2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/slab.h>
32 #include <linux/clk.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/acpi.h>
36 #include "spi-pxa2xx.h"
38 MODULE_AUTHOR("Stephen Street");
39 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
40 MODULE_LICENSE("GPL");
41 MODULE_ALIAS("platform:pxa2xx-spi");
43 #define TIMOUT_DFLT 1000
46 * for testing SSCR1 changes that require SSP restart, basically
47 * everything except the service and interrupt enables, the pxa270 developer
48 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
49 * list, but the PXA255 dev man says all bits without really meaning the
50 * service and interrupt enables
52 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
53 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
54 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
55 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
56 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
57 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
60 | QUARK_X1000_SSCR1_EFWR \
61 | QUARK_X1000_SSCR1_RFT \
62 | QUARK_X1000_SSCR1_TFT \
63 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
66 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
67 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
68 #define LPSS_CS_CONTROL_CS_SEL_SHIFT 8
69 #define LPSS_CS_CONTROL_CS_SEL_MASK (3 << LPSS_CS_CONTROL_CS_SEL_SHIFT)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
74 /* LPSS offset from drv_data->ioaddr */
76 /* Register offsets from drv_data->lpss_base or -1 */
87 /* Keep these sorted with enum pxa_ssp_type */
88 static const struct lpss_config lpss_platforms
[] = {
94 .reg_capabilities
= -1,
96 .tx_threshold_lo
= 160,
97 .tx_threshold_hi
= 224,
104 .reg_capabilities
= -1,
106 .tx_threshold_lo
= 160,
107 .tx_threshold_hi
= 224,
114 .reg_capabilities
= 0xfc,
116 .tx_threshold_lo
= 32,
117 .tx_threshold_hi
= 56,
124 .reg_capabilities
= 0xfc,
126 .tx_threshold_lo
= 16,
127 .tx_threshold_hi
= 48,
131 static inline const struct lpss_config
132 *lpss_get_config(const struct driver_data
*drv_data
)
134 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
137 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
139 switch (drv_data
->ssp_type
) {
150 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
152 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
155 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
157 switch (drv_data
->ssp_type
) {
158 case QUARK_X1000_SSP
:
159 return QUARK_X1000_SSCR1_CHANGE_MASK
;
161 return SSCR1_CHANGE_MASK
;
166 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
168 switch (drv_data
->ssp_type
) {
169 case QUARK_X1000_SSP
:
170 return RX_THRESH_QUARK_X1000_DFLT
;
172 return RX_THRESH_DFLT
;
176 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
180 switch (drv_data
->ssp_type
) {
181 case QUARK_X1000_SSP
:
182 mask
= QUARK_X1000_SSSR_TFL_MASK
;
185 mask
= SSSR_TFL_MASK
;
189 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
192 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
197 switch (drv_data
->ssp_type
) {
198 case QUARK_X1000_SSP
:
199 mask
= QUARK_X1000_SSCR1_RFT
;
208 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
209 u32
*sccr1_reg
, u32 threshold
)
211 switch (drv_data
->ssp_type
) {
212 case QUARK_X1000_SSP
:
213 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
216 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
221 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
222 u32 clk_div
, u8 bits
)
224 switch (drv_data
->ssp_type
) {
225 case QUARK_X1000_SSP
:
227 | QUARK_X1000_SSCR0_Motorola
228 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
233 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
235 | (bits
> 16 ? SSCR0_EDSS
: 0);
240 * Read and write LPSS SSP private registers. Caller must first check that
241 * is_lpss_ssp() returns true before these can be called.
243 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
245 WARN_ON(!drv_data
->lpss_base
);
246 return readl(drv_data
->lpss_base
+ offset
);
249 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
250 unsigned offset
, u32 value
)
252 WARN_ON(!drv_data
->lpss_base
);
253 writel(value
, drv_data
->lpss_base
+ offset
);
257 * lpss_ssp_setup - perform LPSS SSP specific setup
258 * @drv_data: pointer to the driver private data
260 * Perform LPSS SSP specific setup. This function must be called first if
261 * one is going to use LPSS SSP private registers.
