2 * CXL Flash Device Driver
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7 * Copyright (C) 2015 IBM Corporation
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
20 #include <asm/unaligned.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME
);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
38 * cmd_checkout() - checks out an AFU command
39 * @afu: AFU to checkout from.
41 * Commands are checked out in a round-robin fashion. Note that since
42 * the command pool is larger than the hardware queue, the majority of
43 * times we will only loop once or twice before getting a command. The
44 * buffer and CDB within the command are initialized (zeroed) prior to
47 * Return: The checked out command or NULL when command pool is empty.
49 static struct afu_cmd
*cmd_checkout(struct afu
*afu
)
51 int k
, dec
= CXLFLASH_NUM_CMDS
;
55 k
= (afu
->cmd_couts
++ & (CXLFLASH_NUM_CMDS
- 1));
59 if (!atomic_dec_if_positive(&cmd
->free
)) {
60 pr_devel("%s: returning found index=%d cmd=%p\n",
61 __func__
, cmd
->slot
, cmd
);
62 memset(cmd
->buf
, 0, CMD_BUFSIZE
);
63 memset(cmd
->rcb
.cdb
, 0, sizeof(cmd
->rcb
.cdb
));
72 * cmd_checkin() - checks in an AFU command
73 * @cmd: AFU command to checkin.
75 * Safe to pass commands that have already been checked in. Several
76 * internal tracking fields are reset as part of the checkin. Note
77 * that these are intentionally reset prior to toggling the free bit
78 * to avoid clobbering values in the event that the command is checked
81 static void cmd_checkin(struct afu_cmd
*cmd
)
87 cmd
->sa
.host_use
[0] = 0; /* clears both completion and retry bytes */
89 if (unlikely(atomic_inc_return(&cmd
->free
) != 1)) {
90 pr_err("%s: Freeing cmd (%d) that is not in use!\n",
95 pr_devel("%s: released cmd %p index=%d\n", __func__
, cmd
, cmd
->slot
);
99 * process_cmd_err() - command error handler
100 * @cmd: AFU command that experienced the error.
101 * @scp: SCSI command associated with the AFU command in error.
103 * Translates error bits from AFU command to SCSI command results.
105 static void process_cmd_err(struct afu_cmd
*cmd
, struct scsi_cmnd
*scp
)
107 struct sisl_ioarcb
*ioarcb
;
108 struct sisl_ioasa
*ioasa
;
114 ioarcb
= &(cmd
->rcb
);
117 if (ioasa
->rc
.flags
& SISL_RC_FLAGS_UNDERRUN
) {
118 resid
= ioasa
->resid
;
119 scsi_set_resid(scp
, resid
);
120 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
121 __func__
, cmd
, scp
, resid
);
124 if (ioasa
->rc
.flags
& SISL_RC_FLAGS_OVERRUN
) {
125 pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
127 scp
->result
= (DID_ERROR
<< 16);
130 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
131 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
132 __func__
, ioasa
->rc
.afu_rc
, ioasa
->rc
.scsi_rc
,
133 ioasa
->rc
.fc_rc
, ioasa
->afu_extra
, ioasa
->scsi_extra
,
136 if (ioasa
->rc
.scsi_rc
) {
137 /* We have a SCSI status */
138 if (ioasa
->rc
.flags
& SISL_RC_FLAGS_SENSE_VALID
) {
139 memcpy(scp
->sense_buffer
, ioasa
->sense_data
,
140 SISL_SENSE_DATA_LEN
);
141 scp
->result
= ioasa
->rc
.scsi_rc
;
143 scp
->result
= ioasa
->rc
.scsi_rc
| (DID_ERROR
<< 16);
147 * We encountered an error. Set scp->result based on nature
150 if (ioasa
->rc
.fc_rc
) {
151 /* We have an FC status */
152 switch (ioasa
->rc
.fc_rc
) {
153 case SISL_FC_RC_LINKDOWN
:
154 scp
->result
= (DID_REQUEUE
<< 16);
156 case SISL_FC_RC_RESID
:
157 /* This indicates an FCP resid underrun */
158 if (!(ioasa
->rc
.flags
& SISL_RC_FLAGS_OVERRUN
)) {
159 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
160 * then we will handle this error else where.
161 * If not then we must handle it here.
162 * This is probably an AFU bug.
164 scp
->result
= (DID_ERROR
<< 16);
167 case SISL_FC_RC_RESIDERR
:
168 /* Resid mismatch between adapter and device */
169 case SISL_FC_RC_TGTABORT
:
170 case SISL_FC_RC_ABORTOK
:
171 case SISL_FC_RC_ABORTFAIL
:
172 case SISL_FC_RC_NOLOGI
:
173 case SISL_FC_RC_ABORTPEND
:
174 case SISL_FC_RC_WRABORTPEND
:
175 case SISL_FC_RC_NOEXP
:
176 case SISL_FC_RC_INUSE
:
177 scp
->result
= (DID_ERROR
<< 16);
182 if (ioasa
->rc
.afu_rc
) {
183 /* We have an AFU error */
184 switch (ioasa
->rc
.afu_rc
) {
185 case SISL_AFU_RC_NO_CHANNELS
:
186 scp
->result
= (DID_NO_CONNECT
<< 16);
188 case SISL_AFU_RC_DATA_DMA_ERR
:
189 switch (ioasa
->afu_extra
) {
190 case SISL_AFU_DMA_ERR_PAGE_IN
:
192 scp
->result
= (DID_IMM_RETRY
<< 16);
194 case SISL_AFU_DMA_ERR_INVALID_EA
:
196 scp
->result
= (DID_ERROR
<< 16);
199 case SISL_AFU_RC_OUT_OF_DATA_BUFS
:
201 scp
->result
= (DID_ALLOC_FAILURE
<< 16);
204 scp
->result
= (DID_ERROR
<< 16);
210 * cmd_complete() - command completion handler
211 * @cmd: AFU command that has completed.
213 * Prepares and submits command that has either completed or timed out to
214 * the SCSI stack. Checks AFU command back into command pool for non-internal
215 * (rcb.scp populated) commands.
217 static void cmd_complete(struct afu_cmd
*cmd
)
219 struct scsi_cmnd
*scp
;
221 struct afu
*afu
= cmd
->parent
;
222 struct cxlflash_cfg
*cfg
= afu
->parent
;
225 spin_lock_irqsave(&cmd
->slock
, lock_flags
);
226 cmd
->sa
.host_use_b
[0] |= B_DONE
;
227 spin_unlock_irqrestore(&cmd
->slock
, lock_flags
);
231 if (unlikely(cmd
->sa
.ioasc
))
232 process_cmd_err(cmd
, scp
);
234 scp
->result
= (DID_OK
<< 16);
236 cmd_is_tmf
= cmd
->cmd_tmf
;
237 cmd_checkin(cmd
); /* Don't use cmd after here */
239 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
240 "ioasc=%d\n", __func__
, scp
, scp
->result
,
247 spin_lock_irqsave(&cfg
->tmf_slock
, lock_flags
);
248 cfg
->tmf_active
= false;
249 wake_up_all_locked(&cfg
->tmf_waitq
);
250 spin_unlock_irqrestore(&cfg
->tmf_slock
, lock_flags
);
253 complete(&cmd
->cevent
);
257 * context_reset() - timeout handler for AFU commands
258 * @cmd: AFU command that timed out.
260 * Sends a reset to the AFU.
262 static void context_reset(struct afu_cmd
*cmd
)
267 struct afu
*afu
= cmd
->parent
;
270 pr_debug("%s: cmd=%p\n", __func__
, cmd
);
272 spin_lock_irqsave(&cmd
->slock
, lock_flags
);
274 /* Already completed? */
275 if (cmd
->sa
.host_use_b
[0] & B_DONE
) {
276 spin_unlock_irqrestore(&cmd
->slock
, lock_flags
);
280 cmd
->sa
.host_use_b
[0] |= (B_DONE
| B_ERROR
| B_TIMEOUT
);
281 spin_unlock_irqrestore(&cmd
->slock
, lock_flags
);
284 * We really want to send this reset at all costs, so spread
285 * out wait time on successive retries for available room.
288 room
= readq_be(&afu
->host_map
->cmd_room
);
289 atomic64_set(&afu
->room
, room
);
293 } while (nretry
++ < MC_ROOM_RETRY_CNT
);
295 pr_err("%s: no cmd_room to send reset\n", __func__
);
300 writeq_be(rrin
, &afu
->host_map
->ioarrin
);
302 rrin
= readq_be(&afu
->host_map
->ioarrin
);
305 /* Double delay each time */
307 } while (nretry
++ < MC_ROOM_RETRY_CNT
);
311 * send_cmd() - sends an AFU command
312 * @afu: AFU associated with the host.
313 * @cmd: AFU command to send.
316 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
318 static int send_cmd(struct afu
*afu
, struct afu_cmd
*cmd
)
320 struct cxlflash_cfg
*cfg
= afu
->parent
;
321 struct device
*dev
= &cfg
->dev
->dev
;
328 * This routine is used by critical users such an AFU sync and to
329 * send a task management function (TMF). Thus we want to retry a
330 * bit before returning an error. To avoid the performance penalty
331 * of MMIO, we spread the update of 'room' over multiple commands.
334 newval
= atomic64_dec_if_positive(&afu
->room
);
337 room
= readq_be(&afu
->host_map
->cmd_room
);
338 atomic64_set(&afu
->room
, room
);
342 } while (nretry
++ < MC_ROOM_RETRY_CNT
);
344 dev_err(dev
, "%s: no cmd_room to send 0x%X\n",
345 __func__
, cmd
->rcb
.cdb
[0]);
348 } else if (unlikely(newval
< 0)) {
349 /* This should be rare. i.e. Only if two threads race and
350 * decrement before the MMIO read is done. In this case
351 * just benefit from the other thread having updated
354 if (nretry
++ < MC_ROOM_RETRY_CNT
) {
363 writeq_be((u64
)&cmd
->rcb
, &afu
->host_map
->ioarrin
);
365 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__
, cmd
,
366 cmd
->rcb
.data_len
, (void *)cmd
->rcb
.data_ea
, rc
);
370 afu
->read_room
= true;
371 schedule_work(&cfg
->work_q
);
372 rc
= SCSI_MLQUEUE_HOST_BUSY
;
377 * wait_resp() - polls for a response or timeout to a sent AFU command
378 * @afu: AFU associated with the host.
379 * @cmd: AFU command that was sent.
