2 #include <linux/device.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci_regs.h>
8 #include <linux/sizes.h>
9 #include <linux/slab.h>
10 #include <linux/string.h>
12 /* Max address size we deal with */
13 #define OF_MAX_ADDR_CELLS 4
14 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
17 static struct of_bus
*of_match_bus(struct device_node
*np
);
18 static int __of_address_to_resource(struct device_node
*dev
,
19 const __be32
*addrp
, u64 size
, unsigned int flags
,
20 const char *name
, struct resource
*r
);
24 static void of_dump_addr(const char *s
, const __be32
*addr
, int na
)
26 printk(KERN_DEBUG
"%s", s
);
28 printk(" %08x", be32_to_cpu(*(addr
++)));
32 static void of_dump_addr(const char *s
, const __be32
*addr
, int na
) { }
35 /* Callbacks for bus specific translators */
38 const char *addresses
;
39 int (*match
)(struct device_node
*parent
);
40 void (*count_cells
)(struct device_node
*child
,
41 int *addrc
, int *sizec
);
42 u64 (*map
)(__be32
*addr
, const __be32
*range
,
43 int na
, int ns
, int pna
);
44 int (*translate
)(__be32
*addr
, u64 offset
, int na
);
45 unsigned int (*get_flags
)(const __be32
*addr
);
49 * Default translator (generic bus)
52 static void of_bus_default_count_cells(struct device_node
*dev
,
53 int *addrc
, int *sizec
)
56 *addrc
= of_n_addr_cells(dev
);
58 *sizec
= of_n_size_cells(dev
);
61 static u64
of_bus_default_map(__be32
*addr
, const __be32
*range
,
62 int na
, int ns
, int pna
)
66 cp
= of_read_number(range
, na
);
67 s
= of_read_number(range
+ na
+ pna
, ns
);
68 da
= of_read_number(addr
, na
);
70 pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 (unsigned long long)cp
, (unsigned long long)s
,
72 (unsigned long long)da
);
74 if (da
< cp
|| da
>= (cp
+ s
))
79 static int of_bus_default_translate(__be32
*addr
, u64 offset
, int na
)
81 u64 a
= of_read_number(addr
, na
);
82 memset(addr
, 0, na
* 4);
85 addr
[na
- 2] = cpu_to_be32(a
>> 32);
86 addr
[na
- 1] = cpu_to_be32(a
& 0xffffffffu
);
91 static unsigned int of_bus_default_get_flags(const __be32
*addr
)
93 return IORESOURCE_MEM
;
96 #ifdef CONFIG_OF_ADDRESS_PCI
98 * PCI bus specific translator
101 static int of_bus_pci_match(struct device_node
*np
)
104 * "pciex" is PCI Express
105 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 * "ht" is hypertransport
108 return !strcmp(np
->type
, "pci") || !strcmp(np
->type
, "pciex") ||
109 !strcmp(np
->type
, "vci") || !strcmp(np
->type
, "ht");
112 static void of_bus_pci_count_cells(struct device_node
*np
,
113 int *addrc
, int *sizec
)
121 static unsigned int of_bus_pci_get_flags(const __be32
*addr
)
123 unsigned int flags
= 0;
124 u32 w
= be32_to_cpup(addr
);
126 switch((w
>> 24) & 0x03) {
128 flags
|= IORESOURCE_IO
;
130 case 0x02: /* 32 bits */
131 case 0x03: /* 64 bits */
132 flags
|= IORESOURCE_MEM
;
136 flags
|= IORESOURCE_PREFETCH
;
140 static u64
of_bus_pci_map(__be32
*addr
, const __be32
*range
, int na
, int ns
,
146 af
= of_bus_pci_get_flags(addr
);
147 rf
= of_bus_pci_get_flags(range
);
149 /* Check address type match */
150 if ((af
^ rf
) & (IORESOURCE_MEM
| IORESOURCE_IO
))
153 /* Read address values, skipping high cell */
154 cp
= of_read_number(range
+ 1, na
- 1);
155 s
= of_read_number(range
+ na
+ pna
, ns
);
156 da
= of_read_number(addr
+ 1, na
- 1);
158 pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 (unsigned long long)cp
, (unsigned long long)s
,
160 (unsigned long long)da
);
162 if (da
< cp
|| da
>= (cp
+ s
))
167 static int of_bus_pci_translate(__be32
*addr
, u64 offset
, int na
)