263 static void lpss_ssp_setup(struct driver_data
*drv_data
)
265 const struct lpss_config
*config
;
268 config
= lpss_get_config(drv_data
);
269 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
271 /* Enable software chip select control */
272 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
273 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
274 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
275 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
277 /* Enable multiblock DMA transfers */
278 if (drv_data
->master_info
->enable_dma
) {
279 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
281 if (config
->reg_general
>= 0) {
282 value
= __lpss_ssp_read_priv(drv_data
,
283 config
->reg_general
);
284 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
285 __lpss_ssp_write_priv(drv_data
,
286 config
->reg_general
, value
);
291 static void lpss_ssp_cs_control(struct driver_data
*drv_data
, bool enable
)
293 const struct lpss_config
*config
;
296 config
= lpss_get_config(drv_data
);
298 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
300 cs
= drv_data
->cur_msg
->spi
->chip_select
;
301 cs
<<= LPSS_CS_CONTROL_CS_SEL_SHIFT
;
302 if (cs
!= (value
& LPSS_CS_CONTROL_CS_SEL_MASK
)) {
304 * When switching another chip select output active
305 * the output must be selected first and wait 2 ssp_clk
306 * cycles before changing state to active. Otherwise
307 * a short glitch will occur on the previous chip
308 * select since output select is latched but state
311 value
&= ~LPSS_CS_CONTROL_CS_SEL_MASK
;
313 __lpss_ssp_write_priv(drv_data
,
314 config
->reg_cs_ctrl
, value
);
316 (drv_data
->master
->max_speed_hz
/ 2));
318 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
320 value
|= LPSS_CS_CONTROL_CS_HIGH
;
322 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
325 static void cs_assert(struct driver_data
*drv_data
)
327 struct chip_data
*chip
= drv_data
->cur_chip
;
329 if (drv_data
->ssp_type
== CE4100_SSP
) {
330 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->cur_chip
->frm
);
334 if (chip
->cs_control
) {
335 chip
->cs_control(PXA2XX_CS_ASSERT
);
339 if (gpio_is_valid(chip
->gpio_cs
)) {
340 gpio_set_value(chip
->gpio_cs
, chip
->gpio_cs_inverted
);
344 if (is_lpss_ssp(drv_data
))
345 lpss_ssp_cs_control(drv_data
, true);
348 static void cs_deassert(struct driver_data
*drv_data
)
350 struct chip_data
*chip
= drv_data
->cur_chip
;
352 if (drv_data
->ssp_type
== CE4100_SSP
)
355 if (chip
->cs_control
) {
356 chip
->cs_control(PXA2XX_CS_DEASSERT
);
360 if (gpio_is_valid(chip
->gpio_cs
)) {
361 gpio_set_value(chip
->gpio_cs
, !chip
->gpio_cs_inverted
);
365 if (is_lpss_ssp(drv_data
))
366 lpss_ssp_cs_control(drv_data
, false);
369 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
371 unsigned long limit
= loops_per_jiffy
<< 1;
374 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
375 pxa2xx_spi_read(drv_data
, SSDR
);
376 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
377 write_SSSR_CS(drv_data
, SSSR_ROR
);
382 static int null_writer(struct driver_data
*drv_data
)
384 u8 n_bytes
= drv_data
->n_bytes
;
386 if (pxa2xx_spi_txfifo_full(drv_data
)
387 || (drv_data
->tx
== drv_data
->tx_end
))
390 pxa2xx_spi_write(drv_data
, SSDR
, 0);
391 drv_data
->tx
+= n_bytes
;
396 static int null_reader(struct driver_data
*drv_data
)
398 u8 n_bytes
= drv_data
->n_bytes
;
400 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
401 && (drv_data
->rx
< drv_data
->rx_end
)) {
402 pxa2xx_spi_read(drv_data
, SSDR
);
403 drv_data
->rx
+= n_bytes
;
406 return drv_data
->rx
== drv_data
->rx_end
;
409 static int u8_writer(struct driver_data
*drv_data
)
411 if (pxa2xx_spi_txfifo_full(drv_data
)
412 || (drv_data
->tx
== drv_data
->tx_end
))
415 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
421 static int u8_reader(struct driver_data
*drv_data
)
423 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
424 && (drv_data
->rx
< drv_data
->rx_end
)) {
425 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
429 return drv_data
->rx
== drv_data
->rx_end
;
432 static int u16_writer(struct driver_data
*drv_data
)
434 if (pxa2xx_spi_txfifo_full(drv_data
)
435 || (drv_data
->tx
== drv_data
->tx_end
))
438 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
444 static int u16_reader(struct driver_data
*drv_data
)
446 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
447 && (drv_data
->rx
< drv_data
->rx_end
)) {
448 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
452 return drv_data
->rx
== drv_data
->rx_end
;
455 static int u32_writer(struct driver_data
*drv_data
)
457 if (pxa2xx_spi_txfifo_full(drv_data
)
458 || (drv_data
->tx
== drv_data
->tx_end
))
461 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
467 static int u32_reader(struct driver_data
*drv_data
)
469 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
470 && (drv_data
->rx
< drv_data
->rx_end
)) {
471 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
475 return drv_data
->rx
== drv_data
->rx_end
;
478 void *pxa2xx_spi_next_transfer(struct driver_data
*drv_data
)
480 struct spi_message
*msg
= drv_data
->cur_msg
;
481 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
483 /* Move to next transfer */
484 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
485 drv_data
->cur_transfer
=
486 list_entry(trans
->transfer_list
.next
,
489 return RUNNING_STATE
;
494 /* caller already set message->status; dma and pio irqs are blocked */
495 static void giveback(struct driver_data
*drv_data
)
497 struct spi_transfer
* last_transfer
;
498 struct spi_message
*msg
;
500 msg
= drv_data
->cur_msg
;
501 drv_data
->cur_msg
= NULL
;
502 drv_data
->cur_transfer
= NULL
;
504 last_transfer
= list_last_entry(&msg
->transfers
, struct spi_transfer
,
507 /* Delay if requested before any change in chip select */
508 if (last_transfer
->delay_usecs
)
509 udelay(last_transfer
->delay_usecs
);
511 /* Drop chip select UNLESS cs_change is true or we are returning
512 * a message with an error, or next message is for another chip
514 if (!last_transfer
->cs_change
)
515 cs_deassert(drv_data
);
517 struct spi_message
*next_msg
;
519 /* Holding of cs was hinted, but we need to make sure
520 * the next message is for the same chip. Don't waste
521 * time with the following tests unless this was hinted.
