4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
44 static void spidev_release(struct device
*dev
)
46 struct spi_device
*spi
= to_spi_device(dev
);
48 /* spi masters may cleanup for released devices */
49 if (spi
->master
->cleanup
)
50 spi
->master
->cleanup(spi
);
52 spi_master_put(spi
->master
);
57 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
59 const struct spi_device
*spi
= to_spi_device(dev
);
62 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
66 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
68 static DEVICE_ATTR_RO(modalias
);
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
100 unsigned long flags; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages
, "%lu");
114 SPI_STATISTICS_SHOW(transfers
, "%lu");
115 SPI_STATISTICS_SHOW(errors
, "%lu");
116 SPI_STATISTICS_SHOW(timedout
, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
120 SPI_STATISTICS_SHOW(spi_async
, "%lu");
122 SPI_STATISTICS_SHOW(bytes
, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 static struct attribute
*spi_dev_attrs
[] = {
149 &dev_attr_modalias
.attr
,
153 static const struct attribute_group spi_dev_group
= {
154 .attrs
= spi_dev_attrs
,
157 static struct attribute
*spi_device_statistics_attrs
[] = {
158 &dev_attr_spi_device_messages
.attr
,
159 &dev_attr_spi_device_transfers
.attr
,
160 &dev_attr_spi_device_errors
.attr
,
161 &dev_attr_spi_device_timedout
.attr
,
162 &dev_attr_spi_device_spi_sync
.attr
,
163 &dev_attr_spi_device_spi_sync_immediate
.attr
,
164 &dev_attr_spi_device_spi_async
.attr
,
165 &dev_attr_spi_device_bytes
.attr
,
166 &dev_attr_spi_device_bytes_rx
.attr
,
167 &dev_attr_spi_device_bytes_tx
.attr
,
168 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
169 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
170 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
171 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
172 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
173 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
174 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
175 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
176 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
177 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
178 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
179 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
180 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
181 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
182 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
183 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
184 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
188 static const struct attribute_group spi_device_statistics_group
= {
189 .name
= "statistics",
190 .attrs
= spi_device_statistics_attrs
,
193 static const struct attribute_group
*spi_dev_groups
[] = {
195 &spi_device_statistics_group
,
199 static struct attribute
*spi_master_statistics_attrs
[] = {
200 &dev_attr_spi_master_messages
.attr
,
201 &dev_attr_spi_master_transfers
.attr
,
202 &dev_attr_spi_master_errors
.attr
,
203 &dev_attr_spi_master_timedout
.attr
,
204 &dev_attr_spi_master_spi_sync
.attr
,
205 &dev_attr_spi_master_spi_sync_immediate
.attr
,
206 &dev_attr_spi_master_spi_async
.attr
,
207 &dev_attr_spi_master_bytes
.attr
,
208 &dev_attr_spi_master_bytes_rx
.attr
,
209 &dev_attr_spi_master_bytes_tx
.attr
,
210 &dev_attr_spi_master_transfer_bytes_histo0
.attr
,
211 &dev_attr_spi_master_transfer_bytes_histo1
.attr
,
212 &dev_attr_spi_master_transfer_bytes_histo2
.attr
,
213 &dev_attr_spi_master_transfer_bytes_histo3
.attr
,
214 &dev_attr_spi_master_transfer_bytes_histo4
.attr
,
215 &dev_attr_spi_master_transfer_bytes_histo5
.attr
,
216 &dev_attr_spi_master_transfer_bytes_histo6
.attr
,
217 &dev_attr_spi_master_transfer_bytes_histo7
.attr
,
218 &dev_attr_spi_master_transfer_bytes_histo8
.attr
,
219 &dev_attr_spi_master_transfer_bytes_histo9
.attr
,
220 &dev_attr_spi_master_transfer_bytes_histo10
.attr
,
221 &dev_attr_spi_master_transfer_bytes_histo11
.attr
,
222 &dev_attr_spi_master_transfer_bytes_histo12
.attr
,
223 &dev_attr_spi_master_transfer_bytes_histo13
.attr
,
224 &dev_attr_spi_master_transfer_bytes_histo14
.attr
,
225 &dev_attr_spi_master_transfer_bytes_histo15
.attr
,
226 &dev_attr_spi_master_transfer_bytes_histo16
.attr
,
230 static const struct attribute_group spi_master_statistics_group
= {
231 .name
= "statistics",
232 .attrs
= spi_master_statistics_attrs
,
235 static const struct attribute_group
*spi_master_groups
[] = {
236 &spi_master_statistics_group
,
240 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
241 struct spi_transfer
*xfer
,
242 struct spi_master
*master
)
245 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
250 spin_lock_irqsave(&stats
->lock
, flags
);
253 stats
->transfer_bytes_histo
[l2len
]++;
255 stats
->bytes
+= xfer
->len
;
256 if ((xfer
->tx_buf
) &&
257 (xfer
->tx_buf
!= master
->dummy_tx
))
258 stats
->bytes_tx
+= xfer
->len
;
259 if ((xfer
->rx_buf
) &&
260 (xfer
->rx_buf
!= master
->dummy_rx
))
261 stats
->bytes_rx
+= xfer
->len
;
263 spin_unlock_irqrestore(&stats
->lock
, flags
);
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
271 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
272 const struct spi_device
*sdev
)
274 while (id
->name
[0]) {
275 if (!strcmp(sdev
->modalias
, id
->name
))
282 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
284 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
286 return spi_match_id(sdrv
->id_table
, sdev
);
288 EXPORT_SYMBOL_GPL(spi_get_device_id
);
290 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
292 const struct spi_device
*spi
= to_spi_device(dev
);
293 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev
, drv
))
300 if (acpi_driver_match_device(dev
, drv
))
304 return !!spi_match_id(sdrv
->id_table
, spi
);
306 return strcmp(spi
->modalias
, drv
->name
) == 0;
309 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
311 const struct spi_device
*spi
= to_spi_device(dev
);
314 rc
= acpi_device_uevent_modalias(dev
, env
);
318 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
322 struct bus_type spi_bus_type
= {
324 .dev_groups
= spi_dev_groups
,
325 .match
= spi_match_device
,
326 .uevent
= spi_uevent
,
328 EXPORT_SYMBOL_GPL(spi_bus_type
);
331 static int spi_drv_probe(struct device
*dev
)
333 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
334 struct spi_device
*spi
= to_spi_device(dev
);
337 ret
= of_clk_set_defaults(dev
->of_node
, false);
342 spi
->irq
= of_irq_get(dev
->of_node
, 0);
343 if (spi
->irq
== -EPROBE_DEFER
)
344 return -EPROBE_DEFER
;
349 ret
= dev_pm_domain_attach(dev
, true);
350 if (ret
!= -EPROBE_DEFER
) {
351 ret
= sdrv
->probe(spi
);
353 dev_pm_domain_detach(dev
, true);
359 static int spi_drv_remove(struct device
*dev
)
361 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
364 ret
= sdrv
->remove(to_spi_device(dev
));
365 dev_pm_domain_detach(dev
, true);
370 static void spi_drv_shutdown(struct device
*dev
)
372 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
374 sdrv
->shutdown(to_spi_device(dev
));
378 * __spi_register_driver - register a SPI driver
379 * @owner: owner module of the driver to register
380 * @sdrv: the driver to register
383 * Return: zero on success, else a negative error code.
385 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
387 sdrv
->driver
.owner
= owner
;
388 sdrv
->driver
.bus
= &spi_bus_type
;
390 sdrv
->driver
.probe
= spi_drv_probe
;
392 sdrv
->driver
.remove
= spi_drv_remove
;
394 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
395 return driver_register(&sdrv
->driver
);
397 EXPORT_SYMBOL_GPL(__spi_register_driver
);
399 /*-------------------------------------------------------------------------*/
401 /* SPI devices should normally not be created by SPI device drivers; that
402 * would make them board-specific. Similarly with SPI master drivers.