381 static void wait_resp(struct afu
*afu
, struct afu_cmd
*cmd
)
383 ulong timeout
= msecs_to_jiffies(cmd
->rcb
.timeout
* 2 * 1000);
385 timeout
= wait_for_completion_timeout(&cmd
->cevent
, timeout
);
389 if (unlikely(cmd
->sa
.ioasc
!= 0))
390 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
391 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__
, cmd
->rcb
.cdb
[0],
392 cmd
->sa
.rc
.flags
, cmd
->sa
.rc
.afu_rc
, cmd
->sa
.rc
.scsi_rc
,
397 * send_tmf() - sends a Task Management Function (TMF)
398 * @afu: AFU to checkout from.
399 * @scp: SCSI command from stack.
400 * @tmfcmd: TMF command to send.
403 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
405 static int send_tmf(struct afu
*afu
, struct scsi_cmnd
*scp
, u64 tmfcmd
)
409 u32 port_sel
= scp
->device
->channel
+ 1;
411 struct Scsi_Host
*host
= scp
->device
->host
;
412 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)host
->hostdata
;
413 struct device
*dev
= &cfg
->dev
->dev
;
418 cmd
= cmd_checkout(afu
);
419 if (unlikely(!cmd
)) {
420 dev_err(dev
, "%s: could not get a free command\n", __func__
);
421 rc
= SCSI_MLQUEUE_HOST_BUSY
;
425 /* When Task Management Function is active do not send another */
426 spin_lock_irqsave(&cfg
->tmf_slock
, lock_flags
);
428 wait_event_interruptible_lock_irq(cfg
->tmf_waitq
,
431 cfg
->tmf_active
= true;
433 spin_unlock_irqrestore(&cfg
->tmf_slock
, lock_flags
);
435 cmd
->rcb
.ctx_id
= afu
->ctx_hndl
;
436 cmd
->rcb
.port_sel
= port_sel
;
437 cmd
->rcb
.lun_id
= lun_to_lunid(scp
->device
->lun
);
439 lflag
= SISL_REQ_FLAGS_TMF_CMD
;
441 cmd
->rcb
.req_flags
= (SISL_REQ_FLAGS_PORT_LUN_ID
|
442 SISL_REQ_FLAGS_SUP_UNDERRUN
| lflag
);
444 /* Stash the scp in the reserved field, for reuse during interrupt */
447 /* Copy the CDB from the cmd passed in */
448 memcpy(cmd
->rcb
.cdb
, &tmfcmd
, sizeof(tmfcmd
));
450 /* Send the command */
451 rc
= send_cmd(afu
, cmd
);
454 spin_lock_irqsave(&cfg
->tmf_slock
, lock_flags
);
455 cfg
->tmf_active
= false;
456 spin_unlock_irqrestore(&cfg
->tmf_slock
, lock_flags
);
460 spin_lock_irqsave(&cfg
->tmf_slock
, lock_flags
);
461 to
= msecs_to_jiffies(5000);
462 to
= wait_event_interruptible_lock_irq_timeout(cfg
->tmf_waitq
,
467 cfg
->tmf_active
= false;
468 dev_err(dev
, "%s: TMF timed out!\n", __func__
);
471 spin_unlock_irqrestore(&cfg
->tmf_slock
, lock_flags
);
477 * cxlflash_driver_info() - information handler for this host driver
478 * @host: SCSI host associated with device.
480 * Return: A string describing the device.
482 static const char *cxlflash_driver_info(struct Scsi_Host
*host
)
484 return CXLFLASH_ADAPTER_NAME
;
488 * cxlflash_queuecommand() - sends a mid-layer request
489 * @host: SCSI host associated with device.
490 * @scp: SCSI command to send.
492 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
494 static int cxlflash_queuecommand(struct Scsi_Host
*host
, struct scsi_cmnd
*scp
)
496 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)host
->hostdata
;
497 struct afu
*afu
= cfg
->afu
;
498 struct device
*dev
= &cfg
->dev
->dev
;
500 u32 port_sel
= scp
->device
->channel
+ 1;
502 struct scatterlist
*sg
;
507 dev_dbg_ratelimited(dev
, "%s: (scp=%p) %d/%d/%d/%llu "
508 "cdb=(%08X-%08X-%08X-%08X)\n",
509 __func__
, scp
, host
->host_no
, scp
->device
->channel
,
510 scp
->device
->id
, scp
->device
->lun
,
511 get_unaligned_be32(&((u32
*)scp
->cmnd
)[0]),
512 get_unaligned_be32(&((u32
*)scp
->cmnd
)[1]),
513 get_unaligned_be32(&((u32
*)scp
->cmnd
)[2]),
514 get_unaligned_be32(&((u32
*)scp
->cmnd
)[3]));
517 * If a Task Management Function is active, wait for it to complete
518 * before continuing with regular commands.
520 spin_lock_irqsave(&cfg
->tmf_slock
, lock_flags
);
521 if (cfg
->tmf_active
) {
522 spin_unlock_irqrestore(&cfg
->tmf_slock
, lock_flags
);
523 rc
= SCSI_MLQUEUE_HOST_BUSY
;
526 spin_unlock_irqrestore(&cfg
->tmf_slock
, lock_flags
);
528 switch (cfg
->state
) {
530 dev_dbg_ratelimited(dev
, "%s: device is in reset!\n", __func__
);
531 rc
= SCSI_MLQUEUE_HOST_BUSY
;
534 dev_dbg_ratelimited(dev
, "%s: device has failed!\n", __func__
);
535 scp
->result
= (DID_NO_CONNECT
<< 16);
543 cmd
= cmd_checkout(afu
);
544 if (unlikely(!cmd
)) {
545 dev_err(dev
, "%s: could not get a free command\n", __func__
);
546 rc
= SCSI_MLQUEUE_HOST_BUSY
;
550 cmd
->rcb
.ctx_id
= afu
->ctx_hndl
;
551 cmd
->rcb
.port_sel
= port_sel
;
552 cmd
->rcb
.lun_id
= lun_to_lunid(scp
->device
->lun
);
554 if (scp
->sc_data_direction
== DMA_TO_DEVICE
)
555 lflag
= SISL_REQ_FLAGS_HOST_WRITE
;
557 lflag
= SISL_REQ_FLAGS_HOST_READ
;
559 cmd
->rcb
.req_flags
= (SISL_REQ_FLAGS_PORT_LUN_ID
|
560 SISL_REQ_FLAGS_SUP_UNDERRUN
| lflag
);
562 /* Stash the scp in the reserved field, for reuse during interrupt */
565 nseg
= scsi_dma_map(scp
);
566 if (unlikely(nseg
< 0)) {
567 dev_err(dev
, "%s: Fail DMA map! nseg=%d\n",
569 rc
= SCSI_MLQUEUE_HOST_BUSY
;
573 ncount
= scsi_sg_count(scp
);
574 scsi_for_each_sg(scp
, sg
, ncount
, i
) {
575 cmd
->rcb
.data_len
= sg_dma_len(sg
);
576 cmd
->rcb
.data_ea
= sg_dma_address(sg
);
579 /* Copy the CDB from the scsi_cmnd passed in */
580 memcpy(cmd
->rcb
.cdb
, scp
->cmnd
, sizeof(cmd
->rcb
.cdb
));
582 /* Send the command */
583 rc
= send_cmd(afu
, cmd
);
590 pr_devel("%s: returning rc=%d\n", __func__
, rc
);
595 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
596 * @cfg: Internal structure associated with the host.
598 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg
*cfg
)
600 struct pci_dev
*pdev
= cfg
->dev
;
602 if (pci_channel_offline(pdev
))
603 wait_event_timeout(cfg
->reset_waitq
,
604 !pci_channel_offline(pdev
),
605 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT
);
609 * free_mem() - free memory associated with the AFU
610 * @cfg: Internal structure associated with the host.
612 static void free_mem(struct cxlflash_cfg
*cfg
)
616 struct afu
*afu
= cfg
->afu
;
619 for (i
= 0; i
< CXLFLASH_NUM_CMDS
; i
++) {
620 buf
= afu
->cmd
[i
].buf
;
621 if (!((u64
)buf
& (PAGE_SIZE
- 1)))
622 free_page((ulong
)buf
);
625 free_pages((ulong
)afu
, get_order(sizeof(struct afu
)));
631 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
632 * @cfg: Internal structure associated with the host.
634 * Safe to call with AFU in a partially allocated/initialized state.
636 static void stop_afu(struct cxlflash_cfg
*cfg
)
639 struct afu
*afu
= cfg
->afu
;
642 for (i
= 0; i
< CXLFLASH_NUM_CMDS
; i
++)
643 complete(&afu
->cmd
[i
].cevent
);
645 if (likely(afu
->afu_map
)) {
646 cxl_psa_unmap((void __iomem
*)afu
->afu_map
);
653 * term_mc() - terminates the master context
654 * @cfg: Internal structure associated with the host.
655 * @level: Depth of allocation, where to begin waterfall tear down.
657 * Safe to call with AFU/MC in partially allocated/initialized state.
659 static void term_mc(struct cxlflash_cfg
*cfg
, enum undo_level level
)
662 struct afu
*afu
= cfg
->afu
;
663 struct device
*dev
= &cfg
->dev
->dev
;
665 if (!afu
|| !cfg
->mcctx
) {
666 dev_err(dev
, "%s: returning from term_mc with NULL afu or MC\n",
673 rc
= cxl_stop_context(cfg
->mcctx
);
676 cxl_unmap_afu_irq(cfg
->mcctx
, 3, afu
);
678 cxl_unmap_afu_irq(cfg
->mcctx
, 2, afu
);
680 cxl_unmap_afu_irq(cfg
->mcctx
, 1, afu
);
682 cxl_free_afu_irqs(cfg
->mcctx
);
683 case RELEASE_CONTEXT
:
689 * term_afu() - terminates the AFU
690 * @cfg: Internal structure associated with the host.
692 * Safe to call with AFU/MC in partially allocated/initialized state.
694 static void term_afu(struct cxlflash_cfg
*cfg
)
696 term_mc(cfg
, UNDO_START
);
701 pr_debug("%s: returning\n", __func__
);
705 * cxlflash_remove() - PCI entry point to tear down host
706 * @pdev: PCI device associated with the host.
708 * Safe to use as a cleanup in partially allocated/initialized state.
710 static void cxlflash_remove(struct pci_dev
*pdev
)
712 struct cxlflash_cfg
*cfg
= pci_get_drvdata(pdev
);
715 /* If a Task Management Function is active, wait for it to complete
716 * before continuing with remove.
