irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / kernel / rcu / tree.c
blobe41dd4131f7a141976e771653e3169f2955f6f33
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
60 #include "tree.h"
61 #include "rcu.h"
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
95 .call = cr, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
110 static struct rcu_state *const rcu_state_p;
111 static struct rcu_data __percpu *const rcu_data_p;
112 LIST_HEAD(rcu_struct_flavors);
114 /* Dump rcu_node combining tree at boot to verify correct setup. */
115 static bool dump_tree;
116 module_param(dump_tree, bool, 0444);
117 /* Control rcu_node-tree auto-balancing at boot time. */
118 static bool rcu_fanout_exact;
119 module_param(rcu_fanout_exact, bool, 0444);
120 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
121 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
122 module_param(rcu_fanout_leaf, int, 0444);
123 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
124 /* Number of rcu_nodes at specified level. */
125 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
126 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 * The rcu_scheduler_active variable transitions from zero to one just
130 * before the first task is spawned. So when this variable is zero, RCU
131 * can assume that there is but one task, allowing RCU to (for example)
132 * optimize synchronize_sched() to a simple barrier(). When this variable
133 * is one, RCU must actually do all the hard work required to detect real
134 * grace periods. This variable is also used to suppress boot-time false
135 * positives from lockdep-RCU error checking.
137 int rcu_scheduler_active __read_mostly;
138 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
141 * The rcu_scheduler_fully_active variable transitions from zero to one
142 * during the early_initcall() processing, which is after the scheduler
143 * is capable of creating new tasks. So RCU processing (for example,
144 * creating tasks for RCU priority boosting) must be delayed until after
145 * rcu_scheduler_fully_active transitions from zero to one. We also
146 * currently delay invocation of any RCU callbacks until after this point.
148 * It might later prove better for people registering RCU callbacks during
149 * early boot to take responsibility for these callbacks, but one step at
150 * a time.
152 static int rcu_scheduler_fully_active __read_mostly;
154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 static void invoke_rcu_core(void);
158 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
159 static void rcu_report_exp_rdp(struct rcu_state *rsp,
160 struct rcu_data *rdp, bool wake);
162 /* rcuc/rcub kthread realtime priority */
163 #ifdef CONFIG_RCU_KTHREAD_PRIO
164 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
165 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
166 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
167 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 module_param(kthread_prio, int, 0644);
170 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
173 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
174 module_param(gp_preinit_delay, int, 0644);
175 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
176 static const int gp_preinit_delay;
177 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
180 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
181 module_param(gp_init_delay, int, 0644);
182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
183 static const int gp_init_delay;
184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
187 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
188 module_param(gp_cleanup_delay, int, 0644);
189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
190 static const int gp_cleanup_delay;
191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194 * Number of grace periods between delays, normalized by the duration of
195 * the delay. The longer the the delay, the more the grace periods between
196 * each delay. The reason for this normalization is that it means that,
197 * for non-zero delays, the overall slowdown of grace periods is constant
198 * regardless of the duration of the delay. This arrangement balances
199 * the need for long delays to increase some race probabilities with the
200 * need for fast grace periods to increase other race probabilities.
202 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
205 * Track the rcutorture test sequence number and the update version
206 * number within a given test. The rcutorture_testseq is incremented
207 * on every rcutorture module load and unload, so has an odd value
208 * when a test is running. The rcutorture_vernum is set to zero
209 * when rcutorture starts and is incremented on each rcutorture update.
210 * These variables enable correlating rcutorture output with the
211 * RCU tracing information.
213 unsigned long rcutorture_testseq;
214 unsigned long rcutorture_vernum;
217 * Compute the mask of online CPUs for the specified rcu_node structure.
218 * This will not be stable unless the rcu_node structure's ->lock is
219 * held, but the bit corresponding to the current CPU will be stable
220 * in most contexts.
222 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 return READ_ONCE(rnp->qsmaskinitnext);
228 * Return true if an RCU grace period is in progress. The READ_ONCE()s
229 * permit this function to be invoked without holding the root rcu_node
230 * structure's ->lock, but of course results can be subject to change.
232 static int rcu_gp_in_progress(struct rcu_state *rsp)
234 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
238 * Note a quiescent state. Because we do not need to know
239 * how many quiescent states passed, just if there was at least
240 * one since the start of the grace period, this just sets a flag.
241 * The caller must have disabled preemption.
243 void rcu_sched_qs(void)
245 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
246 return;
247 trace_rcu_grace_period(TPS("rcu_sched"),
248 __this_cpu_read(rcu_sched_data.gpnum),
249 TPS("cpuqs"));
250 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
251 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
252 return;
253 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
254 rcu_report_exp_rdp(&rcu_sched_state,
255 this_cpu_ptr(&rcu_sched_data), true);
258 void rcu_bh_qs(void)
260 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
261 trace_rcu_grace_period(TPS("rcu_bh"),
262 __this_cpu_read(rcu_bh_data.gpnum),
263 TPS("cpuqs"));
264 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
268 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
270 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
271 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
272 .dynticks = ATOMIC_INIT(1),
273 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
274 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
275 .dynticks_idle = ATOMIC_INIT(1),
276 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
279 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
280 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
283 * Let the RCU core know that this CPU has gone through the scheduler,
284 * which is a quiescent state. This is called when the need for a
285 * quiescent state is urgent, so we burn an atomic operation and full
286 * memory barriers to let the RCU core know about it, regardless of what
287 * this CPU might (or might not) do in the near future.
289 * We inform the RCU core by emulating a zero-duration dyntick-idle
290 * period, which we in turn do by incrementing the ->dynticks counter
291 * by two.
293 * The caller must have disabled interrupts.
295 static void rcu_momentary_dyntick_idle(void)
297 struct rcu_data *rdp;
298 struct rcu_dynticks *rdtp;
299 int resched_mask;
300 struct rcu_state *rsp;
303 * Yes, we can lose flag-setting operations. This is OK, because
304 * the flag will be set again after some delay.
306 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
307 raw_cpu_write(rcu_sched_qs_mask, 0);
309 /* Find the flavor that needs a quiescent state. */
310 for_each_rcu_flavor(rsp) {
311 rdp = raw_cpu_ptr(rsp->rda);
312 if (!(resched_mask & rsp->flavor_mask))
313 continue;
314 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
315 if (READ_ONCE(rdp->mynode->completed) !=
316 READ_ONCE(rdp->cond_resched_completed))
317 continue;
320 * Pretend to be momentarily idle for the quiescent state.
321 * This allows the grace-period kthread to record the
322 * quiescent state, with no need for this CPU to do anything
323 * further.
325 rdtp = this_cpu_ptr(&rcu_dynticks);
326 smp_mb__before_atomic(); /* Earlier stuff before QS. */
327 atomic_add(2, &rdtp->dynticks); /* QS. */
328 smp_mb__after_atomic(); /* Later stuff after QS. */
329 break;
334 * Note a context switch. This is a quiescent state for RCU-sched,
335 * and requires special handling for preemptible RCU.
336 * The caller must have disabled interrupts.
338 void rcu_note_context_switch(void)
340 barrier(); /* Avoid RCU read-side critical sections leaking down. */
341 trace_rcu_utilization(TPS("Start context switch"));
342 rcu_sched_qs();
343 rcu_preempt_note_context_switch();
344 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
345 rcu_momentary_dyntick_idle();
346 trace_rcu_utilization(TPS("End context switch"));
347 barrier(); /* Avoid RCU read-side critical sections leaking up. */
349 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
352 * Register a quiescent state for all RCU flavors. If there is an
353 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
354 * dyntick-idle quiescent state visible to other CPUs (but only for those
355 * RCU flavors in desperate need of a quiescent state, which will normally
356 * be none of them). Either way, do a lightweight quiescent state for
357 * all RCU flavors.
