irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / drivers / spi / spi.c
blobdee1cb87d24f4aaca1fd3d2e43b8101d3bf6e246
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
44 static void spidev_release(struct device *dev)
46 struct spi_device *spi = to_spi_device(dev);
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
52 spi_master_put(spi->master);
53 kfree(spi);
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 static DEVICE_ATTR_RO(modalias);
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 static struct attribute *spi_dev_attrs[] = {
149 &dev_attr_modalias.attr,
150 NULL,
153 static const struct attribute_group spi_dev_group = {
154 .attrs = spi_dev_attrs,
157 static struct attribute *spi_device_statistics_attrs[] = {
158 &dev_attr_spi_device_messages.attr,
159 &dev_attr_spi_device_transfers.attr,
160 &dev_attr_spi_device_errors.attr,
161 &dev_attr_spi_device_timedout.attr,
162 &dev_attr_spi_device_spi_sync.attr,
163 &dev_attr_spi_device_spi_sync_immediate.attr,
164 &dev_attr_spi_device_spi_async.attr,
165 &dev_attr_spi_device_bytes.attr,
166 &dev_attr_spi_device_bytes_rx.attr,
167 &dev_attr_spi_device_bytes_tx.attr,
168 &dev_attr_spi_device_transfer_bytes_histo0.attr,
169 &dev_attr_spi_device_transfer_bytes_histo1.attr,
170 &dev_attr_spi_device_transfer_bytes_histo2.attr,
171 &dev_attr_spi_device_transfer_bytes_histo3.attr,
172 &dev_attr_spi_device_transfer_bytes_histo4.attr,
173 &dev_attr_spi_device_transfer_bytes_histo5.attr,
174 &dev_attr_spi_device_transfer_bytes_histo6.attr,
175 &dev_attr_spi_device_transfer_bytes_histo7.attr,
176 &dev_attr_spi_device_transfer_bytes_histo8.attr,
177 &dev_attr_spi_device_transfer_bytes_histo9.attr,
178 &dev_attr_spi_device_transfer_bytes_histo10.attr,
179 &dev_attr_spi_device_transfer_bytes_histo11.attr,
180 &dev_attr_spi_device_transfer_bytes_histo12.attr,
181 &dev_attr_spi_device_transfer_bytes_histo13.attr,
182 &dev_attr_spi_device_transfer_bytes_histo14.attr,
183 &dev_attr_spi_device_transfer_bytes_histo15.attr,
184 &dev_attr_spi_device_transfer_bytes_histo16.attr,
185 NULL,
188 static const struct attribute_group spi_device_statistics_group = {
189 .name = "statistics",
190 .attrs = spi_device_statistics_attrs,
193 static const struct attribute_group *spi_dev_groups[] = {
194 &spi_dev_group,
195 &spi_device_statistics_group,
196 NULL,
199 static struct attribute *spi_master_statistics_attrs[] = {
200 &dev_attr_spi_master_messages.attr,
201 &dev_attr_spi_master_transfers.attr,
202 &dev_attr_spi_master_errors.attr,
203 &dev_attr_spi_master_timedout.attr,
204 &dev_attr_spi_master_spi_sync.attr,
205 &dev_attr_spi_master_spi_sync_immediate.attr,
206 &dev_attr_spi_master_spi_async.attr,
207 &dev_attr_spi_master_bytes.attr,
208 &dev_attr_spi_master_bytes_rx.attr,
209 &dev_attr_spi_master_bytes_tx.attr,
210 &dev_attr_spi_master_transfer_bytes_histo0.attr,
211 &dev_attr_spi_master_transfer_bytes_histo1.attr,
212 &dev_attr_spi_master_transfer_bytes_histo2.attr,
213 &dev_attr_spi_master_transfer_bytes_histo3.attr,
214 &dev_attr_spi_master_transfer_bytes_histo4.attr,
215 &dev_attr_spi_master_transfer_bytes_histo5.attr,
216 &dev_attr_spi_master_transfer_bytes_histo6.attr,
217 &dev_attr_spi_master_transfer_bytes_histo7.attr,
218 &dev_attr_spi_master_transfer_bytes_histo8.attr,
219 &dev_attr_spi_master_transfer_bytes_histo9.attr,
220 &dev_attr_spi_master_transfer_bytes_histo10.attr,
221 &dev_attr_spi_master_transfer_bytes_histo11.attr,
222 &dev_attr_spi_master_transfer_bytes_histo12.attr,
223 &dev_attr_spi_master_transfer_bytes_histo13.attr,
224 &dev_attr_spi_master_transfer_bytes_histo14.attr,
225 &dev_attr_spi_master_transfer_bytes_histo15.attr,
226 &dev_attr_spi_master_transfer_bytes_histo16.attr,
227 NULL,
230 static const struct attribute_group spi_master_statistics_group = {
231 .name = "statistics",
232 .attrs = spi_master_statistics_attrs,
235 static const struct attribute_group *spi_master_groups[] = {
236 &spi_master_statistics_group,
237 NULL,
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 struct spi_transfer *xfer,
242 struct spi_master *master)
244 unsigned long flags;
245 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
247 if (l2len < 0)
248 l2len = 0;
250 spin_lock_irqsave(&stats->lock, flags);
252 stats->transfers++;
253 stats->transfer_bytes_histo[l2len]++;
255 stats->bytes += xfer->len;
256 if ((xfer->tx_buf) &&
257 (xfer->tx_buf != master->dummy_tx))
258 stats->bytes_tx += xfer->len;
259 if ((xfer->rx_buf) &&
260 (xfer->rx_buf != master->dummy_rx))
261 stats->bytes_rx += xfer->len;
263 spin_unlock_irqrestore(&stats->lock, flags);
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 const struct spi_device *sdev)
274 while (id->name[0]) {
275 if (!strcmp(sdev->modalias, id->name))
276 return id;
277 id++;
279 return NULL;
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
284 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
286 return spi_match_id(sdrv->id_table, sdev);
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
292 const struct spi_device *spi = to_spi_device(dev);
293 const struct spi_driver *sdrv = to_spi_driver(drv);
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev, drv))
297 return 1;
299 /* Then try ACPI */
300 if (acpi_driver_match_device(dev, drv))
301 return 1;
303 if (sdrv->id_table)
304 return !!spi_match_id(sdrv->id_table, spi);
306 return strcmp(spi->modalias, drv->name) == 0;
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
311 const struct spi_device *spi = to_spi_device(dev);
312 int rc;
314 rc = acpi_device_uevent_modalias(dev, env);
315 if (rc != -ENODEV)
316 return rc;
318 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 return 0;
322 struct bus_type spi_bus_type = {
323 .name = "spi",
324 .dev_groups = spi_dev_groups,
325 .match = spi_match_device,
326 .uevent = spi_uevent,
328 EXPORT_SYMBOL_GPL(spi_bus_type);
331 static int spi_drv_probe(struct device *dev)
333 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
334 struct spi_device *spi = to_spi_device(dev);
335 int ret;
337 ret = of_clk_set_defaults(dev->of_node, false);
338 if (ret)
339 return ret;
341 if (dev->of_node) {
342 spi->irq = of_irq_get(dev->of_node, 0);
343 if (spi->irq == -EPROBE_DEFER)
344 return -EPROBE_DEFER;
345 if (spi->irq < 0)
346 spi->irq = 0;
349 ret = dev_pm_domain_attach(dev, true);
350 if (ret != -EPROBE_DEFER) {
351 ret = sdrv->probe(spi);
352 if (ret)
353 dev_pm_domain_detach(dev, true);
356 return ret;
359 static int spi_drv_remove(struct device *dev)
361 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
362 int ret;
364 ret = sdrv->remove(to_spi_device(dev));
365 dev_pm_domain_detach(dev, true);
367 return ret;
370 static void spi_drv_shutdown(struct device *dev)
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
374 sdrv->shutdown(to_spi_device(dev));
378 * __spi_register_driver - register a SPI driver
379 * @owner: owner module of the driver to register
380 * @sdrv: the driver to register
381 * Context: can sleep
383 * Return: zero on success, else a negative error code.
385 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
387 sdrv->driver.owner = owner;
388 sdrv->driver.bus = &spi_bus_type;
389 if (sdrv->probe)
390 sdrv->driver.probe = spi_drv_probe;
391 if (sdrv->remove)
392 sdrv->driver.remove = spi_drv_remove;
393 if (sdrv->shutdown)
394 sdrv->driver.shutdown = spi_drv_shutdown;
395 return driver_register(&sdrv->driver);
397 EXPORT_SYMBOL_GPL(__spi_register_driver);
399 /*-------------------------------------------------------------------------*/
401 /* SPI devices should normally not be created by SPI device drivers; that
402 * would make them board-specific. Similarly with SPI master drivers.
403 * Device registration normally goes into like arch/.../mach.../board-YYY.c
404 * with other readonly (flashable) information about mainboard devices.