718 spin_lock_irqsave(&cfg
->tmf_slock
, lock_flags
);
720 wait_event_interruptible_lock_irq(cfg
->tmf_waitq
,
723 spin_unlock_irqrestore(&cfg
->tmf_slock
, lock_flags
);
725 cfg
->state
= STATE_FAILTERM
;
726 cxlflash_stop_term_user_contexts(cfg
);
728 switch (cfg
->init_state
) {
729 case INIT_STATE_SCSI
:
730 cxlflash_term_local_luns(cfg
);
731 scsi_remove_host(cfg
->host
);
735 cancel_work_sync(&cfg
->work_q
);
737 pci_release_regions(cfg
->dev
);
738 pci_disable_device(pdev
);
739 case INIT_STATE_NONE
:
741 scsi_host_put(cfg
->host
);
745 pr_debug("%s: returning\n", __func__
);
749 * alloc_mem() - allocates the AFU and its command pool
750 * @cfg: Internal structure associated with the host.
752 * A partially allocated state remains on failure.
756 * -ENOMEM on failure to allocate memory
758 static int alloc_mem(struct cxlflash_cfg
*cfg
)
763 struct device
*dev
= &cfg
->dev
->dev
;
765 /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
766 cfg
->afu
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
767 get_order(sizeof(struct afu
)));
768 if (unlikely(!cfg
->afu
)) {
769 dev_err(dev
, "%s: cannot get %d free pages\n",
770 __func__
, get_order(sizeof(struct afu
)));
774 cfg
->afu
->parent
= cfg
;
775 cfg
->afu
->afu_map
= NULL
;
777 for (i
= 0; i
< CXLFLASH_NUM_CMDS
; buf
+= CMD_BUFSIZE
, i
++) {
778 if (!((u64
)buf
& (PAGE_SIZE
- 1))) {
779 buf
= (void *)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
780 if (unlikely(!buf
)) {
782 "%s: Allocate command buffers fail!\n",
790 cfg
->afu
->cmd
[i
].buf
= buf
;
791 atomic_set(&cfg
->afu
->cmd
[i
].free
, 1);
792 cfg
->afu
->cmd
[i
].slot
= i
;
800 * init_pci() - initializes the host as a PCI device
801 * @cfg: Internal structure associated with the host.
803 * Return: 0 on success, -errno on failure
805 static int init_pci(struct cxlflash_cfg
*cfg
)
807 struct pci_dev
*pdev
= cfg
->dev
;
810 cfg
->cxlflash_regs_pci
= pci_resource_start(pdev
, 0);
811 rc
= pci_request_regions(pdev
, CXLFLASH_NAME
);
814 "%s: Couldn't register memory range of registers\n",
819 rc
= pci_enable_device(pdev
);
820 if (rc
|| pci_channel_offline(pdev
)) {
821 if (pci_channel_offline(pdev
)) {
822 cxlflash_wait_for_pci_err_recovery(cfg
);
823 rc
= pci_enable_device(pdev
);
827 dev_err(&pdev
->dev
, "%s: Cannot enable adapter\n",
829 cxlflash_wait_for_pci_err_recovery(cfg
);
830 goto out_release_regions
;
834 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
836 dev_dbg(&pdev
->dev
, "%s: Failed to set 64 bit PCI DMA mask\n",
838 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
842 dev_err(&pdev
->dev
, "%s: Failed to set PCI DMA mask\n",
847 pci_set_master(pdev
);
849 if (pci_channel_offline(pdev
)) {
850 cxlflash_wait_for_pci_err_recovery(cfg
);
851 if (pci_channel_offline(pdev
)) {
853 goto out_msi_disable
;
857 rc
= pci_save_state(pdev
);
859 if (rc
!= PCIBIOS_SUCCESSFUL
) {
860 dev_err(&pdev
->dev
, "%s: Failed to save PCI config space\n",
867 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
872 cxlflash_wait_for_pci_err_recovery(cfg
);
874 pci_disable_device(pdev
);
876 pci_release_regions(pdev
);
882 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
883 * @cfg: Internal structure associated with the host.
885 * Return: 0 on success, -errno on failure
887 static int init_scsi(struct cxlflash_cfg
*cfg
)
889 struct pci_dev
*pdev
= cfg
->dev
;
892 rc
= scsi_add_host(cfg
->host
, &pdev
->dev
);
894 dev_err(&pdev
->dev
, "%s: scsi_add_host failed (rc=%d)\n",
899 scsi_scan_host(cfg
->host
);
902 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
907 * set_port_online() - transitions the specified host FC port to online state
908 * @fc_regs: Top of MMIO region defined for specified port.
910 * The provided MMIO region must be mapped prior to call. Online state means
911 * that the FC link layer has synced, completed the handshaking process, and
912 * is ready for login to start.
914 static void set_port_online(__be64 __iomem
*fc_regs
)
918 cmdcfg
= readq_be(&fc_regs
[FC_MTIP_CMDCONFIG
/ 8]);
919 cmdcfg
&= (~FC_MTIP_CMDCONFIG_OFFLINE
); /* clear OFF_LINE */
920 cmdcfg
|= (FC_MTIP_CMDCONFIG_ONLINE
); /* set ON_LINE */
921 writeq_be(cmdcfg
, &fc_regs
[FC_MTIP_CMDCONFIG
/ 8]);
925 * set_port_offline() - transitions the specified host FC port to offline state
926 * @fc_regs: Top of MMIO region defined for specified port.
928 * The provided MMIO region must be mapped prior to call.
930 static void set_port_offline(__be64 __iomem
*fc_regs
)
934 cmdcfg
= readq_be(&fc_regs
[FC_MTIP_CMDCONFIG
/ 8]);
935 cmdcfg
&= (~FC_MTIP_CMDCONFIG_ONLINE
); /* clear ON_LINE */
936 cmdcfg
|= (FC_MTIP_CMDCONFIG_OFFLINE
); /* set OFF_LINE */
937 writeq_be(cmdcfg
, &fc_regs
[FC_MTIP_CMDCONFIG
/ 8]);
941 * wait_port_online() - waits for the specified host FC port come online
942 * @fc_regs: Top of MMIO region defined for specified port.
943 * @delay_us: Number of microseconds to delay between reading port status.
944 * @nretry: Number of cycles to retry reading port status.
946 * The provided MMIO region must be mapped prior to call. This will timeout
947 * when the cable is not plugged in.
950 * TRUE (1) when the specified port is online
951 * FALSE (0) when the specified port fails to come online after timeout
952 * -EINVAL when @delay_us is less than 1000
954 static int wait_port_online(__be64 __iomem
*fc_regs
, u32 delay_us
, u32 nretry
)
958 if (delay_us
< 1000) {
959 pr_err("%s: invalid delay specified %d\n", __func__
, delay_us
);
964 msleep(delay_us
/ 1000);
965 status
= readq_be(&fc_regs
[FC_MTIP_STATUS
/ 8]);
966 } while ((status
& FC_MTIP_STATUS_MASK
) != FC_MTIP_STATUS_ONLINE
&&
969 return ((status
& FC_MTIP_STATUS_MASK
) == FC_MTIP_STATUS_ONLINE
);
973 * wait_port_offline() - waits for the specified host FC port go offline
974 * @fc_regs: Top of MMIO region defined for specified port.
975 * @delay_us: Number of microseconds to delay between reading port status.
976 * @nretry: Number of cycles to retry reading port status.
978 * The provided MMIO region must be mapped prior to call.
981 * TRUE (1) when the specified port is offline
982 * FALSE (0) when the specified port fails to go offline after timeout
983 * -EINVAL when @delay_us is less than 1000
985 static int wait_port_offline(__be64 __iomem
*fc_regs
, u32 delay_us
, u32 nretry
)
989 if (delay_us
< 1000) {
990 pr_err("%s: invalid delay specified %d\n", __func__
, delay_us
);
995 msleep(delay_us
/ 1000);
996 status
= readq_be(&fc_regs
[FC_MTIP_STATUS
/ 8]);
997 } while ((status
& FC_MTIP_STATUS_MASK
) != FC_MTIP_STATUS_OFFLINE
&&
1000 return ((status
& FC_MTIP_STATUS_MASK
) == FC_MTIP_STATUS_OFFLINE
);
1004 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1005 * @afu: AFU associated with the host that owns the specified FC port.
1006 * @port: Port number being configured.
1007 * @fc_regs: Top of MMIO region defined for specified port.
1008 * @wwpn: The world-wide-port-number previously discovered for port.
1010 * The provided MMIO region must be mapped prior to call. As part of the
1011 * sequence to configure the WWPN, the port is toggled offline and then back
1012 * online. This toggling action can cause this routine to delay up to a few
1013 * seconds. When configured to use the internal LUN feature of the AFU, a
1014 * failure to come online is overridden.
1017 * 0 when the WWPN is successfully written and the port comes back online
1018 * -1 when the port fails to go offline or come back up online
1020 static int afu_set_wwpn(struct afu
*afu
, int port
, __be64 __iomem
*fc_regs
,
1025 set_port_offline(fc_regs
);
1027 if (!wait_port_offline(fc_regs
, FC_PORT_STATUS_RETRY_INTERVAL_US
,
1028 FC_PORT_STATUS_RETRY_CNT
)) {
1029 pr_debug("%s: wait on port %d to go offline timed out\n",
1031 rc
= -1; /* but continue on to leave the port back online */
1035 writeq_be(wwpn
, &fc_regs
[FC_PNAME
/ 8]);
1037 /* Always return success after programming WWPN */
1040 set_port_online(fc_regs
);
1042 if (!wait_port_online(fc_regs
, FC_PORT_STATUS_RETRY_INTERVAL_US
,
1043 FC_PORT_STATUS_RETRY_CNT
)) {
1044 pr_err("%s: wait on port %d to go online timed out\n",
1048 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1054 * afu_link_reset() - resets the specified host FC port
1055 * @afu: AFU associated with the host that owns the specified FC port.
1056 * @port: Port number being configured.
1057 * @fc_regs: Top of MMIO region defined for specified port.
1059 * The provided MMIO region must be mapped prior to call. The sequence to
1060 * reset the port involves toggling it offline and then back online. This
1061 * action can cause this routine to delay up to a few seconds. An effort
1062 * is made to maintain link with the device by switching to host to use
1063 * the alternate port exclusively while the reset takes place.
1064 * failure to come online is overridden.