403 * Device registration normally goes into like arch/.../mach.../board-YYY.c
404 * with other readonly (flashable) information about mainboard devices.
408 struct list_head list
;
409 struct spi_board_info board_info
;
412 static LIST_HEAD(board_list
);
413 static LIST_HEAD(spi_master_list
);
416 * Used to protect add/del opertion for board_info list and
417 * spi_master list, and their matching process
419 static DEFINE_MUTEX(board_lock
);
422 * spi_alloc_device - Allocate a new SPI device
423 * @master: Controller to which device is connected
426 * Allows a driver to allocate and initialize a spi_device without
427 * registering it immediately. This allows a driver to directly
428 * fill the spi_device with device parameters before calling
429 * spi_add_device() on it.
431 * Caller is responsible to call spi_add_device() on the returned
432 * spi_device structure to add it to the SPI master. If the caller
433 * needs to discard the spi_device without adding it, then it should
434 * call spi_dev_put() on it.
436 * Return: a pointer to the new device, or NULL.
438 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
440 struct spi_device
*spi
;
442 if (!spi_master_get(master
))
445 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
447 spi_master_put(master
);
451 spi
->master
= master
;
452 spi
->dev
.parent
= &master
->dev
;
453 spi
->dev
.bus
= &spi_bus_type
;
454 spi
->dev
.release
= spidev_release
;
455 spi
->cs_gpio
= -ENOENT
;
457 spin_lock_init(&spi
->statistics
.lock
);
459 device_initialize(&spi
->dev
);
462 EXPORT_SYMBOL_GPL(spi_alloc_device
);
464 static void spi_dev_set_name(struct spi_device
*spi
)
466 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
469 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
473 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
477 static int spi_dev_check(struct device
*dev
, void *data
)
479 struct spi_device
*spi
= to_spi_device(dev
);
480 struct spi_device
*new_spi
= data
;
482 if (spi
->master
== new_spi
->master
&&
483 spi
->chip_select
== new_spi
->chip_select
)
489 * spi_add_device - Add spi_device allocated with spi_alloc_device
490 * @spi: spi_device to register
492 * Companion function to spi_alloc_device. Devices allocated with
493 * spi_alloc_device can be added onto the spi bus with this function.
495 * Return: 0 on success; negative errno on failure
497 int spi_add_device(struct spi_device
*spi
)
499 static DEFINE_MUTEX(spi_add_lock
);
500 struct spi_master
*master
= spi
->master
;
501 struct device
*dev
= master
->dev
.parent
;
504 /* Chipselects are numbered 0..max; validate. */
505 if (spi
->chip_select
>= master
->num_chipselect
) {
506 dev_err(dev
, "cs%d >= max %d\n",
508 master
->num_chipselect
);
512 /* Set the bus ID string */
513 spi_dev_set_name(spi
);
515 /* We need to make sure there's no other device with this
516 * chipselect **BEFORE** we call setup(), else we'll trash
517 * its configuration. Lock against concurrent add() calls.
519 mutex_lock(&spi_add_lock
);
521 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
523 dev_err(dev
, "chipselect %d already in use\n",
528 if (master
->cs_gpios
)
529 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
531 /* Drivers may modify this initial i/o setup, but will
532 * normally rely on the device being setup. Devices
533 * using SPI_CS_HIGH can't coexist well otherwise...
535 status
= spi_setup(spi
);
537 dev_err(dev
, "can't setup %s, status %d\n",
538 dev_name(&spi
->dev
), status
);
542 /* Device may be bound to an active driver when this returns */
543 status
= device_add(&spi
->dev
);
545 dev_err(dev
, "can't add %s, status %d\n",
546 dev_name(&spi
->dev
), status
);
548 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
551 mutex_unlock(&spi_add_lock
);
554 EXPORT_SYMBOL_GPL(spi_add_device
);
557 * spi_new_device - instantiate one new SPI device
558 * @master: Controller to which device is connected
559 * @chip: Describes the SPI device
562 * On typical mainboards, this is purely internal; and it's not needed
563 * after board init creates the hard-wired devices. Some development
564 * platforms may not be able to use spi_register_board_info though, and
565 * this is exported so that for example a USB or parport based adapter
566 * driver could add devices (which it would learn about out-of-band).
568 * Return: the new device, or NULL.
570 struct spi_device
*spi_new_device(struct spi_master
*master
,
571 struct spi_board_info
*chip
)
573 struct spi_device
*proxy
;
576 /* NOTE: caller did any chip->bus_num checks necessary.
578 * Also, unless we change the return value convention to use
579 * error-or-pointer (not NULL-or-pointer), troubleshootability
580 * suggests syslogged diagnostics are best here (ugh).
583 proxy
= spi_alloc_device(master
);
587 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
589 proxy
->chip_select
= chip
->chip_select
;
590 proxy
->max_speed_hz
= chip
->max_speed_hz
;
591 proxy
->mode
= chip
->mode
;
592 proxy
->irq
= chip
->irq
;
593 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
594 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
595 proxy
->controller_data
= chip
->controller_data
;
596 proxy
->controller_state
= NULL
;
598 status
= spi_add_device(proxy
);
606 EXPORT_SYMBOL_GPL(spi_new_device
);
608 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
609 struct spi_board_info
*bi
)
611 struct spi_device
*dev
;
613 if (master
->bus_num
!= bi
->bus_num
)
616 dev
= spi_new_device(master
, bi
);
618 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
623 * spi_register_board_info - register SPI devices for a given board
624 * @info: array of chip descriptors
625 * @n: how many descriptors are provided
628 * Board-specific early init code calls this (probably during arch_initcall)
629 * with segments of the SPI device table. Any device nodes are created later,
630 * after the relevant parent SPI controller (bus_num) is defined. We keep
631 * this table of devices forever, so that reloading a controller driver will
632 * not make Linux forget about these hard-wired devices.
634 * Other code can also call this, e.g. a particular add-on board might provide
635 * SPI devices through its expansion connector, so code initializing that board
636 * would naturally declare its SPI devices.
638 * The board info passed can safely be __initdata ... but be careful of
639 * any embedded pointers (platform_data, etc), they're copied as-is.
641 * Return: zero on success, else a negative error code.
