
*ndev
,
1480 const struct intel_b2b_addr
*addr
,
1481 const struct intel_b2b_addr
*peer_addr
)
1483 struct pci_dev
*pdev
;
1485 resource_size_t bar_size
;
1486 phys_addr_t bar_addr
;
1490 pdev
= ndev_pdev(ndev
);
1491 mmio
= ndev
->self_mmio
;
1493 if (ndev
->b2b_idx
== UINT_MAX
) {
1494 dev_dbg(ndev_dev(ndev
), "not using b2b mw\n");
1498 b2b_bar
= ndev_mw_to_bar(ndev
, ndev
->b2b_idx
);
1502 dev_dbg(ndev_dev(ndev
), "using b2b mw bar %d\n", b2b_bar
);
1504 bar_size
= pci_resource_len(ndev
->ntb
.pdev
, b2b_bar
);
1506 dev_dbg(ndev_dev(ndev
), "b2b bar size %#llx\n", bar_size
);
1508 if (b2b_mw_share
&& XEON_B2B_MIN_SIZE
<= bar_size
>> 1) {
1509 dev_dbg(ndev_dev(ndev
),
1510 "b2b using first half of bar\n");
1511 ndev
->b2b_off
= bar_size
>> 1;
1512 } else if (XEON_B2B_MIN_SIZE
<= bar_size
) {
1513 dev_dbg(ndev_dev(ndev
),
1514 "b2b using whole bar\n");
1518 dev_dbg(ndev_dev(ndev
),
1519 "b2b bar size is too small\n");
1524 /* Reset the secondary bar sizes to match the primary bar sizes,
1525 * except disable or halve the size of the b2b secondary bar.
1527 * Note: code for each specific bar size register, because the register
1528 * offsets are not in a consistent order (bar5sz comes after ppd, odd).
1530 pci_read_config_byte(pdev
, XEON_PBAR23SZ_OFFSET
, &bar_sz
);
1531 dev_dbg(ndev_dev(ndev
), "PBAR23SZ %#x\n", bar_sz
);
1538 pci_write_config_byte(pdev
, XEON_SBAR23SZ_OFFSET
, bar_sz
);
1539 pci_read_config_byte(pdev
, XEON_SBAR23SZ_OFFSET
, &bar_sz
);
1540 dev_dbg(ndev_dev(ndev
), "SBAR23SZ %#x\n", bar_sz
);
1542 if (!ndev
->bar4_split
) {
1543 pci_read_config_byte(pdev
, XEON_PBAR45SZ_OFFSET
, &bar_sz
);
1544 dev_dbg(ndev_dev(ndev
), "PBAR45SZ %#x\n", bar_sz
);
1551 pci_write_config_byte(pdev
, XEON_SBAR45SZ_OFFSET
, bar_sz
);
1552 pci_read_config_byte(pdev
, XEON_SBAR45SZ_OFFSET
, &bar_sz
);
1553 dev_dbg(ndev_dev(ndev
), "SBAR45SZ %#x\n", bar_sz
);
1555 pci_read_config_byte(pdev
, XEON_PBAR4SZ_OFFSET
, &bar_sz
);
1556 dev_dbg(ndev_dev(ndev
), "PBAR4SZ %#x\n", bar_sz
);
1563 pci_write_config_byte(pdev
, XEON_SBAR4SZ_OFFSET
, bar_sz
);
1564 pci_read_config_byte(pdev
, XEON_SBAR4SZ_OFFSET
, &bar_sz
);
1565 dev_dbg(ndev_dev(ndev
), "SBAR4SZ %#x\n", bar_sz
);
1567 pci_read_config_byte(pdev
, XEON_PBAR5SZ_OFFSET
, &bar_sz
);
1568 dev_dbg(ndev_dev(ndev
), "PBAR5SZ %#x\n", bar_sz
);
1575 pci_write_config_byte(pdev
, XEON_SBAR5SZ_OFFSET
, bar_sz
);
1576 pci_read_config_byte(pdev
, XEON_SBAR5SZ_OFFSET
, &bar_sz
);
1577 dev_dbg(ndev_dev(ndev
), "SBAR5SZ %#x\n", bar_sz
);
1580 /* SBAR01 hit by first part of the b2b bar */
1582 bar_addr
= addr
->bar0_addr
;
1583 else if (b2b_bar
== 2)
1584 bar_addr
= addr
->bar2_addr64
;
1585 else if (b2b_bar
== 4 && !ndev
->bar4_split
)
1586 bar_addr
= addr
->bar4_addr64
;
1587 else if (b2b_bar
== 4)
1588 bar_addr
= addr
->bar4_addr32
;
1589 else if (b2b_bar
== 5)
1590 bar_addr
= addr
->bar5_addr32
;
1594 dev_dbg(ndev_dev(ndev
), "SBAR01 %#018llx\n", bar_addr
);
1595 iowrite64(bar_addr
, mmio
+ XEON_SBAR0BASE_OFFSET
);
1597 /* Other SBAR are normally hit by the PBAR xlat, except for b2b bar.