359 * The barrier() calls are redundant in the common case when this is
360 * called externally, but just in case this is called from within this
361 * file.
364 void rcu_all_qs(void)
366 unsigned long flags;
368 barrier(); /* Avoid RCU read-side critical sections leaking down. */
369 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
370 local_irq_save(flags);
371 rcu_momentary_dyntick_idle();
372 local_irq_restore(flags);
374 this_cpu_inc(rcu_qs_ctr);
375 barrier(); /* Avoid RCU read-side critical sections leaking up. */
377 EXPORT_SYMBOL_GPL(rcu_all_qs);
379 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
380 static long qhimark = 10000; /* If this many pending, ignore blimit. */
381 static long qlowmark = 100; /* Once only this many pending, use blimit. */
383 module_param(blimit, long, 0444);
384 module_param(qhimark, long, 0444);
385 module_param(qlowmark, long, 0444);
387 static ulong jiffies_till_first_fqs = ULONG_MAX;
388 static ulong jiffies_till_next_fqs = ULONG_MAX;
390 module_param(jiffies_till_first_fqs, ulong, 0644);
391 module_param(jiffies_till_next_fqs, ulong, 0644);
394 * How long the grace period must be before we start recruiting
395 * quiescent-state help from rcu_note_context_switch().
397 static ulong jiffies_till_sched_qs = HZ / 20;
398 module_param(jiffies_till_sched_qs, ulong, 0644);
400 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
401 struct rcu_data *rdp);
402 static void force_qs_rnp(struct rcu_state *rsp,
403 int (*f)(struct rcu_data *rsp, bool *isidle,
404 unsigned long *maxj),
405 bool *isidle, unsigned long *maxj);
406 static void force_quiescent_state(struct rcu_state *rsp);
407 static int rcu_pending(void);
410 * Return the number of RCU batches started thus far for debug & stats.
412 unsigned long rcu_batches_started(void)
414 return rcu_state_p->gpnum;
416 EXPORT_SYMBOL_GPL(rcu_batches_started);
419 * Return the number of RCU-sched batches started thus far for debug & stats.
421 unsigned long rcu_batches_started_sched(void)
423 return rcu_sched_state.gpnum;
425 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
428 * Return the number of RCU BH batches started thus far for debug & stats.
430 unsigned long rcu_batches_started_bh(void)
432 return rcu_bh_state.gpnum;
434 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
437 * Return the number of RCU batches completed thus far for debug & stats.
439 unsigned long rcu_batches_completed(void)
441 return rcu_state_p->completed;
443 EXPORT_SYMBOL_GPL(rcu_batches_completed);
446 * Return the number of RCU-sched batches completed thus far for debug & stats.
448 unsigned long rcu_batches_completed_sched(void)
450 return rcu_sched_state.completed;
452 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
455 * Return the number of RCU BH batches completed thus far for debug & stats.
457 unsigned long rcu_batches_completed_bh(void)
459 return rcu_bh_state.completed;
461 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
464 * Force a quiescent state.
466 void rcu_force_quiescent_state(void)
468 force_quiescent_state(rcu_state_p);
470 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
473 * Force a quiescent state for RCU BH.
475 void rcu_bh_force_quiescent_state(void)
477 force_quiescent_state(&rcu_bh_state);
479 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
482 * Force a quiescent state for RCU-sched.
484 void rcu_sched_force_quiescent_state(void)
486 force_quiescent_state(&rcu_sched_state);
488 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
491 * Show the state of the grace-period kthreads.
493 void show_rcu_gp_kthreads(void)
495 struct rcu_state *rsp;
497 for_each_rcu_flavor(rsp) {
498 pr_info("%s: wait state: %d ->state: %#lx\n",
499 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
500 /* sched_show_task(rsp->gp_kthread); */
503 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
506 * Record the number of times rcutorture tests have been initiated and
507 * terminated. This information allows the debugfs tracing stats to be
508 * correlated to the rcutorture messages, even when the rcutorture module
509 * is being repeatedly loaded and unloaded. In other words, we cannot
510 * store this state in rcutorture itself.
512 void rcutorture_record_test_transition(void)
514 rcutorture_testseq++;
515 rcutorture_vernum = 0;
517 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
520 * Send along grace-period-related data for rcutorture diagnostics.
522 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
523 unsigned long *gpnum, unsigned long *completed)
525 struct rcu_state *rsp = NULL;
527 switch (test_type) {
528 case RCU_FLAVOR:
529 rsp = rcu_state_p;
530 break;
531 case RCU_BH_FLAVOR:
532 rsp = &rcu_bh_state;
533 break;
534 case RCU_SCHED_FLAVOR:
535 rsp = &rcu_sched_state;
536 break;
537 default:
538 break;
540 if (rsp != NULL) {
541 *flags = READ_ONCE(rsp->gp_flags);
542 *gpnum = READ_ONCE(rsp->gpnum);
543 *completed = READ_ONCE(rsp->completed);
544 return;
546 *flags = 0;
547 *gpnum = 0;
548 *completed = 0;
550 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
553 * Record the number of writer passes through the current rcutorture test.
554 * This is also used to correlate debugfs tracing stats with the rcutorture
555 * messages.
557 void rcutorture_record_progress(unsigned long vernum)
559 rcutorture_vernum++;
561 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
564 * Does the CPU have callbacks ready to be invoked?
566 static int
567 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
569 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
570 rdp->nxttail[RCU_DONE_TAIL] != NULL;
574 * Return the root node of the specified rcu_state structure.
576 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
578 return &rsp->node[0];
582 * Is there any need for future grace periods?
583 * Interrupts must be disabled. If the caller does not hold the root
584 * rnp_node structure's ->lock, the results are advisory only.
586 static int rcu_future_needs_gp(struct rcu_state *rsp)
588 struct rcu_node *rnp = rcu_get_root(rsp);
589 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
590 int *fp = &rnp->need_future_gp[idx];
592 return READ_ONCE(*fp);
596 * Does the current CPU require a not-yet-started grace period?
597 * The caller must have disabled interrupts to prevent races with
598 * normal callback registry.
600 static bool
601 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
603 int i;
605 if (rcu_gp_in_progress(rsp))
606 return false; /* No, a grace period is already in progress. */
607 if (rcu_future_needs_gp(rsp))
608 return true; /* Yes, a no-CBs CPU needs one. */
609 if (!rdp->nxttail[RCU_NEXT_TAIL])
610 return false; /* No, this is a no-CBs (or offline) CPU. */
611 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
612 return true; /* Yes, CPU has newly registered callbacks. */
613 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
614 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
615 ULONG_CMP_LT(READ_ONCE(rsp->completed),
616 rdp->nxtcompleted[i]))
617 return true; /* Yes, CBs for future grace period. */
618 return false; /* No grace period needed. */
622 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
624 * If the new value of the ->dynticks_nesting counter now is zero,
625 * we really have entered idle, and must do the appropriate accounting.
626 * The caller must have disabled interrupts.
628 static void rcu_eqs_enter_common(long long oldval, bool user)
630 struct rcu_state *rsp;
631 struct rcu_data *rdp;
632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
634 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
635 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
636 !user && !is_idle_task(current)) {
637 struct task_struct *idle __maybe_unused =
638 idle_task(smp_processor_id());
640 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
641 ftrace_dump(DUMP_ORIG);
642 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
643 current->pid, current->comm,
644 idle->pid, idle->comm); /* must be idle task! */
646 for_each_rcu_flavor(rsp) {
647 rdp = this_cpu_ptr(rsp->rda);
648 do_nocb_deferred_wakeup(rdp);
650 rcu_prepare_for_idle();
651 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
652 smp_mb__before_atomic(); /* See above. */
653 atomic_inc(&rdtp->dynticks);
654 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
655 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
656 atomic_read(&rdtp->dynticks) & 0x1);
657 rcu_dynticks_task_enter();
660 * It is illegal to enter an extended quiescent state while
661 * in an RCU read-side critical section.