643 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
645 struct boardinfo
*bi
;
651 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
655 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
656 struct spi_master
*master
;
658 memcpy(&bi
->board_info
, info
, sizeof(*info
));
659 mutex_lock(&board_lock
);
660 list_add_tail(&bi
->list
, &board_list
);
661 list_for_each_entry(master
, &spi_master_list
, list
)
662 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
663 mutex_unlock(&board_lock
);
669 /*-------------------------------------------------------------------------*/
671 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
673 if (spi
->mode
& SPI_CS_HIGH
)
676 if (gpio_is_valid(spi
->cs_gpio
))
677 gpio_set_value(spi
->cs_gpio
, !enable
);
678 else if (spi
->master
->set_cs
)
679 spi
->master
->set_cs(spi
, !enable
);
682 #ifdef CONFIG_HAS_DMA
683 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
684 struct sg_table
*sgt
, void *buf
, size_t len
,
685 enum dma_data_direction dir
)
687 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
690 struct page
*vm_page
;
696 desc_len
= PAGE_SIZE
;
697 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
699 desc_len
= master
->max_dma_len
;
700 sgs
= DIV_ROUND_UP(len
, desc_len
);
703 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
707 for (i
= 0; i
< sgs
; i
++) {
711 len
, desc_len
- offset_in_page(buf
));
712 vm_page
= vmalloc_to_page(buf
);
717 sg_set_page(&sgt
->sgl
[i
], vm_page
,
718 min
, offset_in_page(buf
));
720 min
= min_t(size_t, len
, desc_len
);
722 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
730 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
743 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
744 struct sg_table
*sgt
, enum dma_data_direction dir
)
746 if (sgt
->orig_nents
) {
747 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
752 static int __spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
754 struct device
*tx_dev
, *rx_dev
;
755 struct spi_transfer
*xfer
;
758 if (!master
->can_dma
)
762 tx_dev
= master
->dma_tx
->device
->dev
;
764 tx_dev
= &master
->dev
;
767 rx_dev
= master
->dma_rx
->device
->dev
;
769 rx_dev
= &master
->dev
;
771 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
772 if (!master
->can_dma(master
, msg
->spi
, xfer
))
775 if (xfer
->tx_buf
!= NULL
) {
776 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
777 (void *)xfer
->tx_buf
, xfer
->len
,
783 if (xfer
->rx_buf
!= NULL
) {
784 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
785 xfer
->rx_buf
, xfer
->len
,
788 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
795 master
->cur_msg_mapped
= true;
800 static int __spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
802 struct spi_transfer
*xfer
;
803 struct device
*tx_dev
, *rx_dev
;
805 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
809 tx_dev
= master
->dma_tx
->device
->dev
;
811 tx_dev
= &master
->dev
;
814 rx_dev
= master
->dma_rx
->device
->dev
;
816 rx_dev
= &master
->dev
;
818 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
819 if (!master
->can_dma(master
, msg
->spi
, xfer
))
822 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
823 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
828 #else /* !CONFIG_HAS_DMA */
829 static inline int __spi_map_msg(struct spi_master
*master
,
830 struct spi_message
*msg
)
835 static inline int __spi_unmap_msg(struct spi_master
*master
,
836 struct spi_message
*msg
)
840 #endif /* !CONFIG_HAS_DMA */
842 static inline int spi_unmap_msg(struct spi_master
*master
,
843 struct spi_message
*msg
)
845 struct spi_transfer
*xfer
;
847 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
849 * Restore the original value of tx_buf or rx_buf if they are
852 if (xfer
->tx_buf
== master
->dummy_tx
)
854 if (xfer
->rx_buf
== master
->dummy_rx
)
858 return __spi_unmap_msg(master
, msg
);
861 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
863 struct spi_transfer
*xfer
;
865 unsigned int max_tx
, max_rx
;
867 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
871 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
872 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
874 max_tx
= max(xfer
->len
, max_tx
);
875 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
877 max_rx
= max(xfer
->len
, max_rx
);
881 tmp
= krealloc(master
->dummy_tx
, max_tx
,
882 GFP_KERNEL
| GFP_DMA
);
885 master
->dummy_tx
= tmp
;
886 memset(tmp
, 0, max_tx
);
890 tmp
= krealloc(master
->dummy_rx
, max_rx
,
891 GFP_KERNEL
| GFP_DMA
);
894 master
->dummy_rx
= tmp
;
897 if (max_tx
|| max_rx
) {
898 list_for_each_entry(xfer
, &msg
->transfers
,
901 xfer
->tx_buf
= master
->dummy_tx
;
903 xfer
->rx_buf
= master
->dummy_rx
;
908 return __spi_map_msg(master
, msg
);
912 * spi_transfer_one_message - Default implementation of transfer_one_message()
914 * This is a standard implementation of transfer_one_message() for
915 * drivers which impelment a transfer_one() operation. It provides
916 * standard handling of delays and chip select management.
918 static int spi_transfer_one_message(struct spi_master
*master
,
919 struct spi_message
*msg
)
921 struct spi_transfer
*xfer
;
922 bool keep_cs
= false;
924 unsigned long ms
= 1;
925 struct spi_statistics
*statm
= &master
->statistics
;
926 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
928 spi_set_cs(msg
->spi
, true);
930 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
931 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
933 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
934 trace_spi_transfer_start(msg
, xfer
);
936 spi_statistics_add_transfer_stats(statm
, xfer
, master
);
937 spi_statistics_add_transfer_stats(stats
, xfer
, master
);
939 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
940 reinit_completion(&master
->xfer_completion
);
942 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
944 SPI_STATISTICS_INCREMENT_FIELD(statm
,
946 SPI_STATISTICS_INCREMENT_FIELD(stats
,
948 dev_err(&msg
->spi
->dev
,
949 "SPI transfer failed: %d\n", ret
);
955 ms
= xfer
->len
* 8 * 1000 / xfer
->speed_hz
;
956 ms
+= ms
+ 100; /* some tolerance */
958 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
959 msecs_to_jiffies(ms
));
963 SPI_STATISTICS_INCREMENT_FIELD(statm
,
965 SPI_STATISTICS_INCREMENT_FIELD(stats
,
967 dev_err(&msg
->spi
->dev
,
968 "SPI transfer timed out\n");
969 msg
->status
= -ETIMEDOUT
;
973 dev_err(&msg
->spi
->dev
,
974 "Bufferless transfer has length %u\n",
978 trace_spi_transfer_stop(msg
, xfer
);
980 if (msg
->status
!= -EINPROGRESS
)
983 if (xfer
->delay_usecs
)
984 udelay(xfer
->delay_usecs
);
986 if (xfer
->cs_change
) {
987 if (list_is_last(&xfer
->transfer_list
,
991 spi_set_cs(msg
->spi
, false);
993 spi_set_cs(msg
->spi
, true);
997 msg
->actual_length
+= xfer
->len
;
1001 if (ret
!= 0 || !keep_cs
)
1002 spi_set_cs(msg
->spi
, false);
1004 if (msg
->status
== -EINPROGRESS
)
1007 if (msg
->status
&& master
->handle_err
)
1008 master
->handle_err(master
, msg
);
1010 spi_finalize_current_message(master
);
1016 * spi_finalize_current_transfer - report completion of a transfer
1017 * @master: the master reporting completion
1019 * Called by SPI drivers using the core transfer_one_message()
1020 * implementation to notify it that the current interrupt driven
1021 * transfer has finished and the next one may be scheduled.
1023 void spi_finalize_current_transfer(struct spi_master
*master
)
1025 complete(&master
->xfer_completion
);
1027 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1030 * __spi_pump_messages - function which processes spi message queue
1031 * @master: master to process queue for
1032 * @in_kthread: true if we are in the context of the message pump thread
1034 * This function checks if there is any spi message in the queue that
1035 * needs processing and if so call out to the driver to initialize hardware
1036 * and transfer each message.
1038 * Note that it is called both from the kthread itself and also from
1039 * inside spi_sync(); the queue extraction handling at the top of the
1040 * function should deal with this safely.