1598 * The b2b bar is either disabled above, or configured half-size, and
1599 * it starts at the PBAR xlat + offset.
1602 bar_addr
= addr
->bar2_addr64
+ (b2b_bar
== 2 ? ndev
->b2b_off
: 0);
1603 iowrite64(bar_addr
, mmio
+ XEON_SBAR23BASE_OFFSET
);
1604 bar_addr
= ioread64(mmio
+ XEON_SBAR23BASE_OFFSET
);
1605 dev_dbg(ndev_dev(ndev
), "SBAR23 %#018llx\n", bar_addr
);
1607 if (!ndev
->bar4_split
) {
1608 bar_addr
= addr
->bar4_addr64
+
1609 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1610 iowrite64(bar_addr
, mmio
+ XEON_SBAR45BASE_OFFSET
);
1611 bar_addr
= ioread64(mmio
+ XEON_SBAR45BASE_OFFSET
);
1612 dev_dbg(ndev_dev(ndev
), "SBAR45 %#018llx\n", bar_addr
);
1614 bar_addr
= addr
->bar4_addr32
+
1615 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1616 iowrite32(bar_addr
, mmio
+ XEON_SBAR4BASE_OFFSET
);
1617 bar_addr
= ioread32(mmio
+ XEON_SBAR4BASE_OFFSET
);
1618 dev_dbg(ndev_dev(ndev
), "SBAR4 %#010llx\n", bar_addr
);
1620 bar_addr
= addr
->bar5_addr32
+
1621 (b2b_bar
== 5 ? ndev
->b2b_off
: 0);
1622 iowrite32(bar_addr
, mmio
+ XEON_SBAR5BASE_OFFSET
);
1623 bar_addr
= ioread32(mmio
+ XEON_SBAR5BASE_OFFSET
);
1624 dev_dbg(ndev_dev(ndev
), "SBAR5 %#010llx\n", bar_addr
);
1627 /* setup incoming bar limits == base addrs (zero length windows) */
1629 bar_addr
= addr
->bar2_addr64
+ (b2b_bar
== 2 ? ndev
->b2b_off
: 0);
1630 iowrite64(bar_addr
, mmio
+ XEON_SBAR23LMT_OFFSET
);
1631 bar_addr
= ioread64(mmio
+ XEON_SBAR23LMT_OFFSET
);
1632 dev_dbg(ndev_dev(ndev
), "SBAR23LMT %#018llx\n", bar_addr
);
1634 if (!ndev
->bar4_split
) {
1635 bar_addr
= addr
->bar4_addr64
+
1636 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1637 iowrite64(bar_addr
, mmio
+ XEON_SBAR45LMT_OFFSET
);
1638 bar_addr
= ioread64(mmio
+ XEON_SBAR45LMT_OFFSET
);
1639 dev_dbg(ndev_dev(ndev
), "SBAR45LMT %#018llx\n", bar_addr
);
1641 bar_addr
= addr
->bar4_addr32
+
1642 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1643 iowrite32(bar_addr
, mmio
+ XEON_SBAR4LMT_OFFSET
);
1644 bar_addr
= ioread32(mmio
+ XEON_SBAR4LMT_OFFSET
);
1645 dev_dbg(ndev_dev(ndev
), "SBAR4LMT %#010llx\n", bar_addr
);
1647 bar_addr
= addr
->bar5_addr32
+
1648 (b2b_bar
== 5 ? ndev
->b2b_off
: 0);
1649 iowrite32(bar_addr
, mmio
+ XEON_SBAR5LMT_OFFSET
);
1650 bar_addr
= ioread32(mmio
+ XEON_SBAR5LMT_OFFSET
);
1651 dev_dbg(ndev_dev(ndev
), "SBAR5LMT %#05llx\n", bar_addr
);
1654 /* zero incoming translation addrs */
1655 iowrite64(0, mmio
+ XEON_SBAR23XLAT_OFFSET
);
1657 if (!ndev
->bar4_split
) {
1658 iowrite64(0, mmio
+ XEON_SBAR45XLAT_OFFSET
);
1660 iowrite32(0, mmio
+ XEON_SBAR4XLAT_OFFSET
);
1661 iowrite32(0, mmio
+ XEON_SBAR5XLAT_OFFSET
);
1664 /* zero outgoing translation limits (whole bar size windows) */
1665 iowrite64(0, mmio
+ XEON_PBAR23LMT_OFFSET
);
1666 if (!ndev
->bar4_split
) {
1667 iowrite64(0, mmio
+ XEON_PBAR45LMT_OFFSET
);
1669 iowrite32(0, mmio
+ XEON_PBAR4LMT_OFFSET
);
1670 iowrite32(0, mmio
+ XEON_PBAR5LMT_OFFSET