1066 static void afu_link_reset(struct afu
*afu
, int port
, __be64 __iomem
*fc_regs
)
1070 /* first switch the AFU to the other links, if any */
1071 port_sel
= readq_be(&afu
->afu_map
->global
.regs
.afu_port_sel
);
1072 port_sel
&= ~(1ULL << port
);
1073 writeq_be(port_sel
, &afu
->afu_map
->global
.regs
.afu_port_sel
);
1074 cxlflash_afu_sync(afu
, 0, 0, AFU_GSYNC
);
1076 set_port_offline(fc_regs
);
1077 if (!wait_port_offline(fc_regs
, FC_PORT_STATUS_RETRY_INTERVAL_US
,
1078 FC_PORT_STATUS_RETRY_CNT
))
1079 pr_err("%s: wait on port %d to go offline timed out\n",
1082 set_port_online(fc_regs
);
1083 if (!wait_port_online(fc_regs
, FC_PORT_STATUS_RETRY_INTERVAL_US
,
1084 FC_PORT_STATUS_RETRY_CNT
))
1085 pr_err("%s: wait on port %d to go online timed out\n",
1088 /* switch back to include this port */
1089 port_sel
|= (1ULL << port
);
1090 writeq_be(port_sel
, &afu
->afu_map
->global
.regs
.afu_port_sel
);
1091 cxlflash_afu_sync(afu
, 0, 0, AFU_GSYNC
);
1093 pr_debug("%s: returning port_sel=%lld\n", __func__
, port_sel
);
1097 * Asynchronous interrupt information table
1099 static const struct asyc_intr_info ainfo
[] = {
1100 {SISL_ASTATUS_FC0_OTHER
, "other error", 0, CLR_FC_ERROR
| LINK_RESET
},
1101 {SISL_ASTATUS_FC0_LOGO
, "target initiated LOGO", 0, 0},
1102 {SISL_ASTATUS_FC0_CRC_T
, "CRC threshold exceeded", 0, LINK_RESET
},
1103 {SISL_ASTATUS_FC0_LOGI_R
, "login timed out, retrying", 0, LINK_RESET
},
1104 {SISL_ASTATUS_FC0_LOGI_F
, "login failed", 0, CLR_FC_ERROR
},
1105 {SISL_ASTATUS_FC0_LOGI_S
, "login succeeded", 0, SCAN_HOST
},
1106 {SISL_ASTATUS_FC0_LINK_DN
, "link down", 0, 0},
1107 {SISL_ASTATUS_FC0_LINK_UP
, "link up", 0, SCAN_HOST
},
1108 {SISL_ASTATUS_FC1_OTHER
, "other error", 1, CLR_FC_ERROR
| LINK_RESET
},
1109 {SISL_ASTATUS_FC1_LOGO
, "target initiated LOGO", 1, 0},
1110 {SISL_ASTATUS_FC1_CRC_T
, "CRC threshold exceeded", 1, LINK_RESET
},
1111 {SISL_ASTATUS_FC1_LOGI_R
, "login timed out, retrying", 1, 0},
1112 {SISL_ASTATUS_FC1_LOGI_F
, "login failed", 1, CLR_FC_ERROR
},
1113 {SISL_ASTATUS_FC1_LOGI_S
, "login succeeded", 1, SCAN_HOST
},
1114 {SISL_ASTATUS_FC1_LINK_DN
, "link down", 1, 0},
1115 {SISL_ASTATUS_FC1_LINK_UP
, "link up", 1, SCAN_HOST
},
1116 {0x0, "", 0, 0} /* terminator */
1120 * find_ainfo() - locates and returns asynchronous interrupt information
1121 * @status: Status code set by AFU on error.
1123 * Return: The located information or NULL when the status code is invalid.
1125 static const struct asyc_intr_info
*find_ainfo(u64 status
)
1127 const struct asyc_intr_info
*info
;
1129 for (info
= &ainfo
[0]; info
->status
; info
++)
1130 if (info
->status
== status
)
1137 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1138 * @afu: AFU associated with the host.
1140 static void afu_err_intr_init(struct afu
*afu
)
1145 /* global async interrupts: AFU clears afu_ctrl on context exit
1146 * if async interrupts were sent to that context. This prevents
1147 * the AFU form sending further async interrupts when
1149 * nobody to receive them.
1153 writeq_be(-1ULL, &afu
->afu_map
->global
.regs
.aintr_mask
);
1154 /* set LISN# to send and point to master context */
1155 reg
= ((u64
) (((afu
->ctx_hndl
<< 8) | SISL_MSI_ASYNC_ERROR
)) << 40);
1157 if (afu
->internal_lun
)
1158 reg
|= 1; /* Bit 63 indicates local lun */
1159 writeq_be(reg
, &afu
->afu_map
->global
.regs
.afu_ctrl
);
1161 writeq_be(-1ULL, &afu
->afu_map
->global
.regs
.aintr_clear
);
1162 /* unmask bits that are of interest */
1163 /* note: afu can send an interrupt after this step */
1164 writeq_be(SISL_ASTATUS_MASK
, &afu
->afu_map
->global
.regs
.aintr_mask
);
1165 /* clear again in case a bit came on after previous clear but before */
1167 writeq_be(-1ULL, &afu
->afu_map
->global
.regs
.aintr_clear
);
1169 /* Clear/Set internal lun bits */
1170 reg
= readq_be(&afu
->afu_map
->global
.fc_regs
[0][FC_CONFIG2
/ 8]);
1171 reg
&= SISL_FC_INTERNAL_MASK
;
1172 if (afu
->internal_lun
)
1173 reg
|= ((u64
)(afu
->internal_lun
- 1) << SISL_FC_INTERNAL_SHIFT
);
1174 writeq_be(reg
, &afu
->afu_map
->global
.fc_regs
[0][FC_CONFIG2
/ 8]);
1176 /* now clear FC errors */
1177 for (i
= 0; i
< NUM_FC_PORTS
; i
++) {
1178 writeq_be(0xFFFFFFFFU
,
1179 &afu
->afu_map
->global
.fc_regs
[i
][FC_ERROR
/ 8]);
1180 writeq_be(0, &afu
->afu_map
->global
.fc_regs
[i
][FC_ERRCAP
/ 8]);
1183 /* sync interrupts for master's IOARRIN write */
1184 /* note that unlike asyncs, there can be no pending sync interrupts */
1185 /* at this time (this is a fresh context and master has not written */
1186 /* IOARRIN yet), so there is nothing to clear. */
1188 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1189 writeq_be(SISL_MSI_SYNC_ERROR
, &afu
->host_map
->ctx_ctrl
);
1190 writeq_be(SISL_ISTATUS_MASK
, &afu
->host_map
->intr_mask
);
1194 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1195 * @irq: Interrupt number.
1196 * @data: Private data provided at interrupt registration, the AFU.
1198 * Return: Always return IRQ_HANDLED.
1200 static irqreturn_t
cxlflash_sync_err_irq(int irq
, void *data
)
1202 struct afu
*afu
= (struct afu
*)data
;
1206 reg
= readq_be(&afu
->host_map
->intr_status
);
1207 reg_unmasked
= (reg
& SISL_ISTATUS_UNMASK
);
1209 if (reg_unmasked
== 0UL) {
1210 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1211 __func__
, (u64
)afu
, reg
);
1212 goto cxlflash_sync_err_irq_exit
;
1215 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1216 __func__
, (u64
)afu
, reg
);
1218 writeq_be(reg_unmasked
, &afu
->host_map
->intr_clear
);
1220 cxlflash_sync_err_irq_exit
:
1221 pr_debug("%s: returning rc=%d\n", __func__
, IRQ_HANDLED
);
1226 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1227 * @irq: Interrupt number.
1228 * @data: Private data provided at interrupt registration, the AFU.
1230 * Return: Always return IRQ_HANDLED.
1232 static irqreturn_t
cxlflash_rrq_irq(int irq
, void *data
)
1234 struct afu
*afu
= (struct afu
*)data
;
1235 struct afu_cmd
*cmd
;
1236 bool toggle
= afu
->toggle
;
1238 *hrrq_start
= afu
->hrrq_start
,
1239 *hrrq_end
= afu
->hrrq_end
,
1240 *hrrq_curr
= afu
->hrrq_curr
;
1242 /* Process however many RRQ entries that are ready */
1246 if ((entry
& SISL_RESP_HANDLE_T_BIT
) != toggle
)
1249 cmd
= (struct afu_cmd
*)(entry
& ~SISL_RESP_HANDLE_T_BIT
);
1252 /* Advance to next entry or wrap and flip the toggle bit */
1253 if (hrrq_curr
< hrrq_end
)
1256 hrrq_curr
= hrrq_start
;
1257 toggle
^= SISL_RESP_HANDLE_T_BIT
;
1261 afu
->hrrq_curr
= hrrq_curr
;
1262 afu
->toggle
= toggle
;
1268 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1269 * @irq: Interrupt number.
1270 * @data: Private data provided at interrupt registration, the AFU.
1272 * Return: Always return IRQ_HANDLED.
1274 static irqreturn_t
cxlflash_async_err_irq(int irq
, void *data
)
1276 struct afu
*afu
= (struct afu
*)data
;
1277 struct cxlflash_cfg
*cfg
= afu
->parent
;
1278 struct device
*dev
= &cfg
->dev
->dev
;
1280 const struct asyc_intr_info
*info
;
1281 struct sisl_global_map __iomem
*global
= &afu
->afu_map
->global
;
1286 reg
= readq_be(&global
->regs
.aintr_status
);
1287 reg_unmasked
= (reg
& SISL_ASTATUS_UNMASK
);
1289 if (reg_unmasked
== 0) {
1290 dev_err(dev
, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1295 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1296 writeq_be(reg_unmasked
, &global
->regs
.aintr_clear
);
1298 /* Check each bit that is on */
1299 for (i
= 0; reg_unmasked
; i
++, reg_unmasked
= (reg_unmasked
>> 1)) {
1300 info
= find_ainfo(1ULL << i
);
1301 if (((reg_unmasked
& 0x1) == 0) || !info
)
1306 dev_err(dev
, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1307 __func__
, port
, info
->desc
,
1308 readq_be(&global
->fc_regs
[port
][FC_STATUS
/ 8]));
1311 * Do link reset first, some OTHER errors will set FC_ERROR
1312 * again if cleared before or w/o a reset
1314 if (info
->action
& LINK_RESET
) {
1315 dev_err(dev
, "%s: FC Port %d: resetting link\n",
1317 cfg
->lr_state
= LINK_RESET_REQUIRED
;
1318 cfg
->lr_port
= port
;
1319 schedule_work(&cfg
->work_q
);
1322 if (info
->action
& CLR_FC_ERROR
) {
1323 reg
= readq_be(&global
->fc_regs
[port
][FC_ERROR
/ 8]);
1326 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1327 * should be the same and tracing one is sufficient.
