irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / fs / libfs.c
blob01491299f348c965adc27cbcd70340ab2d980946
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
19 #include <asm/uaccess.h>
21 #include "internal.h"
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 struct kstat *stat)
26 struct inode *inode = d_inode(dentry);
27 generic_fillattr(inode, stat);
28 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
29 return 0;
31 EXPORT_SYMBOL(simple_getattr);
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_CACHE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
40 EXPORT_SYMBOL(simple_statfs);
43 * Retaining negative dentries for an in-memory filesystem just wastes
44 * memory and lookup time: arrange for them to be deleted immediately.
46 int always_delete_dentry(const struct dentry *dentry)
48 return 1;
50 EXPORT_SYMBOL(always_delete_dentry);
52 const struct dentry_operations simple_dentry_operations = {
53 .d_delete = always_delete_dentry,
55 EXPORT_SYMBOL(simple_dentry_operations);
58 * Lookup the data. This is trivial - if the dentry didn't already
59 * exist, we know it is negative. Set d_op to delete negative dentries.
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63 if (dentry->d_name.len > NAME_MAX)
64 return ERR_PTR(-ENAMETOOLONG);
65 if (!dentry->d_sb->s_d_op)
66 d_set_d_op(dentry, &simple_dentry_operations);
67 d_add(dentry, NULL);
68 return NULL;
70 EXPORT_SYMBOL(simple_lookup);
72 int dcache_dir_open(struct inode *inode, struct file *file)
74 static struct qstr cursor_name = QSTR_INIT(".", 1);
76 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
78 return file->private_data ? 0 : -ENOMEM;
80 EXPORT_SYMBOL(dcache_dir_open);
82 int dcache_dir_close(struct inode *inode, struct file *file)
84 dput(file->private_data);
85 return 0;
87 EXPORT_SYMBOL(dcache_dir_close);
89 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
91 struct dentry *dentry = file->f_path.dentry;
92 mutex_lock(&d_inode(dentry)->i_mutex);
93 switch (whence) {
94 case 1:
95 offset += file->f_pos;
96 case 0:
97 if (offset >= 0)
98 break;
99 default:
100 mutex_unlock(&d_inode(dentry)->i_mutex);
101 return -EINVAL;
103 if (offset != file->f_pos) {
104 file->f_pos = offset;
105 if (file->f_pos >= 2) {
106 struct list_head *p;
107 struct dentry *cursor = file->private_data;
108 loff_t n = file->f_pos - 2;
110 spin_lock(&dentry->d_lock);
111 /* d_lock not required for cursor */
112 list_del(&cursor->d_child);
113 p = dentry->d_subdirs.next;
114 while (n && p != &dentry->d_subdirs) {
115 struct dentry *next;
116 next = list_entry(p, struct dentry, d_child);
117 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
118 if (simple_positive(next))
119 n--;
120 spin_unlock(&next->d_lock);
121 p = p->next;
123 list_add_tail(&cursor->d_child, p);
124 spin_unlock(&dentry->d_lock);
127 mutex_unlock(&d_inode(dentry)->i_mutex);
128 return offset;
130 EXPORT_SYMBOL(dcache_dir_lseek);
132 /* Relationship between i_mode and the DT_xxx types */
133 static inline unsigned char dt_type(struct inode *inode)
135 return (inode->i_mode >> 12) & 15;
139 * Directory is locked and all positive dentries in it are safe, since
140 * for ramfs-type trees they can't go away without unlink() or rmdir(),
141 * both impossible due to the lock on directory.