);
1673 /* set outgoing translation offsets */
1674 bar_addr
= peer_addr
->bar2_addr64
;
1675 iowrite64(bar_addr
, mmio
+ XEON_PBAR23XLAT_OFFSET
);
1676 bar_addr
= ioread64(mmio
+ XEON_PBAR23XLAT_OFFSET
);
1677 dev_dbg(ndev_dev(ndev
), "PBAR23XLAT %#018llx\n", bar_addr
);
1679 if (!ndev
->bar4_split
) {
1680 bar_addr
= peer_addr
->bar4_addr64
;
1681 iowrite64(bar_addr
, mmio
+ XEON_PBAR45XLAT_OFFSET
);
1682 bar_addr
= ioread64(mmio
+ XEON_PBAR45XLAT_OFFSET
);
1683 dev_dbg(ndev_dev(ndev
), "PBAR45XLAT %#018llx\n", bar_addr
);
1685 bar_addr
= peer_addr
->bar4_addr32
;
1686 iowrite32(bar_addr
, mmio
+ XEON_PBAR4XLAT_OFFSET
);
1687 bar_addr
= ioread32(mmio
+ XEON_PBAR4XLAT_OFFSET
);
1688 dev_dbg(ndev_dev(ndev
), "PBAR4XLAT %#010llx\n", bar_addr
);
1690 bar_addr
= peer_addr
->bar5_addr32
;
1691 iowrite32(bar_addr
, mmio
+ XEON_PBAR5XLAT_OFFSET
);
1692 bar_addr
= ioread32(mmio
+ XEON_PBAR5XLAT_OFFSET
);
1693 dev_dbg(ndev_dev(ndev
), "PBAR5XLAT %#010llx\n", bar_addr
);
1696 /* set the translation offset for b2b registers */
1698 bar_addr
= peer_addr
->bar0_addr
;
1699 else if (b2b_bar
== 2)
1700 bar_addr
= peer_addr
->bar2_addr64
;
1701 else if (b2b_bar
== 4 && !ndev
->bar4_split
)
1702 bar_addr
= peer_addr
->bar4_addr64
;
1703 else if (b2b_bar
== 4)
1704 bar_addr
= peer_addr
->bar4_addr32
;
1705 else if (b2b_bar
== 5)
1706 bar_addr
= peer_addr
->bar5_addr32
;
1710 /* B2B_XLAT_OFFSET is 64bit, but can only take 32bit writes */
1711 dev_dbg(ndev_dev(ndev
), "B2BXLAT %#018llx\n", bar_addr
);
1712 iowrite32(bar_addr
, mmio
+ XEON_B2B_XLAT_OFFSETL
);
1713 iowrite32(bar_addr
>> 32, mmio
+ XEON_B2B_XLAT_OFFSETU
);
1716 /* map peer ntb mmio config space registers */
1717 ndev
->peer_mmio
= pci_iomap(pdev
, b2b_bar
,
1719 if (!ndev
->peer_mmio
)
1726 static int xeon_init_ntb(struct intel_ntb_dev
*ndev
)
1731 if (ndev
->bar4_split
)
1732 ndev
->mw_count
= HSX_SPLIT_BAR_MW_COUNT
;
1734 ndev
->mw_count
= XEON_MW_COUNT
;
1736 ndev
->spad_count
= XEON_SPAD_COUNT
;
1737 ndev
->db_count
= XEON_DB_COUNT
;
1738 ndev
->db_link_mask
= XEON_DB_LINK_BIT
;
1740 switch (ndev
->ntb
.topo
) {
1742 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
) {
1743 dev_err(ndev_dev(ndev
), "NTB Primary config disabled\n");
1747 /* enable link to allow secondary side device to appear */
1748 ntb_ctl
= ioread32(ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1749 ntb_ctl
&= ~NTB_CTL_DISABLE
;
1750 iowrite32(ntb_ctl
, ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1752 /* use half the spads for the peer */
1753 ndev
->spad_count
>>= 1;
1754 ndev
->self_reg
= &xeon_pri_reg
;
1755 ndev
->peer_reg
= &xeon_sec_reg
;
1756 ndev
->xlat_reg
= &xeon_sec_xlat
;
1760 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
) {
1761 dev_err(ndev_dev(ndev
), "NTB Secondary config disabled\n");
1764 /* use half the spads for the peer */
1765 ndev
->spad_count
>>= 1;
1766 ndev
->self_reg
= &xeon_sec_reg
;
1767 ndev
->peer_reg