1042 static void __spi_pump_messages(struct spi_master
*master
, bool in_kthread
)
1044 unsigned long flags
;
1045 bool was_busy
= false;
1049 spin_lock_irqsave(&master
->queue_lock
, flags
);
1051 /* Make sure we are not already running a message */
1052 if (master
->cur_msg
) {
1053 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1057 /* If another context is idling the device then defer */
1058 if (master
->idling
) {
1059 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1060 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1064 /* Check if the queue is idle */
1065 if (list_empty(&master
->queue
) || !master
->running
) {
1066 if (!master
->busy
) {
1067 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1071 /* Only do teardown in the thread */
1073 queue_kthread_work(&master
->kworker
,
1074 &master
->pump_messages
);
1075 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1079 master
->busy
= false;
1080 master
->idling
= true;
1081 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1083 kfree(master
->dummy_rx
);
1084 master
->dummy_rx
= NULL
;
1085 kfree(master
->dummy_tx
);
1086 master
->dummy_tx
= NULL
;
1087 if (master
->unprepare_transfer_hardware
&&
1088 master
->unprepare_transfer_hardware(master
))
1089 dev_err(&master
->dev
,
1090 "failed to unprepare transfer hardware\n");
1091 if (master
->auto_runtime_pm
) {
1092 pm_runtime_mark_last_busy(master
->dev
.parent
);
1093 pm_runtime_put_autosuspend(master
->dev
.parent
);
1095 trace_spi_master_idle(master
);
1097 spin_lock_irqsave(&master
->queue_lock
, flags
);
1098 master
->idling
= false;
1099 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1103 /* Extract head of queue */
1105 list_first_entry(&master
->queue
, struct spi_message
, queue
);
1107 list_del_init(&master
->cur_msg
->queue
);
1111 master
->busy
= true;
1112 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1114 if (!was_busy
&& master
->auto_runtime_pm
) {
1115 ret
= pm_runtime_get_sync(master
->dev
.parent
);
1117 dev_err(&master
->dev
, "Failed to power device: %d\n",
1124 trace_spi_master_busy(master
);
1126 if (!was_busy
&& master
->prepare_transfer_hardware
) {
1127 ret
= master
->prepare_transfer_hardware(master
);
1129 dev_err(&master
->dev
,
1130 "failed to prepare transfer hardware\n");
1132 if (master
->auto_runtime_pm
)
1133 pm_runtime_put(master
->dev
.parent
);
1138 trace_spi_message_start(master
->cur_msg
);
1140 if (master
->prepare_message
) {
1141 ret
= master
->prepare_message(master
, master
->cur_msg
);
1143 dev_err(&master
->dev
,
1144 "failed to prepare message: %d\n", ret
);
1145 master
->cur_msg
->status
= ret
;
1146 spi_finalize_current_message(master
);
1149 master
->cur_msg_prepared
= true;
1152 ret
= spi_map_msg(master
, master
->cur_msg
);
1154 master
->cur_msg
->status
= ret
;
1155 spi_finalize_current_message(master
);
1159 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
1161 dev_err(&master
->dev
,
1162 "failed to transfer one message from queue\n");
1168 * spi_pump_messages - kthread work function which processes spi message queue
1169 * @work: pointer to kthread work struct contained in the master struct
1171 static void spi_pump_messages(struct kthread_work
*work
)
1173 struct spi_master
*master
=
1174 container_of(work
, struct spi_master
, pump_messages
);
1176 __spi_pump_messages(master
, true);
1179 static int spi_init_queue(struct spi_master
*master
)
1181 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1183 master
->running
= false;
1184 master
->busy
= false;
1186 init_kthread_worker(&master
->kworker
);
1187 master
->kworker_task
= kthread_run(kthread_worker_fn
,
1188 &master
->kworker
, "%s",
1189 dev_name(&master
->dev
));
1190 if (IS_ERR(master
->kworker_task
)) {
1191 dev_err(&master
->dev
, "failed to create message pump task\n");
1192 return PTR_ERR(master
->kworker_task
);
1194 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
1197 * Master config will indicate if this controller should run the
1198 * message pump with high (realtime) priority to reduce the transfer
1199 * latency on the bus by minimising the delay between a transfer
1200 * request and the scheduling of the message pump thread. Without this
1201 * setting the message pump thread will remain at default priority.
1204 dev_info(&master
->dev
,
1205 "will run message pump with realtime priority\n");
1206 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
1213 * spi_get_next_queued_message() - called by driver to check for queued
1215 * @master: the master to check for queued messages
1217 * If there are more messages in the queue, the next message is returned from
1220 * Return: the next message in the queue, else NULL if the queue is empty.
1222 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
1224 struct spi_message
*next
;
1225 unsigned long flags
;
1227 /* get a pointer to the next message, if any */
1228 spin_lock_irqsave(&master
->queue_lock
, flags
);
1229 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
1231 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1235 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1238 * spi_finalize_current_message() - the current message is complete
1239 * @master: the master to return the message to
1241 * Called by the driver to notify the core that the message in the front of the
1242 * queue is complete and can be removed from the queue.
1244 void spi_finalize_current_message(struct spi_master
*master
)
1246 struct spi_message
*mesg
;
1247 unsigned long flags
;
1250 spin_lock_irqsave(&master
->queue_lock
, flags
);
1251 mesg
= master
->cur_msg
;
1252 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1254 spi_unmap_msg(master
, mesg
);
1256 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1257 ret
= master
->unprepare_message(master
, mesg
);
1259 dev_err(&master
->dev
,
1260 "failed to unprepare message: %d\n", ret
);
1264 spin_lock_irqsave(&master
->queue_lock
, flags
);
1265 master
->cur_msg
= NULL
;
1266 master
->cur_msg_prepared
= false;
1267 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1268 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1270 trace_spi_message_done(mesg
);
1274 mesg
->complete(mesg
->context
);
1276 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1278 static int spi_start_queue(struct spi_master
*master
)
1280 unsigned long flags
;
1282 spin_lock_irqsave(&master
->queue_lock
, flags
);
1284 if (master
->running
|| master
->busy
) {
1285 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1289 master
->running
= true;
1290 master
->cur_msg
= NULL
;
1291 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1293 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1298 static int spi_stop_queue(struct spi_master
*master
)
1300 unsigned long flags
;
1301 unsigned limit
= 500;
1304 spin_lock_irqsave(&master
->queue_lock
, flags
);
1307 * This is a bit lame, but is optimized for the common execution path.
1308 * A wait_queue on the master->busy could be used, but then the common
1309 * execution path (pump_messages) would be required to call wake_up or
1310 * friends on every SPI message. Do this instead.
1312 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1313 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1314 usleep_range(10000, 11000);
1315 spin_lock_irqsave(&master
->queue_lock
, flags
);
1318 if (!list_empty(&master
->queue
) || master
->busy
)
1321 master
->running
= false;
1323 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1326 dev_warn(&master
->dev
,
1327 "could not stop message queue\n");
1333 static int spi_destroy_queue(struct spi_master
*master
)
1337 ret
= spi_stop_queue(master
);
1340 * flush_kthread_worker will block until all work is done.
1341 * If the reason that stop_queue timed out is that the work will never
1342 * finish, then it does no good to call flush/stop thread, so
1346 dev_err(&master
->dev
, "problem destroying queue\n");
1350 flush_kthread_worker(&master
->kworker
);
1351 kthread_stop(master
->kworker_task
);
1356 static int __spi_queued_transfer(struct spi_device
*spi
,
1357 struct spi_message
*msg
,
1360 struct spi_master
*master
= spi
->master
;
1361 unsigned long flags
;
1363 spin_lock_irqsave(&master
->queue_lock
, flags
);
1365 if (!master
->running
) {
1366 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1369 msg
->actual_length
= 0;
1370 msg
->status
= -EINPROGRESS
;
1372 list_add_tail(&msg
->queue
, &master
->queue
);
1373 if (!master
->busy
&& need_pump
)
1374 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1376 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1381 * spi_queued_transfer - transfer function for queued transfers
1382 * @spi: spi device which is requesting transfer
1383 * @msg: spi message which is to handled is queued to driver queue
1385 * Return: zero on success, else a negative error code.