169 return of_bus_default_translate(addr
+ 1, offset
, na
- 1);
171 #endif /* CONFIG_OF_ADDRESS_PCI */
174 const __be32
*of_get_pci_address(struct device_node
*dev
, int bar_no
, u64
*size
,
179 struct device_node
*parent
;
181 int onesize
, i
, na
, ns
;
183 /* Get parent & match bus type */
184 parent
= of_get_parent(dev
);
187 bus
= of_match_bus(parent
);
188 if (strcmp(bus
->name
, "pci")) {
192 bus
->count_cells(dev
, &na
, &ns
);
194 if (!OF_CHECK_ADDR_COUNT(na
))
197 /* Get "reg" or "assigned-addresses" property */
198 prop
= of_get_property(dev
, bus
->addresses
, &psize
);
204 for (i
= 0; psize
>= onesize
; psize
-= onesize
, prop
+= onesize
, i
++) {
205 u32 val
= be32_to_cpu(prop
[0]);
206 if ((val
& 0xff) == ((bar_no
* 4) + PCI_BASE_ADDRESS_0
)) {
208 *size
= of_read_number(prop
+ na
, ns
);
210 *flags
= bus
->get_flags(prop
);
216 EXPORT_SYMBOL(of_get_pci_address
);
218 int of_pci_address_to_resource(struct device_node
*dev
, int bar
,
225 addrp
= of_get_pci_address(dev
, bar
, &size
, &flags
);
228 return __of_address_to_resource(dev
, addrp
, size
, flags
, NULL
, r
);
230 EXPORT_SYMBOL_GPL(of_pci_address_to_resource
);
232 int of_pci_range_parser_init(struct of_pci_range_parser
*parser
,
233 struct device_node
*node
)
235 const int na
= 3, ns
= 2;
239 parser
->pna
= of_n_addr_cells(node
);
240 parser
->np
= parser
->pna
+ na
+ ns
;
242 parser
->range
= of_get_property(node
, "ranges", &rlen
);
243 if (parser
->range
== NULL
)
246 parser
->end
= parser
->range
+ rlen
/ sizeof(__be32
);
250 EXPORT_SYMBOL_GPL(of_pci_range_parser_init
);
252 struct of_pci_range
*of_pci_range_parser_one(struct of_pci_range_parser
*parser
,
253 struct of_pci_range
*range
)
255 const int na
= 3, ns
= 2;
260 if (!parser
->range
|| parser
->range
+ parser
->np
> parser
->end
)
263 range
->pci_space
= parser
->range
[0];
264 range
->flags
= of_bus_pci_get_flags(parser
->range
);
265 range
->pci_addr
= of_read_number(parser
->range
+ 1, ns
);
266 range
->cpu_addr
= of_translate_address(parser
->node
,
268 range
->size
= of_read_number(parser
->range
+ parser
->pna
+ na
, ns
);
270 parser
->range
+= parser
->np
;
272 /* Now consume following elements while they are contiguous */
273 while (parser
->range
+ parser
->np
<= parser
->end
) {
274 u32 flags
, pci_space
;
275 u64 pci_addr
, cpu_addr
, size
;
277 pci_space
= be32_to_cpup(parser
->range
);
278 flags
= of_bus_pci_get_flags(parser
->range
);
279 pci_addr
= of_read_number(parser
->range
+ 1, ns
);
280 cpu_addr
= of_translate_address(parser
->node
,
282 size
= of_read_number(parser
->range
+ parser
->pna
+ na
, ns
);
284 if (flags
!= range
->flags
)
286 if (pci_addr
!= range
->pci_addr
+ range
->size
||
287 cpu_addr
!= range
->cpu_addr
+ range
->size
)
291 parser
->range
+= parser
->np
;
296 EXPORT_SYMBOL_GPL(of_pci_range_parser_one
);
299 * of_pci_range_to_resource - Create a resource from an of_pci_range
300 * @range: the PCI range that describes the resource
301 * @np: device node where the range belongs to
302 * @res: pointer to a valid resource that will be updated to
303 * reflect the values contained in the range.
305 * Returns EINVAL if the range cannot be converted to resource.
307 * Note that if the range is an IO range, the resource will be converted
308 * using pci_address_to_pio() which can fail if it is called too early or
309 * if the range cannot be matched to any host bridge IO space (our case here).
310 * To guard against that we try to register the IO range first.
311 * If that fails we know that pci_address_to_pio() will do too.