= &xeon_pri_reg
;
1768 ndev
->xlat_reg
= &xeon_pri_xlat
;
1771 case NTB_TOPO_B2B_USD
:
1772 case NTB_TOPO_B2B_DSD
:
1773 ndev
->self_reg
= &xeon_pri_reg
;
1774 ndev
->peer_reg
= &xeon_b2b_reg
;
1775 ndev
->xlat_reg
= &xeon_sec_xlat
;
1777 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
) {
1778 ndev
->peer_reg
= &xeon_pri_reg
;
1781 ndev
->b2b_idx
= b2b_mw_idx
+ ndev
->mw_count
;
1783 ndev
->b2b_idx
= b2b_mw_idx
;
1785 if (ndev
->b2b_idx
>= ndev
->mw_count
) {
1786 dev_dbg(ndev_dev(ndev
),
1787 "b2b_mw_idx %d invalid for mw_count %u\n",
1788 b2b_mw_idx
, ndev
->mw_count
);
1792 dev_dbg(ndev_dev(ndev
),
1793 "setting up b2b mw idx %d means %d\n",
1794 b2b_mw_idx
, ndev
->b2b_idx
);
1796 } else if (ndev
->hwerr_flags
& NTB_HWERR_B2BDOORBELL_BIT14
) {
1797 dev_warn(ndev_dev(ndev
), "Reduce doorbell count by 1\n");
1798 ndev
->db_count
-= 1;
1801 if (ndev
->ntb
.topo
== NTB_TOPO_B2B_USD
) {
1802 rc
= xeon_setup_b2b_mw(ndev
,
1804 &xeon_b2b_usd_addr
);
1806 rc
= xeon_setup_b2b_mw(ndev
,
1808 &xeon_b2b_dsd_addr
);
1813 /* Enable Bus Master and Memory Space on the secondary side */
1814 iowrite16(PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER
,
1815 ndev
->self_mmio
+ XEON_SPCICMD_OFFSET
);
1823 ndev
->db_valid_mask
= BIT_ULL(ndev
->db_count
) - 1;
1825 ndev
->reg
->db_iowrite(ndev
->db_valid_mask
,
1827 ndev
->self_reg
->db_mask
);
1832 static int xeon_init_dev(struct intel_ntb_dev
*ndev
)
1834 struct pci_dev
*pdev
;
1838 pdev
= ndev_pdev(ndev
);
1840 switch (pdev
->device
) {
1841 /* There is a Xeon hardware errata related to writes to SDOORBELL or
1842 * B2BDOORBELL in conjunction with inbound access to NTB MMIO Space,
1843 * which may hang the system. To workaround this use the second memory
1844 * window to access the interrupt and scratch pad registers on the
1847 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF
:
1848 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF
:
1849 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
:
1850 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB
:
1851 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB
:
1852 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
:
1853 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
1854 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
1855 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
1856 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
1857 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
1858 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
1859 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX
:
1860 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX
:
1861 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
:
1862 ndev
->hwerr_flags
|= NTB_HWERR_SDOORBELL_LOCKUP
;
1866 switch (pdev
->device
) {
1867 /* There is a hardware errata related to accessing any register in
1868 * SB01BASE in the presence of bidirectional traffic crossing the NTB.