663 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
664 "Illegal idle entry in RCU read-side critical section.");
665 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
666 "Illegal idle entry in RCU-bh read-side critical section.");
667 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
668 "Illegal idle entry in RCU-sched read-side critical section.");
672 * Enter an RCU extended quiescent state, which can be either the
673 * idle loop or adaptive-tickless usermode execution.
675 static void rcu_eqs_enter(bool user)
677 long long oldval;
678 struct rcu_dynticks *rdtp;
680 rdtp = this_cpu_ptr(&rcu_dynticks);
681 oldval = rdtp->dynticks_nesting;
682 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
683 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
684 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
685 rdtp->dynticks_nesting = 0;
686 rcu_eqs_enter_common(oldval, user);
687 } else {
688 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
693 * rcu_idle_enter - inform RCU that current CPU is entering idle
695 * Enter idle mode, in other words, -leave- the mode in which RCU
696 * read-side critical sections can occur. (Though RCU read-side
697 * critical sections can occur in irq handlers in idle, a possibility
698 * handled by irq_enter() and irq_exit().)
700 * We crowbar the ->dynticks_nesting field to zero to allow for
701 * the possibility of usermode upcalls having messed up our count
702 * of interrupt nesting level during the prior busy period.
704 void rcu_idle_enter(void)
706 unsigned long flags;
708 local_irq_save(flags);
709 rcu_eqs_enter(false);
710 rcu_sysidle_enter(0);
711 local_irq_restore(flags);
713 EXPORT_SYMBOL_GPL(rcu_idle_enter);
715 #ifdef CONFIG_NO_HZ_FULL
717 * rcu_user_enter - inform RCU that we are resuming userspace.
719 * Enter RCU idle mode right before resuming userspace. No use of RCU
720 * is permitted between this call and rcu_user_exit(). This way the
721 * CPU doesn't need to maintain the tick for RCU maintenance purposes
722 * when the CPU runs in userspace.
724 void rcu_user_enter(void)
726 rcu_eqs_enter(1);
728 #endif /* CONFIG_NO_HZ_FULL */
731 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
733 * Exit from an interrupt handler, which might possibly result in entering
734 * idle mode, in other words, leaving the mode in which read-side critical
735 * sections can occur. The caller must have disabled interrupts.
737 * This code assumes that the idle loop never does anything that might
738 * result in unbalanced calls to irq_enter() and irq_exit(). If your
739 * architecture violates this assumption, RCU will give you what you
740 * deserve, good and hard. But very infrequently and irreproducibly.
742 * Use things like work queues to work around this limitation.
744 * You have been warned.
746 void rcu_irq_exit(void)
748 long long oldval;
749 struct rcu_dynticks *rdtp;
751 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
752 rdtp = this_cpu_ptr(&rcu_dynticks);
753 oldval = rdtp->dynticks_nesting;
754 rdtp->dynticks_nesting--;
755 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
756 rdtp->dynticks_nesting < 0);
757 if (rdtp->dynticks_nesting)
758 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
759 else
760 rcu_eqs_enter_common(oldval, true);
761 rcu_sysidle_enter(1);
765 * Wrapper for rcu_irq_exit() where interrupts are enabled.
767 void rcu_irq_exit_irqson(void)
769 unsigned long flags;
771 local_irq_save(flags);
772 rcu_irq_exit();
773 local_irq_restore(flags);
777 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
779 * If the new value of the ->dynticks_nesting counter was previously zero,
780 * we really have exited idle, and must do the appropriate accounting.
781 * The caller must have disabled interrupts.
783 static void rcu_eqs_exit_common(long long oldval, int user)
785 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
787 rcu_dynticks_task_exit();
788 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
789 atomic_inc(&rdtp->dynticks);
790 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
791 smp_mb__after_atomic(); /* See above. */
792 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
793 !(atomic_read(&rdtp->dynticks) & 0x1));
794 rcu_cleanup_after_idle();
795 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
796 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
797 !user && !is_idle_task(current)) {
798 struct task_struct *idle __maybe_unused =
799 idle_task(smp_processor_id());
801 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
802 oldval, rdtp->dynticks_nesting);
803 ftrace_dump(DUMP_ORIG);
804 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
805 current->pid, current->comm,
806 idle->pid, idle->comm); /* must be idle task! */
811 * Exit an RCU extended quiescent state, which can be either the
812 * idle loop or adaptive-tickless usermode execution.
814 static void rcu_eqs_exit(bool user)
816 struct rcu_dynticks *rdtp;
817 long long oldval;
819 rdtp = this_cpu_ptr(&rcu_dynticks);
820 oldval = rdtp->dynticks_nesting;
821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
822 if (oldval & DYNTICK_TASK_NEST_MASK) {
823 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
824 } else {
825 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
826 rcu_eqs_exit_common(oldval, user);
831 * rcu_idle_exit - inform RCU that current CPU is leaving idle
833 * Exit idle mode, in other words, -enter- the mode in which RCU
834 * read-side critical sections can occur.
836 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
837 * allow for the possibility of usermode upcalls messing up our count
838 * of interrupt nesting level during the busy period that is just
839 * now starting.
841 void rcu_idle_exit(void)
843 unsigned long flags;
845 local_irq_save(flags);
846 rcu_eqs_exit(false);
847 rcu_sysidle_exit(0);
848 local_irq_restore(flags);
850 EXPORT_SYMBOL_GPL(rcu_idle_exit);
852 #ifdef CONFIG_NO_HZ_FULL
854 * rcu_user_exit - inform RCU that we are exiting userspace.
856 * Exit RCU idle mode while entering the kernel because it can
857 * run a RCU read side critical section anytime.
859 void rcu_user_exit(void)
861 rcu_eqs_exit(1);
863 #endif /* CONFIG_NO_HZ_FULL */
866 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
868 * Enter an interrupt handler, which might possibly result in exiting
869 * idle mode, in other words, entering the mode in which read-side critical
870 * sections can occur. The caller must have disabled interrupts.
872 * Note that the Linux kernel is fully capable of entering an interrupt
873 * handler that it never exits, for example when doing upcalls to
874 * user mode! This code assumes that the idle loop never does upcalls to
875 * user mode. If your architecture does do upcalls from the idle loop (or
876 * does anything else that results in unbalanced calls to the irq_enter()
877 * and irq_exit() functions), RCU will give you what you deserve, good
878 * and hard. But very infrequently and irreproducibly.
880 * Use things like work queues to work around this limitation.
882 * You have been warned.
884 void rcu_irq_enter(void)
886 struct rcu_dynticks *rdtp;
887 long long oldval;
889 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
890 rdtp = this_cpu_ptr(&rcu_dynticks);
891 oldval = rdtp->dynticks_nesting;
892 rdtp->dynticks_nesting++;
893 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
894 rdtp->dynticks_nesting == 0);
895 if (oldval)
896 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
897 else
898 rcu_eqs_exit_common(oldval, true);
899 rcu_sysidle_exit(1);
903 * Wrapper for rcu_irq_enter() where interrupts are enabled.
905 void rcu_irq_enter_irqson(void)
907 unsigned long flags;
909 local_irq_save(flags);
910 rcu_irq_enter();
911 local_irq_restore(flags);
915 * rcu_nmi_enter - inform RCU of entry to NMI context
917 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
918 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
919 * that the CPU is active. This implementation permits nested NMIs, as
920 * long as the nesting level does not overflow an int. (You will probably
921 * run out of stack space first.)