1387 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1389 return __spi_queued_transfer(spi
, msg
, true);
1392 static int spi_master_initialize_queue(struct spi_master
*master
)
1396 master
->transfer
= spi_queued_transfer
;
1397 if (!master
->transfer_one_message
)
1398 master
->transfer_one_message
= spi_transfer_one_message
;
1400 /* Initialize and start queue */
1401 ret
= spi_init_queue(master
);
1403 dev_err(&master
->dev
, "problem initializing queue\n");
1404 goto err_init_queue
;
1406 master
->queued
= true;
1407 ret
= spi_start_queue(master
);
1409 dev_err(&master
->dev
, "problem starting queue\n");
1410 goto err_start_queue
;
1416 spi_destroy_queue(master
);
1421 /*-------------------------------------------------------------------------*/
1423 #if defined(CONFIG_OF)
1424 static struct spi_device
*
1425 of_register_spi_device(struct spi_master
*master
, struct device_node
*nc
)
1427 struct spi_device
*spi
;
1431 /* Alloc an spi_device */
1432 spi
= spi_alloc_device(master
);
1434 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1440 /* Select device driver */
1441 rc
= of_modalias_node(nc
, spi
->modalias
,
1442 sizeof(spi
->modalias
));
1444 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1449 /* Device address */
1450 rc
= of_property_read_u32(nc
, "reg", &value
);
1452 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1456 spi
->chip_select
= value
;
1458 /* Mode (clock phase/polarity/etc.) */
1459 if (of_find_property(nc
, "spi-cpha", NULL
))
1460 spi
->mode
|= SPI_CPHA
;
1461 if (of_find_property(nc
, "spi-cpol", NULL
))
1462 spi
->mode
|= SPI_CPOL
;
1463 if (of_find_property(nc
, "spi-cs-high", NULL
))
1464 spi
->mode
|= SPI_CS_HIGH
;
1465 if (of_find_property(nc
, "spi-3wire", NULL
))
1466 spi
->mode
|= SPI_3WIRE
;
1467 if (of_find_property(nc
, "spi-lsb-first", NULL
))
1468 spi
->mode
|= SPI_LSB_FIRST
;
1470 /* Device DUAL/QUAD mode */
1471 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1476 spi
->mode
|= SPI_TX_DUAL
;
1479 spi
->mode
|= SPI_TX_QUAD
;
1482 dev_warn(&master
->dev
,
1483 "spi-tx-bus-width %d not supported\n",
1489 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1494 spi
->mode
|= SPI_RX_DUAL
;
1497 spi
->mode
|= SPI_RX_QUAD
;
1500 dev_warn(&master
->dev
,
1501 "spi-rx-bus-width %d not supported\n",
1508 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1510 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1514 spi
->max_speed_hz
= value
;
1516 /* Store a pointer to the node in the device structure */
1518 spi
->dev
.of_node
= nc
;
1520 /* Register the new device */
1521 rc
= spi_add_device(spi
);
1523 dev_err(&master
->dev
, "spi_device register error %s\n",
1536 * of_register_spi_devices() - Register child devices onto the SPI bus
1537 * @master: Pointer to spi_master device
1539 * Registers an spi_device for each child node of master node which has a 'reg'
1542 static void of_register_spi_devices(struct spi_master
*master
)
1544 struct spi_device
*spi
;
1545 struct device_node
*nc
;
1547 if (!master
->dev
.of_node
)
1550 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1551 spi
= of_register_spi_device(master
, nc
);
1553 dev_warn(&master
->dev
, "Failed to create SPI device for %s\n",
1558 static void of_register_spi_devices(struct spi_master
*master
) { }
1562 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1564 struct spi_device
*spi
= data
;
1566 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1567 struct acpi_resource_spi_serialbus
*sb
;
1569 sb
= &ares
->data
.spi_serial_bus
;
1570 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1571 spi
->chip_select
= sb
->device_selection
;
1572 spi
->max_speed_hz
= sb
->connection_speed
;
1574 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1575 spi
->mode
|= SPI_CPHA
;
1576 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1577 spi
->mode
|= SPI_CPOL
;
1578 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1579 spi
->mode
|= SPI_CS_HIGH
;
1581 } else if (spi
->irq
< 0) {
1584 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1588 /* Always tell the ACPI core to skip this resource */
1592 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1593 void *data
, void **return_value
)
1595 struct spi_master
*master
= data
;
1596 struct list_head resource_list
;
1597 struct acpi_device
*adev
;
1598 struct spi_device
*spi
;
1601 if (acpi_bus_get_device(handle
, &adev
))
1603 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1606 spi
= spi_alloc_device(master
);
1608 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1609 dev_name(&adev
->dev
));
1610 return AE_NO_MEMORY
;
1613 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1616 INIT_LIST_HEAD(&resource_list
);
1617 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1618 acpi_spi_add_resource
, spi
);
1619 acpi_dev_free_resource_list(&resource_list
);
1621 if (ret
< 0 || !spi
->max_speed_hz
) {
1626 adev
->power
.flags
.ignore_parent
= true;
1627 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1628 if (spi_add_device(spi
)) {
1629 adev
->power
.flags
.ignore_parent
= false;
1630 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1631 dev_name(&adev
->dev
));
1638 static void acpi_register_spi_devices(struct spi_master
*master
)
1643 handle
= ACPI_HANDLE(master
->dev
.parent
);
1647 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1648 acpi_spi_add_device
, NULL
,
1650 if (ACPI_FAILURE(status
))
1651 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1654 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1655 #endif /* CONFIG_ACPI */
1657 static void spi_master_release(struct device
*dev
)
1659 struct spi_master
*master
;
1661 master
= container_of(dev
, struct spi_master
, dev
);
1665 static struct class spi_master_class
= {
1666 .name
= "spi_master",
1667 .owner
= THIS_MODULE
,
1668 .dev_release
= spi_master_release
,
1669 .dev_groups
= spi_master_groups
,
1674 * spi_alloc_master - allocate SPI master controller
1675 * @dev: the controller, possibly using the platform_bus
1676 * @size: how much zeroed driver-private data to allocate; the pointer to this
1677 * memory is in the driver_data field of the returned device,
1678 * accessible with spi_master_get_devdata().
1679 * Context: can sleep
1681 * This call is used only by SPI master controller drivers, which are the
1682 * only ones directly touching chip registers. It's how they allocate
1683 * an spi_master structure, prior to calling spi_register_master().
1685 * This must be called from context that can sleep.
1687 * The caller is responsible for assigning the bus number and initializing
1688 * the master's methods before calling spi_register_master(); and (after errors
1689 * adding the device) calling spi_master_put() to prevent a memory leak.
1691 * Return: the SPI master structure on success, else NULL.
1693 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1695 struct spi_master
*master
;
1700 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1704 device_initialize(&master
->dev
);
1705 master
->bus_num
= -1;
1706 master
->num_chipselect
= 1;
1707 master
->dev
.class = &spi_master_class
;
1708 master
->dev
.parent
= dev
;
1709 spi_master_set_devdata(master
, &master
[1]);
1713 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1716 static int of_spi_register_master(struct spi_master
*master
)
1719 struct device_node
*np
= master
->dev
.of_node
;
1724 nb
= of_gpio_named_count(np
, "cs-gpios");
1725 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1727 /* Return error only for an incorrectly formed cs-gpios property */
1728 if (nb
== 0 || nb
== -ENOENT
)
1733 cs
= devm_kzalloc(&master
->dev
,
1734 sizeof(int) * master
->num_chipselect
,
1736 master
->cs_gpios
= cs
;
1738 if (!master
->cs_gpios
)
1741 for (i
= 0; i
< master
->num_chipselect
; i
++)
1744 for (i
= 0; i
< nb
; i
++)
1745 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1750 static int of_spi_register_master(struct spi_master
*master
)
1757 * spi_register_master - register SPI master controller
1758 * @master: initialized master, originally from spi_alloc_master()
1759 * Context: can sleep
1761 * SPI master controllers connect to their drivers using some non-SPI bus,
1762 * such as the platform bus. The final stage of probe() in that code
1763 * includes calling spi_register_master() to hook up to this SPI bus glue.