1330 dev_err(dev
, "%s: fc %d: clearing fc_error 0x%08llX\n",
1331 __func__
, port
, reg
);
1333 writeq_be(reg
, &global
->fc_regs
[port
][FC_ERROR
/ 8]);
1334 writeq_be(0, &global
->fc_regs
[port
][FC_ERRCAP
/ 8]);
1337 if (info
->action
& SCAN_HOST
) {
1338 atomic_inc(&cfg
->scan_host_needed
);
1339 schedule_work(&cfg
->work_q
);
1344 dev_dbg(dev
, "%s: returning IRQ_HANDLED, afu=%p\n", __func__
, afu
);
1349 * start_context() - starts the master context
1350 * @cfg: Internal structure associated with the host.
1352 * Return: A success or failure value from CXL services.
1354 static int start_context(struct cxlflash_cfg
*cfg
)
1358 rc
= cxl_start_context(cfg
->mcctx
,
1359 cfg
->afu
->work
.work_element_descriptor
,
1362 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1367 * read_vpd() - obtains the WWPNs from VPD
1368 * @cfg: Internal structure associated with the host.
1369 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1371 * Return: 0 on success, -errno on failure
1373 static int read_vpd(struct cxlflash_cfg
*cfg
, u64 wwpn
[])
1375 struct pci_dev
*dev
= cfg
->parent_dev
;
1377 int ro_start
, ro_size
, i
, j
, k
;
1379 char vpd_data
[CXLFLASH_VPD_LEN
];
1380 char tmp_buf
[WWPN_BUF_LEN
] = { 0 };
1381 char *wwpn_vpd_tags
[NUM_FC_PORTS
] = { "V5", "V6" };
1383 /* Get the VPD data from the device */
1384 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
1385 if (unlikely(vpd_size
<= 0)) {
1386 dev_err(&dev
->dev
, "%s: Unable to read VPD (size = %ld)\n",
1387 __func__
, vpd_size
);
1392 /* Get the read only section offset */
1393 ro_start
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
,
1394 PCI_VPD_LRDT_RO_DATA
);
1395 if (unlikely(ro_start
< 0)) {
1396 dev_err(&dev
->dev
, "%s: VPD Read-only data not found\n",
1402 /* Get the read only section size, cap when extends beyond read VPD */
1403 ro_size
= pci_vpd_lrdt_size(&vpd_data
[ro_start
]);
1405 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
1406 if (unlikely((i
+ j
) > vpd_size
)) {
1407 pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1408 __func__
, (i
+ j
), vpd_size
);
1409 ro_size
= vpd_size
- i
;
1413 * Find the offset of the WWPN tag within the read only
1414 * VPD data and validate the found field (partials are
1415 * no good to us). Convert the ASCII data to an integer
1416 * value. Note that we must copy to a temporary buffer
1417 * because the conversion service requires that the ASCII
1418 * string be terminated.
1420 for (k
= 0; k
< NUM_FC_PORTS
; k
++) {
1422 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
1424 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, wwpn_vpd_tags
[k
]);
1425 if (unlikely(i
< 0)) {
1426 dev_err(&dev
->dev
, "%s: Port %d WWPN not found "
1427 "in VPD\n", __func__
, k
);
1432 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
1433 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
1434 if (unlikely((i
+ j
> vpd_size
) || (j
!= WWPN_LEN
))) {
1435 dev_err(&dev
->dev
, "%s: Port %d WWPN incomplete or "
1442 memcpy(tmp_buf
, &vpd_data
[i
], WWPN_LEN
);
1443 rc
= kstrtoul(tmp_buf
, WWPN_LEN
, (ulong
*)&wwpn
[k
]);
1445 dev_err(&dev
->dev
, "%s: Fail to convert port %d WWPN "
1446 "to integer\n", __func__
, k
);
1453 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1458 * init_pcr() - initialize the provisioning and control registers
1459 * @cfg: Internal structure associated with the host.
1461 * Also sets up fast access to the mapped registers and initializes AFU
1462 * command fields that never change.
1464 static void init_pcr(struct cxlflash_cfg
*cfg
)
1466 struct afu
*afu
= cfg
->afu
;
1467 struct sisl_ctrl_map __iomem
*ctrl_map
;
1470 for (i
= 0; i
< MAX_CONTEXT
; i
++) {
1471 ctrl_map
= &afu
->afu_map
->ctrls
[i
].ctrl
;
1472 /* Disrupt any clients that could be running */
1473 /* e.g. clients that survived a master restart */
1474 writeq_be(0, &ctrl_map
->rht_start
);
1475 writeq_be(0, &ctrl_map
->rht_cnt_id
);
1476 writeq_be(0, &ctrl_map
->ctx_cap
);
1479 /* Copy frequently used fields into afu */
1480 afu
->ctx_hndl
= (u16
) cxl_process_element(cfg
->mcctx
);
1481 afu
->host_map
= &afu
->afu_map
->hosts
[afu
->ctx_hndl
].host
;
1482 afu
->ctrl_map
= &afu
->afu_map
->ctrls
[afu
->ctx_hndl
].ctrl
;
1484 /* Program the Endian Control for the master context */
1485 writeq_be(SISL_ENDIAN_CTRL
, &afu
->host_map
->endian_ctrl
);
1487 /* Initialize cmd fields that never change */
1488 for (i
= 0; i
< CXLFLASH_NUM_CMDS
; i
++) {
1489 afu
->cmd
[i
].rcb
.ctx_id
= afu
->ctx_hndl
;
1490 afu
->cmd
[i
].rcb
.msi
= SISL_MSI_RRQ_UPDATED
;
1491 afu
->cmd
[i
].rcb
.rrq
= 0x0;
1496 * init_global() - initialize AFU global registers
1497 * @cfg: Internal structure associated with the host.
1499 static int init_global(struct cxlflash_cfg
*cfg
)
1501 struct afu
*afu
= cfg
->afu
;
1502 struct device
*dev
= &cfg
->dev
->dev
;
1503 u64 wwpn
[NUM_FC_PORTS
]; /* wwpn of AFU ports */
1504 int i
= 0, num_ports
= 0;
1508 rc
= read_vpd(cfg
, &wwpn
[0]);
1510 dev_err(dev
, "%s: could not read vpd rc=%d\n", __func__
, rc
);
1514 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__
, wwpn
[0], wwpn
[1]);
1516 /* Set up RRQ in AFU for master issued cmds */
1517 writeq_be((u64
) afu
->hrrq_start
, &afu
->host_map
->rrq_start
);
1518 writeq_be((u64
) afu
->hrrq_end
, &afu
->host_map
->rrq_end
);
1520 /* AFU configuration */
1521 reg
= readq_be(&afu
->afu_map
->global
.regs
.afu_config
);
1522 reg
|= SISL_AFUCONF_AR_ALL
|SISL_AFUCONF_ENDIAN
;
1523 /* enable all auto retry options and control endianness */
1524 /* leave others at default: */
1525 /* CTX_CAP write protected, mbox_r does not clear on read and */
1526 /* checker on if dual afu */
1527 writeq_be(reg
, &afu
->afu_map
->global
.regs
.afu_config
);
1529 /* Global port select: select either port */
1530 if (afu
->internal_lun
) {
1531 /* Only use port 0 */
1532 writeq_be(PORT0
, &afu
->afu_map
->global
.regs
.afu_port_sel
);
1533 num_ports
= NUM_FC_PORTS
- 1;
1535 writeq_be(BOTH_PORTS
, &afu
->afu_map
->global
.regs
.afu_port_sel
);
1536 num_ports
= NUM_FC_PORTS
;
1539 for (i
= 0; i
< num_ports
; i
++) {
1540 /* Unmask all errors (but they are still masked at AFU) */
1541 writeq_be(0, &afu
->afu_map
->global
.fc_regs
[i
][FC_ERRMSK
/ 8]);
1542 /* Clear CRC error cnt & set a threshold */
1543 (void)readq_be(&afu
->afu_map
->global
.
1544 fc_regs
[i
][FC_CNT_CRCERR
/ 8]);
1545 writeq_be(MC_CRC_THRESH
, &afu
->afu_map
->global
.fc_regs
[i
]
1546 [FC_CRC_THRESH
/ 8]);
1548 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1550 afu_set_wwpn(afu
, i
,
1551 &afu
->afu_map
->global
.fc_regs
[i
][0],
1553 dev_err(dev
, "%s: failed to set WWPN on port %d\n",
1558 /* Programming WWPN back to back causes additional
1559 * offline/online transitions and a PLOGI
1564 /* Set up master's own CTX_CAP to allow real mode, host translation */
1565 /* tables, afu cmds and read/write GSCSI cmds. */
1566 /* First, unlock ctx_cap write by reading mbox */
1567 (void)readq_be(&afu
->ctrl_map
->mbox_r
); /* unlock ctx_cap */
1568 writeq_be((SISL_CTX_CAP_REAL_MODE
| SISL_CTX_CAP_HOST_XLATE
|
1569 SISL_CTX_CAP_READ_CMD
| SISL_CTX_CAP_WRITE_CMD
|
1570 SISL_CTX_CAP_AFU_CMD
| SISL_CTX_CAP_GSCSI_CMD
),
1571 &afu
->ctrl_map
->ctx_cap
);
1572 /* Initialize heartbeat */
1573 afu
->hb
= readq_be(&afu
->afu_map
->global
.regs
.afu_hb
);
1580 * start_afu() - initializes and starts the AFU
1581 * @cfg: Internal structure associated with the host.
1583 static int start_afu(struct cxlflash_cfg
*cfg
)
1585 struct afu
*afu
= cfg
->afu
;
1586 struct afu_cmd
*cmd
;
1591 for (i
= 0; i
< CXLFLASH_NUM_CMDS
; i
++) {
1594 init_completion(&cmd
->cevent
);
1595 spin_lock_init(&cmd
->slock
);
1601 /* After an AFU reset, RRQ entries are stale, clear them */
1602 memset(&afu
->rrq_entry
, 0, sizeof(afu
->rrq_entry
));
1604 /* Initialize RRQ pointers */
1605 afu
->hrrq_start
= &afu
->rrq_entry
[0];
1606 afu
->hrrq_end
= &afu
->rrq_entry
[NUM_RRQ_ENTRY
- 1];
1607 afu
->hrrq_curr
= afu
->hrrq_start
;
1610 rc
= init_global(cfg
);
1612 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1617 * init_mc() - create and register as the master context
1618 * @cfg: Internal structure associated with the host.