313 int of_pci_range_to_resource(struct of_pci_range
*range
,
314 struct device_node
*np
, struct resource
*res
)
317 res
->flags
= range
->flags
;
318 res
->parent
= res
->child
= res
->sibling
= NULL
;
319 res
->name
= np
->full_name
;
321 if (res
->flags
& IORESOURCE_IO
) {
323 err
= pci_register_io_range(range
->cpu_addr
, range
->size
);
326 port
= pci_address_to_pio(range
->cpu_addr
);
327 if (port
== (unsigned long)-1) {
333 if ((sizeof(resource_size_t
) < 8) &&
334 upper_32_bits(range
->cpu_addr
)) {
339 res
->start
= range
->cpu_addr
;
341 res
->end
= res
->start
+ range
->size
- 1;
345 res
->start
= (resource_size_t
)OF_BAD_ADDR
;
346 res
->end
= (resource_size_t
)OF_BAD_ADDR
;
349 #endif /* CONFIG_PCI */
352 * ISA bus specific translator
355 static int of_bus_isa_match(struct device_node
*np
)
357 return !strcmp(np
->name
, "isa");
360 static void of_bus_isa_count_cells(struct device_node
*child
,
361 int *addrc
, int *sizec
)
369 static u64
of_bus_isa_map(__be32
*addr
, const __be32
*range
, int na
, int ns
,
374 /* Check address type match */
375 if ((addr
[0] ^ range
[0]) & cpu_to_be32(1))
378 /* Read address values, skipping high cell */
379 cp
= of_read_number(range
+ 1, na
- 1);
380 s
= of_read_number(range
+ na
+ pna
, ns
);
381 da
= of_read_number(addr
+ 1, na
- 1);
383 pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
384 (unsigned long long)cp
, (unsigned long long)s
,
385 (unsigned long long)da
);
387 if (da
< cp
|| da
>= (cp
+ s
))
392 static int of_bus_isa_translate(__be32
*addr
, u64 offset
, int na
)
394 return of_bus_default_translate(addr
+ 1, offset
, na
- 1);
397 static unsigned int of_bus_isa_get_flags(const __be32
*addr
)
399 unsigned int flags
= 0;
400 u32 w
= be32_to_cpup(addr
);
403 flags
|= IORESOURCE_IO
;
405 flags
|= IORESOURCE_MEM
;
410 * Array of bus specific translators
413 static struct of_bus of_busses
[] = {
414 #ifdef CONFIG_OF_ADDRESS_PCI
418 .addresses
= "assigned-addresses",
419 .match
= of_bus_pci_match
,
420 .count_cells
= of_bus_pci_count_cells
,
421 .map
= of_bus_pci_map
,
422 .translate
= of_bus_pci_translate
,
423 .get_flags
= of_bus_pci_get_flags
,
425 #endif /* CONFIG_OF_ADDRESS_PCI */
430 .match
= of_bus_isa_match
,
431 .count_cells
= of_bus_isa_count_cells
,
432 .map
= of_bus_isa_map
,
433 .translate
= of_bus_isa_translate
,
434 .get_flags
= of_bus_isa_get_flags
,
441 .count_cells
= of_bus_default_count_cells
,
442 .map
= of_bus_default_map
,
443 .translate
= of_bus_default_translate
,
444 .get_flags
= of_bus_default_get_flags
,
448 static struct of_bus
*of_match_bus(struct device_node
*np
)
452 for (i
= 0; i
< ARRAY_SIZE(of_busses
); i
++)
453 if (!of_busses
[i
].match
|| of_busses
[i
].match(np
))
454 return &of_busses
[i
];
459 static int of_empty_ranges_quirk(struct device_node
*np
)
461 if (IS_ENABLED(CONFIG_PPC
)) {
462 /* To save cycles, we cache the result for global "Mac" setting */
463 static int quirk_state
= -1;
465 /* PA-SEMI sdc DT bug */
466 if (of_device_is_compatible(np
, "1682m-sdc"))
469 /* Make quirk cached */
472 of_machine_is_compatible("Power Macintosh") ||
473 of_machine_is_compatible("MacRISC");
479 static int of_translate_one(struct device_node
*parent
, struct of_bus
*bus
,
480 struct of_bus
*pbus
, __be32
*addr
,
481 int na
, int ns
, int pna
, const char *rprop
)
483 const __be32
*ranges
;
486 u64 offset
= OF_BAD_ADDR
;
489 * Normally, an absence of a "ranges" property means we are
490 * crossing a non-translatable boundary, and thus the addresses
491 * below the current cannot be converted to CPU physical ones.