407 struct boardinfo {
408 struct list_head list;
409 struct spi_board_info board_info;
412 static LIST_HEAD(board_list);
413 static LIST_HEAD(spi_master_list);
416 * Used to protect add/del opertion for board_info list and
417 * spi_master list, and their matching process
419 static DEFINE_MUTEX(board_lock);
422 * spi_alloc_device - Allocate a new SPI device
423 * @master: Controller to which device is connected
424 * Context: can sleep
426 * Allows a driver to allocate and initialize a spi_device without
427 * registering it immediately. This allows a driver to directly
428 * fill the spi_device with device parameters before calling
429 * spi_add_device() on it.
431 * Caller is responsible to call spi_add_device() on the returned
432 * spi_device structure to add it to the SPI master. If the caller
433 * needs to discard the spi_device without adding it, then it should
434 * call spi_dev_put() on it.
436 * Return: a pointer to the new device, or NULL.
438 struct spi_device *spi_alloc_device(struct spi_master *master)
440 struct spi_device *spi;
442 if (!spi_master_get(master))
443 return NULL;
445 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
446 if (!spi) {
447 spi_master_put(master);
448 return NULL;
451 spi->master = master;
452 spi->dev.parent = &master->dev;
453 spi->dev.bus = &spi_bus_type;
454 spi->dev.release = spidev_release;
455 spi->cs_gpio = -ENOENT;
457 spin_lock_init(&spi->statistics.lock);
459 device_initialize(&spi->dev);
460 return spi;
462 EXPORT_SYMBOL_GPL(spi_alloc_device);
464 static void spi_dev_set_name(struct spi_device *spi)
466 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
468 if (adev) {
469 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
470 return;
473 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
474 spi->chip_select);
477 static int spi_dev_check(struct device *dev, void *data)
479 struct spi_device *spi = to_spi_device(dev);
480 struct spi_device *new_spi = data;
482 if (spi->master == new_spi->master &&
483 spi->chip_select == new_spi->chip_select)
484 return -EBUSY;
485 return 0;
489 * spi_add_device - Add spi_device allocated with spi_alloc_device
490 * @spi: spi_device to register
492 * Companion function to spi_alloc_device. Devices allocated with
493 * spi_alloc_device can be added onto the spi bus with this function.
495 * Return: 0 on success; negative errno on failure
497 int spi_add_device(struct spi_device *spi)
499 static DEFINE_MUTEX(spi_add_lock);
500 struct spi_master *master = spi->master;
501 struct device *dev = master->dev.parent;
502 int status;
504 /* Chipselects are numbered 0..max; validate. */
505 if (spi->chip_select >= master->num_chipselect) {
506 dev_err(dev, "cs%d >= max %d\n",
507 spi->chip_select,
508 master->num_chipselect);
509 return -EINVAL;
512 /* Set the bus ID string */
513 spi_dev_set_name(spi);
515 /* We need to make sure there's no other device with this
516 * chipselect **BEFORE** we call setup(), else we'll trash
517 * its configuration. Lock against concurrent add() calls.
519 mutex_lock(&spi_add_lock);
521 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
522 if (status) {
523 dev_err(dev, "chipselect %d already in use\n",
524 spi->chip_select);
525 goto done;
528 if (master->cs_gpios)
529 spi->cs_gpio = master->cs_gpios[spi->chip_select];
531 /* Drivers may modify this initial i/o setup, but will
532 * normally rely on the device being setup. Devices
533 * using SPI_CS_HIGH can't coexist well otherwise...
535 status = spi_setup(spi);
536 if (status < 0) {
537 dev_err(dev, "can't setup %s, status %d\n",
538 dev_name(&spi->dev), status);
539 goto done;
542 /* Device may be bound to an active driver when this returns */
543 status = device_add(&spi->dev);
544 if (status < 0)
545 dev_err(dev, "can't add %s, status %d\n",
546 dev_name(&spi->dev), status);
547 else
548 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
550 done:
551 mutex_unlock(&spi_add_lock);
552 return status;
554 EXPORT_SYMBOL_GPL(spi_add_device);
557 * spi_new_device - instantiate one new SPI device
558 * @master: Controller to which device is connected
559 * @chip: Describes the SPI device
560 * Context: can sleep
562 * On typical mainboards, this is purely internal; and it's not needed
563 * after board init creates the hard-wired devices. Some development
564 * platforms may not be able to use spi_register_board_info though, and
565 * this is exported so that for example a USB or parport based adapter
566 * driver could add devices (which it would learn about out-of-band).
568 * Return: the new device, or NULL.
570 struct spi_device *spi_new_device(struct spi_master *master,
571 struct spi_board_info *chip)
573 struct spi_device *proxy;
574 int status;
576 /* NOTE: caller did any chip->bus_num checks necessary.
578 * Also, unless we change the return value convention to use
579 * error-or-pointer (not NULL-or-pointer), troubleshootability
580 * suggests syslogged diagnostics are best here (ugh).
583 proxy = spi_alloc_device(master);
584 if (!proxy)
585 return NULL;
587 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
589 proxy->chip_select = chip->chip_select;
590 proxy->max_speed_hz = chip->max_speed_hz;
591 proxy->mode = chip->mode;
592 proxy->irq = chip->irq;
593 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
594 proxy->dev.platform_data = (void *) chip->platform_data;
595 proxy->controller_data = chip->controller_data;
596 proxy->controller_state = NULL;
598 status = spi_add_device(proxy);
599 if (status < 0) {
600 spi_dev_put(proxy);
601 return NULL;
604 return proxy;
606 EXPORT_SYMBOL_GPL(spi_new_device);
608 static void spi_match_master_to_boardinfo(struct spi_master *master,
609 struct spi_board_info *bi)
611 struct spi_device *dev;
613 if (master->bus_num != bi->bus_num)
614 return;
616 dev = spi_new_device(master, bi);
617 if (!dev)
618 dev_err(master->dev.parent, "can't create new device for %s\n",
619 bi->modalias);
623 * spi_register_board_info - register SPI devices for a given board
624 * @info: array of chip descriptors
625 * @n: how many descriptors are provided
626 * Context: can sleep
628 * Board-specific early init code calls this (probably during arch_initcall)
629 * with segments of the SPI device table. Any device nodes are created later,
630 * after the relevant parent SPI controller (bus_num) is defined. We keep
631 * this table of devices forever, so that reloading a controller driver will
632 * not make Linux forget about these hard-wired devices.
634 * Other code can also call this, e.g. a particular add-on board might provide
635 * SPI devices through its expansion connector, so code initializing that board
636 * would naturally declare its SPI devices.
638 * The board info passed can safely be __initdata ... but be careful of
639 * any embedded pointers (platform_data, etc), they're copied as-is.
641 * Return: zero on success, else a negative error code.
643 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
645 struct boardinfo *bi;
646 int i;
648 if (!n)
649 return -EINVAL;
651 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
652 if (!bi)
653 return -ENOMEM;
655 for (i = 0; i < n; i++, bi++, info++) {
656 struct spi_master *master;
658 memcpy(&bi->board_info, info, sizeof(*info));
659 mutex_lock(&board_lock);
660 list_add_tail(&bi->list, &board_list);
661 list_for_each_entry(master, &spi_master_list, list)
662 spi_match_master_to_boardinfo(master, &bi->board_info);
663 mutex_unlock(&board_lock);
666 return 0;
669 /*-------------------------------------------------------------------------*/
671 static void spi_set_cs(struct spi_device *spi, bool enable)
673 if (spi->mode & SPI_CS_HIGH)
674 enable = !enable;
676 if (gpio_is_valid(spi->cs_gpio))
677 gpio_set_value(spi->cs_gpio, !enable);
678 else if (spi->master->set_cs)
679 spi->master->set_cs(spi, !enable);
682 #ifdef CONFIG_HAS_DMA
683 static int spi_map_buf(struct spi_master *master, struct device *dev,
684 struct sg_table *sgt, void *buf, size_t len,
685 enum dma_data_direction dir)
687 const bool vmalloced_buf = is_vmalloc_addr(buf);
688 int desc_len;
689 int sgs;
690 struct page *vm_page;
691 void *sg_buf;
692 size_t min;
693 int i, ret;
695 if (vmalloced_buf) {
696 desc_len = PAGE_SIZE;
697 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
698 } else {
699 desc_len = master->max_dma_len;
700 sgs = DIV_ROUND_UP(len, desc_len);
703 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
704 if (ret != 0)
705 return ret;
707 for (i = 0; i < sgs; i++) {
709 if (vmalloced_buf) {
710 min = min_t(size_t,
711 len, desc_len - offset_in_page(buf));
712 vm_page = vmalloc_to_page(buf);
713 if (!vm_page) {
714 sg_free_table(sgt);
715 return -ENOMEM;
717 sg_set_page(&sgt->sgl[i], vm_page,
718 min, offset_in_page(buf));
719 } else {
720 min = min_t(size_t, len, desc_len);
721 sg_buf = buf;
722 sg_set_buf(&sgt->sgl[i], sg_buf, min);
726 buf += min;
727 len -= min;
730 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
731 if (!ret)
732 ret = -ENOMEM;
733 if (ret < 0) {
734 sg_free_table(sgt);
735 return ret;
738 sgt->nents = ret;
740 return 0;
743 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
744 struct sg_table *sgt, enum dma_data_direction dir)
746 if (sgt->orig_nents) {
747 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
748 sg_free_table(sgt);
752 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
754 struct device *tx_dev, *rx_dev;
755 struct spi_transfer *xfer;
756 int ret;
758 if (!master->can_dma)
759 return 0;
761 if (master->dma_tx)
762 tx_dev = master->dma_tx->device->dev;
763 else
764 tx_dev = &master->dev;
766 if (master->dma_rx)
767 rx_dev = master->dma_rx->device->dev;
768 else
769 rx_dev = &master->dev;
771 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
772 if (!master->can_dma(master, msg->spi, xfer))
773 continue;
775 if (xfer->tx_buf != NULL) {
776 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
777 (void *)xfer->tx_buf, xfer->len,
778 DMA_TO_DEVICE);
779 if (ret != 0)
780 return ret;
783 if (xfer->rx_buf != NULL) {
784 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
785 xfer->rx_buf, xfer->len,
786 DMA_FROM_DEVICE);
787 if (ret != 0) {
788 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
789 DMA_TO_DEVICE);
790 return ret;
795 master->cur_msg_mapped = true;
797 return 0;
800 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
802 struct spi_transfer *xfer;
803 struct device *tx_dev, *rx_dev;
805 if (!master->cur_msg_mapped || !master->can_dma)
806 return 0;
808 if (master->dma_tx)
809 tx_dev = master->dma_tx->device->dev;
810 else
811 tx_dev = &master->dev;
813 if (master->dma_rx)
814 rx_dev = master->dma_rx->device->dev;
815 else
816 rx_dev = &master->dev;
818 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
819 if (!master->can_dma(master, msg->spi, xfer))
820 continue;
822 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
823 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
826 return 0;
828 #else /* !CONFIG_HAS_DMA */
829 static inline int __spi_map_msg(struct spi_master *master,
830 struct spi_message *msg)
832 return 0;
835 static inline int __spi_unmap_msg(struct spi_master *master,
836 struct spi_message *msg)
838 return 0;
840 #endif /* !CONFIG_HAS_DMA */
842 static inline int spi_unmap_msg(struct spi_master *master,
843 struct spi_message *msg)
845 struct spi_transfer *xfer;
847 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
849 * Restore the original value of tx_buf or rx_buf if they are
850 * NULL.