1620 * Return: 0 on success, -errno on failure
1622 static int init_mc(struct cxlflash_cfg
*cfg
)
1624 struct cxl_context
*ctx
;
1625 struct device
*dev
= &cfg
->dev
->dev
;
1626 struct afu
*afu
= cfg
->afu
;
1628 enum undo_level level
;
1630 ctx
= cxl_get_context(cfg
->dev
);
1635 /* Set it up as a master with the CXL */
1636 cxl_set_master(ctx
);
1638 /* During initialization reset the AFU to start from a clean slate */
1639 rc
= cxl_afu_reset(cfg
->mcctx
);
1641 dev_err(dev
, "%s: initial AFU reset failed rc=%d\n",
1643 level
= RELEASE_CONTEXT
;
1647 rc
= cxl_allocate_afu_irqs(ctx
, 3);
1649 dev_err(dev
, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1651 level
= RELEASE_CONTEXT
;
1655 rc
= cxl_map_afu_irq(ctx
, 1, cxlflash_sync_err_irq
, afu
,
1656 "SISL_MSI_SYNC_ERROR");
1657 if (unlikely(rc
<= 0)) {
1658 dev_err(dev
, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1664 rc
= cxl_map_afu_irq(ctx
, 2, cxlflash_rrq_irq
, afu
,
1665 "SISL_MSI_RRQ_UPDATED");
1666 if (unlikely(rc
<= 0)) {
1667 dev_err(dev
, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1673 rc
= cxl_map_afu_irq(ctx
, 3, cxlflash_async_err_irq
, afu
,
1674 "SISL_MSI_ASYNC_ERROR");
1675 if (unlikely(rc
<= 0)) {
1676 dev_err(dev
, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1684 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1685 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1686 * element (pe) that is embedded in the context (ctx)
1688 rc
= start_context(cfg
);
1690 dev_err(dev
, "%s: start context failed rc=%d\n", __func__
, rc
);
1691 level
= UNMAP_THREE
;
1695 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1698 term_mc(cfg
, level
);
1703 * init_afu() - setup as master context and start AFU
1704 * @cfg: Internal structure associated with the host.
1706 * This routine is a higher level of control for configuring the
1707 * AFU on probe and reset paths.
1709 * Return: 0 on success, -errno on failure
1711 static int init_afu(struct cxlflash_cfg
*cfg
)
1715 struct afu
*afu
= cfg
->afu
;
1716 struct device
*dev
= &cfg
->dev
->dev
;
1718 cxl_perst_reloads_same_image(cfg
->cxl_afu
, true);
1722 dev_err(dev
, "%s: call to init_mc failed, rc=%d!\n",
1727 /* Map the entire MMIO space of the AFU */
1728 afu
->afu_map
= cxl_psa_map(cfg
->mcctx
);
1729 if (!afu
->afu_map
) {
1730 dev_err(dev
, "%s: call to cxl_psa_map failed!\n", __func__
);
1735 /* No byte reverse on reading afu_version or string will be backwards */
1736 reg
= readq(&afu
->afu_map
->global
.regs
.afu_version
);
1737 memcpy(afu
->version
, ®
, sizeof(reg
));
1738 afu
->interface_version
=
1739 readq_be(&afu
->afu_map
->global
.regs
.interface_version
);
1740 if ((afu
->interface_version
+ 1) == 0) {
1741 pr_err("Back level AFU, please upgrade. AFU version %s "
1742 "interface version 0x%llx\n", afu
->version
,
1743 afu
->interface_version
);
1748 pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__
,
1749 afu
->version
, afu
->interface_version
);
1751 rc
= start_afu(cfg
);
1753 dev_err(dev
, "%s: call to start_afu failed, rc=%d!\n",
1758 afu_err_intr_init(cfg
->afu
);
1759 atomic64_set(&afu
->room
, readq_be(&afu
->host_map
->cmd_room
));
1761 /* Restore the LUN mappings */
1762 cxlflash_restore_luntable(cfg
);
1764 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1768 cxl_psa_unmap((void __iomem
*)afu
->afu_map
);
1769 afu
->afu_map
= NULL
;
1771 term_mc(cfg
, UNDO_START
);
1776 * cxlflash_afu_sync() - builds and sends an AFU sync command
1777 * @afu: AFU associated with the host.
1778 * @ctx_hndl_u: Identifies context requesting sync.
1779 * @res_hndl_u: Identifies resource requesting sync.
1780 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1782 * The AFU can only take 1 sync command at a time. This routine enforces this
1783 * limitation by using a mutex to provide exclusive access to the AFU during
1784 * the sync. This design point requires calling threads to not be on interrupt
1785 * context due to the possibility of sleeping during concurrent sync operations.
1787 * AFU sync operations are only necessary and allowed when the device is
1788 * operating normally. When not operating normally, sync requests can occur as
1789 * part of cleaning up resources associated with an adapter prior to removal.
1790 * In this scenario, these requests are simply ignored (safe due to the AFU
1797 int cxlflash_afu_sync(struct afu
*afu
, ctx_hndl_t ctx_hndl_u
,
1798 res_hndl_t res_hndl_u
, u8 mode
)
1800 struct cxlflash_cfg
*cfg
= afu
->parent
;
1801 struct device
*dev
= &cfg
->dev
->dev
;
1802 struct afu_cmd
*cmd
= NULL
;
1805 static DEFINE_MUTEX(sync_active
);
1807 if (cfg
->state
!= STATE_NORMAL
) {
1808 pr_debug("%s: Sync not required! (%u)\n", __func__
, cfg
->state
);
1812 mutex_lock(&sync_active
);
1814 cmd
= cmd_checkout(afu
);
1815 if (unlikely(!cmd
)) {
1817 udelay(1000 * retry_cnt
);
1818 if (retry_cnt
< MC_RETRY_CNT
)
1820 dev_err(dev
, "%s: could not get a free command\n", __func__
);
1825 pr_debug("%s: afu=%p cmd=%p %d\n", __func__
, afu
, cmd
, ctx_hndl_u
);
1827 memset(cmd
->rcb
.cdb
, 0, sizeof(cmd
->rcb
.cdb
));
1829 cmd
->rcb
.req_flags
= SISL_REQ_FLAGS_AFU_CMD
;
1830 cmd
->rcb
.port_sel
= 0x0; /* NA */
1831 cmd
->rcb
.lun_id
= 0x0; /* NA */
1832 cmd
->rcb
.data_len
= 0x0;
1833 cmd
->rcb
.data_ea
= 0x0;
1834 cmd
->rcb
.timeout
= MC_AFU_SYNC_TIMEOUT
;
1836 cmd
->rcb
.cdb
[0] = 0xC0; /* AFU Sync */
1837 cmd
->rcb
.cdb
[1] = mode
;
1839 /* The cdb is aligned, no unaligned accessors required */
1840 *((__be16
*)&cmd
->rcb
.cdb
[2]) = cpu_to_be16(ctx_hndl_u
);
1841 *((__be32
*)&cmd
->rcb
.cdb
[4]) = cpu_to_be32(res_hndl_u
);
1843 rc
= send_cmd(afu
, cmd
);
1847 wait_resp(afu
, cmd
);
1849 /* Set on timeout */
1850 if (unlikely((cmd
->sa
.ioasc
!= 0) ||
1851 (cmd
->sa
.host_use_b
[0] & B_ERROR
)))
1854 mutex_unlock(&sync_active
);
1857 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1862 * afu_reset() - resets the AFU
1863 * @cfg: Internal structure associated with the host.
1865 * Return: 0 on success, -errno on failure
1867 static int afu_reset(struct cxlflash_cfg
*cfg
)
1870 /* Stop the context before the reset. Since the context is
1871 * no longer available restart it after the reset is complete
1878 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1883 * cxlflash_eh_device_reset_handler() - reset a single LUN
1884 * @scp: SCSI command to send.
1887 * SUCCESS as defined in scsi/scsi.h
1888 * FAILED as defined in scsi/scsi.h
1890 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd
*scp
)
1893 struct Scsi_Host
*host
= scp
->device
->host
;
1894 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)host
->hostdata
;
1895 struct afu
*afu
= cfg
->afu
;
1898 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1899 "cdb=(%08X-%08X-%08X-%08X)\n", __func__
, scp
,
1900 host
->host_no
, scp
->device
->channel
,
1901 scp
->device
->id
, scp
->device
->lun
,
1902 get_unaligned_be32(&((u32
*)scp
->cmnd
)[0]),
1903 get_unaligned_be32(&((u32
*)scp
->cmnd
)[1]),
1904 get_unaligned_be32(&((u32
*)scp
->cmnd
)[2]),
1905 get_unaligned_be32(&((u32
*)scp
->cmnd
)[3]));
1908 switch (cfg
->state
) {
1910 rcr
= send_tmf(afu
, scp
, TMF_LUN_RESET
);
1915 wait_event(cfg
->reset_waitq
, cfg
->state
!= STATE_RESET
);
1922 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1927 * cxlflash_eh_host_reset_handler() - reset the host adapter
1928 * @scp: SCSI command from stack identifying host.
1931 * SUCCESS as defined in scsi/scsi.h
1932 * FAILED as defined in scsi/scsi.h
1934 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd
*scp
)
1938 struct Scsi_Host
*host
= scp
->device
->host
;
1939 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)host
->hostdata
;
1941 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1942 "cdb=(%08X-%08X-%08X-%08X)\n", __func__
, scp
,
1943 host
->host_no
, scp
->device
->channel
,
1944 scp
->device
->id
, scp
->device
->lun
,
1945 get_unaligned_be32(&((u32
*)scp
->cmnd
)[0]),
1946 get_unaligned_be32(&((u32
*)scp
->cmnd
)[1]),
1947 get_unaligned_be32(&((u32
*)scp
->cmnd
)[2]),
1948 get_unaligned_be32(&((u32
*)scp
->cmnd
)[3]));
1950 switch (cfg
->state
) {
1952 cfg
->state
= STATE_RESET
;
1953 cxlflash_mark_contexts_error(cfg
);
1954 rcr
= afu_reset(cfg
);
1957 cfg
->state
= STATE_FAILTERM
;
1959 cfg
->state
= STATE_NORMAL
;
1960 wake_up_all(&cfg
->reset_waitq
);
1963 wait_event(cfg
->reset_waitq
, cfg
->state
!= STATE_RESET
);
1964 if (cfg
->state
== STATE_NORMAL
)
1972 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
1977 * cxlflash_change_queue_depth() - change the queue depth for the device
1978 * @sdev: SCSI device destined for queue depth change.