144 int dcache_readdir(struct file *file, struct dir_context *ctx)
146 struct dentry *dentry = file->f_path.dentry;
147 struct dentry *cursor = file->private_data;
148 struct list_head *p, *q = &cursor->d_child;
150 if (!dir_emit_dots(file, ctx))
151 return 0;
152 spin_lock(&dentry->d_lock);
153 if (ctx->pos == 2)
154 list_move(q, &dentry->d_subdirs);
156 for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
157 struct dentry *next = list_entry(p, struct dentry, d_child);
158 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
159 if (!simple_positive(next)) {
160 spin_unlock(&next->d_lock);
161 continue;
164 spin_unlock(&next->d_lock);
165 spin_unlock(&dentry->d_lock);
166 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
167 d_inode(next)->i_ino, dt_type(d_inode(next))))
168 return 0;
169 spin_lock(&dentry->d_lock);
170 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
171 /* next is still alive */
172 list_move(q, p);
173 spin_unlock(&next->d_lock);
174 p = q;
175 ctx->pos++;
177 spin_unlock(&dentry->d_lock);
178 return 0;
180 EXPORT_SYMBOL(dcache_readdir);
182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
184 return -EISDIR;
186 EXPORT_SYMBOL(generic_read_dir);
188 const struct file_operations simple_dir_operations = {
189 .open = dcache_dir_open,
190 .release = dcache_dir_close,
191 .llseek = dcache_dir_lseek,
192 .read = generic_read_dir,
193 .iterate = dcache_readdir,
194 .fsync = noop_fsync,
196 EXPORT_SYMBOL(simple_dir_operations);
198 const struct inode_operations simple_dir_inode_operations = {
199 .lookup = simple_lookup,
201 EXPORT_SYMBOL(simple_dir_inode_operations);
203 static const struct super_operations simple_super_operations = {
204 .statfs = simple_statfs,
208 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
209 * will never be mountable)
211 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
212 const struct super_operations *ops,
213 const struct dentry_operations *dops, unsigned long magic)
215 struct super_block *s;
216 struct dentry *dentry;
217 struct inode *root;
218 struct qstr d_name = QSTR_INIT(name, strlen(name));
220 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
221 if (IS_ERR(s))
222 return ERR_CAST(s);
224 s->s_maxbytes = MAX_LFS_FILESIZE;
225 s->s_blocksize = PAGE_SIZE;
226 s->s_blocksize_bits = PAGE_SHIFT;
227 s->s_magic = magic;
228 s->s_op = ops ? ops : &simple_super_operations;
229 s->s_time_gran = 1;
230 root = new_inode(s);
231 if (!root)
232 goto Enomem;
234 * since this is the first inode, make it number 1. New inodes created
235 * after this must take care not to collide with it (by passing
236 * max_reserved of 1 to iunique).
238 root->i_ino = 1;
239 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
240 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
241 dentry = __d_alloc(s, &d_name);
242 if (!dentry) {
243 iput(root);
244 goto Enomem;
246 d_instantiate(dentry, root);
247 s->s_root = dentry;
248 s->s_d_op = dops;
249 s->s_flags |= MS_ACTIVE;
250 return dget(s->s_root);
252 Enomem:
253 deactivate_locked_super(s);
254 return ERR_PTR(-ENOMEM);
256 EXPORT_SYMBOL(mount_pseudo);
258 int simple_open(struct inode *inode, struct file *file)
260 if (inode->i_private)
261 file->private_data = inode->i_private;
262 return 0;
264 EXPORT_SYMBOL(simple_open);
266 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
268 struct inode *inode = d_inode(old_dentry);
270 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
271 inc_nlink(inode);
272 ihold(inode);
273 dget(dentry);
274 d_instantiate(dentry, inode);
275 return 0;
277 EXPORT_SYMBOL(simple_link);
279 int simple_empty(struct dentry *dentry)
281 struct dentry *child;
282 int ret = 0;
284 spin_lock(&dentry->d_lock);
285 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
286 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 if (simple_positive(child)) {
288 spin_unlock(&child->d_lock);
289 goto out;
291 spin_unlock(&child->d_lock);
293 ret = 1;
294 out:
295 spin_unlock(&dentry->d_lock);
296 return ret;
298 EXPORT_SYMBOL(simple_empty);
300 int simple_unlink(struct inode *dir, struct dentry *dentry)
302 struct inode *inode = d_inode(dentry);