852 if (xfer->tx_buf == master->dummy_tx)
853 xfer->tx_buf = NULL;
854 if (xfer->rx_buf == master->dummy_rx)
855 xfer->rx_buf = NULL;
858 return __spi_unmap_msg(master, msg);
861 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
863 struct spi_transfer *xfer;
864 void *tmp;
865 unsigned int max_tx, max_rx;
867 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
868 max_tx = 0;
869 max_rx = 0;
871 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
872 if ((master->flags & SPI_MASTER_MUST_TX) &&
873 !xfer->tx_buf)
874 max_tx = max(xfer->len, max_tx);
875 if ((master->flags & SPI_MASTER_MUST_RX) &&
876 !xfer->rx_buf)
877 max_rx = max(xfer->len, max_rx);
880 if (max_tx) {
881 tmp = krealloc(master->dummy_tx, max_tx,
882 GFP_KERNEL | GFP_DMA);
883 if (!tmp)
884 return -ENOMEM;
885 master->dummy_tx = tmp;
886 memset(tmp, 0, max_tx);
889 if (max_rx) {
890 tmp = krealloc(master->dummy_rx, max_rx,
891 GFP_KERNEL | GFP_DMA);
892 if (!tmp)
893 return -ENOMEM;
894 master->dummy_rx = tmp;
897 if (max_tx || max_rx) {
898 list_for_each_entry(xfer, &msg->transfers,
899 transfer_list) {
900 if (!xfer->tx_buf)
901 xfer->tx_buf = master->dummy_tx;
902 if (!xfer->rx_buf)
903 xfer->rx_buf = master->dummy_rx;
908 return __spi_map_msg(master, msg);
912 * spi_transfer_one_message - Default implementation of transfer_one_message()
914 * This is a standard implementation of transfer_one_message() for
915 * drivers which impelment a transfer_one() operation. It provides
916 * standard handling of delays and chip select management.
918 static int spi_transfer_one_message(struct spi_master *master,
919 struct spi_message *msg)
921 struct spi_transfer *xfer;
922 bool keep_cs = false;
923 int ret = 0;
924 unsigned long ms = 1;
925 struct spi_statistics *statm = &master->statistics;
926 struct spi_statistics *stats = &msg->spi->statistics;
928 spi_set_cs(msg->spi, true);
930 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
931 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
933 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
934 trace_spi_transfer_start(msg, xfer);
936 spi_statistics_add_transfer_stats(statm, xfer, master);
937 spi_statistics_add_transfer_stats(stats, xfer, master);
939 if (xfer->tx_buf || xfer->rx_buf) {
940 reinit_completion(&master->xfer_completion);
942 ret = master->transfer_one(master, msg->spi, xfer);
943 if (ret < 0) {
944 SPI_STATISTICS_INCREMENT_FIELD(statm,
945 errors);
946 SPI_STATISTICS_INCREMENT_FIELD(stats,
947 errors);
948 dev_err(&msg->spi->dev,
949 "SPI transfer failed: %d\n", ret);
950 goto out;
953 if (ret > 0) {
954 ret = 0;
955 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
956 ms += ms + 100; /* some tolerance */
958 ms = wait_for_completion_timeout(&master->xfer_completion,
959 msecs_to_jiffies(ms));
962 if (ms == 0) {
963 SPI_STATISTICS_INCREMENT_FIELD(statm,
964 timedout);
965 SPI_STATISTICS_INCREMENT_FIELD(stats,
966 timedout);
967 dev_err(&msg->spi->dev,
968 "SPI transfer timed out\n");
969 msg->status = -ETIMEDOUT;
971 } else {
972 if (xfer->len)
973 dev_err(&msg->spi->dev,
974 "Bufferless transfer has length %u\n",
975 xfer->len);
978 trace_spi_transfer_stop(msg, xfer);
980 if (msg->status != -EINPROGRESS)
981 goto out;
983 if (xfer->delay_usecs)
984 udelay(xfer->delay_usecs);
986 if (xfer->cs_change) {
987 if (list_is_last(&xfer->transfer_list,
988 &msg->transfers)) {
989 keep_cs = true;
990 } else {
991 spi_set_cs(msg->spi, false);
992 udelay(10);
993 spi_set_cs(msg->spi, true);
997 msg->actual_length += xfer->len;
1000 out:
1001 if (ret != 0 || !keep_cs)
1002 spi_set_cs(msg->spi, false);
1004 if (msg->status == -EINPROGRESS)
1005 msg->status = ret;
1007 if (msg->status && master->handle_err)
1008 master->handle_err(master, msg);
1010 spi_finalize_current_message(master);
1012 return ret;
1016 * spi_finalize_current_transfer - report completion of a transfer
1017 * @master: the master reporting completion
1019 * Called by SPI drivers using the core transfer_one_message()
1020 * implementation to notify it that the current interrupt driven
1021 * transfer has finished and the next one may be scheduled.
1023 void spi_finalize_current_transfer(struct spi_master *master)
1025 complete(&master->xfer_completion);
1027 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1030 * __spi_pump_messages - function which processes spi message queue
1031 * @master: master to process queue for
1032 * @in_kthread: true if we are in the context of the message pump thread
1034 * This function checks if there is any spi message in the queue that
1035 * needs processing and if so call out to the driver to initialize hardware
1036 * and transfer each message.
1038 * Note that it is called both from the kthread itself and also from
1039 * inside spi_sync(); the queue extraction handling at the top of the
1040 * function should deal with this safely.