923 void rcu_nmi_enter(void)
925 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
926 int incby = 2;
928 /* Complain about underflow. */
929 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
932 * If idle from RCU viewpoint, atomically increment ->dynticks
933 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
934 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
935 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
936 * to be in the outermost NMI handler that interrupted an RCU-idle
937 * period (observation due to Andy Lutomirski).
939 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
940 smp_mb__before_atomic(); /* Force delay from prior write. */
941 atomic_inc(&rdtp->dynticks);
942 /* atomic_inc() before later RCU read-side crit sects */
943 smp_mb__after_atomic(); /* See above. */
944 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
945 incby = 1;
947 rdtp->dynticks_nmi_nesting += incby;
948 barrier();
952 * rcu_nmi_exit - inform RCU of exit from NMI context
954 * If we are returning from the outermost NMI handler that interrupted an
955 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
956 * to let the RCU grace-period handling know that the CPU is back to
957 * being RCU-idle.
959 void rcu_nmi_exit(void)
961 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
964 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
965 * (We are exiting an NMI handler, so RCU better be paying attention
966 * to us!)
968 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
969 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
972 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
973 * leave it in non-RCU-idle state.
975 if (rdtp->dynticks_nmi_nesting != 1) {
976 rdtp->dynticks_nmi_nesting -= 2;
977 return;
980 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
981 rdtp->dynticks_nmi_nesting = 0;
982 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
983 smp_mb__before_atomic(); /* See above. */
984 atomic_inc(&rdtp->dynticks);
985 smp_mb__after_atomic(); /* Force delay to next write. */
986 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
990 * __rcu_is_watching - are RCU read-side critical sections safe?
992 * Return true if RCU is watching the running CPU, which means that
993 * this CPU can safely enter RCU read-side critical sections. Unlike
994 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
995 * least disabled preemption.
997 bool notrace __rcu_is_watching(void)
999 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1003 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1005 * If the current CPU is in its idle loop and is neither in an interrupt
1006 * or NMI handler, return true.
1008 bool notrace rcu_is_watching(void)
1010 bool ret;
1012 preempt_disable_notrace();
1013 ret = __rcu_is_watching();
1014 preempt_enable_notrace();
1015 return ret;
1017 EXPORT_SYMBOL_GPL(rcu_is_watching);
1019 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1022 * Is the current CPU online? Disable preemption to avoid false positives
1023 * that could otherwise happen due to the current CPU number being sampled,
1024 * this task being preempted, its old CPU being taken offline, resuming
1025 * on some other CPU, then determining that its old CPU is now offline.
1026 * It is OK to use RCU on an offline processor during initial boot, hence
1027 * the check for rcu_scheduler_fully_active. Note also that it is OK
1028 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1029 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1030 * offline to continue to use RCU for one jiffy after marking itself
1031 * offline in the cpu_online_mask. This leniency is necessary given the
1032 * non-atomic nature of the online and offline processing, for example,
1033 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1034 * notifiers.
1036 * This is also why RCU internally marks CPUs online during the
1037 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1039 * Disable checking if in an NMI handler because we cannot safely report
1040 * errors from NMI handlers anyway.
1042 bool rcu_lockdep_current_cpu_online(void)
1044 struct rcu_data *rdp;
1045 struct rcu_node *rnp;
1046 bool ret;
1048 if (in_nmi())
1049 return true;
1050 preempt_disable();
1051 rdp = this_cpu_ptr(&rcu_sched_data);
1052 rnp = rdp->mynode;
1053 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1054 !rcu_scheduler_fully_active;
1055 preempt_enable();
1056 return ret;
1058 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1060 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1063 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1065 * If the current CPU is idle or running at a first-level (not nested)
1066 * interrupt from idle, return true. The caller must have at least
1067 * disabled preemption.
1069 static int rcu_is_cpu_rrupt_from_idle(void)
1071 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1075 * Snapshot the specified CPU's dynticks counter so that we can later
1076 * credit them with an implicit quiescent state. Return 1 if this CPU
1077 * is in dynticks idle mode, which is an extended quiescent state.
1079 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1080 bool *isidle, unsigned long *maxj)
1082 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1083 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1084 if ((rdp->dynticks_snap & 0x1) == 0) {
1085 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1086 return 1;
1087 } else {
1088 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1089 rdp->mynode->gpnum))
1090 WRITE_ONCE(rdp->gpwrap, true);
1091 return 0;
1096 * Return true if the specified CPU has passed through a quiescent
1097 * state by virtue of being in or having passed through an dynticks
1098 * idle state since the last call to dyntick_save_progress_counter()
1099 * for this same CPU, or by virtue of having been offline.
1101 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1102 bool *isidle, unsigned long *maxj)
1104 unsigned int curr;
1105 int *rcrmp;
1106 unsigned int snap;
1108 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1109 snap = (unsigned int)rdp->dynticks_snap;
1112 * If the CPU passed through or entered a dynticks idle phase with
1113 * no active irq/NMI handlers, then we can safely pretend that the CPU
1114 * already acknowledged the request to pass through a quiescent
1115 * state. Either way, that CPU cannot possibly be in an RCU
1116 * read-side critical section that started before the beginning
1117 * of the current RCU grace period.
1119 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1120 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1121 rdp->dynticks_fqs++;
1122 return 1;
1126 * Check for the CPU being offline, but only if the grace period
1127 * is old enough. We don't need to worry about the CPU changing
1128 * state: If we see it offline even once, it has been through a
1129 * quiescent state.
1131 * The reason for insisting that the grace period be at least
1132 * one jiffy old is that CPUs that are not quite online and that
1133 * have just gone offline can still execute RCU read-side critical
1134 * sections.
1136 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1137 return 0; /* Grace period is not old enough. */
1138 barrier();
1139 if (cpu_is_offline(rdp->cpu)) {
1140 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1141 rdp->offline_fqs++;
1142 return 1;
1146 * A CPU running for an extended time within the kernel can
1147 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1148 * even context-switching back and forth between a pair of
1149 * in-kernel CPU-bound tasks cannot advance grace periods.
1150 * So if the grace period is old enough, make the CPU pay attention.
1151 * Note that the unsynchronized assignments to the per-CPU
1152 * rcu_sched_qs_mask variable are safe. Yes, setting of
1153 * bits can be lost, but they will be set again on the next
1154 * force-quiescent-state pass. So lost bit sets do not result
1155 * in incorrect behavior, merely in a grace period lasting
1156 * a few jiffies longer than it might otherwise. Because
1157 * there are at most four threads involved, and because the
1158 * updates are only once every few jiffies, the probability of
1159 * lossage (and thus of slight grace-period extension) is
1160 * quite low.
1162 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1163 * is set too high, we override with half of the RCU CPU stall
1164 * warning delay.
1166 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1167 if (ULONG_CMP_GE(jiffies,
1168 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1169 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1170 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1171 WRITE_ONCE(rdp->cond_resched_completed,
1172 READ_ONCE(rdp->mynode->completed));
1173 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1174 WRITE_ONCE(*rcrmp,
1175 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1176 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1177 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1178 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1179 /* Time to beat on that CPU again! */
1180 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1181 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1185 return 0;
1188 static void record_gp_stall_check_time(struct rcu_state *rsp)
1190 unsigned long j = jiffies;
1191 unsigned long j1;
1193 rsp->gp_start = j;
1194 smp_wmb(); /* Record start time before stall time. */
1195 j1 = rcu_jiffies_till_stall_check();
1196 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1197 rsp->jiffies_resched = j + j1 / 2;
1198 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1202 * Convert a ->gp_state value to a character string.