304 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
305 drop_nlink(inode);
306 dput(dentry);
307 return 0;
309 EXPORT_SYMBOL(simple_unlink);
311 int simple_rmdir(struct inode *dir, struct dentry *dentry)
313 if (!simple_empty(dentry))
314 return -ENOTEMPTY;
316 drop_nlink(d_inode(dentry));
317 simple_unlink(dir, dentry);
318 drop_nlink(dir);
319 return 0;
321 EXPORT_SYMBOL(simple_rmdir);
323 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
324 struct inode *new_dir, struct dentry *new_dentry)
326 struct inode *inode = d_inode(old_dentry);
327 int they_are_dirs = d_is_dir(old_dentry);
329 if (!simple_empty(new_dentry))
330 return -ENOTEMPTY;
332 if (d_really_is_positive(new_dentry)) {
333 simple_unlink(new_dir, new_dentry);
334 if (they_are_dirs) {
335 drop_nlink(d_inode(new_dentry));
336 drop_nlink(old_dir);
338 } else if (they_are_dirs) {
339 drop_nlink(old_dir);
340 inc_nlink(new_dir);
343 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
344 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
346 return 0;
348 EXPORT_SYMBOL(simple_rename);
351 * simple_setattr - setattr for simple filesystem
352 * @dentry: dentry
353 * @iattr: iattr structure
355 * Returns 0 on success, -error on failure.
357 * simple_setattr is a simple ->setattr implementation without a proper
358 * implementation of size changes.
360 * It can either be used for in-memory filesystems or special files
361 * on simple regular filesystems. Anything that needs to change on-disk
362 * or wire state on size changes needs its own setattr method.
364 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
366 struct inode *inode = d_inode(dentry);
367 int error;
369 error = inode_change_ok(inode, iattr);
370 if (error)
371 return error;
373 if (iattr->ia_valid & ATTR_SIZE)
374 truncate_setsize(inode, iattr->ia_size);
375 setattr_copy(inode, iattr);
376 mark_inode_dirty(inode);
377 return 0;
379 EXPORT_SYMBOL(simple_setattr);
381 int simple_readpage(struct file *file, struct page *page)
383 clear_highpage(page);
384 flush_dcache_page(page);
385 SetPageUptodate(page);
386 unlock_page(page);
387 return 0;
389 EXPORT_SYMBOL(simple_readpage);
391 int simple_write_begin(struct file *file, struct address_space *mapping,
392 loff_t pos, unsigned len, unsigned flags,
393 struct page **pagep, void **fsdata)
395 struct page *page;
396 pgoff_t index;
398 index = pos >> PAGE_CACHE_SHIFT;
400 page = grab_cache_page_write_begin(mapping, index, flags);
401 if (!page)
402 return -ENOMEM;
404 *pagep = page;
406 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
407 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
409 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
411 return 0;
413 EXPORT_SYMBOL(simple_write_begin);
416 * simple_write_end - .write_end helper for non-block-device FSes
417 * @available: See .write_end of address_space_operations
418 * @file: "
419 * @mapping: "
420 * @pos: "
421 * @len: "
422 * @copied: "
423 * @page: "
424 * @fsdata: "
426 * simple_write_end does the minimum needed for updating a page after writing is
427 * done. It has the same API signature as the .write_end of
428 * address_space_operations vector. So it can just be set onto .write_end for
429 * FSes that don't need any other processing. i_mutex is assumed to be held.
430 * Block based filesystems should use generic_write_end().
431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
432 * is not called, so a filesystem that actually does store data in .write_inode
433 * should extend on what's done here with a call to mark_inode_dirty() in the
434 * case that i_size has changed.
436 int simple_write_end(struct file *file, struct address_space *mapping,
437 loff_t pos, unsigned len, unsigned copied,
438 struct page *page, void *fsdata)
440 struct inode *inode = page->mapping->host;
441 loff_t last_pos = pos + copied;
443 /* zero the stale part of the page if we did a short copy */
444 if (copied < len) {
445 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
447 zero_user(page, from + copied, len - copied);
450 if (!PageUptodate(page))
451 SetPageUptodate(page);
453 * No need to use i_size_read() here, the i_size
454 * cannot change under us because we hold the i_mutex.