1042 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1044 unsigned long flags;
1045 bool was_busy = false;
1046 int ret;
1048 /* Lock queue */
1049 spin_lock_irqsave(&master->queue_lock, flags);
1051 /* Make sure we are not already running a message */
1052 if (master->cur_msg) {
1053 spin_unlock_irqrestore(&master->queue_lock, flags);
1054 return;
1057 /* If another context is idling the device then defer */
1058 if (master->idling) {
1059 queue_kthread_work(&master->kworker, &master->pump_messages);
1060 spin_unlock_irqrestore(&master->queue_lock, flags);
1061 return;
1064 /* Check if the queue is idle */
1065 if (list_empty(&master->queue) || !master->running) {
1066 if (!master->busy) {
1067 spin_unlock_irqrestore(&master->queue_lock, flags);
1068 return;
1071 /* Only do teardown in the thread */
1072 if (!in_kthread) {
1073 queue_kthread_work(&master->kworker,
1074 &master->pump_messages);
1075 spin_unlock_irqrestore(&master->queue_lock, flags);
1076 return;
1079 master->busy = false;
1080 master->idling = true;
1081 spin_unlock_irqrestore(&master->queue_lock, flags);
1083 kfree(master->dummy_rx);
1084 master->dummy_rx = NULL;
1085 kfree(master->dummy_tx);
1086 master->dummy_tx = NULL;
1087 if (master->unprepare_transfer_hardware &&
1088 master->unprepare_transfer_hardware(master))
1089 dev_err(&master->dev,
1090 "failed to unprepare transfer hardware\n");
1091 if (master->auto_runtime_pm) {
1092 pm_runtime_mark_last_busy(master->dev.parent);
1093 pm_runtime_put_autosuspend(master->dev.parent);
1095 trace_spi_master_idle(master);
1097 spin_lock_irqsave(&master->queue_lock, flags);
1098 master->idling = false;
1099 spin_unlock_irqrestore(&master->queue_lock, flags);
1100 return;
1103 /* Extract head of queue */
1104 master->cur_msg =
1105 list_first_entry(&master->queue, struct spi_message, queue);
1107 list_del_init(&master->cur_msg->queue);
1108 if (master->busy)
1109 was_busy = true;
1110 else
1111 master->busy = true;
1112 spin_unlock_irqrestore(&master->queue_lock, flags);
1114 if (!was_busy && master->auto_runtime_pm) {
1115 ret = pm_runtime_get_sync(master->dev.parent);
1116 if (ret < 0) {
1117 dev_err(&master->dev, "Failed to power device: %d\n",
1118 ret);
1119 return;
1123 if (!was_busy)
1124 trace_spi_master_busy(master);
1126 if (!was_busy && master->prepare_transfer_hardware) {
1127 ret = master->prepare_transfer_hardware(master);
1128 if (ret) {
1129 dev_err(&master->dev,
1130 "failed to prepare transfer hardware\n");
1132 if (master->auto_runtime_pm)
1133 pm_runtime_put(master->dev.parent);
1134 return;
1138 trace_spi_message_start(master->cur_msg);
1140 if (master->prepare_message) {
1141 ret = master->prepare_message(master, master->cur_msg);
1142 if (ret) {
1143 dev_err(&master->dev,
1144 "failed to prepare message: %d\n", ret);
1145 master->cur_msg->status = ret;
1146 spi_finalize_current_message(master);
1147 return;
1149 master->cur_msg_prepared = true;
1152 ret = spi_map_msg(master, master->cur_msg);
1153 if (ret) {
1154 master->cur_msg->status = ret;
1155 spi_finalize_current_message(master);
1156 return;
1159 ret = master->transfer_one_message(master, master->cur_msg);
1160 if (ret) {
1161 dev_err(&master->dev,
1162 "failed to transfer one message from queue\n");
1163 return;
1168 * spi_pump_messages - kthread work function which processes spi message queue
1169 * @work: pointer to kthread work struct contained in the master struct
1171 static void spi_pump_messages(struct kthread_work *work)
1173 struct spi_master *master =
1174 container_of(work, struct spi_master, pump_messages);
1176 __spi_pump_messages(master, true);
1179 static int spi_init_queue(struct spi_master *master)
1181 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1183 master->running = false;
1184 master->busy = false;
1186 init_kthread_worker(&master->kworker);
1187 master->kworker_task = kthread_run(kthread_worker_fn,
1188 &master->kworker, "%s",
1189 dev_name(&master->dev));
1190 if (IS_ERR(master->kworker_task)) {
1191 dev_err(&master->dev, "failed to create message pump task\n");
1192 return PTR_ERR(master->kworker_task);
1194 init_kthread_work(&master->pump_messages, spi_pump_messages);
1197 * Master config will indicate if this controller should run the
1198 * message pump with high (realtime) priority to reduce the transfer
1199 * latency on the bus by minimising the delay between a transfer
1200 * request and the scheduling of the message pump thread. Without this
1201 * setting the message pump thread will remain at default priority.
1203 if (master->rt) {
1204 dev_info(&master->dev,
1205 "will run message pump with realtime priority\n");
1206 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1209 return 0;
1213 * spi_get_next_queued_message() - called by driver to check for queued
1214 * messages
1215 * @master: the master to check for queued messages
1217 * If there are more messages in the queue, the next message is returned from
1218 * this call.
1220 * Return: the next message in the queue, else NULL if the queue is empty.
1222 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1224 struct spi_message *next;
1225 unsigned long flags;
1227 /* get a pointer to the next message, if any */
1228 spin_lock_irqsave(&master->queue_lock, flags);
1229 next = list_first_entry_or_null(&master->queue, struct spi_message,
1230 queue);
1231 spin_unlock_irqrestore(&master->queue_lock, flags);
1233 return next;
1235 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1238 * spi_finalize_current_message() - the current message is complete
1239 * @master: the master to return the message to
1241 * Called by the driver to notify the core that the message in the front of the
1242 * queue is complete and can be removed from the queue.
1244 void spi_finalize_current_message(struct spi_master *master)
1246 struct spi_message *mesg;
1247 unsigned long flags;
1248 int ret;
1250 spin_lock_irqsave(&master->queue_lock, flags);
1251 mesg = master->cur_msg;
1252 spin_unlock_irqrestore(&master->queue_lock, flags);
1254 spi_unmap_msg(master, mesg);
1256 if (master->cur_msg_prepared && master->unprepare_message) {
1257 ret = master->unprepare_message(master, mesg);
1258 if (ret) {
1259 dev_err(&master->dev,
1260 "failed to unprepare message: %d\n", ret);
1264 spin_lock_irqsave(&master->queue_lock, flags);
1265 master->cur_msg = NULL;
1266 master->cur_msg_prepared = false;
1267 queue_kthread_work(&master->kworker, &master->pump_messages);
1268 spin_unlock_irqrestore(&master->queue_lock, flags);
1270 trace_spi_message_done(mesg);
1272 mesg->state = NULL;
1273 if (mesg->complete)
1274 mesg->complete(mesg->context);
1276 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1278 static int spi_start_queue(struct spi_master *master)
1280 unsigned long flags;
1282 spin_lock_irqsave(&master->queue_lock, flags);
1284 if (master->running || master->busy) {
1285 spin_unlock_irqrestore(&master->queue_lock, flags);
1286 return -EBUSY;
1289 master->running = true;
1290 master->cur_msg = NULL;
1291 spin_unlock_irqrestore(&master->queue_lock, flags);
1293 queue_kthread_work(&master->kworker, &master->pump_messages);
1295 return 0;
1298 static int spi_stop_queue(struct spi_master *master)
1300 unsigned long flags;
1301 unsigned limit = 500;
1302 int ret = 0;
1304 spin_lock_irqsave(&master->queue_lock, flags);
1307 * This is a bit lame, but is optimized for the common execution path.
1308 * A wait_queue on the master->busy could be used, but then the common
1309 * execution path (pump_messages) would be required to call wake_up or
1310 * friends on every SPI message. Do this instead.
1312 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1313 spin_unlock_irqrestore(&master->queue_lock, flags);
1314 usleep_range(10000, 11000);
1315 spin_lock_irqsave(&master->queue_lock, flags);
1318 if (!list_empty(&master->queue) || master->busy)
1319 ret = -EBUSY;
1320 else
1321 master->running = false;
1323 spin_unlock_irqrestore(&master->queue_lock, flags);
1325 if (ret) {
1326 dev_warn(&master->dev,
1327 "could not stop message queue\n");
1328 return ret;
1330 return ret;
1333 static int spi_destroy_queue(struct spi_master *master)
1335 int ret;
1337 ret = spi_stop_queue(master);
1340 * flush_kthread_worker will block until all work is done.
1341 * If the reason that stop_queue timed out is that the work will never
1342 * finish, then it does no good to call flush/stop thread, so
1343 * return anyway.
1345 if (ret) {
1346 dev_err(&master->dev, "problem destroying queue\n");
1347 return ret;
1350 flush_kthread_worker(&master->kworker);
1351 kthread_stop(master->kworker_task);
1353 return 0;
1356 static int __spi_queued_transfer(struct spi_device *spi,
1357 struct spi_message *msg,
1358 bool need_pump)
1360 struct spi_master *master = spi->master;
1361 unsigned long flags;
1363 spin_lock_irqsave(&master->queue_lock, flags);
1365 if (!master->running) {
1366 spin_unlock_irqrestore(&master->queue_lock, flags);
1367 return -ESHUTDOWN;
1369 msg->actual_length = 0;
1370 msg->status = -EINPROGRESS;
1372 list_add_tail(&msg->queue, &master->queue);
1373 if (!master->busy && need_pump)
1374 queue_kthread_work(&master->kworker, &master->pump_messages);
1376 spin_unlock_irqrestore(&master->queue_lock, flags);
1377 return 0;
1381 * spi_queued_transfer - transfer function for queued transfers
1382 * @spi: spi device which is requesting transfer
1383 * @msg: spi message which is to handled is queued to driver queue
1385 * Return: zero on success, else a negative error code.