1204 static const char *gp_state_getname(short gs)
1206 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1207 return "???";
1208 return gp_state_names[gs];
1212 * Complain about starvation of grace-period kthread.
1214 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1216 unsigned long gpa;
1217 unsigned long j;
1219 j = jiffies;
1220 gpa = READ_ONCE(rsp->gp_activity);
1221 if (j - gpa > 2 * HZ) {
1222 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1223 rsp->name, j - gpa,
1224 rsp->gpnum, rsp->completed,
1225 rsp->gp_flags,
1226 gp_state_getname(rsp->gp_state), rsp->gp_state,
1227 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1228 if (rsp->gp_kthread)
1229 sched_show_task(rsp->gp_kthread);
1234 * Dump stacks of all tasks running on stalled CPUs.
1236 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1238 int cpu;
1239 unsigned long flags;
1240 struct rcu_node *rnp;
1242 rcu_for_each_leaf_node(rsp, rnp) {
1243 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1244 if (rnp->qsmask != 0) {
1245 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1246 if (rnp->qsmask & (1UL << cpu))
1247 dump_cpu_task(rnp->grplo + cpu);
1249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1253 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1255 int cpu;
1256 long delta;
1257 unsigned long flags;
1258 unsigned long gpa;
1259 unsigned long j;
1260 int ndetected = 0;
1261 struct rcu_node *rnp = rcu_get_root(rsp);
1262 long totqlen = 0;
1264 /* Only let one CPU complain about others per time interval. */
1266 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1267 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1268 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270 return;
1272 WRITE_ONCE(rsp->jiffies_stall,
1273 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1277 * OK, time to rat on our buddy...
1278 * See Documentation/RCU/stallwarn.txt for info on how to debug
1279 * RCU CPU stall warnings.
1281 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1282 rsp->name);
1283 print_cpu_stall_info_begin();
1284 rcu_for_each_leaf_node(rsp, rnp) {
1285 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1286 ndetected += rcu_print_task_stall(rnp);
1287 if (rnp->qsmask != 0) {
1288 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1289 if (rnp->qsmask & (1UL << cpu)) {
1290 print_cpu_stall_info(rsp,
1291 rnp->grplo + cpu);
1292 ndetected++;
1295 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1298 print_cpu_stall_info_end();
1299 for_each_possible_cpu(cpu)
1300 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1301 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1302 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1303 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1304 if (ndetected) {
1305 rcu_dump_cpu_stacks(rsp);
1306 } else {
1307 if (READ_ONCE(rsp->gpnum) != gpnum ||
1308 READ_ONCE(rsp->completed) == gpnum) {
1309 pr_err("INFO: Stall ended before state dump start\n");
1310 } else {
1311 j = jiffies;
1312 gpa = READ_ONCE(rsp->gp_activity);
1313 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1314 rsp->name, j - gpa, j, gpa,
1315 jiffies_till_next_fqs,
1316 rcu_get_root(rsp)->qsmask);
1317 /* In this case, the current CPU might be at fault. */
1318 sched_show_task(current);
1322 /* Complain about tasks blocking the grace period. */
1323 rcu_print_detail_task_stall(rsp);
1325 rcu_check_gp_kthread_starvation(rsp);
1327 force_quiescent_state(rsp); /* Kick them all. */
1330 static void print_cpu_stall(struct rcu_state *rsp)
1332 int cpu;
1333 unsigned long flags;
1334 struct rcu_node *rnp = rcu_get_root(rsp);
1335 long totqlen = 0;
1338 * OK, time to rat on ourselves...
1339 * See Documentation/RCU/stallwarn.txt for info on how to debug
1340 * RCU CPU stall warnings.
1342 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1343 print_cpu_stall_info_begin();
1344 print_cpu_stall_info(rsp, smp_processor_id());
1345 print_cpu_stall_info_end();
1346 for_each_possible_cpu(cpu)
1347 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1348 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1349 jiffies - rsp->gp_start,
1350 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1352 rcu_check_gp_kthread_starvation(rsp);
1354 rcu_dump_cpu_stacks(rsp);
1356 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1357 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1358 WRITE_ONCE(rsp->jiffies_stall,
1359 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1360 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1363 * Attempt to revive the RCU machinery by forcing a context switch.
1365 * A context switch would normally allow the RCU state machine to make
1366 * progress and it could be we're stuck in kernel space without context
1367 * switches for an entirely unreasonable amount of time.
1369 resched_cpu(smp_processor_id());
1372 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1374 unsigned long completed;
1375 unsigned long gpnum;
1376 unsigned long gps;
1377 unsigned long j;
1378 unsigned long js;
1379 struct rcu_node *rnp;
1381 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1382 return;
1383 j = jiffies;
1386 * Lots of memory barriers to reject false positives.
1388 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1389 * then rsp->gp_start, and finally rsp->completed. These values
1390 * are updated in the opposite order with memory barriers (or
1391 * equivalent) during grace-period initialization and cleanup.
1392 * Now, a false positive can occur if we get an new value of
1393 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1394 * the memory barriers, the only way that this can happen is if one
1395 * grace period ends and another starts between these two fetches.
1396 * Detect this by comparing rsp->completed with the previous fetch
1397 * from rsp->gpnum.
1399 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1400 * and rsp->gp_start suffice to forestall false positives.
1402 gpnum = READ_ONCE(rsp->gpnum);
1403 smp_rmb(); /* Pick up ->gpnum first... */
1404 js = READ_ONCE(rsp->jiffies_stall);
1405 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1406 gps = READ_ONCE(rsp->gp_start);
1407 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1408 completed = READ_ONCE(rsp->completed);
1409 if (ULONG_CMP_GE(completed, gpnum) ||
1410 ULONG_CMP_LT(j, js) ||
1411 ULONG_CMP_GE(gps, js))
1412 return; /* No stall or GP completed since entering function. */
1413 rnp = rdp->mynode;
1414 if (rcu_gp_in_progress(rsp) &&
1415 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1417 /* We haven't checked in, so go dump stack. */
1418 print_cpu_stall(rsp);
1420 } else if (rcu_gp_in_progress(rsp) &&
1421 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1423 /* They had a few time units to dump stack, so complain. */
1424 print_other_cpu_stall(rsp, gpnum);
1429 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1431 * Set the stall-warning timeout way off into the future, thus preventing
1432 * any RCU CPU stall-warning messages from appearing in the current set of
1433 * RCU grace periods.
1435 * The caller must disable hard irqs.
1437 void rcu_cpu_stall_reset(void)
1439 struct rcu_state *rsp;
1441 for_each_rcu_flavor(rsp)
1442 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1446 * Initialize the specified rcu_data structure's default callback list
1447 * to empty. The default callback list is the one that is not used by
1448 * no-callbacks CPUs.
1450 static void init_default_callback_list(struct rcu_data *rdp)
1452 int i;
1454 rdp->nxtlist = NULL;
1455 for (i = 0; i < RCU_NEXT_SIZE; i++)
1456 rdp->nxttail[i] = &rdp->nxtlist;
1460 * Initialize the specified rcu_data structure's callback list to empty.
1462 static void init_callback_list(struct rcu_data *rdp)
1464 if (init_nocb_callback_list(rdp))
1465 return;
1466 init_default_callback_list(rdp);
1470 * Determine the value that ->completed will have at the end of the
1471 * next subsequent grace period. This is used to tag callbacks so that
1472 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1473 * been dyntick-idle for an extended period with callbacks under the
1474 * influence of RCU_FAST_NO_HZ.
1476 * The caller must hold rnp->lock with interrupts disabled.