1765 * SPI controllers use board specific (often SOC specific) bus numbers,
1766 * and board-specific addressing for SPI devices combines those numbers
1767 * with chip select numbers. Since SPI does not directly support dynamic
1768 * device identification, boards need configuration tables telling which
1769 * chip is at which address.
1771 * This must be called from context that can sleep. It returns zero on
1772 * success, else a negative error code (dropping the master's refcount).
1773 * After a successful return, the caller is responsible for calling
1774 * spi_unregister_master().
1776 * Return: zero on success, else a negative error code.
1778 int spi_register_master(struct spi_master
*master
)
1780 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1781 struct device
*dev
= master
->dev
.parent
;
1782 struct boardinfo
*bi
;
1783 int status
= -ENODEV
;
1789 status
= of_spi_register_master(master
);
1793 /* even if it's just one always-selected device, there must
1794 * be at least one chipselect
1796 if (master
->num_chipselect
== 0)
1799 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1800 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1802 /* convention: dynamically assigned bus IDs count down from the max */
1803 if (master
->bus_num
< 0) {
1804 /* FIXME switch to an IDR based scheme, something like
1805 * I2C now uses, so we can't run out of "dynamic" IDs
1807 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1811 INIT_LIST_HEAD(&master
->queue
);
1812 spin_lock_init(&master
->queue_lock
);
1813 spin_lock_init(&master
->bus_lock_spinlock
);
1814 mutex_init(&master
->bus_lock_mutex
);
1815 master
->bus_lock_flag
= 0;
1816 init_completion(&master
->xfer_completion
);
1817 if (!master
->max_dma_len
)
1818 master
->max_dma_len
= INT_MAX
;
1820 /* register the device, then userspace will see it.
1821 * registration fails if the bus ID is in use.
1823 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1824 status
= device_add(&master
->dev
);
1827 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1828 dynamic
? " (dynamic)" : "");
1830 /* If we're using a queued driver, start the queue */
1831 if (master
->transfer
)
1832 dev_info(dev
, "master is unqueued, this is deprecated\n");
1834 status
= spi_master_initialize_queue(master
);
1836 device_del(&master
->dev
);
1840 /* add statistics */
1841 spin_lock_init(&master
->statistics
.lock
);
1843 mutex_lock(&board_lock
);
1844 list_add_tail(&master
->list
, &spi_master_list
);
1845 list_for_each_entry(bi
, &board_list
, list
)
1846 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1847 mutex_unlock(&board_lock
);
1849 /* Register devices from the device tree and ACPI */
1850 of_register_spi_devices(master
);
1851 acpi_register_spi_devices(master
);
1855 EXPORT_SYMBOL_GPL(spi_register_master
);
1857 static void devm_spi_unregister(struct device
*dev
, void *res
)
1859 spi_unregister_master(*(struct spi_master
**)res
);
1863 * dev_spi_register_master - register managed SPI master controller
1864 * @dev: device managing SPI master
1865 * @master: initialized master, originally from spi_alloc_master()
1866 * Context: can sleep
1868 * Register a SPI device as with spi_register_master() which will
1869 * automatically be unregister
1871 * Return: zero on success, else a negative error code.
1873 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1875 struct spi_master
**ptr
;
1878 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1882 ret
= spi_register_master(master
);
1885 devres_add(dev
, ptr
);
1892 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1894 static int __unregister(struct device
*dev
, void *null
)
1896 spi_unregister_device(to_spi_device(dev
));
1901 * spi_unregister_master - unregister SPI master controller
1902 * @master: the master being unregistered
1903 * Context: can sleep
1905 * This call is used only by SPI master controller drivers, which are the
1906 * only ones directly touching chip registers.
1908 * This must be called from context that can sleep.
1910 void spi_unregister_master(struct spi_master
*master
)
1914 if (master
->queued
) {
1915 if (spi_destroy_queue(master
))
1916 dev_err(&master
->dev
, "queue remove failed\n");
1919 mutex_lock(&board_lock
);
1920 list_del(&master
->list
);
1921 mutex_unlock(&board_lock
);
1923 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1924 device_unregister(&master
->dev
);
1926 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1928 int spi_master_suspend(struct spi_master
*master
)
1932 /* Basically no-ops for non-queued masters */
1933 if (!master
->queued
)
1936 ret
= spi_stop_queue(master
);
1938 dev_err(&master
->dev
, "queue stop failed\n");
1942 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1944 int spi_master_resume(struct spi_master
*master
)
1948 if (!master
->queued
)
1951 ret
= spi_start_queue(master
);
1953 dev_err(&master
->dev
, "queue restart failed\n");
1957 EXPORT_SYMBOL_GPL(spi_master_resume
);
1959 static int __spi_master_match(struct device
*dev
, const void *data
)
1961 struct spi_master
*m
;
1962 const u16
*bus_num
= data
;
1964 m
= container_of(dev
, struct spi_master
, dev
);
1965 return m
->bus_num
== *bus_num
;
1969 * spi_busnum_to_master - look up master associated with bus_num
1970 * @bus_num: the master's bus number
1971 * Context: can sleep
1973 * This call may be used with devices that are registered after
1974 * arch init time. It returns a refcounted pointer to the relevant
1975 * spi_master (which the caller must release), or NULL if there is
1976 * no such master registered.
1978 * Return: the SPI master structure on success, else NULL.
1980 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1983 struct spi_master
*master
= NULL
;
1985 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1986 __spi_master_match
);
1988 master
= container_of(dev
, struct spi_master
, dev
);
1989 /* reference got in class_find_device */
1992 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1995 /*-------------------------------------------------------------------------*/
1997 /* Core methods for SPI master protocol drivers. Some of the
1998 * other core methods are currently defined as inline functions.
2001 static int __spi_validate_bits_per_word(struct spi_master
*master
, u8 bits_per_word
)
2003 if (master
->bits_per_word_mask
) {
2004 /* Only 32 bits fit in the mask */
2005 if (bits_per_word
> 32)
2007 if (!(master
->bits_per_word_mask
&
2008 SPI_BPW_MASK(bits_per_word
)))
2016 * spi_setup - setup SPI mode and clock rate
2017 * @spi: the device whose settings are being modified
2018 * Context: can sleep, and no requests are queued to the device
2020 * SPI protocol drivers may need to update the transfer mode if the
2021 * device doesn't work with its default. They may likewise need
2022 * to update clock rates or word sizes from initial values. This function
2023 * changes those settings, and must be called from a context that can sleep.
2024 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2025 * effect the next time the device is selected and data is transferred to
2026 * or from it. When this function returns, the spi device is deselected.
2028 * Note that this call will fail if the protocol driver specifies an option
2029 * that the underlying controller or its driver does not support. For
2030 * example, not all hardware supports wire transfers using nine bit words,
2031 * LSB-first wire encoding, or active-high chipselects.
2033 * Return: zero on success, else a negative error code.
2035 int spi_setup(struct spi_device
*spi
)
2037 unsigned bad_bits
, ugly_bits
;
2040 /* check mode to prevent that DUAL and QUAD set at the same time
2042 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
2043 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
2045 "setup: can not select dual and quad at the same time\n");
2048 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2050 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
2051 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
2053 /* help drivers fail *cleanly* when they need options
2054 * that aren't supported with their current master
2056 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
2057 ugly_bits
= bad_bits
&
2058 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
2061 "setup: ignoring unsupported mode bits %x\n",
2063 spi
->mode
&= ~ugly_bits
;
2064 bad_bits
&= ~ugly_bits
;
2067 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
2072 if (!spi
->bits_per_word
)
2073 spi
->bits_per_word
= 8;
2075 status
= __spi_validate_bits_per_word(spi
->master
, spi
->bits_per_word
);
2079 if (!spi
->max_speed_hz
)
2080 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
2082 if (spi
->master
->setup
)
2083 status
= spi
->master
->setup(spi
);
2085 spi_set_cs(spi
, false);
2087 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2088 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
2089 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
2090 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
2091 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
2092 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
2093 spi
->bits_per_word
, spi
->max_speed_hz
,
2098 EXPORT_SYMBOL_GPL(spi_setup
);
2100 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
2102 struct spi_master
*master
= spi
->master
;
2103 struct spi_transfer
*xfer
;
2106 if (list_empty(&message
->transfers
))
2109 /* Half-duplex links include original MicroWire, and ones with
2110 * only one data pin like SPI_3WIRE (switches direction) or where
2111 * either MOSI or MISO is missing. They can also be caused by
2112 * software limitations.