1387 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1389 return __spi_queued_transfer(spi, msg, true);
1392 static int spi_master_initialize_queue(struct spi_master *master)
1394 int ret;
1396 master->transfer = spi_queued_transfer;
1397 if (!master->transfer_one_message)
1398 master->transfer_one_message = spi_transfer_one_message;
1400 /* Initialize and start queue */
1401 ret = spi_init_queue(master);
1402 if (ret) {
1403 dev_err(&master->dev, "problem initializing queue\n");
1404 goto err_init_queue;
1406 master->queued = true;
1407 ret = spi_start_queue(master);
1408 if (ret) {
1409 dev_err(&master->dev, "problem starting queue\n");
1410 goto err_start_queue;
1413 return 0;
1415 err_start_queue:
1416 spi_destroy_queue(master);
1417 err_init_queue:
1418 return ret;
1421 /*-------------------------------------------------------------------------*/
1423 #if defined(CONFIG_OF)
1424 static struct spi_device *
1425 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1427 struct spi_device *spi;
1428 int rc;
1429 u32 value;
1431 /* Alloc an spi_device */
1432 spi = spi_alloc_device(master);
1433 if (!spi) {
1434 dev_err(&master->dev, "spi_device alloc error for %s\n",
1435 nc->full_name);
1436 rc = -ENOMEM;
1437 goto err_out;
1440 /* Select device driver */
1441 rc = of_modalias_node(nc, spi->modalias,
1442 sizeof(spi->modalias));
1443 if (rc < 0) {
1444 dev_err(&master->dev, "cannot find modalias for %s\n",
1445 nc->full_name);
1446 goto err_out;
1449 /* Device address */
1450 rc = of_property_read_u32(nc, "reg", &value);
1451 if (rc) {
1452 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1453 nc->full_name, rc);
1454 goto err_out;
1456 spi->chip_select = value;
1458 /* Mode (clock phase/polarity/etc.) */
1459 if (of_find_property(nc, "spi-cpha", NULL))
1460 spi->mode |= SPI_CPHA;
1461 if (of_find_property(nc, "spi-cpol", NULL))
1462 spi->mode |= SPI_CPOL;
1463 if (of_find_property(nc, "spi-cs-high", NULL))
1464 spi->mode |= SPI_CS_HIGH;
1465 if (of_find_property(nc, "spi-3wire", NULL))
1466 spi->mode |= SPI_3WIRE;
1467 if (of_find_property(nc, "spi-lsb-first", NULL))
1468 spi->mode |= SPI_LSB_FIRST;
1470 /* Device DUAL/QUAD mode */
1471 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1472 switch (value) {
1473 case 1:
1474 break;
1475 case 2:
1476 spi->mode |= SPI_TX_DUAL;
1477 break;
1478 case 4:
1479 spi->mode |= SPI_TX_QUAD;
1480 break;
1481 default:
1482 dev_warn(&master->dev,
1483 "spi-tx-bus-width %d not supported\n",
1484 value);
1485 break;
1489 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1490 switch (value) {
1491 case 1:
1492 break;
1493 case 2:
1494 spi->mode |= SPI_RX_DUAL;
1495 break;
1496 case 4:
1497 spi->mode |= SPI_RX_QUAD;
1498 break;
1499 default:
1500 dev_warn(&master->dev,
1501 "spi-rx-bus-width %d not supported\n",
1502 value);
1503 break;
1507 /* Device speed */
1508 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1509 if (rc) {
1510 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1511 nc->full_name, rc);
1512 goto err_out;
1514 spi->max_speed_hz = value;
1516 /* Store a pointer to the node in the device structure */
1517 of_node_get(nc);
1518 spi->dev.of_node = nc;
1520 /* Register the new device */
1521 rc = spi_add_device(spi);
1522 if (rc) {
1523 dev_err(&master->dev, "spi_device register error %s\n",
1524 nc->full_name);
1525 goto err_out;
1528 return spi;
1530 err_out:
1531 spi_dev_put(spi);
1532 return ERR_PTR(rc);
1536 * of_register_spi_devices() - Register child devices onto the SPI bus
1537 * @master: Pointer to spi_master device
1539 * Registers an spi_device for each child node of master node which has a 'reg'
1540 * property.
1542 static void of_register_spi_devices(struct spi_master *master)
1544 struct spi_device *spi;
1545 struct device_node *nc;
1547 if (!master->dev.of_node)
1548 return;
1550 for_each_available_child_of_node(master->dev.of_node, nc) {
1551 spi = of_register_spi_device(master, nc);
1552 if (IS_ERR(spi))
1553 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1554 nc->full_name);
1557 #else
1558 static void of_register_spi_devices(struct spi_master *master) { }
1559 #endif
1561 #ifdef CONFIG_ACPI
1562 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1564 struct spi_device *spi = data;
1566 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1567 struct acpi_resource_spi_serialbus *sb;
1569 sb = &ares->data.spi_serial_bus;
1570 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1571 spi->chip_select = sb->device_selection;
1572 spi->max_speed_hz = sb->connection_speed;
1574 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1575 spi->mode |= SPI_CPHA;
1576 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1577 spi->mode |= SPI_CPOL;
1578 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1579 spi->mode |= SPI_CS_HIGH;
1581 } else if (spi->irq < 0) {
1582 struct resource r;
1584 if (acpi_dev_resource_interrupt(ares, 0, &r))
1585 spi->irq = r.start;
1588 /* Always tell the ACPI core to skip this resource */
1589 return 1;
1592 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1593 void *data, void **return_value)
1595 struct spi_master *master = data;
1596 struct list_head resource_list;
1597 struct acpi_device *adev;
1598 struct spi_device *spi;
1599 int ret;
1601 if (acpi_bus_get_device(handle, &adev))
1602 return AE_OK;
1603 if (acpi_bus_get_status(adev) || !adev->status.present)
1604 return AE_OK;
1606 spi = spi_alloc_device(master);
1607 if (!spi) {
1608 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1609 dev_name(&adev->dev));
1610 return AE_NO_MEMORY;
1613 ACPI_COMPANION_SET(&spi->dev, adev);
1614 spi->irq = -1;
1616 INIT_LIST_HEAD(&resource_list);
1617 ret = acpi_dev_get_resources(adev, &resource_list,
1618 acpi_spi_add_resource, spi);
1619 acpi_dev_free_resource_list(&resource_list);
1621 if (ret < 0 || !spi->max_speed_hz) {
1622 spi_dev_put(spi);
1623 return AE_OK;
1626 adev->power.flags.ignore_parent = true;
1627 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1628 if (spi_add_device(spi)) {
1629 adev->power.flags.ignore_parent = false;
1630 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1631 dev_name(&adev->dev));
1632 spi_dev_put(spi);
1635 return AE_OK;
1638 static void acpi_register_spi_devices(struct spi_master *master)
1640 acpi_status status;
1641 acpi_handle handle;
1643 handle = ACPI_HANDLE(master->dev.parent);
1644 if (!handle)
1645 return;
1647 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1648 acpi_spi_add_device, NULL,
1649 master, NULL);
1650 if (ACPI_FAILURE(status))
1651 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1653 #else
1654 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1655 #endif /* CONFIG_ACPI */
1657 static void spi_master_release(struct device *dev)
1659 struct spi_master *master;
1661 master = container_of(dev, struct spi_master, dev);
1662 kfree(master);
1665 static struct class spi_master_class = {
1666 .name = "spi_master",
1667 .owner = THIS_MODULE,
1668 .dev_release = spi_master_release,
1669 .dev_groups = spi_master_groups,
1674 * spi_alloc_master - allocate SPI master controller
1675 * @dev: the controller, possibly using the platform_bus
1676 * @size: how much zeroed driver-private data to allocate; the pointer to this
1677 * memory is in the driver_data field of the returned device,
1678 * accessible with spi_master_get_devdata().
1679 * Context: can sleep
1681 * This call is used only by SPI master controller drivers, which are the
1682 * only ones directly touching chip registers. It's how they allocate
1683 * an spi_master structure, prior to calling spi_register_master().
1685 * This must be called from context that can sleep.
1687 * The caller is responsible for assigning the bus number and initializing
1688 * the master's methods before calling spi_register_master(); and (after errors
1689 * adding the device) calling spi_master_put() to prevent a memory leak.
1691 * Return: the SPI master structure on success, else NULL.
1693 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1695 struct spi_master *master;
1697 if (!dev)
1698 return NULL;
1700 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1701 if (!master)
1702 return NULL;
1704 device_initialize(&master->dev);
1705 master->bus_num = -1;
1706 master->num_chipselect = 1;
1707 master->dev.class = &spi_master_class;
1708 master->dev.parent = dev;
1709 spi_master_set_devdata(master, &master[1]);
1711 return master;
1713 EXPORT_SYMBOL_GPL(spi_alloc_master);
1715 #ifdef CONFIG_OF
1716 static int of_spi_register_master(struct spi_master *master)
1718 int nb, i, *cs;
1719 struct device_node *np = master->dev.of_node;
1721 if (!np)
1722 return 0;
1724 nb = of_gpio_named_count(np, "cs-gpios");
1725 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1727 /* Return error only for an incorrectly formed cs-gpios property */
1728 if (nb == 0 || nb == -ENOENT)
1729 return 0;
1730 else if (nb < 0)
1731 return nb;
1733 cs = devm_kzalloc(&master->dev,
1734 sizeof(int) * master->num_chipselect,
1735 GFP_KERNEL);
1736 master->cs_gpios = cs;
1738 if (!master->cs_gpios)
1739 return -ENOMEM;
1741 for (i = 0; i < master->num_chipselect; i++)
1742 cs[i] = -ENOENT;
1744 for (i = 0; i < nb; i++)
1745 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1747 return 0;
1749 #else
1750 static int of_spi_register_master(struct spi_master *master)
1752 return 0;
1754 #endif
1757 * spi_register_master - register SPI master controller
1758 * @master: initialized master, originally from spi_alloc_master()
1759 * Context: can sleep
1761 * SPI master controllers connect to their drivers using some non-SPI bus,
1762 * such as the platform bus. The final stage of probe() in that code
1763 * includes calling spi_register_master() to hook up to this SPI bus glue.