523 * We cannot postpone this until pump_messages, because
524 * after calling msg->complete (below) the driver that
525 * sent the current message could be unloaded, which
526 * could invalidate the cs_control() callback...
529 /* get a pointer to the next message, if any */
530 next_msg
= spi_get_next_queued_message(drv_data
->master
);
532 /* see if the next and current messages point
535 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
537 if (!next_msg
|| msg
->state
== ERROR_STATE
)
538 cs_deassert(drv_data
);
541 drv_data
->cur_chip
= NULL
;
542 spi_finalize_current_message(drv_data
->master
);
545 static void reset_sccr1(struct driver_data
*drv_data
)
547 struct chip_data
*chip
= drv_data
->cur_chip
;
550 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
551 sccr1_reg
&= ~SSCR1_RFT
;
552 sccr1_reg
|= chip
->threshold
;
553 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
556 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
558 /* Stop and reset SSP */
559 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
560 reset_sccr1(drv_data
);
561 if (!pxa25x_ssp_comp(drv_data
))
562 pxa2xx_spi_write(drv_data
, SSTO
, 0);
563 pxa2xx_spi_flush(drv_data
);
564 pxa2xx_spi_write(drv_data
, SSCR0
,
565 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
567 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
569 drv_data
->cur_msg
->state
= ERROR_STATE
;
570 tasklet_schedule(&drv_data
->pump_transfers
);
573 static void int_transfer_complete(struct driver_data
*drv_data
)
576 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
577 reset_sccr1(drv_data
);
578 if (!pxa25x_ssp_comp(drv_data
))
579 pxa2xx_spi_write(drv_data
, SSTO
, 0);
581 /* Update total byte transferred return count actual bytes read */
582 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
583 (drv_data
->rx_end
- drv_data
->rx
);
585 /* Transfer delays and chip select release are
586 * handled in pump_transfers or giveback
589 /* Move to next transfer */
590 drv_data
->cur_msg
->state
= pxa2xx_spi_next_transfer(drv_data
);
592 /* Schedule transfer tasklet */
593 tasklet_schedule(&drv_data
->pump_transfers
);
596 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
598 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
599 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
601 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
603 if (irq_status
& SSSR_ROR
) {
604 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
608 if (irq_status
& SSSR_TINT
) {
609 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
610 if (drv_data
->read(drv_data
)) {
611 int_transfer_complete(drv_data
);
616 /* Drain rx fifo, Fill tx fifo and prevent overruns */
618 if (drv_data
->read(drv_data
)) {
619 int_transfer_complete(drv_data
);
622 } while (drv_data
->write(drv_data
));
624 if (drv_data
->read(drv_data
)) {
625 int_transfer_complete(drv_data
);
629 if (drv_data
->tx
== drv_data
->tx_end
) {
633 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
634 sccr1_reg
&= ~SSCR1_TIE
;
637 * PXA25x_SSP has no timeout, set up rx threshould for the
638 * remaining RX bytes.
640 if (pxa25x_ssp_comp(drv_data
)) {
643 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
645 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
646 switch (drv_data
->n_bytes
) {
653 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
654 if (rx_thre
> bytes_left
)
655 rx_thre
= bytes_left
;
657 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
659 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
662 /* We did something */
666 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
668 struct driver_data
*drv_data
= dev_id
;
670 u32 mask
= drv_data
->mask_sr
;
674 * The IRQ might be shared with other peripherals so we must first
675 * check that are we RPM suspended or not. If we are we assume that
676 * the IRQ was not for us (we shouldn't be RPM suspended when the
677 * interrupt is enabled).
679 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
683 * If the device is not yet in RPM suspended state and we get an
684 * interrupt that is meant for another device, check if status bits
685 * are all set to one. That means that the device is already
688 status
= pxa2xx_spi_read(drv_data
, SSSR
);
692 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
694 /* Ignore possible writes if we don't need to write */
695 if (!(sccr1_reg
& SSCR1_TIE
))
698 /* Ignore RX timeout interrupt if it is disabled */
699 if (!(sccr1_reg
& SSCR1_TINTE
))
702 if (!(status
& mask
))
705 if (!drv_data
->cur_msg
) {
707 pxa2xx_spi_write(drv_data
, SSCR0
,
708 pxa2xx_spi_read(drv_data
, SSCR0
)
710 pxa2xx_spi_write(drv_data
, SSCR1
,
711 pxa2xx_spi_read(drv_data
, SSCR1
)
712 & ~drv_data
->int_cr1
);
713 if (!pxa25x_ssp_comp(drv_data
))
714 pxa2xx_spi_write(drv_data
, SSTO
, 0);
715 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
717 dev_err(&drv_data
->pdev
->dev
,
718 "bad message state in interrupt handler\n");
724 return drv_data
->transfer_handler(drv_data
);
728 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
729 * input frequency by fractions of 2^24. It also has a divider by 5.