492 * Unfortunately, while this is very clear in the spec, it's not
493 * what Apple understood, and they do have things like /uni-n or
494 * /ht nodes with no "ranges" property and a lot of perfectly
495 * useable mapped devices below them. Thus we treat the absence of
496 * "ranges" as equivalent to an empty "ranges" property which means
497 * a 1:1 translation at that level. It's up to the caller not to try
498 * to translate addresses that aren't supposed to be translated in
499 * the first place. --BenH.
501 * As far as we know, this damage only exists on Apple machines, so
502 * This code is only enabled on powerpc. --gcl
504 ranges
= of_get_property(parent
, rprop
, &rlen
);
505 if (ranges
== NULL
&& !of_empty_ranges_quirk(parent
)) {
506 pr_debug("OF: no ranges; cannot translate\n");
509 if (ranges
== NULL
|| rlen
== 0) {
510 offset
= of_read_number(addr
, na
);
511 memset(addr
, 0, pna
* 4);
512 pr_debug("OF: empty ranges; 1:1 translation\n");
516 pr_debug("OF: walking ranges...\n");
518 /* Now walk through the ranges */
520 rone
= na
+ pna
+ ns
;
521 for (; rlen
>= rone
; rlen
-= rone
, ranges
+= rone
) {
522 offset
= bus
->map(addr
, ranges
, na
, ns
, pna
);
523 if (offset
!= OF_BAD_ADDR
)
526 if (offset
== OF_BAD_ADDR
) {
527 pr_debug("OF: not found !\n");
530 memcpy(addr
, ranges
+ na
, 4 * pna
);
533 of_dump_addr("OF: parent translation for:", addr
, pna
);
534 pr_debug("OF: with offset: %llx\n", (unsigned long long)offset
);
536 /* Translate it into parent bus space */
537 return pbus
->translate(addr
, offset
, pna
);
541 * Translate an address from the device-tree into a CPU physical address,
542 * this walks up the tree and applies the various bus mappings on the
545 * Note: We consider that crossing any level with #size-cells == 0 to mean
546 * that translation is impossible (that is we are not dealing with a value
547 * that can be mapped to a cpu physical address). This is not really specified
548 * that way, but this is traditionally the way IBM at least do things
550 static u64
__of_translate_address(struct device_node
*dev
,
551 const __be32
*in_addr
, const char *rprop
)
553 struct device_node
*parent
= NULL
;
554 struct of_bus
*bus
, *pbus
;
555 __be32 addr
[OF_MAX_ADDR_CELLS
];
556 int na
, ns
, pna
, pns
;
557 u64 result
= OF_BAD_ADDR
;
559 pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev
));
561 /* Increase refcount at current level */
564 /* Get parent & match bus type */
565 parent
= of_get_parent(dev
);
568 bus
= of_match_bus(parent
);
570 /* Count address cells & copy address locally */
571 bus
->count_cells(dev
, &na
, &ns
);
572 if (!OF_CHECK_COUNTS(na
, ns
)) {
573 pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev
));
576 memcpy(addr
, in_addr
, na
* 4);
578 pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
579 bus
->name
, na
, ns
, of_node_full_name(parent
));
580 of_dump_addr("OF: translating address:", addr
, na
);
584 /* Switch to parent bus */
587 parent
= of_get_parent(dev
);
589 /* If root, we have finished */
590 if (parent
== NULL
) {
591 pr_debug("OF: reached root node\n");
592 result
= of_read_number(addr
, na
);
596 /* Get new parent bus and counts */
597 pbus
= of_match_bus(parent
);
598 pbus
->count_cells(dev
, &pna
, &pns
);
599 if (!OF_CHECK_COUNTS(pna
, pns
)) {
600 printk(KERN_ERR
"prom_parse: Bad cell count for %s\n",
601 of_node_full_name(dev
));
605 pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
606 pbus
->name
, pna
, pns
, of_node_full_name(parent
));
608 /* Apply bus translation */
609 if (of_translate_one(dev
, bus
, pbus
, addr
, na
, ns
, pna
, rprop
))
612 /* Complete the move up one level */
617 of_dump_addr("OF: one level translation:", addr
, na
);
626 u64
of_translate_address(struct device_node
*dev
, const __be32
*in_addr
)
628 return __of_translate_address(dev
, in_addr
, "ranges");
630 EXPORT_SYMBOL(of_translate_address
);
632 u64
of_translate_dma_address(struct device_node
*dev
, const __be32
*in_addr
)
634 return __of_translate_address(dev
, in_addr
, "dma-ranges");
636 EXPORT_SYMBOL(of_translate_dma_address
);
638 const __be32
*of_get_address(struct device_node
*dev
, int index
, u64
*size
,
643 struct device_node
*parent
;
645 int onesize
, i
, na
, ns
;
647 /* Get parent & match bus type */
648 parent
= of_get_parent(dev
);
651 bus
= of_match_bus(parent
);
652 bus
->count_cells(dev
, &na
, &ns
);
654 if (!OF_CHECK_ADDR_COUNT(na
))
657 /* Get "reg" or "assigned-addresses" property */
658 prop
= of_get_property(dev
, bus
->addresses
, &psize
);
664 for (i
= 0; psize
>= onesize
; psize
-= onesize
, prop
+= onesize
, i
++)
667 *size
= of_read_number(prop
+ na
, ns
);
669 *flags
= bus
->get_flags(prop
);
674 EXPORT_SYMBOL(of_get_address
);
678 struct list_head list
;
680 resource_size_t size
;
683 static LIST_HEAD(io_range_list
);
684 static DEFINE_SPINLOCK(io_range_lock
);
688 * Record the PCI IO range (expressed as CPU physical address + size).