1765 * SPI controllers use board specific (often SOC specific) bus numbers,
1766 * and board-specific addressing for SPI devices combines those numbers
1767 * with chip select numbers. Since SPI does not directly support dynamic
1768 * device identification, boards need configuration tables telling which
1769 * chip is at which address.
1771 * This must be called from context that can sleep. It returns zero on
1772 * success, else a negative error code (dropping the master's refcount).
1773 * After a successful return, the caller is responsible for calling
1774 * spi_unregister_master().
1776 * Return: zero on success, else a negative error code.
1778 int spi_register_master(struct spi_master *master)
1780 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1781 struct device *dev = master->dev.parent;
1782 struct boardinfo *bi;
1783 int status = -ENODEV;
1784 int dynamic = 0;
1786 if (!dev)
1787 return -ENODEV;
1789 status = of_spi_register_master(master);
1790 if (status)
1791 return status;
1793 /* even if it's just one always-selected device, there must
1794 * be at least one chipselect
1796 if (master->num_chipselect == 0)
1797 return -EINVAL;
1799 if ((master->bus_num < 0) && master->dev.of_node)
1800 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1802 /* convention: dynamically assigned bus IDs count down from the max */
1803 if (master->bus_num < 0) {
1804 /* FIXME switch to an IDR based scheme, something like
1805 * I2C now uses, so we can't run out of "dynamic" IDs
1807 master->bus_num = atomic_dec_return(&dyn_bus_id);
1808 dynamic = 1;
1811 INIT_LIST_HEAD(&master->queue);
1812 spin_lock_init(&master->queue_lock);
1813 spin_lock_init(&master->bus_lock_spinlock);
1814 mutex_init(&master->bus_lock_mutex);
1815 master->bus_lock_flag = 0;
1816 init_completion(&master->xfer_completion);
1817 if (!master->max_dma_len)
1818 master->max_dma_len = INT_MAX;
1820 /* register the device, then userspace will see it.
1821 * registration fails if the bus ID is in use.
1823 dev_set_name(&master->dev, "spi%u", master->bus_num);
1824 status = device_add(&master->dev);
1825 if (status < 0)
1826 goto done;
1827 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1828 dynamic ? " (dynamic)" : "");
1830 /* If we're using a queued driver, start the queue */
1831 if (master->transfer)
1832 dev_info(dev, "master is unqueued, this is deprecated\n");
1833 else {
1834 status = spi_master_initialize_queue(master);
1835 if (status) {
1836 device_del(&master->dev);
1837 goto done;
1840 /* add statistics */
1841 spin_lock_init(&master->statistics.lock);
1843 mutex_lock(&board_lock);
1844 list_add_tail(&master->list, &spi_master_list);
1845 list_for_each_entry(bi, &board_list, list)
1846 spi_match_master_to_boardinfo(master, &bi->board_info);
1847 mutex_unlock(&board_lock);
1849 /* Register devices from the device tree and ACPI */
1850 of_register_spi_devices(master);
1851 acpi_register_spi_devices(master);
1852 done:
1853 return status;
1855 EXPORT_SYMBOL_GPL(spi_register_master);
1857 static void devm_spi_unregister(struct device *dev, void *res)
1859 spi_unregister_master(*(struct spi_master **)res);
1863 * dev_spi_register_master - register managed SPI master controller
1864 * @dev: device managing SPI master
1865 * @master: initialized master, originally from spi_alloc_master()
1866 * Context: can sleep
1868 * Register a SPI device as with spi_register_master() which will
1869 * automatically be unregister
1871 * Return: zero on success, else a negative error code.
1873 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1875 struct spi_master **ptr;
1876 int ret;
1878 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1879 if (!ptr)
1880 return -ENOMEM;
1882 ret = spi_register_master(master);
1883 if (!ret) {
1884 *ptr = master;
1885 devres_add(dev, ptr);
1886 } else {
1887 devres_free(ptr);
1890 return ret;
1892 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1894 static int __unregister(struct device *dev, void *null)
1896 spi_unregister_device(to_spi_device(dev));
1897 return 0;
1901 * spi_unregister_master - unregister SPI master controller
1902 * @master: the master being unregistered
1903 * Context: can sleep
1905 * This call is used only by SPI master controller drivers, which are the
1906 * only ones directly touching chip registers.
1908 * This must be called from context that can sleep.
1910 void spi_unregister_master(struct spi_master *master)
1912 int dummy;
1914 if (master->queued) {
1915 if (spi_destroy_queue(master))
1916 dev_err(&master->dev, "queue remove failed\n");
1919 mutex_lock(&board_lock);
1920 list_del(&master->list);
1921 mutex_unlock(&board_lock);
1923 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1924 device_unregister(&master->dev);
1926 EXPORT_SYMBOL_GPL(spi_unregister_master);
1928 int spi_master_suspend(struct spi_master *master)
1930 int ret;
1932 /* Basically no-ops for non-queued masters */
1933 if (!master->queued)
1934 return 0;
1936 ret = spi_stop_queue(master);
1937 if (ret)
1938 dev_err(&master->dev, "queue stop failed\n");
1940 return ret;
1942 EXPORT_SYMBOL_GPL(spi_master_suspend);
1944 int spi_master_resume(struct spi_master *master)
1946 int ret;
1948 if (!master->queued)
1949 return 0;
1951 ret = spi_start_queue(master);
1952 if (ret)
1953 dev_err(&master->dev, "queue restart failed\n");
1955 return ret;
1957 EXPORT_SYMBOL_GPL(spi_master_resume);
1959 static int __spi_master_match(struct device *dev, const void *data)
1961 struct spi_master *m;
1962 const u16 *bus_num = data;
1964 m = container_of(dev, struct spi_master, dev);
1965 return m->bus_num == *bus_num;
1969 * spi_busnum_to_master - look up master associated with bus_num
1970 * @bus_num: the master's bus number
1971 * Context: can sleep
1973 * This call may be used with devices that are registered after
1974 * arch init time. It returns a refcounted pointer to the relevant
1975 * spi_master (which the caller must release), or NULL if there is
1976 * no such master registered.
1978 * Return: the SPI master structure on success, else NULL.
1980 struct spi_master *spi_busnum_to_master(u16 bus_num)
1982 struct device *dev;
1983 struct spi_master *master = NULL;
1985 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1986 __spi_master_match);
1987 if (dev)
1988 master = container_of(dev, struct spi_master, dev);
1989 /* reference got in class_find_device */
1990 return master;
1992 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1995 /*-------------------------------------------------------------------------*/
1997 /* Core methods for SPI master protocol drivers. Some of the
1998 * other core methods are currently defined as inline functions.
2001 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2003 if (master->bits_per_word_mask) {
2004 /* Only 32 bits fit in the mask */
2005 if (bits_per_word > 32)
2006 return -EINVAL;
2007 if (!(master->bits_per_word_mask &
2008 SPI_BPW_MASK(bits_per_word)))
2009 return -EINVAL;
2012 return 0;
2016 * spi_setup - setup SPI mode and clock rate
2017 * @spi: the device whose settings are being modified
2018 * Context: can sleep, and no requests are queued to the device
2020 * SPI protocol drivers may need to update the transfer mode if the
2021 * device doesn't work with its default. They may likewise need
2022 * to update clock rates or word sizes from initial values. This function
2023 * changes those settings, and must be called from a context that can sleep.
2024 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2025 * effect the next time the device is selected and data is transferred to
2026 * or from it. When this function returns, the spi device is deselected.
2028 * Note that this call will fail if the protocol driver specifies an option
2029 * that the underlying controller or its driver does not support. For
2030 * example, not all hardware supports wire transfers using nine bit words,
2031 * LSB-first wire encoding, or active-high chipselects.
2033 * Return: zero on success, else a negative error code.