731 * There are formulas to get baud rate value for given input frequency and
732 * divider parameters, such as DDS_CLK_RATE and SCR:
736 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
737 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
739 * DDS_CLK_RATE either 2^n or 2^n / 5.
740 * SCR is in range 0 .. 255
742 * Divisor = 5^i * 2^j * 2 * k
743 * i = [0, 1] i = 1 iff j = 0 or j > 3
744 * j = [0, 23] j = 0 iff i = 1
746 * Special case: j = 0, i = 1: Divisor = 2 / 5
748 * Accordingly to the specification the recommended values for DDS_CLK_RATE
750 * Case 1: 2^n, n = [0, 23]
751 * Case 2: 2^24 * 2 / 5 (0x666666)
752 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
754 * In all cases the lowest possible value is better.
756 * The function calculates parameters for all cases and chooses the one closest
757 * to the asked baud rate.
759 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
761 unsigned long xtal
= 200000000;
762 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
765 unsigned long fref1
= fref
/ 2; /* case 1 */
766 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
768 unsigned long q
, q1
, q2
;
774 /* Set initial value for DDS_CLK_RATE */
775 mul
= (1 << 24) >> 1;
777 /* Calculate initial quot */
778 q1
= DIV_ROUND_UP(fref1
, rate
);
780 /* Scale q1 if it's too big */
782 /* Scale q1 to range [1, 512] */
783 scale
= fls_long(q1
- 1);
789 /* Round the result if we have a remainder */
793 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
798 /* Get the remainder */
799 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
803 q2
= DIV_ROUND_UP(fref2
, rate
);
804 r2
= abs(fref2
/ q2
- rate
);
807 * Choose the best between two: less remainder we have the better. We
808 * can't go case 2 if q2 is greater than 256 since SCR register can
809 * hold only values 0 .. 255.
811 if (r2
>= r1
|| q2
> 256) {
812 /* case 1 is better */
816 /* case 2 is better */
819 mul
= (1 << 24) * 2 / 5;
822 /* Check case 3 only if the divisor is big enough */
823 if (fref
/ rate
>= 80) {
827 /* Calculate initial quot */
828 q1
= DIV_ROUND_UP(fref
, rate
);
831 /* Get the remainder */
832 fssp
= (u64
)fref
* m
;
833 do_div(fssp
, 1 << 24);
834 r1
= abs(fssp
- rate
);
836 /* Choose this one if it suits better */
838 /* case 3 is better */
848 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
850 unsigned long ssp_clk
= drv_data
->master
->max_speed_hz
;
851 const struct ssp_device
*ssp
= drv_data
->ssp
;
853 rate
= min_t(int, ssp_clk
, rate
);
855 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
856 return (ssp_clk
/ (2 * rate
) - 1) & 0xff;
858 return (ssp_clk
/ rate
- 1) & 0xfff;
861 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
864 struct chip_data
*chip
= drv_data
->cur_chip
;
865 unsigned int clk_div
;
867 switch (drv_data
->ssp_type
) {
868 case QUARK_X1000_SSP
:
869 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
872 clk_div
= ssp_get_clk_div(drv_data
, rate
);
878 static void pump_transfers(unsigned long data
)
880 struct driver_data
*drv_data
= (struct driver_data
*)data
;
881 struct spi_message
*message
= NULL
;
882 struct spi_transfer
*transfer
= NULL
;
883 struct spi_transfer
*previous
= NULL
;
884 struct chip_data
*chip
= NULL
;
890 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
891 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
892 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
894 /* Get current state information */
895 message
= drv_data
->cur_msg
;
896 transfer
= drv_data
->cur_transfer
;
897 chip
= drv_data
->cur_chip
;
899 /* Handle for abort */
900 if (message
->state
== ERROR_STATE
) {
901 message
->status
= -EIO
;
906 /* Handle end of message */
907 if (message
->state
== DONE_STATE
) {
913 /* Delay if requested at end of transfer before CS change */
914 if (message
->state
== RUNNING_STATE
) {
915 previous
= list_entry(transfer
->transfer_list
.prev
,
918 if (previous
->delay_usecs
)
919 udelay(previous
->delay_usecs
);
921 /* Drop chip select only if cs_change is requested */
922 if (previous
->cs_change
)
923 cs_deassert(drv_data
);
926 /* Check if we can DMA this transfer */
927 if (!pxa2xx_spi_dma_is_possible(transfer
->len
) && chip
->enable_dma
) {
929 /* reject already-mapped transfers; PIO won't always work */
930 if (message
->is_dma_mapped
931 || transfer
->rx_dma
|| transfer
->tx_dma
) {
932 dev_err(&drv_data
->pdev
->dev
,
933 "pump_transfers: mapped transfer length of "
934 "%u is greater than %d\n",
935 transfer
->len
, MAX_DMA_LEN
);
936 message
->status
= -EINVAL
;
941 /* warn ... we force this to PIO mode */
942 dev_warn_ratelimited(&message
->spi
->dev
,
943 "pump_transfers: DMA disabled for transfer length %ld "
945 (long)drv_data
->len
, MAX_DMA_LEN
);
948 /* Setup the transfer state based on the type of transfer */
949 if (pxa2xx_spi_flush(drv_data
) == 0) {
950 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
951 message
->status
= -EIO
;
955 drv_data
->n_bytes
= chip
->n_bytes
;
956 drv_data
->tx
= (void *)transfer
->tx_buf
;
957 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
958 drv_data
->rx
= transfer
->rx_buf
;
959 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
960 drv_data
->rx_dma
= transfer
->rx_dma
;
961 drv_data
->tx_dma
= transfer
->tx_dma
;
962 drv_data
->len
= transfer
->len
;
963 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
964 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
966 /* Change speed and bit per word on a per transfer */
967 bits
= transfer
->bits_per_word
;
968 speed
= transfer
->speed_hz
;
970 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
973 drv_data
->n_bytes
= 1;
974 drv_data
->read
= drv_data
->read
!= null_reader
?