689 * Return a negative value if an error has occured, zero otherwise
691 int __weak
pci_register_io_range(phys_addr_t addr
, resource_size_t size
)
696 struct io_range
*range
;
697 resource_size_t allocated_size
= 0;
699 /* check if the range hasn't been previously recorded */
700 spin_lock(&io_range_lock
);
701 list_for_each_entry(range
, &io_range_list
, list
) {
702 if (addr
>= range
->start
&& addr
+ size
<= range
->start
+ size
) {
703 /* range already registered, bail out */
706 allocated_size
+= range
->size
;
709 /* range not registed yet, check for available space */
710 if (allocated_size
+ size
- 1 > IO_SPACE_LIMIT
) {
711 /* if it's too big check if 64K space can be reserved */
712 if (allocated_size
+ SZ_64K
- 1 > IO_SPACE_LIMIT
) {
718 pr_warn("Requested IO range too big, new size set to 64K\n");
721 /* add the range to the list */
722 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
731 list_add_tail(&range
->list
, &io_range_list
);
734 spin_unlock(&io_range_lock
);
740 phys_addr_t
pci_pio_to_address(unsigned long pio
)
742 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
745 struct io_range
*range
;
746 resource_size_t allocated_size
= 0;
748 if (pio
> IO_SPACE_LIMIT
)
751 spin_lock(&io_range_lock
);
752 list_for_each_entry(range
, &io_range_list
, list
) {
753 if (pio
>= allocated_size
&& pio
< allocated_size
+ range
->size
) {
754 address
= range
->start
+ pio
- allocated_size
;
757 allocated_size
+= range
->size
;
759 spin_unlock(&io_range_lock
);
765 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
768 struct io_range
*res
;
769 resource_size_t offset
= 0;
770 unsigned long addr
= -1;
772 spin_lock(&io_range_lock
);
773 list_for_each_entry(res
, &io_range_list
, list
) {
774 if (address
>= res
->start
&& address
< res
->start
+ res
->size
) {
775 addr
= address
- res
->start
+ offset
;
780 spin_unlock(&io_range_lock
);
784 if (address
> IO_SPACE_LIMIT
)
785 return (unsigned long)-1;
787 return (unsigned long) address
;
791 static int __of_address_to_resource(struct device_node
*dev
,
792 const __be32
*addrp
, u64 size
, unsigned int flags
,
793 const char *name
, struct resource
*r
)
797 if ((flags
& (IORESOURCE_IO
| IORESOURCE_MEM
)) == 0)
799 taddr
= of_translate_address(dev
, addrp
);
800 if (taddr
== OF_BAD_ADDR
)
802 memset(r
, 0, sizeof(struct resource
));
803 if (flags
& IORESOURCE_IO
) {
805 port
= pci_address_to_pio(taddr
);
806 if (port
== (unsigned long)-1)
809 r
->end
= port
+ size
- 1;
812 r
->end
= taddr
+ size
- 1;
815 r
->name
= name
? name
: dev
->full_name
;
821 * of_address_to_resource - Translate device tree address and return as resource
823 * Note that if your address is a PIO address, the conversion will fail if
824 * the physical address can't be internally converted to an IO token with
825 * pci_address_to_pio(), that is because it's either called to early or it
826 * can't be matched to any host bridge IO space
828 int of_address_to_resource(struct device_node
*dev
, int index
,
834 const char *name
= NULL
;
836 addrp
= of_get_address(dev
, index
, &size
, &flags
);
840 /* Get optional "reg-names" property to add a name to a resource */
841 of_property_read_string_index(dev
, "reg-names", index
, &name
);
843 return __of_address_to_resource(dev
, addrp
, size
, flags
, name
, r
);
845 EXPORT_SYMBOL_GPL(of_address_to_resource
);
847 struct device_node
*of_find_matching_node_by_address(struct device_node
*from
,
848 const struct of_device_id
*matches
,