2035 int spi_setup(struct spi_device *spi)
2037 unsigned bad_bits, ugly_bits;
2038 int status;
2040 /* check mode to prevent that DUAL and QUAD set at the same time
2042 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2043 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2044 dev_err(&spi->dev,
2045 "setup: can not select dual and quad at the same time\n");
2046 return -EINVAL;
2048 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2050 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2051 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2052 return -EINVAL;
2053 /* help drivers fail *cleanly* when they need options
2054 * that aren't supported with their current master
2056 bad_bits = spi->mode & ~spi->master->mode_bits;
2057 ugly_bits = bad_bits &
2058 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2059 if (ugly_bits) {
2060 dev_warn(&spi->dev,
2061 "setup: ignoring unsupported mode bits %x\n",
2062 ugly_bits);
2063 spi->mode &= ~ugly_bits;
2064 bad_bits &= ~ugly_bits;
2066 if (bad_bits) {
2067 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2068 bad_bits);
2069 return -EINVAL;
2072 if (!spi->bits_per_word)
2073 spi->bits_per_word = 8;
2075 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2076 if (status)
2077 return status;
2079 if (!spi->max_speed_hz)
2080 spi->max_speed_hz = spi->master->max_speed_hz;
2082 if (spi->master->setup)
2083 status = spi->master->setup(spi);
2085 spi_set_cs(spi, false);
2087 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2088 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2089 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2090 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2091 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2092 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2093 spi->bits_per_word, spi->max_speed_hz,
2094 status);
2096 return status;
2098 EXPORT_SYMBOL_GPL(spi_setup);
2100 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2102 struct spi_master *master = spi->master;
2103 struct spi_transfer *xfer;
2104 int w_size;
2106 if (list_empty(&message->transfers))
2107 return -EINVAL;
2109 /* Half-duplex links include original MicroWire, and ones with
2110 * only one data pin like SPI_3WIRE (switches direction) or where
2111 * either MOSI or MISO is missing. They can also be caused by
2112 * software limitations.
2114 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2115 || (spi->mode & SPI_3WIRE)) {
2116 unsigned flags = master->flags;
2118 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2119 if (xfer->rx_buf && xfer->tx_buf)
2120 return -EINVAL;
2121 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2122 return -EINVAL;
2123 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2124 return -EINVAL;
2129 * Set transfer bits_per_word and max speed as spi device default if
2130 * it is not set for this transfer.
2131 * Set transfer tx_nbits and rx_nbits as single transfer default
2132 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2134 message->frame_length = 0;
2135 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2136 message->frame_length += xfer->len;
2137 if (!xfer->bits_per_word)
2138 xfer->bits_per_word = spi->bits_per_word;
2140 if (!xfer->speed_hz)
2141 xfer->speed_hz = spi->max_speed_hz;
2142 if (!xfer->speed_hz)
2143 xfer->speed_hz = master->max_speed_hz;
2145 if (master->max_speed_hz &&
2146 xfer->speed_hz > master->max_speed_hz)
2147 xfer->speed_hz = master->max_speed_hz;
2149 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2150 return -EINVAL;
2153 * SPI transfer length should be multiple of SPI word size
2154 * where SPI word size should be power-of-two multiple
2156 if (xfer->bits_per_word <= 8)
2157 w_size = 1;
2158 else if (xfer->bits_per_word <= 16)
2159 w_size = 2;
2160 else
2161 w_size = 4;
2163 /* No partial transfers accepted */
2164 if (xfer->len % w_size)
2165 return -EINVAL;
2167 if (xfer->speed_hz && master->min_speed_hz &&
2168 xfer->speed_hz < master->min_speed_hz)
2169 return -EINVAL;
2171 if (xfer->tx_buf && !xfer->tx_nbits)
2172 xfer->tx_nbits = SPI_NBITS_SINGLE;
2173 if (xfer->rx_buf && !xfer->rx_nbits)
2174 xfer->rx_nbits = SPI_NBITS_SINGLE;
2175 /* check transfer tx/rx_nbits:
2176 * 1. check the value matches one of single, dual and quad
2177 * 2. check tx/rx_nbits match the mode in spi_device
2179 if (xfer->tx_buf) {
2180 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2181 xfer->tx_nbits != SPI_NBITS_DUAL &&
2182 xfer->tx_nbits != SPI_NBITS_QUAD)
2183 return -EINVAL;
2184 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2185 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2186 return -EINVAL;
2187 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2188 !(spi->mode & SPI_TX_QUAD))
2189 return -EINVAL;
2191 /* check transfer rx_nbits */
2192 if (xfer->rx_buf) {
2193 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2194 xfer->rx_nbits != SPI_NBITS_DUAL &&
2195 xfer->rx_nbits != SPI_NBITS_QUAD)
2196 return -EINVAL;
2197 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2198 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2199 return -EINVAL;
2200 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2201 !(spi->mode & SPI_RX_QUAD))
2202 return -EINVAL;
2206 message->status = -EINPROGRESS;
2208 return 0;
2211 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2213 struct spi_master *master = spi->master;
2215 message->spi = spi;
2217 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2218 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2220 trace_spi_message_submit(message);
2222 return master->transfer(spi, message);
2226 * spi_async - asynchronous SPI transfer
2227 * @spi: device with which data will be exchanged
2228 * @message: describes the data transfers, including completion callback
2229 * Context: any (irqs may be blocked, etc)
2231 * This call may be used in_irq and other contexts which can't sleep,
2232 * as well as from task contexts which can sleep.
2234 * The completion callback is invoked in a context which can't sleep.
2235 * Before that invocation, the value of message->status is undefined.
2236 * When the callback is issued, message->status holds either zero (to
2237 * indicate complete success) or a negative error code. After that
2238 * callback returns, the driver which issued the transfer request may
2239 * deallocate the associated memory; it's no longer in use by any SPI
2240 * core or controller driver code.
2242 * Note that although all messages to a spi_device are handled in
2243 * FIFO order, messages may go to different devices in other orders.
2244 * Some device might be higher priority, or have various "hard" access
2245 * time requirements, for example.
2247 * On detection of any fault during the transfer, processing of
2248 * the entire message is aborted, and the device is deselected.
2249 * Until returning from the associated message completion callback,
2250 * no other spi_message queued to that device will be processed.
2251 * (This rule applies equally to all the synchronous transfer calls,
2252 * which are wrappers around this core asynchronous primitive.)
2254 * Return: zero on success, else a negative error code.
2256 int spi_async(struct spi_device *spi, struct spi_message *message)
2258 struct spi_master *master = spi->master;
2259 int ret;
2260 unsigned long flags;
2262 ret = __spi_validate(spi, message);
2263 if (ret != 0)
2264 return ret;
2266 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2268 if (master->bus_lock_flag)
2269 ret = -EBUSY;
2270 else
2271 ret = __spi_async(spi, message);
2273 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2275 return ret;
2277 EXPORT_SYMBOL_GPL(spi_async);
2280 * spi_async_locked - version of spi_async with exclusive bus usage
2281 * @spi: device with which data will be exchanged
2282 * @message: describes the data transfers, including completion callback
2283 * Context: any (irqs may be blocked, etc)
2285 * This call may be used in_irq and other contexts which can't sleep,
2286 * as well as from task contexts which can sleep.
2288 * The completion callback is invoked in a context which can't sleep.
2289 * Before that invocation, the value of message->status is undefined.
2290 * When the callback is issued, message->status holds either zero (to
2291 * indicate complete success) or a negative error code. After that
2292 * callback returns, the driver which issued the transfer request may
2293 * deallocate the associated memory; it's no longer in use by any SPI
2294 * core or controller driver code.
2296 * Note that although all messages to a spi_device are handled in
2297 * FIFO order, messages may go to different devices in other orders.
2298 * Some device might be higher priority, or have various "hard" access
2299 * time requirements, for example.
2301 * On detection of any fault during the transfer, processing of
2302 * the entire message is aborted, and the device is deselected.
2303 * Until returning from the associated message completion callback,
2304 * no other spi_message queued to that device will be processed.
2305 * (This rule applies equally to all the synchronous transfer calls,
2306 * which are wrappers around this core asynchronous primitive.)
2308 * Return: zero on success, else a negative error code.
2310 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2312 struct spi_master *master = spi->master;
2313 int ret;
2314 unsigned long flags;
2316 ret = __spi_validate(spi, message);
2317 if (ret != 0)
2318 return ret;
2320 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2322 ret = __spi_async(spi, message);
2324 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2326 return ret;
2329 EXPORT_SYMBOL_GPL(spi_async_locked);
2332 /*-------------------------------------------------------------------------*/
2334 /* Utility methods for SPI master protocol drivers, layered on
2335 * top of the core. Some other utility methods are defined as
2336 * inline functions.
2339 static void spi_complete(void *arg)
2341 complete(arg);
2344 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2345 int bus_locked)
2347 DECLARE_COMPLETION_ONSTACK(done);
2348 int status;
2349 struct spi_master *master = spi->master;
2350 unsigned long flags;
2352 status = __spi_validate(spi, message);
2353 if (status != 0)
2354 return status;
2356 message->complete = spi_complete;
2357 message->context = &done;
2358 message->spi = spi;
2360 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2361 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2363 if (!bus_locked)
2364 mutex_lock(&master->bus_lock_mutex);
2366 /* If we're not using the legacy transfer method then we will
2367 * try to transfer in the calling context so special case.
2368 * This code would be less tricky if we could remove the
2369 * support for driver implemented message queues.
2371 if (master->transfer == spi_queued_transfer) {
2372 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2374 trace_spi_message_submit(message);
2376 status = __spi_queued_transfer(spi, message, false);
2378 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2379 } else {
2380 status = spi_async_locked(spi, message);
2383 if (!bus_locked)
2384 mutex_unlock(&master->bus_lock_mutex);
2386 if (status == 0) {
2387 /* Push out the messages in the calling context if we
2388 * can.