975 u8_reader
: null_reader
;
976 drv_data
->write
= drv_data
->write
!= null_writer
?
977 u8_writer
: null_writer
;
978 } else if (bits
<= 16) {
979 drv_data
->n_bytes
= 2;
980 drv_data
->read
= drv_data
->read
!= null_reader
?
981 u16_reader
: null_reader
;
982 drv_data
->write
= drv_data
->write
!= null_writer
?
983 u16_writer
: null_writer
;
984 } else if (bits
<= 32) {
985 drv_data
->n_bytes
= 4;
986 drv_data
->read
= drv_data
->read
!= null_reader
?
987 u32_reader
: null_reader
;
988 drv_data
->write
= drv_data
->write
!= null_writer
?
989 u32_writer
: null_writer
;
992 * if bits/word is changed in dma mode, then must check the
993 * thresholds and burst also
995 if (chip
->enable_dma
) {
996 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1000 dev_warn_ratelimited(&message
->spi
->dev
,
1001 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1004 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1005 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1006 if (!pxa25x_ssp_comp(drv_data
))
1007 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1008 drv_data
->master
->max_speed_hz
1009 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1010 chip
->enable_dma
? "DMA" : "PIO");
1012 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1013 drv_data
->master
->max_speed_hz
/ 2
1014 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1015 chip
->enable_dma
? "DMA" : "PIO");
1017 message
->state
= RUNNING_STATE
;
1019 drv_data
->dma_mapped
= 0;
1020 if (pxa2xx_spi_dma_is_possible(drv_data
->len
))
1021 drv_data
->dma_mapped
= pxa2xx_spi_map_dma_buffers(drv_data
);
1022 if (drv_data
->dma_mapped
) {
1024 /* Ensure we have the correct interrupt handler */
1025 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1027 pxa2xx_spi_dma_prepare(drv_data
, dma_burst
);
1029 /* Clear status and start DMA engine */
1030 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1031 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1033 pxa2xx_spi_dma_start(drv_data
);
1035 /* Ensure we have the correct interrupt handler */
1036 drv_data
->transfer_handler
= interrupt_transfer
;
1039 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1040 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1043 if (is_lpss_ssp(drv_data
)) {
1044 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1045 != chip
->lpss_rx_threshold
)
1046 pxa2xx_spi_write(drv_data
, SSIRF
,
1047 chip
->lpss_rx_threshold
);
1048 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1049 != chip
->lpss_tx_threshold
)
1050 pxa2xx_spi_write(drv_data
, SSITF
,
1051 chip
->lpss_tx_threshold
);
1054 if (is_quark_x1000_ssp(drv_data
) &&
1055 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1056 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1058 /* see if we need to reload the config registers */
1059 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1060 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1061 != (cr1
& change_mask
)) {
1062 /* stop the SSP, and update the other bits */
1063 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1064 if (!pxa25x_ssp_comp(drv_data
))
1065 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1066 /* first set CR1 without interrupt and service enables */
1067 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1068 /* restart the SSP */
1069 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1072 if (!pxa25x_ssp_comp(drv_data
))
1073 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1076 cs_assert(drv_data
);
1078 /* after chip select, release the data by enabling service
1079 * requests and interrupts, without changing any mode bits */
1080 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1083 static int pxa2xx_spi_transfer_one_message(struct spi_master
*master
,
1084 struct spi_message
*msg
)
1086 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1088 drv_data
->cur_msg
= msg
;
1089 /* Initial message state*/
1090 drv_data
->cur_msg
->state
= START_STATE
;
1091 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1092 struct spi_transfer
,
1095 /* prepare to setup the SSP, in pump_transfers, using the per
1096 * chip configuration */
1097 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1099 /* Mark as busy and launch transfers */
1100 tasklet_schedule(&drv_data
->pump_transfers
);
1104 static int pxa2xx_spi_unprepare_transfer(struct spi_master
*master
)
1106 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1108 /* Disable the SSP now */
1109 pxa2xx_spi_write(drv_data
, SSCR0
,
1110 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1115 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1116 struct pxa2xx_spi_chip
*chip_info
)
1120 if (chip
== NULL
|| chip_info
== NULL
)
1123 /* NOTE: setup() can be called multiple times, possibly with
1124 * different chip_info, release previously requested GPIO
1126 if (gpio_is_valid(chip
->gpio_cs
))
1127 gpio_free(chip
->gpio_cs
);
1129 /* If (*cs_control) is provided, ignore GPIO chip select */
1130 if (chip_info
->cs_control
) {
1131 chip
->cs_control
= chip_info
->cs_control
;