1870 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
1871 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
1872 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
1873 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
1874 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
1875 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
1876 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX
:
1877 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX
:
1878 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
:
1879 ndev
->hwerr_flags
|= NTB_HWERR_SB01BASE_LOCKUP
;
1883 switch (pdev
->device
) {
1884 /* HW Errata on bit 14 of b2bdoorbell register. Writes will not be
1885 * mirrored to the remote system. Shrink the number of bits by one,
1886 * since bit 14 is the last bit.
1888 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF
:
1889 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF
:
1890 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
:
1891 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB
:
1892 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB
:
1893 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
:
1894 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
1895 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
1896 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
1897 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
1898 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
1899 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
1900 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX
:
1901 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX
:
1902 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
:
1903 ndev
->hwerr_flags
|= NTB_HWERR_B2BDOORBELL_BIT14
;
1907 ndev
->reg
= &xeon_reg
;
1909 rc
= pci_read_config_byte(pdev
, XEON_PPD_OFFSET
, &ppd
);
1913 ndev
->ntb
.topo
= xeon_ppd_topo(ndev
, ppd
);
1914 dev_dbg(ndev_dev(ndev
), "ppd %#x topo %s\n", ppd
,
1915 ntb_topo_string(ndev
->ntb
.topo
));
1916 if (ndev
->ntb
.topo
== NTB_TOPO_NONE
)
1919 if (ndev
->ntb
.topo
!= NTB_TOPO_SEC
) {
1920 ndev
->bar4_split
= xeon_ppd_bar4_split(ndev
, ppd
);
1921 dev_dbg(ndev_dev(ndev
), "ppd %#x bar4_split %d\n",
1922 ppd
, ndev
->bar4_split
);
1924 /* This is a way for transparent BAR to figure out if we are
1925 * doing split BAR or not. There is no way for the hw on the
1926 * transparent side to know and set the PPD.