2114 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
2115 || (spi
->mode
& SPI_3WIRE
)) {
2116 unsigned flags
= master
->flags
;
2118 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2119 if (xfer
->rx_buf
&& xfer
->tx_buf
)
2121 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
2123 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
2129 * Set transfer bits_per_word and max speed as spi device default if
2130 * it is not set for this transfer.
2131 * Set transfer tx_nbits and rx_nbits as single transfer default
2132 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2134 message
->frame_length
= 0;
2135 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2136 message
->frame_length
+= xfer
->len
;
2137 if (!xfer
->bits_per_word
)
2138 xfer
->bits_per_word
= spi
->bits_per_word
;
2140 if (!xfer
->speed_hz
)
2141 xfer
->speed_hz
= spi
->max_speed_hz
;
2142 if (!xfer
->speed_hz
)
2143 xfer
->speed_hz
= master
->max_speed_hz
;
2145 if (master
->max_speed_hz
&&
2146 xfer
->speed_hz
> master
->max_speed_hz
)
2147 xfer
->speed_hz
= master
->max_speed_hz
;
2149 if (__spi_validate_bits_per_word(master
, xfer
->bits_per_word
))
2153 * SPI transfer length should be multiple of SPI word size
2154 * where SPI word size should be power-of-two multiple
2156 if (xfer
->bits_per_word
<= 8)
2158 else if (xfer
->bits_per_word
<= 16)
2163 /* No partial transfers accepted */
2164 if (xfer
->len
% w_size
)
2167 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
2168 xfer
->speed_hz
< master
->min_speed_hz
)
2171 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
2172 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
2173 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
2174 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
2175 /* check transfer tx/rx_nbits:
2176 * 1. check the value matches one of single, dual and quad
2177 * 2. check tx/rx_nbits match the mode in spi_device
2180 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
2181 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
2182 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
2184 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
2185 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2187 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
2188 !(spi
->mode
& SPI_TX_QUAD
))
2191 /* check transfer rx_nbits */
2193 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
2194 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
2195 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
2197 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
2198 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2200 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
2201 !(spi
->mode
& SPI_RX_QUAD
))
2206 message
->status
= -EINPROGRESS
;
2211 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2213 struct spi_master
*master
= spi
->master
;
2217 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_async
);
2218 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
2220 trace_spi_message_submit(message
);
2222 return master
->transfer(spi
, message
);
2226 * spi_async - asynchronous SPI transfer
2227 * @spi: device with which data will be exchanged
2228 * @message: describes the data transfers, including completion callback
2229 * Context: any (irqs may be blocked, etc)
2231 * This call may be used in_irq and other contexts which can't sleep,
2232 * as well as from task contexts which can sleep.
2234 * The completion callback is invoked in a context which can't sleep.
2235 * Before that invocation, the value of message->status is undefined.
2236 * When the callback is issued, message->status holds either zero (to
2237 * indicate complete success) or a negative error code. After that
2238 * callback returns, the driver which issued the transfer request may
2239 * deallocate the associated memory; it's no longer in use by any SPI
2240 * core or controller driver code.
2242 * Note that although all messages to a spi_device are handled in
2243 * FIFO order, messages may go to different devices in other orders.
2244 * Some device might be higher priority, or have various "hard" access
2245 * time requirements, for example.
2247 * On detection of any fault during the transfer, processing of
2248 * the entire message is aborted, and the device is deselected.
2249 * Until returning from the associated message completion callback,
2250 * no other spi_message queued to that device will be processed.
2251 * (This rule applies equally to all the synchronous transfer calls,
2252 * which are wrappers around this core asynchronous primitive.)
2254 * Return: zero on success, else a negative error code.
2256 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2258 struct spi_master
*master
= spi
->master
;
2260 unsigned long flags
;
2262 ret
= __spi_validate(spi
, message
);
2266 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2268 if (master
->bus_lock_flag
)
2271 ret
= __spi_async(spi
, message
);
2273 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2277 EXPORT_SYMBOL_GPL(spi_async
);
2280 * spi_async_locked - version of spi_async with exclusive bus usage
2281 * @spi: device with which data will be exchanged
2282 * @message: describes the data transfers, including completion callback
2283 * Context: any (irqs may be blocked, etc)
2285 * This call may be used in_irq and other contexts which can't sleep,
2286 * as well as from task contexts which can sleep.
2288 * The completion callback is invoked in a context which can't sleep.
2289 * Before that invocation, the value of message->status is undefined.
2290 * When the callback is issued, message->status holds either zero (to
2291 * indicate complete success) or a negative error code. After that
2292 * callback returns, the driver which issued the transfer request may
2293 * deallocate the associated memory; it's no longer in use by any SPI
2294 * core or controller driver code.
2296 * Note that although all messages to a spi_device are handled in
2297 * FIFO order, messages may go to different devices in other orders.
2298 * Some device might be higher priority, or have various "hard" access
2299 * time requirements, for example.
2301 * On detection of any fault during the transfer, processing of
2302 * the entire message is aborted, and the device is deselected.
2303 * Until returning from the associated message completion callback,
2304 * no other spi_message queued to that device will be processed.
2305 * (This rule applies equally to all the synchronous transfer calls,
2306 * which are wrappers around this core asynchronous primitive.)
2308 * Return: zero on success, else a negative error code.
2310 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2312 struct spi_master
*master
= spi
->master
;
2314 unsigned long flags
;
2316 ret
= __spi_validate(spi
, message
);
2320 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2322 ret
= __spi_async(spi
, message
);
2324 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2329 EXPORT_SYMBOL_GPL(spi_async_locked
);
2332 /*-------------------------------------------------------------------------*/
2334 /* Utility methods for SPI master protocol drivers, layered on
2335 * top of the core. Some other utility methods are defined as
2339 static void spi_complete(void *arg
)
2344 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
2347 DECLARE_COMPLETION_ONSTACK(done
);
2349 struct spi_master
*master
= spi
->master
;
2350 unsigned long flags
;
2352 status
= __spi_validate(spi
, message
);
2356 message
->complete
= spi_complete
;
2357 message
->context
= &done
;
2360 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_sync
);
2361 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
2364 mutex_lock(&master
->bus_lock_mutex
);
2366 /* If we're not using the legacy transfer method then we will
2367 * try to transfer in the calling context so special case.
2368 * This code would be less tricky if we could remove the
2369 * support for driver implemented message queues.
2371 if (master
->transfer
== spi_queued_transfer
) {
2372 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2374 trace_spi_message_submit(message
);
2376 status
= __spi_queued_transfer(spi
, message
, false);
2378 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2380 status
= spi_async_locked(spi
, message
);
2384 mutex_unlock(&master
->bus_lock_mutex
);
2387 /* Push out the messages in the calling context if we
2390 if (master
->transfer
== spi_queued_transfer
) {
2391 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
,
2392 spi_sync_immediate
);
2393 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
2394 spi_sync_immediate
);
2395 __spi_pump_messages(master
, false);
2398 wait_for_completion(&done
);
2399 status
= message
->status
;
2401 message
->context
= NULL
;
2406 * spi_sync - blocking/synchronous SPI data transfers
2407 * @spi: device with which data will be exchanged
2408 * @message: describes the data transfers
2409 * Context: can sleep
2411 * This call may only be used from a context that may sleep. The sleep
2412 * is non-interruptible, and has no timeout. Low-overhead controller
2413 * drivers may DMA directly into and out of the message buffers.