1478 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1479 struct rcu_node *rnp)
1482 * If RCU is idle, we just wait for the next grace period.
1483 * But we can only be sure that RCU is idle if we are looking
1484 * at the root rcu_node structure -- otherwise, a new grace
1485 * period might have started, but just not yet gotten around
1486 * to initializing the current non-root rcu_node structure.
1488 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1489 return rnp->completed + 1;
1492 * Otherwise, wait for a possible partial grace period and
1493 * then the subsequent full grace period.
1495 return rnp->completed + 2;
1499 * Trace-event helper function for rcu_start_future_gp() and
1500 * rcu_nocb_wait_gp().
1502 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1503 unsigned long c, const char *s)
1505 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1506 rnp->completed, c, rnp->level,
1507 rnp->grplo, rnp->grphi, s);
1511 * Start some future grace period, as needed to handle newly arrived
1512 * callbacks. The required future grace periods are recorded in each
1513 * rcu_node structure's ->need_future_gp field. Returns true if there
1514 * is reason to awaken the grace-period kthread.
1516 * The caller must hold the specified rcu_node structure's ->lock.
1518 static bool __maybe_unused
1519 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1520 unsigned long *c_out)
1522 unsigned long c;
1523 int i;
1524 bool ret = false;
1525 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1528 * Pick up grace-period number for new callbacks. If this
1529 * grace period is already marked as needed, return to the caller.
1531 c = rcu_cbs_completed(rdp->rsp, rnp);
1532 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1533 if (rnp->need_future_gp[c & 0x1]) {
1534 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1535 goto out;
1539 * If either this rcu_node structure or the root rcu_node structure
1540 * believe that a grace period is in progress, then we must wait
1541 * for the one following, which is in "c". Because our request
1542 * will be noticed at the end of the current grace period, we don't
1543 * need to explicitly start one. We only do the lockless check
1544 * of rnp_root's fields if the current rcu_node structure thinks
1545 * there is no grace period in flight, and because we hold rnp->lock,
1546 * the only possible change is when rnp_root's two fields are
1547 * equal, in which case rnp_root->gpnum might be concurrently
1548 * incremented. But that is OK, as it will just result in our
1549 * doing some extra useless work.
1551 if (rnp->gpnum != rnp->completed ||
1552 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1553 rnp->need_future_gp[c & 0x1]++;
1554 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1555 goto out;
1559 * There might be no grace period in progress. If we don't already
1560 * hold it, acquire the root rcu_node structure's lock in order to
1561 * start one (if needed).
1563 if (rnp != rnp_root)
1564 raw_spin_lock_rcu_node(rnp_root);
1567 * Get a new grace-period number. If there really is no grace
1568 * period in progress, it will be smaller than the one we obtained
1569 * earlier. Adjust callbacks as needed. Note that even no-CBs
1570 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1572 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1573 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1574 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1575 rdp->nxtcompleted[i] = c;
1578 * If the needed for the required grace period is already
1579 * recorded, trace and leave.
1581 if (rnp_root->need_future_gp[c & 0x1]) {
1582 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1583 goto unlock_out;
1586 /* Record the need for the future grace period. */
1587 rnp_root->need_future_gp[c & 0x1]++;
1589 /* If a grace period is not already in progress, start one. */
1590 if (rnp_root->gpnum != rnp_root->completed) {
1591 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1592 } else {
1593 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1594 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1596 unlock_out:
1597 if (rnp != rnp_root)
1598 raw_spin_unlock(&rnp_root->lock);
1599 out:
1600 if (c_out != NULL)
1601 *c_out = c;
1602 return ret;
1606 * Clean up any old requests for the just-ended grace period. Also return
1607 * whether any additional grace periods have been requested. Also invoke
1608 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1609 * waiting for this grace period to complete.
1611 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1613 int c = rnp->completed;
1614 int needmore;
1615 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1617 rcu_nocb_gp_cleanup(rsp, rnp);
1618 rnp->need_future_gp[c & 0x1] = 0;
1619 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1620 trace_rcu_future_gp(rnp, rdp, c,
1621 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1622 return needmore;
1626 * Awaken the grace-period kthread for the specified flavor of RCU.
1627 * Don't do a self-awaken, and don't bother awakening when there is
1628 * nothing for the grace-period kthread to do (as in several CPUs
1629 * raced to awaken, and we lost), and finally don't try to awaken
1630 * a kthread that has not yet been created.
1632 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1634 if (current == rsp->gp_kthread ||
1635 !READ_ONCE(rsp->gp_flags) ||
1636 !rsp->gp_kthread)
1637 return;
1638 wake_up(&rsp->gp_wq);
1642 * If there is room, assign a ->completed number to any callbacks on
1643 * this CPU that have not already been assigned. Also accelerate any
1644 * callbacks that were previously assigned a ->completed number that has
1645 * since proven to be too conservative, which can happen if callbacks get
1646 * assigned a ->completed number while RCU is idle, but with reference to
1647 * a non-root rcu_node structure. This function is idempotent, so it does
1648 * not hurt to call it repeatedly. Returns an flag saying that we should
1649 * awaken the RCU grace-period kthread.
1651 * The caller must hold rnp->lock with interrupts disabled.
1653 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1654 struct rcu_data *rdp)
1656 unsigned long c;
1657 int i;
1658 bool ret;
1660 /* If the CPU has no callbacks, nothing to do. */
1661 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1662 return false;
1665 * Starting from the sublist containing the callbacks most
1666 * recently assigned a ->completed number and working down, find the
1667 * first sublist that is not assignable to an upcoming grace period.
1668 * Such a sublist has something in it (first two tests) and has
1669 * a ->completed number assigned that will complete sooner than
1670 * the ->completed number for newly arrived callbacks (last test).
1672 * The key point is that any later sublist can be assigned the
1673 * same ->completed number as the newly arrived callbacks, which
1674 * means that the callbacks in any of these later sublist can be
1675 * grouped into a single sublist, whether or not they have already
1676 * been assigned a ->completed number.
1678 c = rcu_cbs_completed(rsp, rnp);
1679 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1680 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1681 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1682 break;
1685 * If there are no sublist for unassigned callbacks, leave.
1686 * At the same time, advance "i" one sublist, so that "i" will
1687 * index into the sublist where all the remaining callbacks should
1688 * be grouped into.
1690 if (++i >= RCU_NEXT_TAIL)
1691 return false;
1694 * Assign all subsequent callbacks' ->completed number to the next
1695 * full grace period and group them all in the sublist initially
1696 * indexed by "i".
1698 for (; i <= RCU_NEXT_TAIL; i++) {
1699 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1700 rdp->nxtcompleted[i] = c;
1702 /* Record any needed additional grace periods. */
1703 ret = rcu_start_future_gp(rnp, rdp, NULL);
1705 /* Trace depending on how much we were able to accelerate. */
1706 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1707 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1708 else
1709 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1710 return ret;
1714 * Move any callbacks whose grace period has completed to the
1715 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1716 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1717 * sublist. This function is idempotent, so it does not hurt to
1718 * invoke it repeatedly. As long as it is not invoked -too- often...
1719 * Returns true if the RCU grace-period kthread needs to be awakened.
1721 * The caller must hold rnp->lock with interrupts disabled.