456 if (last_pos > inode->i_size)
457 i_size_write(inode, last_pos);
459 set_page_dirty(page);
460 unlock_page(page);
461 page_cache_release(page);
463 return copied;
465 EXPORT_SYMBOL(simple_write_end);
468 * the inodes created here are not hashed. If you use iunique to generate
469 * unique inode values later for this filesystem, then you must take care
470 * to pass it an appropriate max_reserved value to avoid collisions.
472 int simple_fill_super(struct super_block *s, unsigned long magic,
473 struct tree_descr *files)
475 struct inode *inode;
476 struct dentry *root;
477 struct dentry *dentry;
478 int i;
480 s->s_blocksize = PAGE_CACHE_SIZE;
481 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
482 s->s_magic = magic;
483 s->s_op = &simple_super_operations;
484 s->s_time_gran = 1;
486 inode = new_inode(s);
487 if (!inode)
488 return -ENOMEM;
490 * because the root inode is 1, the files array must not contain an
491 * entry at index 1
493 inode->i_ino = 1;
494 inode->i_mode = S_IFDIR | 0755;
495 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
496 inode->i_op = &simple_dir_inode_operations;
497 inode->i_fop = &simple_dir_operations;
498 set_nlink(inode, 2);
499 root = d_make_root(inode);
500 if (!root)
501 return -ENOMEM;
502 for (i = 0; !files->name || files->name[0]; i++, files++) {
503 if (!files->name)
504 continue;
506 /* warn if it tries to conflict with the root inode */
507 if (unlikely(i == 1))
508 printk(KERN_WARNING "%s: %s passed in a files array"
509 "with an index of 1!\n", __func__,
510 s->s_type->name);
512 dentry = d_alloc_name(root, files->name);
513 if (!dentry)
514 goto out;
515 inode = new_inode(s);
516 if (!inode) {
517 dput(dentry);
518 goto out;
520 inode->i_mode = S_IFREG | files->mode;
521 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
522 inode->i_fop = files->ops;
523 inode->i_ino = i;
524 d_add(dentry, inode);
526 s->s_root = root;
527 return 0;
528 out:
529 d_genocide(root);
530 shrink_dcache_parent(root);
531 dput(root);
532 return -ENOMEM;
534 EXPORT_SYMBOL(simple_fill_super);
536 static DEFINE_SPINLOCK(pin_fs_lock);
538 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
540 struct vfsmount *mnt = NULL;
541 spin_lock(&pin_fs_lock);
542 if (unlikely(!*mount)) {
543 spin_unlock(&pin_fs_lock);
544 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
545 if (IS_ERR(mnt))
546 return PTR_ERR(mnt);
547 spin_lock(&pin_fs_lock);
548 if (!*mount)
549 *mount = mnt;
551 mntget(*mount);
552 ++*count;
553 spin_unlock(&pin_fs_lock);
554 mntput(mnt);
555 return 0;
557 EXPORT_SYMBOL(simple_pin_fs);
559 void simple_release_fs(struct vfsmount **mount, int *count)
561 struct vfsmount *mnt;
562 spin_lock(&pin_fs_lock);
563 mnt = *mount;
564 if (!--*count)
565 *mount = NULL;
566 spin_unlock(&pin_fs_lock);
567 mntput(mnt);
569 EXPORT_SYMBOL(simple_release_fs);
572 * simple_read_from_buffer - copy data from the buffer to user space
573 * @to: the user space buffer to read to
574 * @count: the maximum number of bytes to read
575 * @ppos: the current position in the buffer
576 * @from: the buffer to read from
577 * @available: the size of the buffer
579 * The simple_read_from_buffer() function reads up to @count bytes from the
580 * buffer @from at offset @ppos into the user space address starting at @to.
582 * On success, the number of bytes read is returned and the offset @ppos is
583 * advanced by this number, or negative value is returned on error.