2415 * Note that the SPI device's chip select is active during the message,
2416 * and then is normally disabled between messages. Drivers for some
2417 * frequently-used devices may want to minimize costs of selecting a chip,
2418 * by leaving it selected in anticipation that the next message will go
2419 * to the same chip. (That may increase power usage.)
2421 * Also, the caller is guaranteeing that the memory associated with the
2422 * message will not be freed before this call returns.
2424 * Return: zero on success, else a negative error code.
2426 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2428 return __spi_sync(spi
, message
, 0);
2430 EXPORT_SYMBOL_GPL(spi_sync
);
2433 * spi_sync_locked - version of spi_sync with exclusive bus usage
2434 * @spi: device with which data will be exchanged
2435 * @message: describes the data transfers
2436 * Context: can sleep
2438 * This call may only be used from a context that may sleep. The sleep
2439 * is non-interruptible, and has no timeout. Low-overhead controller
2440 * drivers may DMA directly into and out of the message buffers.
2442 * This call should be used by drivers that require exclusive access to the
2443 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2444 * be released by a spi_bus_unlock call when the exclusive access is over.
2446 * Return: zero on success, else a negative error code.
2448 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2450 return __spi_sync(spi
, message
, 1);
2452 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2455 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2456 * @master: SPI bus master that should be locked for exclusive bus access
2457 * Context: can sleep
2459 * This call may only be used from a context that may sleep. The sleep
2460 * is non-interruptible, and has no timeout.
2462 * This call should be used by drivers that require exclusive access to the
2463 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2464 * exclusive access is over. Data transfer must be done by spi_sync_locked
2465 * and spi_async_locked calls when the SPI bus lock is held.
2467 * Return: always zero.
2469 int spi_bus_lock(struct spi_master
*master
)
2471 unsigned long flags
;
2473 mutex_lock(&master
->bus_lock_mutex
);
2475 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2476 master
->bus_lock_flag
= 1;
2477 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2479 /* mutex remains locked until spi_bus_unlock is called */
2483 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2486 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2487 * @master: SPI bus master that was locked for exclusive bus access
2488 * Context: can sleep
2490 * This call may only be used from a context that may sleep. The sleep
2491 * is non-interruptible, and has no timeout.
2493 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2496 * Return: always zero.
2498 int spi_bus_unlock(struct spi_master
*master
)
2500 master
->bus_lock_flag
= 0;
2502 mutex_unlock(&master
->bus_lock_mutex
);
2506 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
2508 /* portable code must never pass more than 32 bytes */
2509 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2514 * spi_write_then_read - SPI synchronous write followed by read
2515 * @spi: device with which data will be exchanged
2516 * @txbuf: data to be written (need not be dma-safe)
2517 * @n_tx: size of txbuf, in bytes
2518 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2519 * @n_rx: size of rxbuf, in bytes
2520 * Context: can sleep
2522 * This performs a half duplex MicroWire style transaction with the
2523 * device, sending txbuf and then reading rxbuf. The return value
2524 * is zero for success, else a negative errno status code.
2525 * This call may only be used from a context that may sleep.
2527 * Parameters to this routine are always copied using a small buffer;
2528 * portable code should never use this for more than 32 bytes.
2529 * Performance-sensitive or bulk transfer code should instead use
2530 * spi_{async,sync}() calls with dma-safe buffers.
2532 * Return: zero on success, else a negative error code.
2534 int spi_write_then_read(struct spi_device
*spi
,
2535 const void *txbuf
, unsigned n_tx
,
2536 void *rxbuf
, unsigned n_rx
)
2538 static DEFINE_MUTEX(lock
);
2541 struct spi_message message
;
2542 struct spi_transfer x
[2];
2545 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2546 * copying here, (as a pure convenience thing), but we can
2547 * keep heap costs out of the hot path unless someone else is
2548 * using the pre-allocated buffer or the transfer is too large.
2550 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2551 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2552 GFP_KERNEL
| GFP_DMA
);
2559 spi_message_init(&message
);
2560 memset(x
, 0, sizeof(x
));
2563 spi_message_add_tail(&x
[0], &message
);
2567 spi_message_add_tail(&x
[1], &message
);
2570 memcpy(local_buf
, txbuf
, n_tx
);
2571 x
[0].tx_buf
= local_buf
;
2572 x
[1].rx_buf
= local_buf
+ n_tx
;
2575 status
= spi_sync(spi
, &message
);
2577 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
2579 if (x
[0].tx_buf
== buf
)
2580 mutex_unlock(&lock
);
2586 EXPORT_SYMBOL_GPL(spi_write_then_read
);
2588 /*-------------------------------------------------------------------------*/
2590 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2591 static int __spi_of_device_match(struct device
*dev
, void *data
)
2593 return dev
->of_node
== data
;
2596 /* must call put_device() when done with returned spi_device device */
2597 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
2599 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
2600 __spi_of_device_match
);
2601 return dev
? to_spi_device(dev
) : NULL
;
2604 static int __spi_of_master_match(struct device
*dev
, const void *data
)
2606 return dev
->of_node
== data
;
2609 /* the spi masters are not using spi_bus, so we find it with another way */
2610 static struct spi_master
*of_find_spi_master_by_node(struct device_node
*node
)
2614 dev
= class_find_device(&spi_master_class
, NULL
, node
,
2615 __spi_of_master_match
);
2619 /* reference got in class_find_device */
2620 return container_of(dev
, struct spi_master
, dev
);
2623 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
2626 struct of_reconfig_data
*rd
= arg
;
2627 struct spi_master
*master
;
2628 struct spi_device
*spi
;
2630 switch (of_reconfig_get_state_change(action
, arg
)) {
2631 case OF_RECONFIG_CHANGE_ADD
:
2632 master
= of_find_spi_master_by_node(rd
->dn
->parent
);
2634 return NOTIFY_OK
; /* not for us */
2636 spi
= of_register_spi_device(master
, rd
->dn
);
2637 put_device(&master
->dev
);
2640 pr_err("%s: failed to create for '%s'\n",
2641 __func__
, rd
->dn
->full_name
);
2642 return notifier_from_errno(PTR_ERR(spi
));
2646 case OF_RECONFIG_CHANGE_REMOVE
:
2647 /* find our device by node */
2648 spi
= of_find_spi_device_by_node(rd
->dn
);
2650 return NOTIFY_OK
; /* no? not meant for us */
2652 /* unregister takes one ref away */
2653 spi_unregister_device(spi
);
2655 /* and put the reference of the find */
2656 put_device(&spi
->dev
);
2663 static struct notifier_block spi_of_notifier
= {
2664 .notifier_call
= of_spi_notify
,
2666 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2667 extern struct notifier_block spi_of_notifier
;
2668 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2670 static int __init
spi_init(void)
2674 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
2680 status
= bus_register(&spi_bus_type
);
2684 status
= class_register(&spi_master_class
);
2688 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
2689 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
2694 bus_unregister(&spi_bus_type
);
2702 /* board_info is normally registered in arch_initcall(),
2703 * but even essential drivers wait till later
2705 * REVISIT only boardinfo really needs static linking. the rest (device and
2706 * driver registration) _could_ be dynamically linked (modular) ... costs
2707 * include needing to have boardinfo data structures be much more public.
2709 postcore_initcall(spi_init
);