1979 * @qdepth: Requested queue depth value to set.
1981 * The requested queue depth is capped to the maximum supported value.
1983 * Return: The actual queue depth set.
1985 static int cxlflash_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
1988 if (qdepth
> CXLFLASH_MAX_CMDS_PER_LUN
)
1989 qdepth
= CXLFLASH_MAX_CMDS_PER_LUN
;
1991 scsi_change_queue_depth(sdev
, qdepth
);
1992 return sdev
->queue_depth
;
1996 * cxlflash_show_port_status() - queries and presents the current port status
1997 * @port: Desired port for status reporting.
1998 * @afu: AFU owning the specified port.
1999 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2001 * Return: The size of the ASCII string returned in @buf.
2003 static ssize_t
cxlflash_show_port_status(u32 port
, struct afu
*afu
, char *buf
)
2007 __be64 __iomem
*fc_regs
;
2009 if (port
>= NUM_FC_PORTS
)
2012 fc_regs
= &afu
->afu_map
->global
.fc_regs
[port
][0];
2013 status
= readq_be(&fc_regs
[FC_MTIP_STATUS
/ 8]);
2014 status
&= FC_MTIP_STATUS_MASK
;
2016 if (status
== FC_MTIP_STATUS_ONLINE
)
2017 disp_status
= "online";
2018 else if (status
== FC_MTIP_STATUS_OFFLINE
)
2019 disp_status
= "offline";
2021 disp_status
= "unknown";
2023 return scnprintf(buf
, PAGE_SIZE
, "%s\n", disp_status
);
2027 * port0_show() - queries and presents the current status of port 0
2028 * @dev: Generic device associated with the host owning the port.
2029 * @attr: Device attribute representing the port.
2030 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2032 * Return: The size of the ASCII string returned in @buf.
2034 static ssize_t
port0_show(struct device
*dev
,
2035 struct device_attribute
*attr
,
2038 struct Scsi_Host
*shost
= class_to_shost(dev
);
2039 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)shost
->hostdata
;
2040 struct afu
*afu
= cfg
->afu
;
2042 return cxlflash_show_port_status(0, afu
, buf
);
2046 * port1_show() - queries and presents the current status of port 1
2047 * @dev: Generic device associated with the host owning the port.
2048 * @attr: Device attribute representing the port.
2049 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2051 * Return: The size of the ASCII string returned in @buf.
2053 static ssize_t
port1_show(struct device
*dev
,
2054 struct device_attribute
*attr
,
2057 struct Scsi_Host
*shost
= class_to_shost(dev
);
2058 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)shost
->hostdata
;
2059 struct afu
*afu
= cfg
->afu
;
2061 return cxlflash_show_port_status(1, afu
, buf
);
2065 * lun_mode_show() - presents the current LUN mode of the host
2066 * @dev: Generic device associated with the host.
2067 * @attr: Device attribute representing the LUN mode.
2068 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2070 * Return: The size of the ASCII string returned in @buf.
2072 static ssize_t
lun_mode_show(struct device
*dev
,
2073 struct device_attribute
*attr
, char *buf
)
2075 struct Scsi_Host
*shost
= class_to_shost(dev
);
2076 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)shost
->hostdata
;
2077 struct afu
*afu
= cfg
->afu
;
2079 return scnprintf(buf
, PAGE_SIZE
, "%u\n", afu
->internal_lun
);
2083 * lun_mode_store() - sets the LUN mode of the host
2084 * @dev: Generic device associated with the host.
2085 * @attr: Device attribute representing the LUN mode.
2086 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2087 * @count: Length of data resizing in @buf.
2089 * The CXL Flash AFU supports a dummy LUN mode where the external
2090 * links and storage are not required. Space on the FPGA is used
2091 * to create 1 or 2 small LUNs which are presented to the system
2092 * as if they were a normal storage device. This feature is useful
2093 * during development and also provides manufacturing with a way
2094 * to test the AFU without an actual device.
2096 * 0 = external LUN[s] (default)
2097 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2098 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2099 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2100 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2102 * Return: The size of the ASCII string returned in @buf.
2104 static ssize_t
lun_mode_store(struct device
*dev
,
2105 struct device_attribute
*attr
,
2106 const char *buf
, size_t count
)
2108 struct Scsi_Host
*shost
= class_to_shost(dev
);
2109 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)shost
->hostdata
;
2110 struct afu
*afu
= cfg
->afu
;
2114 rc
= kstrtouint(buf
, 10, &lun_mode
);
2115 if (!rc
&& (lun_mode
< 5) && (lun_mode
!= afu
->internal_lun
)) {
2116 afu
->internal_lun
= lun_mode
;
2118 scsi_scan_host(cfg
->host
);
2125 * ioctl_version_show() - presents the current ioctl version of the host
2126 * @dev: Generic device associated with the host.
2127 * @attr: Device attribute representing the ioctl version.
2128 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2130 * Return: The size of the ASCII string returned in @buf.
2132 static ssize_t
ioctl_version_show(struct device
*dev
,
2133 struct device_attribute
*attr
, char *buf
)
2135 return scnprintf(buf
, PAGE_SIZE
, "%u\n", DK_CXLFLASH_VERSION_0
);
2139 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2140 * @port: Desired port for status reporting.
2141 * @afu: AFU owning the specified port.
2142 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2144 * Return: The size of the ASCII string returned in @buf.
2146 static ssize_t
cxlflash_show_port_lun_table(u32 port
,
2152 __be64 __iomem
*fc_port
;
2154 if (port
>= NUM_FC_PORTS
)
2157 fc_port
= &afu
->afu_map
->global
.fc_port
[port
][0];
2159 for (i
= 0; i
< CXLFLASH_NUM_VLUNS
; i
++)
2160 bytes
+= scnprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
2161 "%03d: %016llX\n", i
, readq_be(&fc_port
[i
]));
2166 * port0_lun_table_show() - presents the current LUN table of port 0
2167 * @dev: Generic device associated with the host owning the port.
2168 * @attr: Device attribute representing the port.
2169 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2171 * Return: The size of the ASCII string returned in @buf.
2173 static ssize_t
port0_lun_table_show(struct device
*dev
,
2174 struct device_attribute
*attr
,
2177 struct Scsi_Host
*shost
= class_to_shost(dev
);
2178 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)shost
->hostdata
;
2179 struct afu
*afu
= cfg
->afu
;
2181 return cxlflash_show_port_lun_table(0, afu
, buf
);
2185 * port1_lun_table_show() - presents the current LUN table of port 1
2186 * @dev: Generic device associated with the host owning the port.
2187 * @attr: Device attribute representing the port.
2188 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2190 * Return: The size of the ASCII string returned in @buf.
2192 static ssize_t
port1_lun_table_show(struct device
*dev
,
2193 struct device_attribute
*attr
,
2196 struct Scsi_Host
*shost
= class_to_shost(dev
);
2197 struct cxlflash_cfg
*cfg
= (struct cxlflash_cfg
*)shost
->hostdata
;
2198 struct afu
*afu
= cfg
->afu
;
2200 return cxlflash_show_port_lun_table(1, afu
, buf
);
2204 * mode_show() - presents the current mode of the device
2205 * @dev: Generic device associated with the device.
2206 * @attr: Device attribute representing the device mode.
2207 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2209 * Return: The size of the ASCII string returned in @buf.
2211 static ssize_t
mode_show(struct device
*dev
,
2212 struct device_attribute
*attr
, char *buf
)
2214 struct scsi_device
*sdev
= to_scsi_device(dev
);
2216 return scnprintf(buf
, PAGE_SIZE
, "%s\n",
2217 sdev
->hostdata
? "superpipe" : "legacy");
2223 static DEVICE_ATTR_RO(port0
);
2224 static DEVICE_ATTR_RO(port1
);
2225 static DEVICE_ATTR_RW(lun_mode
);
2226 static DEVICE_ATTR_RO(ioctl_version
);
2227 static DEVICE_ATTR_RO(port0_lun_table
);
2228 static DEVICE_ATTR_RO(port1_lun_table
);
2230 static struct device_attribute
*cxlflash_host_attrs
[] = {
2234 &dev_attr_ioctl_version
,
2235 &dev_attr_port0_lun_table
,
2236 &dev_attr_port1_lun_table
,
2243 static DEVICE_ATTR_RO(mode
);
2245 static struct device_attribute
*cxlflash_dev_attrs
[] = {
2253 static struct scsi_host_template driver_template
= {
2254 .module
= THIS_MODULE
,
2255 .name
= CXLFLASH_ADAPTER_NAME
,
2256 .info
= cxlflash_driver_info
,
2257 .ioctl
= cxlflash_ioctl
,
2258 .proc_name
= CXLFLASH_NAME
,
2259 .queuecommand
= cxlflash_queuecommand
,
2260 .eh_device_reset_handler
= cxlflash_eh_device_reset_handler
,
2261 .eh_host_reset_handler
= cxlflash_eh_host_reset_handler
,
2262 .change_queue_depth
= cxlflash_change_queue_depth
,
2264 .can_queue
= CXLFLASH_MAX_CMDS
,
2266 .sg_tablesize
= SG_NONE
, /* No scatter gather support */
2267 .max_sectors
= CXLFLASH_MAX_SECTORS
,
2268 .use_clustering
= ENABLE_CLUSTERING
,
2269 .shost_attrs
= cxlflash_host_attrs
,
2270 .sdev_attrs
= cxlflash_dev_attrs
,
2274 * Device dependent values
2276 static struct dev_dependent_vals dev_corsa_vals
= { CXLFLASH_MAX_SECTORS
};
2279 * PCI device binding table
2281 static struct pci_device_id cxlflash_pci_table
[] = {
2282 {PCI_VENDOR_ID_IBM
, PCI_DEVICE_ID_IBM_CORSA
,
2283 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (kernel_ulong_t
)&dev_corsa_vals
},
2287 MODULE_DEVICE_TABLE(pci
, cxlflash_pci_table
);
2290 * cxlflash_worker_thread() - work thread handler for the AFU
2291 * @work: Work structure contained within cxlflash associated with host.