2390 if (master->transfer == spi_queued_transfer) {
2391 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2392 spi_sync_immediate);
2393 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2394 spi_sync_immediate);
2395 __spi_pump_messages(master, false);
2398 wait_for_completion(&done);
2399 status = message->status;
2401 message->context = NULL;
2402 return status;
2406 * spi_sync - blocking/synchronous SPI data transfers
2407 * @spi: device with which data will be exchanged
2408 * @message: describes the data transfers
2409 * Context: can sleep
2411 * This call may only be used from a context that may sleep. The sleep
2412 * is non-interruptible, and has no timeout. Low-overhead controller
2413 * drivers may DMA directly into and out of the message buffers.
2415 * Note that the SPI device's chip select is active during the message,
2416 * and then is normally disabled between messages. Drivers for some
2417 * frequently-used devices may want to minimize costs of selecting a chip,
2418 * by leaving it selected in anticipation that the next message will go
2419 * to the same chip. (That may increase power usage.)
2421 * Also, the caller is guaranteeing that the memory associated with the
2422 * message will not be freed before this call returns.
2424 * Return: zero on success, else a negative error code.
2426 int spi_sync(struct spi_device *spi, struct spi_message *message)
2428 return __spi_sync(spi, message, 0);
2430 EXPORT_SYMBOL_GPL(spi_sync);
2433 * spi_sync_locked - version of spi_sync with exclusive bus usage
2434 * @spi: device with which data will be exchanged
2435 * @message: describes the data transfers
2436 * Context: can sleep
2438 * This call may only be used from a context that may sleep. The sleep
2439 * is non-interruptible, and has no timeout. Low-overhead controller
2440 * drivers may DMA directly into and out of the message buffers.
2442 * This call should be used by drivers that require exclusive access to the
2443 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2444 * be released by a spi_bus_unlock call when the exclusive access is over.
2446 * Return: zero on success, else a negative error code.
2448 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2450 return __spi_sync(spi, message, 1);
2452 EXPORT_SYMBOL_GPL(spi_sync_locked);
2455 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2456 * @master: SPI bus master that should be locked for exclusive bus access
2457 * Context: can sleep
2459 * This call may only be used from a context that may sleep. The sleep
2460 * is non-interruptible, and has no timeout.
2462 * This call should be used by drivers that require exclusive access to the
2463 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2464 * exclusive access is over. Data transfer must be done by spi_sync_locked
2465 * and spi_async_locked calls when the SPI bus lock is held.
2467 * Return: always zero.
2469 int spi_bus_lock(struct spi_master *master)
2471 unsigned long flags;
2473 mutex_lock(&master->bus_lock_mutex);
2475 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2476 master->bus_lock_flag = 1;
2477 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2479 /* mutex remains locked until spi_bus_unlock is called */
2481 return 0;
2483 EXPORT_SYMBOL_GPL(spi_bus_lock);
2486 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2487 * @master: SPI bus master that was locked for exclusive bus access
2488 * Context: can sleep
2490 * This call may only be used from a context that may sleep. The sleep
2491 * is non-interruptible, and has no timeout.
2493 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2494 * call.
2496 * Return: always zero.
2498 int spi_bus_unlock(struct spi_master *master)
2500 master->bus_lock_flag = 0;
2502 mutex_unlock(&master->bus_lock_mutex);
2504 return 0;
2506 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2508 /* portable code must never pass more than 32 bytes */
2509 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2511 static u8 *buf;
2514 * spi_write_then_read - SPI synchronous write followed by read
2515 * @spi: device with which data will be exchanged
2516 * @txbuf: data to be written (need not be dma-safe)
2517 * @n_tx: size of txbuf, in bytes
2518 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2519 * @n_rx: size of rxbuf, in bytes
2520 * Context: can sleep
2522 * This performs a half duplex MicroWire style transaction with the
2523 * device, sending txbuf and then reading rxbuf. The return value
2524 * is zero for success, else a negative errno status code.
2525 * This call may only be used from a context that may sleep.
2527 * Parameters to this routine are always copied using a small buffer;
2528 * portable code should never use this for more than 32 bytes.
2529 * Performance-sensitive or bulk transfer code should instead use
2530 * spi_{async,sync}() calls with dma-safe buffers.
2532 * Return: zero on success, else a negative error code.
2534 int spi_write_then_read(struct spi_device *spi,
2535 const void *txbuf, unsigned n_tx,
2536 void *rxbuf, unsigned n_rx)
2538 static DEFINE_MUTEX(lock);
2540 int status;
2541 struct spi_message message;
2542 struct spi_transfer x[2];
2543 u8 *local_buf;
2545 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2546 * copying here, (as a pure convenience thing), but we can
2547 * keep heap costs out of the hot path unless someone else is
2548 * using the pre-allocated buffer or the transfer is too large.
2550 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2551 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2552 GFP_KERNEL | GFP_DMA);
2553 if (!local_buf)
2554 return -ENOMEM;
2555 } else {
2556 local_buf = buf;
2559 spi_message_init(&message);
2560 memset(x, 0, sizeof(x));
2561 if (n_tx) {
2562 x[0].len = n_tx;
2563 spi_message_add_tail(&x[0], &message);
2565 if (n_rx) {
2566 x[1].len = n_rx;
2567 spi_message_add_tail(&x[1], &message);
2570 memcpy(local_buf, txbuf, n_tx);
2571 x[0].tx_buf = local_buf;
2572 x[1].rx_buf = local_buf + n_tx;
2574 /* do the i/o */
2575 status = spi_sync(spi, &message);
2576 if (status == 0)
2577 memcpy(rxbuf, x[1].rx_buf, n_rx);
2579 if (x[0].tx_buf == buf)
2580 mutex_unlock(&lock);
2581 else
2582 kfree(local_buf);
2584 return status;
2586 EXPORT_SYMBOL_GPL(spi_write_then_read);
2588 /*-------------------------------------------------------------------------*/
2590 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2591 static int __spi_of_device_match(struct device *dev, void *data)
2593 return dev->of_node == data;
2596 /* must call put_device() when done with returned spi_device device */
2597 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2599 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2600 __spi_of_device_match);
2601 return dev ? to_spi_device(dev) : NULL;
2604 static int __spi_of_master_match(struct device *dev, const void *data)
2606 return dev->of_node == data;
2609 /* the spi masters are not using spi_bus, so we find it with another way */
2610 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2612 struct device *dev;
2614 dev = class_find_device(&spi_master_class, NULL, node,
2615 __spi_of_master_match);
2616 if (!dev)
2617 return NULL;
2619 /* reference got in class_find_device */
2620 return container_of(dev, struct spi_master, dev);
2623 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2624 void *arg)
2626 struct of_reconfig_data *rd = arg;
2627 struct spi_master *master;
2628 struct spi_device *spi;
2630 switch (of_reconfig_get_state_change(action, arg)) {
2631 case OF_RECONFIG_CHANGE_ADD:
2632 master = of_find_spi_master_by_node(rd->dn->parent);
2633 if (master == NULL)
2634 return NOTIFY_OK; /* not for us */
2636 spi = of_register_spi_device(master, rd->dn);
2637 put_device(&master->dev);
2639 if (IS_ERR(spi)) {
2640 pr_err("%s: failed to create for '%s'\n",
2641 __func__, rd->dn->full_name);
2642 return notifier_from_errno(PTR_ERR(spi));
2644 break;
2646 case OF_RECONFIG_CHANGE_REMOVE:
2647 /* find our device by node */
2648 spi = of_find_spi_device_by_node(rd->dn);
2649 if (spi == NULL)
2650 return NOTIFY_OK; /* no? not meant for us */
2652 /* unregister takes one ref away */
2653 spi_unregister_device(spi);
2655 /* and put the reference of the find */
2656 put_device(&spi->dev);
2657 break;
2660 return NOTIFY_OK;
2663 static struct notifier_block spi_of_notifier = {
2664 .notifier_call = of_spi_notify,
2666 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2667 extern struct notifier_block spi_of_notifier;
2668 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2670 static int __init spi_init(void)
2672 int status;
2674 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2675 if (!buf) {
2676 status = -ENOMEM;
2677 goto err0;
2680 status = bus_register(&spi_bus_type);
2681 if (status < 0)
2682 goto err1;
2684 status = class_register(&spi_master_class);
2685 if (status < 0)
2686 goto err2;
2688 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2689 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2691 return 0;
2693 err2:
2694 bus_unregister(&spi_bus_type);
2695 err1:
2696 kfree(buf);
2697 buf = NULL;
2698 err0:
2699 return status;
2702 /* board_info is normally registered in arch_initcall(),
2703 * but even essential drivers wait till later
2705 * REVISIT only boardinfo really needs static linking. the rest (device and
2706 * driver registration) _could_ be dynamically linked (modular) ... costs
2707 * include needing to have boardinfo data structures be much more public.
2709 postcore_initcall(spi_init);