1135 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1136 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1138 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1139 chip_info
->gpio_cs
);
1143 chip
->gpio_cs
= chip_info
->gpio_cs
;
1144 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1146 err
= gpio_direction_output(chip
->gpio_cs
,
1147 !chip
->gpio_cs_inverted
);
1153 static int setup(struct spi_device
*spi
)
1155 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1156 struct chip_data
*chip
;
1157 const struct lpss_config
*config
;
1158 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1159 uint tx_thres
, tx_hi_thres
, rx_thres
;
1161 switch (drv_data
->ssp_type
) {
1162 case QUARK_X1000_SSP
:
1163 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1165 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1171 config
= lpss_get_config(drv_data
);
1172 tx_thres
= config
->tx_threshold_lo
;
1173 tx_hi_thres
= config
->tx_threshold_hi
;
1174 rx_thres
= config
->rx_threshold
;
1177 tx_thres
= TX_THRESH_DFLT
;
1179 rx_thres
= RX_THRESH_DFLT
;
1183 /* Only alloc on first setup */
1184 chip
= spi_get_ctldata(spi
);
1186 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1190 if (drv_data
->ssp_type
== CE4100_SSP
) {
1191 if (spi
->chip_select
> 4) {
1193 "failed setup: cs number must not be > 4.\n");
1198 chip
->frm
= spi
->chip_select
;
1201 chip
->enable_dma
= 0;
1202 chip
->timeout
= TIMOUT_DFLT
;
1205 /* protocol drivers may change the chip settings, so...
1206 * if chip_info exists, use it */
1207 chip_info
= spi
->controller_data
;
1209 /* chip_info isn't always needed */
1212 if (chip_info
->timeout
)
1213 chip
->timeout
= chip_info
->timeout
;
1214 if (chip_info
->tx_threshold
)
1215 tx_thres
= chip_info
->tx_threshold
;
1216 if (chip_info
->tx_hi_threshold
)
1217 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1218 if (chip_info
->rx_threshold
)
1219 rx_thres
= chip_info
->rx_threshold
;
1220 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1221 chip
->dma_threshold
= 0;
1222 if (chip_info
->enable_loopback
)
1223 chip
->cr1
= SSCR1_LBM
;
1224 } else if (ACPI_HANDLE(&spi
->dev
)) {
1226 * Slave devices enumerated from ACPI namespace don't
1227 * usually have chip_info but we still might want to use
1230 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1233 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1234 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1235 | SSITF_TxHiThresh(tx_hi_thres
);
1237 /* set dma burst and threshold outside of chip_info path so that if
1238 * chip_info goes away after setting chip->enable_dma, the
1239 * burst and threshold can still respond to changes in bits_per_word */
1240 if (chip
->enable_dma
) {
1241 /* set up legal burst and threshold for dma */
1242 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1244 &chip
->dma_burst_size
,
1245 &chip
->dma_threshold
)) {
1247 "in setup: DMA burst size reduced to match bits_per_word\n");
1251 switch (drv_data
->ssp_type
) {
1252 case QUARK_X1000_SSP
:
1253 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1254 & QUARK_X1000_SSCR1_RFT
)
1255 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1256 & QUARK_X1000_SSCR1_TFT
);
1259 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1260 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1264 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1265 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1266 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1268 if (spi
->mode
& SPI_LOOP
)
1269 chip
->cr1
|= SSCR1_LBM
;
1271 if (spi
->bits_per_word
<= 8) {
1273 chip
->read
= u8_reader
;
1274 chip
->write
= u8_writer
;
1275 } else if (spi
->bits_per_word
<= 16) {
1277 chip
->read
= u16_reader
;
1278 chip
->write
= u16_writer
;
1279 } else if (spi
->bits_per_word
<= 32) {
1281 chip
->read
= u32_reader
;
1282 chip
->write
= u32_writer
;
1285 spi_set_ctldata(spi
, chip
);
1287 if (drv_data
->ssp_type
== CE4100_SSP
)
1290 return setup_cs(spi
, chip
, chip_info
);
1293 static void cleanup(struct spi_device
*spi
)
1295 struct chip_data
*chip
= spi_get_ctldata(spi
);
1296 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1301 if (drv_data
->ssp_type
!= CE4100_SSP
&& gpio_is_valid(chip
->gpio_cs
))
1302 gpio_free(chip
->gpio_cs
);
1310 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1311 { "INT33C0", LPSS_LPT_SSP
},
1312 { "INT33C1", LPSS_LPT_SSP
},
1313 { "INT3430", LPSS_LPT_SSP
},
1314 { "INT3431", LPSS_LPT_SSP
},
1315 { "80860F0E", LPSS_BYT_SSP
},
1316 { "8086228E", LPSS_BYT_SSP
},
1319 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1321 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1326 if (adev
&& adev
->pnp
.unique_id
&&
1327 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1331 #else /* !CONFIG_ACPI */
1332 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1339 * PCI IDs of compound devices that integrate both host controller and private
1340 * integrated DMA engine. Please note these are not used in module
1341 * autoloading and probing in this module but matching the LPSS SSP type.