2293 * Handles the following events:
2294 * - Link reset which cannot be performed on interrupt context due to
2295 * blocking up to a few seconds
2296 * - Read AFU command room
2299 static void cxlflash_worker_thread(struct work_struct
*work
)
2301 struct cxlflash_cfg
*cfg
= container_of(work
, struct cxlflash_cfg
,
2303 struct afu
*afu
= cfg
->afu
;
2304 struct device
*dev
= &cfg
->dev
->dev
;
2308 /* Avoid MMIO if the device has failed */
2310 if (cfg
->state
!= STATE_NORMAL
)
2313 spin_lock_irqsave(cfg
->host
->host_lock
, lock_flags
);
2315 if (cfg
->lr_state
== LINK_RESET_REQUIRED
) {
2316 port
= cfg
->lr_port
;
2318 dev_err(dev
, "%s: invalid port index %d\n",
2321 spin_unlock_irqrestore(cfg
->host
->host_lock
,
2324 /* The reset can block... */
2325 afu_link_reset(afu
, port
,
2326 &afu
->afu_map
->global
.fc_regs
[port
][0]);
2327 spin_lock_irqsave(cfg
->host
->host_lock
, lock_flags
);
2330 cfg
->lr_state
= LINK_RESET_COMPLETE
;
2333 if (afu
->read_room
) {
2334 atomic64_set(&afu
->room
, readq_be(&afu
->host_map
->cmd_room
));
2335 afu
->read_room
= false;
2338 spin_unlock_irqrestore(cfg
->host
->host_lock
, lock_flags
);
2340 if (atomic_dec_if_positive(&cfg
->scan_host_needed
) >= 0)
2341 scsi_scan_host(cfg
->host
);
2345 * cxlflash_probe() - PCI entry point to add host
2346 * @pdev: PCI device associated with the host.
2347 * @dev_id: PCI device id associated with device.
2349 * Return: 0 on success, -errno on failure
2351 static int cxlflash_probe(struct pci_dev
*pdev
,
2352 const struct pci_device_id
*dev_id
)
2354 struct Scsi_Host
*host
;
2355 struct cxlflash_cfg
*cfg
= NULL
;
2356 struct device
*phys_dev
;
2357 struct dev_dependent_vals
*ddv
;
2360 dev_dbg(&pdev
->dev
, "%s: Found CXLFLASH with IRQ: %d\n",
2361 __func__
, pdev
->irq
);
2363 ddv
= (struct dev_dependent_vals
*)dev_id
->driver_data
;
2364 driver_template
.max_sectors
= ddv
->max_sectors
;
2366 host
= scsi_host_alloc(&driver_template
, sizeof(struct cxlflash_cfg
));
2368 dev_err(&pdev
->dev
, "%s: call to scsi_host_alloc failed!\n",
2374 host
->max_id
= CXLFLASH_MAX_NUM_TARGETS_PER_BUS
;
2375 host
->max_lun
= CXLFLASH_MAX_NUM_LUNS_PER_TARGET
;
2376 host
->max_channel
= NUM_FC_PORTS
- 1;
2377 host
->unique_id
= host
->host_no
;
2378 host
->max_cmd_len
= CXLFLASH_MAX_CDB_LEN
;
2380 cfg
= (struct cxlflash_cfg
*)host
->hostdata
;
2382 rc
= alloc_mem(cfg
);
2384 dev_err(&pdev
->dev
, "%s: call to alloc_mem failed!\n",
2387 scsi_host_put(cfg
->host
);
2391 cfg
->init_state
= INIT_STATE_NONE
;
2393 cfg
->cxl_fops
= cxlflash_cxl_fops
;
2396 * The promoted LUNs move to the top of the LUN table. The rest stay
2397 * on the bottom half. The bottom half grows from the end
2398 * (index = 255), whereas the top half grows from the beginning
2401 cfg
->promote_lun_index
= 0;
2402 cfg
->last_lun_index
[0] = CXLFLASH_NUM_VLUNS
/2 - 1;
2403 cfg
->last_lun_index
[1] = CXLFLASH_NUM_VLUNS
/2 - 1;
2405 cfg
->dev_id
= (struct pci_device_id
*)dev_id
;
2407 init_waitqueue_head(&cfg
->tmf_waitq
);
2408 init_waitqueue_head(&cfg
->reset_waitq
);
2410 INIT_WORK(&cfg
->work_q
, cxlflash_worker_thread
);
2411 cfg
->lr_state
= LINK_RESET_INVALID
;
2413 spin_lock_init(&cfg
->tmf_slock
);
2414 mutex_init(&cfg
->ctx_tbl_list_mutex
);
2415 mutex_init(&cfg
->ctx_recovery_mutex
);
2416 init_rwsem(&cfg
->ioctl_rwsem
);
2417 INIT_LIST_HEAD(&cfg
->ctx_err_recovery
);
2418 INIT_LIST_HEAD(&cfg
->lluns
);
2420 pci_set_drvdata(pdev
, cfg
);
2423 * Use the special service provided to look up the physical
2424 * PCI device, since we are called on the probe of the virtual
2425 * PCI host bus (vphb)
2427 phys_dev
= cxl_get_phys_dev(pdev
);
2428 if (!dev_is_pci(phys_dev
)) {
2429 dev_err(&pdev
->dev
, "%s: not a pci dev\n", __func__
);
2433 cfg
->parent_dev
= to_pci_dev(phys_dev
);
2435 cfg
->cxl_afu
= cxl_pci_to_afu(pdev
);
2439 dev_err(&pdev
->dev
, "%s: call to init_pci "
2440 "failed rc=%d!\n", __func__
, rc
);
2443 cfg
->init_state
= INIT_STATE_PCI
;
2447 dev_err(&pdev
->dev
, "%s: call to init_afu "
2448 "failed rc=%d!\n", __func__
, rc
);
2451 cfg
->init_state
= INIT_STATE_AFU
;
2453 rc
= init_scsi(cfg
);
2455 dev_err(&pdev
->dev
, "%s: call to init_scsi "
2456 "failed rc=%d!\n", __func__
, rc
);
2459 cfg
->init_state
= INIT_STATE_SCSI
;
2462 pr_debug("%s: returning rc=%d\n", __func__
, rc
);
2466 cxlflash_remove(pdev
);
2471 * drain_ioctls() - wait until all currently executing ioctls have completed
2472 * @cfg: Internal structure associated with the host.
2474 * Obtain write access to read/write semaphore that wraps ioctl
2475 * handling to 'drain' ioctls currently executing.
2477 static void drain_ioctls(struct cxlflash_cfg
*cfg
)
2479 down_write(&cfg
->ioctl_rwsem
);
2480 up_write(&cfg
->ioctl_rwsem
);
2484 * cxlflash_pci_error_detected() - called when a PCI error is detected
2485 * @pdev: PCI device struct.
2486 * @state: PCI channel state.
2488 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2490 static pci_ers_result_t
cxlflash_pci_error_detected(struct pci_dev
*pdev
,
2491 pci_channel_state_t state
)
2494 struct cxlflash_cfg
*cfg
= pci_get_drvdata(pdev
);
2495 struct device
*dev
= &cfg
->dev
->dev
;
2497 dev_dbg(dev
, "%s: pdev=%p state=%u\n", __func__
, pdev
, state
);
2500 case pci_channel_io_frozen
:
2501 cfg
->state
= STATE_RESET
;
2502 scsi_block_requests(cfg
->host
);
2504 rc
= cxlflash_mark_contexts_error(cfg
);
2506 dev_err(dev
, "%s: Failed to mark user contexts!(%d)\n",
2508 term_mc(cfg
, UNDO_START
);
2510 return PCI_ERS_RESULT_NEED_RESET
;
2511 case pci_channel_io_perm_failure
:
2512 cfg
->state
= STATE_FAILTERM
;
2513 wake_up_all(&cfg
->reset_waitq
);
2514 scsi_unblock_requests(cfg
->host
);
2515 return PCI_ERS_RESULT_DISCONNECT
;
2519 return PCI_ERS_RESULT_NEED_RESET
;
2523 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2524 * @pdev: PCI device struct.
2526 * This routine is called by the pci error recovery code after the PCI
2527 * slot has been reset, just before we should resume normal operations.
2529 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2531 static pci_ers_result_t
cxlflash_pci_slot_reset(struct pci_dev
*pdev
)
2534 struct cxlflash_cfg
*cfg
= pci_get_drvdata(pdev
);
2535 struct device
*dev
= &cfg
->dev
->dev
;
2537 dev_dbg(dev
, "%s: pdev=%p\n", __func__
, pdev
);
2541 dev_err(dev
, "%s: EEH recovery failed! (%d)\n", __func__
, rc
);
2542 return PCI_ERS_RESULT_DISCONNECT
;
2545 return PCI_ERS_RESULT_RECOVERED
;
2549 * cxlflash_pci_resume() - called when normal operation can resume
2550 * @pdev: PCI device struct
2552 static void cxlflash_pci_resume(struct pci_dev
*pdev
)
2554 struct cxlflash_cfg
*cfg
= pci_get_drvdata(pdev
);
2555 struct device
*dev
= &cfg
->dev
->dev
;
2557 dev_dbg(dev
, "%s: pdev=%p\n", __func__
, pdev
);
2559 cfg
->state
= STATE_NORMAL
;
2560 wake_up_all(&cfg
->reset_waitq
);
2561 scsi_unblock_requests(cfg
->host
);
2564 static const struct pci_error_handlers cxlflash_err_handler
= {
2565 .error_detected
= cxlflash_pci_error_detected
,
2566 .slot_reset
= cxlflash_pci_slot_reset
,
2567 .resume
= cxlflash_pci_resume
,
2571 * PCI device structure
2573 static struct pci_driver cxlflash_driver
= {
2574 .name
= CXLFLASH_NAME
,
2575 .id_table
= cxlflash_pci_table
,
2576 .probe
= cxlflash_probe
,
2577 .remove
= cxlflash_remove
,
2578 .err_handler
= &cxlflash_err_handler
,
2582 * init_cxlflash() - module entry point
2584 * Return: 0 on success, -errno on failure
2586 static int __init
init_cxlflash(void)
2588 pr_info("%s: IBM Power CXL Flash Adapter: %s\n",
2589 __func__
, CXLFLASH_DRIVER_DATE
);
2591 cxlflash_list_init();
2593 return pci_register_driver(&cxlflash_driver
);
2597 * exit_cxlflash() - module exit point
2599 static void __exit
exit_cxlflash(void)
2601 cxlflash_term_global_luns();
2602 cxlflash_free_errpage();
2604 pci_unregister_driver(&cxlflash_driver
);
2607 module_init(init_cxlflash
);
2608 module_exit(exit_cxlflash
);