1928 mem
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1929 ndev
->bar4_split
= hweight32(mem
) ==
1930 HSX_SPLIT_BAR_MW_COUNT
+ 1;
1931 dev_dbg(ndev_dev(ndev
), "mem %#x bar4_split %d\n",
1932 mem
, ndev
->bar4_split
);
1935 rc
= xeon_init_ntb(ndev
);
1939 return xeon_init_isr(ndev
);
1942 static void xeon_deinit_dev(struct intel_ntb_dev
*ndev
)
1944 xeon_deinit_isr(ndev
);
1947 static int intel_ntb_init_pci(struct intel_ntb_dev
*ndev
, struct pci_dev
*pdev
)
1951 pci_set_drvdata(pdev
, ndev
);
1953 rc
= pci_enable_device(pdev
);
1955 goto err_pci_enable
;
1957 rc
= pci_request_regions(pdev
, NTB_NAME
);
1959 goto err_pci_regions
;
1961 pci_set_master(pdev
);
1963 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
1965 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1968 dev_warn(ndev_dev(ndev
), "Cannot DMA highmem\n");
1971 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
1973 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1976 dev_warn(ndev_dev(ndev
), "Cannot DMA consistent highmem\n");
1979 ndev
->self_mmio
= pci_iomap(pdev
, 0, 0);
1980 if (!ndev
->self_mmio
) {
1984 ndev
->peer_mmio
= ndev
->self_mmio
;
1990 pci_clear_master(pdev
);
1991 pci_release_regions(pdev
);
1993 pci_disable_device(pdev
);
1995 pci_set_drvdata(pdev
, NULL
);
1999 static void intel_ntb_deinit_pci(struct intel_ntb_dev
*ndev
)
2001 struct pci_dev
*pdev
= ndev_pdev(ndev
);
2003 if (ndev
->peer_mmio
&& ndev
->peer_mmio
!= ndev
->self_mmio
)
2004 pci_iounmap(pdev
, ndev
->peer_mmio
);
2005 pci_iounmap(pdev
, ndev
->self_mmio
);
2007 pci_clear_master(pdev
);
2008 pci_release_regions(pdev
);
2009 pci_disable_device(pdev
);
2010 pci_set_drvdata(pdev
, NULL
);
2013 static inline void ndev_init_struct(struct intel_ntb_dev
*ndev
,
2014 struct pci_dev
*pdev
)
2016 ndev
->ntb
.pdev
= pdev
;
2017 ndev
->ntb
.topo
= NTB_TOPO_NONE
;
2018 ndev
->ntb
.ops
= &intel_ntb_ops
;
2021 ndev
->b2b_idx
= UINT_MAX
;
2023 ndev
->bar4_split
= 0;
2026 ndev
->spad_count
= 0;
2028 ndev
->db_vec_count
= 0;
2029 ndev
->db_vec_shift
= 0;
2034 ndev
->db_valid_mask
= 0;
2035 ndev
->db_link_mask
= 0;
2038 spin_lock_init(&ndev
->db_mask_lock
);
2041 static int intel_ntb_pci_probe(struct pci_dev
*pdev
,
2042 const struct pci_device_id
*id
)
2044 struct intel_ntb_dev
*ndev
;
2047 node
= dev_to_node(&pdev
->dev
);
2049 if (pdev_is_atom(pdev
)) {
2050 ndev
= kzalloc_node(sizeof(*ndev
), GFP_KERNEL
, node
);
2056 ndev_init_struct(ndev
, pdev
);
2058 rc
= intel_ntb_init_pci(ndev
, pdev
);
2062 rc
= atom_init_dev(ndev
);
2066 } else if (pdev_is_xeon(pdev
)) {
2067 ndev
= kzalloc_node(sizeof(*ndev
), GFP_KERNEL
, node
);
2073 ndev_init_struct(ndev
, pdev
);
2075 rc
= intel_ntb_init_pci(ndev
, pdev
);
2079 rc
= xeon_init_dev(ndev
);
2088 ndev_reset_unsafe_flags(ndev
);
2090 ndev
->reg
->poll_link(ndev
);