1343 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1345 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1346 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1348 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1349 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1351 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1352 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1353 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1355 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1356 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1357 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1361 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1363 struct device
*dev
= param
;
1365 if (dev
!= chan
->device
->dev
->parent
)
1371 static struct pxa2xx_spi_master
*
1372 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1374 struct pxa2xx_spi_master
*pdata
;
1375 struct acpi_device
*adev
;
1376 struct ssp_device
*ssp
;
1377 struct resource
*res
;
1378 const struct acpi_device_id
*adev_id
= NULL
;
1379 const struct pci_device_id
*pcidev_id
= NULL
;
1382 adev
= ACPI_COMPANION(&pdev
->dev
);
1384 if (dev_is_pci(pdev
->dev
.parent
))
1385 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
,
1386 to_pci_dev(pdev
->dev
.parent
));
1388 adev_id
= acpi_match_device(pdev
->dev
.driver
->acpi_match_table
,
1394 type
= (int)adev_id
->driver_data
;
1396 type
= (int)pcidev_id
->driver_data
;
1400 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1404 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1410 ssp
->phys_base
= res
->start
;
1411 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1412 if (IS_ERR(ssp
->mmio_base
))
1416 pdata
->tx_param
= pdev
->dev
.parent
;
1417 pdata
->rx_param
= pdev
->dev
.parent
;
1418 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1421 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1422 ssp
->irq
= platform_get_irq(pdev
, 0);
1425 ssp
->port_id
= pxa2xx_spi_get_port_id(adev
);
1427 pdata
->num_chipselect
= 1;
1428 pdata
->enable_dma
= true;
1433 #else /* !CONFIG_PCI */
1434 static inline struct pxa2xx_spi_master
*
1435 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1441 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1443 struct device
*dev
= &pdev
->dev
;
1444 struct pxa2xx_spi_master
*platform_info
;
1445 struct spi_master
*master
;
1446 struct driver_data
*drv_data
;
1447 struct ssp_device
*ssp
;
1448 const struct lpss_config
*config
;
1452 platform_info
= dev_get_platdata(dev
);
1453 if (!platform_info
) {
1454 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1455 if (!platform_info
) {
1456 dev_err(&pdev
->dev
, "missing platform data\n");
1461 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1463 ssp
= &platform_info
->ssp
;
1465 if (!ssp
->mmio_base
) {
1466 dev_err(&pdev
->dev
, "failed to get ssp\n");
1470 master
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1472 dev_err(&pdev
->dev
, "cannot alloc spi_master\n");
1476 drv_data
= spi_master_get_devdata(master
);
1477 drv_data
->master
= master
;
1478 drv_data
->master_info
= platform_info
;
1479 drv_data
->pdev
= pdev
;
1480 drv_data
->ssp
= ssp
;
1482 master
->dev
.parent
= &pdev
->dev
;
1483 master
->dev
.of_node
= pdev
->dev
.of_node
;
1484 /* the spi->mode bits understood by this driver: */
1485 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1487 master
->bus_num
= ssp
->port_id
;
1488 master
->dma_alignment
= DMA_ALIGNMENT
;
1489 master
->cleanup
= cleanup
;
1490 master
->setup
= setup
;
1491 master
->transfer_one_message
= pxa2xx_spi_transfer_one_message
;
1492 master
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1493 master
->auto_runtime_pm
= true;
1495 drv_data
->ssp_type
= ssp
->type
;
1497 drv_data
->ioaddr
= ssp
->mmio_base
;
1498 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1499 if (pxa25x_ssp_comp(drv_data
)) {
1500 switch (drv_data
->ssp_type
) {
1501 case QUARK_X1000_SSP
:
1502 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1505 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1509 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1510 drv_data
->dma_cr1
= 0;
1511 drv_data
->clear_sr
= SSSR_ROR
;
1512 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1514 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1515 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1516 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1517 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1518 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1521 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1524 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1525 goto out_error_master_alloc
;
1528 /* Setup DMA if requested */
1529 if (platform_info
->enable_dma
) {
1530 status
= pxa2xx_spi_dma_setup(drv_data
);
1532 dev_dbg(dev
, "no DMA channels available, using PIO\n");
1533 platform_info
->enable_dma
= false;
1537 /* Enable SOC clock */
1538 clk_prepare_enable(ssp
->clk
);
1540 master