585 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
586 const void *from, size_t available)
588 loff_t pos = *ppos;
589 size_t ret;
591 if (pos < 0)
592 return -EINVAL;
593 if (pos >= available || !count)
594 return 0;
595 if (count > available - pos)
596 count = available - pos;
597 ret = copy_to_user(to, from + pos, count);
598 if (ret == count)
599 return -EFAULT;
600 count -= ret;
601 *ppos = pos + count;
602 return count;
604 EXPORT_SYMBOL(simple_read_from_buffer);
607 * simple_write_to_buffer - copy data from user space to the buffer
608 * @to: the buffer to write to
609 * @available: the size of the buffer
610 * @ppos: the current position in the buffer
611 * @from: the user space buffer to read from
612 * @count: the maximum number of bytes to read
614 * The simple_write_to_buffer() function reads up to @count bytes from the user
615 * space address starting at @from into the buffer @to at offset @ppos.
617 * On success, the number of bytes written is returned and the offset @ppos is
618 * advanced by this number, or negative value is returned on error.
620 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
621 const void __user *from, size_t count)
623 loff_t pos = *ppos;
624 size_t res;
626 if (pos < 0)
627 return -EINVAL;
628 if (pos >= available || !count)
629 return 0;
630 if (count > available - pos)
631 count = available - pos;
632 res = copy_from_user(to + pos, from, count);
633 if (res == count)
634 return -EFAULT;
635 count -= res;
636 *ppos = pos + count;
637 return count;
639 EXPORT_SYMBOL(simple_write_to_buffer);
642 * memory_read_from_buffer - copy data from the buffer
643 * @to: the kernel space buffer to read to
644 * @count: the maximum number of bytes to read
645 * @ppos: the current position in the buffer
646 * @from: the buffer to read from
647 * @available: the size of the buffer
649 * The memory_read_from_buffer() function reads up to @count bytes from the
650 * buffer @from at offset @ppos into the kernel space address starting at @to.
652 * On success, the number of bytes read is returned and the offset @ppos is
653 * advanced by this number, or negative value is returned on error.
655 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
656 const void *from, size_t available)
658 loff_t pos = *ppos;
660 if (pos < 0)
661 return -EINVAL;
662 if (pos >= available)
663 return 0;
664 if (count > available - pos)
665 count = available - pos;
666 memcpy(to, from + pos, count);
667 *ppos = pos + count;
669 return count;
671 EXPORT_SYMBOL(memory_read_from_buffer);
674 * Transaction based IO.
675 * The file expects a single write which triggers the transaction, and then
676 * possibly a read which collects the result - which is stored in a
677 * file-local buffer.
680 void simple_transaction_set(struct file *file, size_t n)
682 struct simple_transaction_argresp *ar = file->private_data;
684 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
687 * The barrier ensures that ar->size will really remain zero until
688 * ar->data is ready for reading.
690 smp_mb();
691 ar->size = n;
693 EXPORT_SYMBOL(simple_transaction_set);
695 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
697 struct simple_transaction_argresp *ar;
698 static DEFINE_SPINLOCK(simple_transaction_lock);
700 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
701 return ERR_PTR(-EFBIG);
703 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
704 if (!ar)
705 return ERR_PTR(-ENOMEM);
707 spin_lock(&simple_transaction_lock);
709 /* only one write allowed per open */
710 if (file->private_data) {
711 spin_unlock(&simple_transaction_lock);
712 free_page((unsigned long)ar);
713 return ERR_PTR(-EBUSY);
716 file->private_data = ar;
718 spin_unlock(&simple_transaction_lock);
720 if (copy_from_user(ar->data, buf, size))
721 return ERR_PTR(-EFAULT);