2092 ndev_init_debugfs(ndev
);
2094 rc
= ntb_register_device(&ndev
->ntb
);
2098 dev_info(&pdev
->dev
, "NTB device registered.\n");
2103 ndev_deinit_debugfs(ndev
);
2104 if (pdev_is_atom(pdev
))
2105 atom_deinit_dev(ndev
);
2106 else if (pdev_is_xeon(pdev
))
2107 xeon_deinit_dev(ndev
);
2109 intel_ntb_deinit_pci(ndev
);
2116 static void intel_ntb_pci_remove(struct pci_dev
*pdev
)
2118 struct intel_ntb_dev
*ndev
= pci_get_drvdata(pdev
);
2120 ntb_unregister_device(&ndev
->ntb
);
2121 ndev_deinit_debugfs(ndev
);
2122 if (pdev_is_atom(pdev
))
2123 atom_deinit_dev(ndev
);
2124 else if (pdev_is_xeon(pdev
))
2125 xeon_deinit_dev(ndev
);
2126 intel_ntb_deinit_pci(ndev
);
2130 static const struct intel_ntb_reg atom_reg
= {
2131 .poll_link
= atom_poll_link
,
2132 .link_is_up
= atom_link_is_up
,
2133 .db_ioread
= atom_db_ioread
,
2134 .db_iowrite
= atom_db_iowrite
,
2135 .db_size
= sizeof(u64
),
2136 .ntb_ctl
= ATOM_NTBCNTL_OFFSET
,
2140 static const struct intel_ntb_alt_reg atom_pri_reg
= {
2141 .db_bell
= ATOM_PDOORBELL_OFFSET
,
2142 .db_mask
= ATOM_PDBMSK_OFFSET
,
2143 .spad
= ATOM_SPAD_OFFSET
,
2146 static const struct intel_ntb_alt_reg atom_b2b_reg
= {
2147 .db_bell
= ATOM_B2B_DOORBELL_OFFSET
,
2148 .spad
= ATOM_B2B_SPAD_OFFSET
,
2151 static const struct intel_ntb_xlat_reg atom_sec_xlat
= {
2152 /* FIXME : .bar0_base = ATOM_SBAR0BASE_OFFSET, */
2153 /* FIXME : .bar2_limit = ATOM_SBAR2LMT_OFFSET, */
2154 .bar2_xlat
= ATOM_SBAR2XLAT_OFFSET
,
2157 static const struct intel_ntb_reg xeon_reg
= {
2158 .poll_link
= xeon_poll_link
,
2159 .link_is_up
= xeon_link_is_up
,
2160 .db_ioread
= xeon_db_ioread
,
2161 .db_iowrite
= xeon_db_iowrite
,
2162 .db_size
= sizeof(u32
),
2163 .ntb_ctl
= XEON_NTBCNTL_OFFSET
,
2164 .mw_bar
= {2, 4, 5},
2167 static const struct intel_ntb_alt_reg xeon_pri_reg
= {
2168 .db_bell
= XEON_PDOORBELL_OFFSET
,
2169 .db_mask
= XEON_PDBMSK_OFFSET
,
2170 .spad
= XEON_SPAD_OFFSET
,
2173 static const struct intel_ntb_alt_reg xeon_sec_reg
= {
2174 .db_bell
= XEON_SDOORBELL_OFFSET
,
2175 .db_mask
= XEON_SDBMSK_OFFSET
,
2176 /* second half of the scratchpads */
2177 .spad
= XEON_SPAD_OFFSET
+ (XEON_SPAD_COUNT
<< 1),
2180 static const struct intel_ntb_alt_reg xeon_b2b_reg
= {
2181 .db_bell
= XEON_B2B_DOORBELL_OFFSET
,
2182 .spad
= XEON_B2B_SPAD_OFFSET
,
2185 static const struct intel_ntb_xlat_reg xeon_pri_xlat
= {
2186 /* Note: no primary .bar0_base visible to the secondary side.
2188 * The secondary side cannot get the base address stored in primary
2189 * bars. The base address is necessary to set the limit register to
2190 * any value other than zero, or unlimited.
2192 * WITHOUT THE BASE ADDRESS, THE SECONDARY SIDE CANNOT DISABLE the
2193 * window by setting the limit equal to base, nor can it limit the size
2194 * of the memory window by setting the limit to base + size.