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1542 /* Load default SSP configuration */
1543 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1544 switch (drv_data
->ssp_type
) {
1545 case QUARK_X1000_SSP
:
1546 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
)
1547 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1548 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1550 /* using the Motorola SPI protocol and use 8 bit frame */
1551 pxa2xx_spi_write(drv_data
, SSCR0
,
1552 QUARK_X1000_SSCR0_Motorola
1553 | QUARK_X1000_SSCR0_DataSize(8));
1556 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1557 SSCR1_TxTresh(TX_THRESH_DFLT
);
1558 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1559 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1560 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1564 if (!pxa25x_ssp_comp(drv_data
))
1565 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1567 if (!is_quark_x1000_ssp(drv_data
))
1568 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1570 if (is_lpss_ssp(drv_data
))
1571 lpss_ssp_setup(drv_data
);
1573 if (is_lpss_ssp(drv_data
)) {
1574 lpss_ssp_setup(drv_data
);
1575 config
= lpss_get_config(drv_data
);
1576 if (config
->reg_capabilities
>= 0) {
1577 tmp
= __lpss_ssp_read_priv(drv_data
,
1578 config
->reg_capabilities
);
1579 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1580 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1581 platform_info
->num_chipselect
= ffz(tmp
);
1584 master
->num_chipselect
= platform_info
->num_chipselect
;
1586 tasklet_init(&drv_data
->pump_transfers
, pump_transfers
,
1587 (unsigned long)drv_data
);
1589 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1590 pm_runtime_use_autosuspend(&pdev
->dev
);
1591 pm_runtime_set_active(&pdev
->dev
);
1592 pm_runtime_enable(&pdev
->dev
);
1594 /* Register with the SPI framework */
1595 platform_set_drvdata(pdev
, drv_data
);
1596 status
= devm_spi_register_master(&pdev
->dev
, master
);
1598 dev_err(&pdev
->dev
, "problem registering spi master\n");
1599 goto out_error_clock_enabled
;
1604 out_error_clock_enabled
:
1605 clk_disable_unprepare(ssp
->clk
);
1606 pxa2xx_spi_dma_release(drv_data
);
1607 free_irq(ssp
->irq
, drv_data
);
1609 out_error_master_alloc
:
1610 spi_master_put(master
);
1615 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1617 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1618 struct ssp_device
*ssp
;
1622 ssp
= drv_data
->ssp
;
1624 pm_runtime_get_sync(&pdev
->dev
);
1626 /* Disable the SSP at the peripheral and SOC level */
1627 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1628 clk_disable_unprepare(ssp
->clk
);
1631 if (drv_data
->master_info
->enable_dma
)
1632 pxa2xx_spi_dma_release(drv_data
);
1634 pm_runtime_put_noidle(&pdev
->dev
);
1635 pm_runtime_disable(&pdev
->dev
);
1638 free_irq(ssp
->irq
, drv_data
);
1646 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1650 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1651 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1654 #ifdef CONFIG_PM_SLEEP
1655 static int pxa2xx_spi_suspend(struct device
*dev
)
1657 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1658 struct ssp_device
*ssp
= drv_data
->ssp
;
1661 status
= spi_master_suspend(drv_data
->master
);
1664 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1666 if (!pm_runtime_suspended(dev
))
1667 clk_disable_unprepare(ssp
->clk
);
1672 static int pxa2xx_spi_resume(struct device
*dev
)
1674 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1675 struct ssp_device
*ssp
= drv_data
->ssp
;
1678 /* Enable the SSP clock */
1679 if (!pm_runtime_suspended(dev
))
1680 clk_prepare_enable(ssp
->clk
);
1682 /* Restore LPSS private register bits */
1683 if (is_lpss_ssp(drv_data
))
1684 lpss_ssp_setup(drv_data
);
1686 /* Start the queue running */
1687 status
= spi_master_resume(drv_data
->master
);
1689 dev_err(dev
, "problem starting queue (%d)\n", status
);
1698 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1700 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1702 clk_disable_unprepare(drv_data
->ssp
->clk
);
1706 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1708 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1710 clk_prepare_enable(drv_data
->ssp
->clk
);
1715 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1716 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1717 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1718 pxa2xx_spi_runtime_resume
, NULL
)
1721 static struct platform_driver driver
= {
1723 .name
= "pxa2xx-spi",
1724 .pm
= &pxa2xx_spi_pm_ops
,
1725 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
1727 .probe
= pxa2xx_spi_probe
,
1728 .remove
= pxa2xx_spi_remove
,
1729 .shutdown
= pxa2xx_spi_shutdown
,
1732 static int __init
pxa2xx_spi_init(void)
1734 return platform_driver_register(&driver
);
1736 subsys_initcall(pxa2xx_spi_init
);
1738 static void __exit
pxa2xx_spi_exit(void)
1740 platform_driver_unregister(&driver
);
1742 module_exit(pxa2xx_spi_exit
);