723 return ar->data;
725 EXPORT_SYMBOL(simple_transaction_get);
727 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
729 struct simple_transaction_argresp *ar = file->private_data;
731 if (!ar)
732 return 0;
733 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
735 EXPORT_SYMBOL(simple_transaction_read);
737 int simple_transaction_release(struct inode *inode, struct file *file)
739 free_page((unsigned long)file->private_data);
740 return 0;
742 EXPORT_SYMBOL(simple_transaction_release);
744 /* Simple attribute files */
746 struct simple_attr {
747 int (*get)(void *, u64 *);
748 int (*set)(void *, u64);
749 char get_buf[24]; /* enough to store a u64 and "\n\0" */
750 char set_buf[24];
751 void *data;
752 const char *fmt; /* format for read operation */
753 struct mutex mutex; /* protects access to these buffers */
756 /* simple_attr_open is called by an actual attribute open file operation
757 * to set the attribute specific access operations. */
758 int simple_attr_open(struct inode *inode, struct file *file,
759 int (*get)(void *, u64 *), int (*set)(void *, u64),
760 const char *fmt)
762 struct simple_attr *attr;
764 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
765 if (!attr)
766 return -ENOMEM;
768 attr->get = get;
769 attr->set = set;
770 attr->data = inode->i_private;
771 attr->fmt = fmt;
772 mutex_init(&attr->mutex);
774 file->private_data = attr;
776 return nonseekable_open(inode, file);
778 EXPORT_SYMBOL_GPL(simple_attr_open);
780 int simple_attr_release(struct inode *inode, struct file *file)
782 kfree(file->private_data);
783 return 0;
785 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
787 /* read from the buffer that is filled with the get function */
788 ssize_t simple_attr_read(struct file *file, char __user *buf,
789 size_t len, loff_t *ppos)
791 struct simple_attr *attr;
792 size_t size;
793 ssize_t ret;
795 attr = file->private_data;
797 if (!attr->get)
798 return -EACCES;
800 ret = mutex_lock_interruptible(&attr->mutex);
801 if (ret)
802 return ret;
804 if (*ppos) { /* continued read */
805 size = strlen(attr->get_buf);
806 } else { /* first read */
807 u64 val;
808 ret = attr->get(attr->data, &val);
809 if (ret)
810 goto out;
812 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
813 attr->fmt, (unsigned long long)val);
816 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
817 out:
818 mutex_unlock(&attr->mutex);
819 return ret;
821 EXPORT_SYMBOL_GPL(simple_attr_read);
823 /* interpret the buffer as a number to call the set function with */
824 ssize_t simple_attr_write(struct file *file, const char __user *buf,
825 size_t len, loff_t *ppos)
827 struct simple_attr *attr;
828 u64 val;
829 size_t size;
830 ssize_t ret;
832 attr = file->private_data;
833 if (!attr->set)
834 return -EACCES;
836 ret = mutex_lock_interruptible(&attr->mutex);
837 if (ret)
838 return ret;
840 ret = -EFAULT;
841 size = min(sizeof(attr->set_buf) - 1, len);
842 if (copy_from_user(attr->set_buf, buf, size))
843 goto out;
845 attr->set_buf[size] = '\0';
846 val = simple_strtoll(attr->set_buf, NULL, 0);
847 ret = attr->set(attr->data, val);
848 if (ret == 0)
849 ret = len; /* on success, claim we got the whole input */
850 out:
851 mutex_unlock(&attr->mutex);
852 return ret;
854 EXPORT_SYMBOL_GPL(simple_attr_write);
857 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
858 * @sb: filesystem to do the file handle conversion on
859 * @fid: file handle to convert
860 * @fh_len: length of the file handle in bytes
861 * @fh_type: type of file handle
862 * @get_inode: filesystem callback to retrieve inode
864 * This function decodes @fid as long as it has one of the well-known
865 * Linux filehandle types and calls @get_inode on it to retrieve the
866 * inode for the object specified in the file handle.