2196 .bar2_limit
= XEON_PBAR23LMT_OFFSET
,
2197 .bar2_xlat
= XEON_PBAR23XLAT_OFFSET
,
2200 static const struct intel_ntb_xlat_reg xeon_sec_xlat
= {
2201 .bar0_base
= XEON_SBAR0BASE_OFFSET
,
2202 .bar2_limit
= XEON_SBAR23LMT_OFFSET
,
2203 .bar2_xlat
= XEON_SBAR23XLAT_OFFSET
,
2206 static struct intel_b2b_addr xeon_b2b_usd_addr
= {
2207 .bar2_addr64
= XEON_B2B_BAR2_ADDR64
,
2208 .bar4_addr64
= XEON_B2B_BAR4_ADDR64
,
2209 .bar4_addr32
= XEON_B2B_BAR4_ADDR32
,
2210 .bar5_addr32
= XEON_B2B_BAR5_ADDR32
,
2213 static struct intel_b2b_addr xeon_b2b_dsd_addr
= {
2214 .bar2_addr64
= XEON_B2B_BAR2_ADDR64
,
2215 .bar4_addr64
= XEON_B2B_BAR4_ADDR64
,
2216 .bar4_addr32
= XEON_B2B_BAR4_ADDR32
,
2217 .bar5_addr32
= XEON_B2B_BAR5_ADDR32
,
2220 /* operations for primary side of local ntb */
2221 static const struct ntb_dev_ops intel_ntb_ops
= {
2222 .mw_count
= intel_ntb_mw_count
,
2223 .mw_get_range
= intel_ntb_mw_get_range
,
2224 .mw_set_trans
= intel_ntb_mw_set_trans
,
2225 .link_is_up
= intel_ntb_link_is_up
,
2226 .link_enable
= intel_ntb_link_enable
,
2227 .link_disable
= intel_ntb_link_disable
,
2228 .db_is_unsafe
= intel_ntb_db_is_unsafe
,
2229 .db_valid_mask
= intel_ntb_db_valid_mask
,
2230 .db_vector_count
= intel_ntb_db_vector_count
,
2231 .db_vector_mask
= intel_ntb_db_vector_mask
,
2232 .db_read
= intel_ntb_db_read
,
2233 .db_clear
= intel_ntb_db_clear
,
2234 .db_set_mask
= intel_ntb_db_set_mask
,
2235 .db_clear_mask
= intel_ntb_db_clear_mask
,
2236 .peer_db_addr
= intel_ntb_peer_db_addr
,
2237 .peer_db_set
= intel_ntb_peer_db_set
,
2238 .spad_is_unsafe
= intel_ntb_spad_is_unsafe
,
2239 .spad_count
= intel_ntb_spad_count
,
2240 .spad_read
= intel_ntb_spad_read
,
2241 .spad_write
= intel_ntb_spad_write
,
2242 .peer_spad_addr
= intel_ntb_peer_spad_addr
,
2243 .peer_spad_read
= intel_ntb_peer_spad_read
,
2244 .peer_spad_write
= intel_ntb_peer_spad_write
,
2247 static const struct file_operations intel_ntb_debugfs_info
= {
2248 .owner
= THIS_MODULE
,
2249 .open
= simple_open
,
2250 .read
= ndev_debugfs_read
,
2253 static const struct pci_device_id intel_ntb_pci_tbl
[] = {
2254 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD
)},
2255 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
)},
2256 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
)},
2257 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
)},
2258 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
)},
2259 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
)},
2260 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_JSF
)},
2261 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_SNB
)},
2262 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_IVT
)},
2263 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_HSX
)},
2264 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_BDX
)},
2265 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_JSF
)},
2266 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_SNB
)},
2267 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_IVT
)},
2268 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_HSX
)},
2269 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_BDX
)},
2272 MODULE_DEVICE_TABLE(pci
, intel_ntb_pci_tbl
);
2274 static struct pci_driver intel_ntb_pci_driver
= {
2275 .name
= KBUILD_MODNAME
,
2276 .id_table
= intel_ntb_pci_tbl
,
2277 .probe
= intel_ntb_pci_probe
,
2278 .remove
= intel_ntb_pci_remove
,
2281 static int __init
intel_ntb_pci_driver_init(void)
2283 pr_info("%s %s\n", NTB_DESC
, NTB_VER
);
2285 if (debugfs_initialized())
2286 debugfs_dir
= debugfs_create_dir(KBUILD_MODNAME
, NULL
);
2288 return pci_register_driver(&intel_ntb_pci_driver
);
2290 module_init(intel_ntb_pci_driver_init
);
2292 static void __exit
intel_ntb_pci_driver_exit(void)
2294 pci_unregister_driver(&intel_ntb_pci_driver
);
2296 debugfs_remove_recursive(debugfs_dir
);
2298 module_exit(intel_ntb_pci_driver_exit
);