1723 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1724 struct rcu_data *rdp)
1726 int i, j;
1728 /* If the CPU has no callbacks, nothing to do. */
1729 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1730 return false;
1733 * Find all callbacks whose ->completed numbers indicate that they
1734 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1736 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1737 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1738 break;
1739 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1741 /* Clean up any sublist tail pointers that were misordered above. */
1742 for (j = RCU_WAIT_TAIL; j < i; j++)
1743 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1745 /* Copy down callbacks to fill in empty sublists. */
1746 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1747 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1748 break;
1749 rdp->nxttail[j] = rdp->nxttail[i];
1750 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1753 /* Classify any remaining callbacks. */
1754 return rcu_accelerate_cbs(rsp, rnp, rdp);
1758 * Update CPU-local rcu_data state to record the beginnings and ends of
1759 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1760 * structure corresponding to the current CPU, and must have irqs disabled.
1761 * Returns true if the grace-period kthread needs to be awakened.
1763 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1764 struct rcu_data *rdp)
1766 bool ret;
1768 /* Handle the ends of any preceding grace periods first. */
1769 if (rdp->completed == rnp->completed &&
1770 !unlikely(READ_ONCE(rdp->gpwrap))) {
1772 /* No grace period end, so just accelerate recent callbacks. */
1773 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1775 } else {
1777 /* Advance callbacks. */
1778 ret = rcu_advance_cbs(rsp, rnp, rdp);
1780 /* Remember that we saw this grace-period completion. */
1781 rdp->completed = rnp->completed;
1782 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1785 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1787 * If the current grace period is waiting for this CPU,
1788 * set up to detect a quiescent state, otherwise don't
1789 * go looking for one.
1791 rdp->gpnum = rnp->gpnum;
1792 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1793 rdp->cpu_no_qs.b.norm = true;
1794 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1795 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1796 zero_cpu_stall_ticks(rdp);
1797 WRITE_ONCE(rdp->gpwrap, false);
1799 return ret;
1802 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1804 unsigned long flags;
1805 bool needwake;
1806 struct rcu_node *rnp;
1808 local_irq_save(flags);
1809 rnp = rdp->mynode;
1810 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1811 rdp->completed == READ_ONCE(rnp->completed) &&
1812 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1813 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1814 local_irq_restore(flags);
1815 return;
1817 needwake = __note_gp_changes(rsp, rnp, rdp);
1818 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1819 if (needwake)
1820 rcu_gp_kthread_wake(rsp);
1823 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1825 if (delay > 0 &&
1826 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1827 schedule_timeout_uninterruptible(delay);
1831 * Initialize a new grace period. Return false if no grace period required.
1833 static bool rcu_gp_init(struct rcu_state *rsp)
1835 unsigned long oldmask;
1836 struct rcu_data *rdp;
1837 struct rcu_node *rnp = rcu_get_root(rsp);
1839 WRITE_ONCE(rsp->gp_activity, jiffies);
1840 raw_spin_lock_irq_rcu_node(rnp);
1841 if (!READ_ONCE(rsp->gp_flags)) {
1842 /* Spurious wakeup, tell caller to go back to sleep. */
1843 raw_spin_unlock_irq(&rnp->lock);
1844 return false;
1846 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1848 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1850 * Grace period already in progress, don't start another.
1851 * Not supposed to be able to happen.
1853 raw_spin_unlock_irq(&rnp->lock);
1854 return false;
1857 /* Advance to a new grace period and initialize state. */
1858 record_gp_stall_check_time(rsp);
1859 /* Record GP times before starting GP, hence smp_store_release(). */
1860 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1861 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1862 raw_spin_unlock_irq(&rnp->lock);
1865 * Apply per-leaf buffered online and offline operations to the
1866 * rcu_node tree. Note that this new grace period need not wait
1867 * for subsequent online CPUs, and that quiescent-state forcing
1868 * will handle subsequent offline CPUs.
1870 rcu_for_each_leaf_node(rsp, rnp) {
1871 rcu_gp_slow(rsp, gp_preinit_delay);
1872 raw_spin_lock_irq_rcu_node(rnp);
1873 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1874 !rnp->wait_blkd_tasks) {
1875 /* Nothing to do on this leaf rcu_node structure. */
1876 raw_spin_unlock_irq(&rnp->lock);
1877 continue;
1880 /* Record old state, apply changes to ->qsmaskinit field. */
1881 oldmask = rnp->qsmaskinit;
1882 rnp->qsmaskinit = rnp->qsmaskinitnext;
1884 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1885 if (!oldmask != !rnp->qsmaskinit) {
1886 if (!oldmask) /* First online CPU for this rcu_node. */
1887 rcu_init_new_rnp(rnp);
1888 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1889 rnp->wait_blkd_tasks = true;
1890 else /* Last offline CPU and can propagate. */
1891 rcu_cleanup_dead_rnp(rnp);
1895 * If all waited-on tasks from prior grace period are
1896 * done, and if all this rcu_node structure's CPUs are
1897 * still offline, propagate up the rcu_node tree and
1898 * clear ->wait_blkd_tasks. Otherwise, if one of this
1899 * rcu_node structure's CPUs has since come back online,
1900 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1901 * checks for this, so just call it unconditionally).
1903 if (rnp->wait_blkd_tasks &&
1904 (!rcu_preempt_has_tasks(rnp) ||
1905 rnp->qsmaskinit)) {
1906 rnp->wait_blkd_tasks = false;
1907 rcu_cleanup_dead_rnp(rnp);
1910 raw_spin_unlock_irq(&rnp->lock);
1914 * Set the quiescent-state-needed bits in all the rcu_node
1915 * structures for all currently online CPUs in breadth-first order,
1916 * starting from the root rcu_node structure, relying on the layout
1917 * of the tree within the rsp->node[] array. Note that other CPUs
1918 * will access only the leaves of the hierarchy, thus seeing that no
1919 * grace period is in progress, at least until the corresponding
1920 * leaf node has been initialized. In addition, we have excluded
1921 * CPU-hotplug operations.
1923 * The grace period cannot complete until the initialization
1924 * process finishes, because this kthread handles both.
1926 rcu_for_each_node_breadth_first(rsp, rnp) {
1927 rcu_gp_slow(rsp, gp_init_delay);
1928 raw_spin_lock_irq_rcu_node(rnp);
1929 rdp = this_cpu_ptr(rsp->rda);
1930 rcu_preempt_check_blocked_tasks(rnp);
1931 rnp->qsmask = rnp->qsmaskinit;
1932 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1933 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1934 WRITE_ONCE(rnp->completed, rsp->completed);
1935 if (rnp == rdp->mynode)
1936 (void)__note_gp_changes(rsp, rnp, rdp);
1937 rcu_preempt_boost_start_gp(rnp);
1938 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1939 rnp->level, rnp->grplo,
1940 rnp->grphi, rnp->qsmask);
1941 raw_spin_unlock_irq(&rnp->lock);
1942 cond_resched_rcu_qs();
1943 WRITE_ONCE(rsp->gp_activity, jiffies);
1946 return true;
1950 * Helper function for wait_event_interruptible_timeout() wakeup
1951 * at force-quiescent-state time.
1953 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1955 struct rcu_node *rnp = rcu_get_root(rsp);
1957 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1958 *gfp = READ_ONCE(rsp->gp_flags);
1959 if (*gfp & RCU_GP_FLAG_FQS)
1960 return true;
1962 /* The current grace period has completed. */
1963 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1964 return true;
1966 return false;
1970 * Do one round of quiescent-state forcing.