868 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
869 int fh_len, int fh_type, struct inode *(*get_inode)
870 (struct super_block *sb, u64 ino, u32 gen))
872 struct inode *inode = NULL;
874 if (fh_len < 2)
875 return NULL;
877 switch (fh_type) {
878 case FILEID_INO32_GEN:
879 case FILEID_INO32_GEN_PARENT:
880 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
881 break;
884 return d_obtain_alias(inode);
886 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
889 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
890 * @sb: filesystem to do the file handle conversion on
891 * @fid: file handle to convert
892 * @fh_len: length of the file handle in bytes
893 * @fh_type: type of file handle
894 * @get_inode: filesystem callback to retrieve inode
896 * This function decodes @fid as long as it has one of the well-known
897 * Linux filehandle types and calls @get_inode on it to retrieve the
898 * inode for the _parent_ object specified in the file handle if it
899 * is specified in the file handle, or NULL otherwise.
901 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
902 int fh_len, int fh_type, struct inode *(*get_inode)
903 (struct super_block *sb, u64 ino, u32 gen))
905 struct inode *inode = NULL;
907 if (fh_len <= 2)
908 return NULL;
910 switch (fh_type) {
911 case FILEID_INO32_GEN_PARENT:
912 inode = get_inode(sb, fid->i32.parent_ino,
913 (fh_len > 3 ? fid->i32.parent_gen : 0));
914 break;
917 return d_obtain_alias(inode);
919 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
922 * __generic_file_fsync - generic fsync implementation for simple filesystems
924 * @file: file to synchronize
925 * @start: start offset in bytes
926 * @end: end offset in bytes (inclusive)
927 * @datasync: only synchronize essential metadata if true
929 * This is a generic implementation of the fsync method for simple
930 * filesystems which track all non-inode metadata in the buffers list
931 * hanging off the address_space structure.
933 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
934 int datasync)
936 struct inode *inode = file->f_mapping->host;
937 int err;
938 int ret;
940 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
941 if (err)
942 return err;
944 mutex_lock(&inode->i_mutex);
945 ret = sync_mapping_buffers(inode->i_mapping);
946 if (!(inode->i_state & I_DIRTY_ALL))
947 goto out;
948 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
949 goto out;
951 err = sync_inode_metadata(inode, 1);
952 if (ret == 0)
953 ret = err;
955 out:
956 mutex_unlock(&inode->i_mutex);
957 return ret;
959 EXPORT_SYMBOL(__generic_file_fsync);
962 * generic_file_fsync - generic fsync implementation for simple filesystems
963 * with flush
964 * @file: file to synchronize
965 * @start: start offset in bytes
966 * @end: end offset in bytes (inclusive)
967 * @datasync: only synchronize essential metadata if true
971 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
972 int datasync)
974 struct inode *inode = file->f_mapping->host;
975 int err;
977 err = __generic_file_fsync(file, start, end, datasync);
978 if (err)
979 return err;
980 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
982 EXPORT_SYMBOL(generic_file_fsync);
985 * generic_check_addressable - Check addressability of file system
986 * @blocksize_bits: log of file system block size
987 * @num_blocks: number of blocks in file system
989 * Determine whether a file system with @num_blocks blocks (and a
990 * block size of 2**@blocksize_bits) is addressable by the sector_t
991 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
993 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
995 u64 last_fs_block = num_blocks - 1;
996 u64 last_fs_page =
997 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
999 if (unlikely(num_blocks == 0))
1000 return 0;
1002 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
1003 return -EINVAL;
1005 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1006 (last_fs_page > (pgoff_t)(~0ULL))) {
1007 return -EFBIG;
1009 return 0;
1011 EXPORT_SYMBOL(generic_check_addressable);
1014 * No-op implementation of ->fsync for in-memory filesystems.
1016 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1018 return 0;
1020 EXPORT_SYMBOL(noop_fsync);
1022 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1023 void kfree_link(void *p)
1025 kfree(p);
1027 EXPORT_SYMBOL(kfree_link);
1030 * nop .set_page_dirty method so that people can use .page_mkwrite on
1031 * anon inodes.
1033 static int anon_set_page_dirty(struct page *page)
1035 return 0;
1039 * A single inode exists for all anon_inode files. Contrary to pipes,
1040 * anon_inode inodes have no associated per-instance data, so we need
1041 * only allocate one of them.