851 struct device_node
*dn
= of_find_matching_node(from
, matches
);
855 if (!of_address_to_resource(dn
, 0, &res
) &&
856 res
.start
== base_address
)
859 dn
= of_find_matching_node(dn
, matches
);
867 * of_iomap - Maps the memory mapped IO for a given device_node
868 * @device: the device whose io range will be mapped
869 * @index: index of the io range
871 * Returns a pointer to the mapped memory
873 void __iomem
*of_iomap(struct device_node
*np
, int index
)
877 if (of_address_to_resource(np
, index
, &res
))
880 return ioremap(res
.start
, resource_size(&res
));
882 EXPORT_SYMBOL(of_iomap
);
885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
886 * for a given device_node
887 * @device: the device whose io range will be mapped
888 * @index: index of the io range
889 * @name: name of the resource
891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
892 * error code on failure. Usage example:
894 * base = of_io_request_and_map(node, 0, "foo");
896 * return PTR_ERR(base);
898 void __iomem
*of_io_request_and_map(struct device_node
*np
, int index
,
904 if (of_address_to_resource(np
, index
, &res
))
905 return IOMEM_ERR_PTR(-EINVAL
);
907 if (!request_mem_region(res
.start
, resource_size(&res
), name
))
908 return IOMEM_ERR_PTR(-EBUSY
);
910 mem
= ioremap(res
.start
, resource_size(&res
));
912 release_mem_region(res
.start
, resource_size(&res
));
913 return IOMEM_ERR_PTR(-ENOMEM
);
918 EXPORT_SYMBOL(of_io_request_and_map
);
921 * of_dma_get_range - Get DMA range info
922 * @np: device node to get DMA range info
923 * @dma_addr: pointer to store initial DMA address of DMA range
924 * @paddr: pointer to store initial CPU address of DMA range
925 * @size: pointer to store size of DMA range
927 * Look in bottom up direction for the first "dma-ranges" property
930 * DMA addr (dma_addr) : naddr cells
931 * CPU addr (phys_addr_t) : pna cells
934 * It returns -ENODEV if "dma-ranges" property was not found
935 * for this device in DT.
937 int of_dma_get_range(struct device_node
*np
, u64
*dma_addr
, u64
*paddr
, u64
*size
)
939 struct device_node
*node
= of_node_get(np
);
940 const __be32
*ranges
= NULL
;
941 int len
, naddr
, nsize
, pna
;
949 naddr
= of_n_addr_cells(node
);
950 nsize
= of_n_size_cells(node
);
951 node
= of_get_next_parent(node
);
955 ranges
= of_get_property(node
, "dma-ranges", &len
);
957 /* Ignore empty ranges, they imply no translation required */
958 if (ranges
&& len
> 0)
962 * At least empty ranges has to be defined for parent node if
970 pr_debug("%s: no dma-ranges found for node(%s)\n",
971 __func__
, np
->full_name
);
978 pna
= of_n_addr_cells(node
);
980 /* dma-ranges format:
981 * DMA addr : naddr cells
982 * CPU addr : pna cells
985 dmaaddr
= of_read_number(ranges
, naddr
);
986 *paddr
= of_translate_dma_address(np
, ranges
);
987 if (*paddr
== OF_BAD_ADDR
) {
988 pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
989 __func__
, dma_addr
, np
->full_name
);
995 *size
= of_read_number(ranges
+ naddr
+ pna
, nsize
);
997 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
998 *dma_addr
, *paddr
, *size
);
1005 EXPORT_SYMBOL_GPL(of_dma_get_range
);
1008 * of_dma_is_coherent - Check if device is coherent
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1014 bool of_dma_is_coherent(struct device_node
*np
)
1016 struct device_node
*node
= of_node_get(np
);
1019 if (of_property_read_bool(node
, "dma-coherent")) {
1023 node
= of_get_next_parent(node
);
1028 EXPORT_SYMBOL_GPL(of_dma_is_coherent
);