1043 struct inode *alloc_anon_inode(struct super_block *s)
1045 static const struct address_space_operations anon_aops = {
1046 .set_page_dirty = anon_set_page_dirty,
1048 struct inode *inode = new_inode_pseudo(s);
1050 if (!inode)
1051 return ERR_PTR(-ENOMEM);
1053 inode->i_ino = get_next_ino();
1054 inode->i_mapping->a_ops = &anon_aops;
1057 * Mark the inode dirty from the very beginning,
1058 * that way it will never be moved to the dirty
1059 * list because mark_inode_dirty() will think
1060 * that it already _is_ on the dirty list.
1062 inode->i_state = I_DIRTY;
1063 inode->i_mode = S_IRUSR | S_IWUSR;
1064 inode->i_uid = current_fsuid();
1065 inode->i_gid = current_fsgid();
1066 inode->i_flags |= S_PRIVATE;
1067 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1068 return inode;
1070 EXPORT_SYMBOL(alloc_anon_inode);
1073 * simple_nosetlease - generic helper for prohibiting leases
1074 * @filp: file pointer
1075 * @arg: type of lease to obtain
1076 * @flp: new lease supplied for insertion
1077 * @priv: private data for lm_setup operation
1079 * Generic helper for filesystems that do not wish to allow leases to be set.
1080 * All arguments are ignored and it just returns -EINVAL.
1083 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1084 void **priv)
1086 return -EINVAL;
1088 EXPORT_SYMBOL(simple_nosetlease);
1090 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1091 struct delayed_call *done)
1093 return inode->i_link;
1095 EXPORT_SYMBOL(simple_get_link);
1097 const struct inode_operations simple_symlink_inode_operations = {
1098 .get_link = simple_get_link,
1099 .readlink = generic_readlink
1101 EXPORT_SYMBOL(simple_symlink_inode_operations);
1104 * Operations for a permanently empty directory.
1106 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1108 return ERR_PTR(-ENOENT);
1111 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1112 struct kstat *stat)
1114 struct inode *inode = d_inode(dentry);
1115 generic_fillattr(inode, stat);
1116 return 0;
1119 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1121 return -EPERM;
1124 static int empty_dir_setxattr(struct dentry *dentry, const char *name,
1125 const void *value, size_t size, int flags)
1127 return -EOPNOTSUPP;
1130 static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name,
1131 void *value, size_t size)
1133 return -EOPNOTSUPP;
1136 static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1138 return -EOPNOTSUPP;
1141 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1143 return -EOPNOTSUPP;
1146 static const struct inode_operations empty_dir_inode_operations = {
1147 .lookup = empty_dir_lookup,
1148 .permission = generic_permission,
1149 .setattr = empty_dir_setattr,
1150 .getattr = empty_dir_getattr,
1151 .setxattr = empty_dir_setxattr,
1152 .getxattr = empty_dir_getxattr,
1153 .removexattr = empty_dir_removexattr,
1154 .listxattr = empty_dir_listxattr,
1157 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1159 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1160 return generic_file_llseek_size(file, offset, whence, 2, 2);
1163 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1165 dir_emit_dots(file, ctx);
1166 return 0;
1169 static const struct file_operations empty_dir_operations = {
1170 .llseek = empty_dir_llseek,
1171 .read = generic_read_dir,
1172 .iterate = empty_dir_readdir,
1173 .fsync = noop_fsync,
1177 void make_empty_dir_inode(struct inode *inode)
1179 set_nlink(inode, 2);
1180 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1181 inode->i_uid = GLOBAL_ROOT_UID;
1182 inode->i_gid = GLOBAL_ROOT_GID;
1183 inode->i_rdev = 0;
1184 inode->i_size = 0;
1185 inode->i_blkbits = PAGE_SHIFT;
1186 inode->i_blocks = 0;
1188 inode->i_op = &empty_dir_inode_operations;
1189 inode->i_fop = &empty_dir_operations;
1192 bool is_empty_dir_inode(struct inode *inode)
1194 return (inode->i_fop == &empty_dir_operations) &&
1195 (inode->i_op == &empty_dir_inode_operations);