1972 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1974 bool isidle = false;
1975 unsigned long maxj;
1976 struct rcu_node *rnp = rcu_get_root(rsp);
1978 WRITE_ONCE(rsp->gp_activity, jiffies);
1979 rsp->n_force_qs++;
1980 if (first_time) {
1981 /* Collect dyntick-idle snapshots. */
1982 if (is_sysidle_rcu_state(rsp)) {
1983 isidle = true;
1984 maxj = jiffies - ULONG_MAX / 4;
1986 force_qs_rnp(rsp, dyntick_save_progress_counter,
1987 &isidle, &maxj);
1988 rcu_sysidle_report_gp(rsp, isidle, maxj);
1989 } else {
1990 /* Handle dyntick-idle and offline CPUs. */
1991 isidle = true;
1992 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1994 /* Clear flag to prevent immediate re-entry. */
1995 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1996 raw_spin_lock_irq_rcu_node(rnp);
1997 WRITE_ONCE(rsp->gp_flags,
1998 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1999 raw_spin_unlock_irq(&rnp->lock);
2004 * Clean up after the old grace period.
2006 static void rcu_gp_cleanup(struct rcu_state *rsp)
2008 unsigned long gp_duration;
2009 bool needgp = false;
2010 int nocb = 0;
2011 struct rcu_data *rdp;
2012 struct rcu_node *rnp = rcu_get_root(rsp);
2014 WRITE_ONCE(rsp->gp_activity, jiffies);
2015 raw_spin_lock_irq_rcu_node(rnp);
2016 gp_duration = jiffies - rsp->gp_start;
2017 if (gp_duration > rsp->gp_max)
2018 rsp->gp_max = gp_duration;
2021 * We know the grace period is complete, but to everyone else
2022 * it appears to still be ongoing. But it is also the case
2023 * that to everyone else it looks like there is nothing that
2024 * they can do to advance the grace period. It is therefore
2025 * safe for us to drop the lock in order to mark the grace
2026 * period as completed in all of the rcu_node structures.
2028 raw_spin_unlock_irq(&rnp->lock);
2031 * Propagate new ->completed value to rcu_node structures so
2032 * that other CPUs don't have to wait until the start of the next
2033 * grace period to process their callbacks. This also avoids
2034 * some nasty RCU grace-period initialization races by forcing
2035 * the end of the current grace period to be completely recorded in
2036 * all of the rcu_node structures before the beginning of the next
2037 * grace period is recorded in any of the rcu_node structures.
2039 rcu_for_each_node_breadth_first(rsp, rnp) {
2040 raw_spin_lock_irq_rcu_node(rnp);
2041 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2042 WARN_ON_ONCE(rnp->qsmask);
2043 WRITE_ONCE(rnp->completed, rsp->gpnum);
2044 rdp = this_cpu_ptr(rsp->rda);
2045 if (rnp == rdp->mynode)
2046 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2047 /* smp_mb() provided by prior unlock-lock pair. */
2048 nocb += rcu_future_gp_cleanup(rsp, rnp);
2049 raw_spin_unlock_irq(&rnp->lock);
2050 cond_resched_rcu_qs();
2051 WRITE_ONCE(rsp->gp_activity, jiffies);
2052 rcu_gp_slow(rsp, gp_cleanup_delay);
2054 rnp = rcu_get_root(rsp);
2055 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2056 rcu_nocb_gp_set(rnp, nocb);
2058 /* Declare grace period done. */
2059 WRITE_ONCE(rsp->completed, rsp->gpnum);
2060 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2061 rsp->gp_state = RCU_GP_IDLE;
2062 rdp = this_cpu_ptr(rsp->rda);
2063 /* Advance CBs to reduce false positives below. */
2064 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2065 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2066 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2067 trace_rcu_grace_period(rsp->name,
2068 READ_ONCE(rsp->gpnum),
2069 TPS("newreq"));
2071 raw_spin_unlock_irq(&rnp->lock);
2075 * Body of kthread that handles grace periods.
2077 static int __noreturn rcu_gp_kthread(void *arg)
2079 bool first_gp_fqs;
2080 int gf;
2081 unsigned long j;
2082 int ret;
2083 struct rcu_state *rsp = arg;
2084 struct rcu_node *rnp = rcu_get_root(rsp);
2086 rcu_bind_gp_kthread();
2087 for (;;) {
2089 /* Handle grace-period start. */
2090 for (;;) {
2091 trace_rcu_grace_period(rsp->name,
2092 READ_ONCE(rsp->gpnum),
2093 TPS("reqwait"));
2094 rsp->gp_state = RCU_GP_WAIT_GPS;
2095 wait_event_interruptible(rsp->gp_wq,
2096 READ_ONCE(rsp->gp_flags) &
2097 RCU_GP_FLAG_INIT);
2098 rsp->gp_state = RCU_GP_DONE_GPS;
2099 /* Locking provides needed memory barrier. */
2100 if (rcu_gp_init(rsp))
2101 break;
2102 cond_resched_rcu_qs();
2103 WRITE_ONCE(rsp->gp_activity, jiffies);
2104 WARN_ON(signal_pending(current));
2105 trace_rcu_grace_period(rsp->name,
2106 READ_ONCE(rsp->gpnum),
2107 TPS("reqwaitsig"));
2110 /* Handle quiescent-state forcing. */
2111 first_gp_fqs = true;
2112 j = jiffies_till_first_fqs;
2113 if (j > HZ) {
2114 j = HZ;
2115 jiffies_till_first_fqs = HZ;
2117 ret = 0;
2118 for (;;) {
2119 if (!ret)
2120 rsp->jiffies_force_qs = jiffies + j;
2121 trace_rcu_grace_period(rsp->name,
2122 READ_ONCE(rsp->gpnum),
2123 TPS("fqswait"));
2124 rsp->gp_state = RCU_GP_WAIT_FQS;
2125 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2126 rcu_gp_fqs_check_wake(rsp, &gf), j);
2127 rsp->gp_state = RCU_GP_DOING_FQS;
2128 /* Locking provides needed memory barriers. */
2129 /* If grace period done, leave loop. */
2130 if (!READ_ONCE(rnp->qsmask) &&
2131 !rcu_preempt_blocked_readers_cgp(rnp))
2132 break;
2133 /* If time for quiescent-state forcing, do it. */
2134 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2135 (gf & RCU_GP_FLAG_FQS)) {
2136 trace_rcu_grace_period(rsp->name,
2137 READ_ONCE(rsp->gpnum),
2138 TPS("fqsstart"));
2139 rcu_gp_fqs(rsp, first_gp_fqs);
2140 first_gp_fqs = false;
2141 trace_rcu_grace_period(rsp->name,
2142 READ_ONCE(rsp->gpnum),
2143 TPS("fqsend"));
2144 cond_resched_rcu_qs();
2145 WRITE_ONCE(rsp->gp_activity, jiffies);
2146 } else {
2147 /* Deal with stray signal. */
2148 cond_resched_rcu_qs();
2149 WRITE_ONCE(rsp->gp_activity, jiffies);
2150 WARN_ON(signal_pending(current));
2151 trace_rcu_grace_period(rsp->name,
2152 READ_ONCE(rsp->gpnum),
2153 TPS("fqswaitsig"));
2155 j = jiffies_till_next_fqs;
2156 if (j > HZ) {
2157 j = HZ;
2158 jiffies_till_next_fqs = HZ;
2159 } else if (j < 1) {
2160 j = 1;
2161 jiffies_till_next_fqs = 1;
2165 /* Handle grace-period end. */
2166 rsp->gp_state = RCU_GP_CLEANUP;
2167 rcu_gp_cleanup(rsp);
2168 rsp->gp_state = RCU_GP_CLEANED;
2173 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2174 * in preparation for detecting the next grace period. The caller must hold
2175 * the root node's ->lock and hard irqs must be disabled.
2177 * Note that it is legal for a dying CPU (which is marked as offline) to
2178 * invoke this function. This can happen when the dying CPU reports its
2179 * quiescent state.
2181 * Returns true if the grace-period kthread must be awakened.
2183 static bool
2184 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2185 struct rcu_data *rdp)
2187 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2189 * Either we have not yet spawned the grace-period
2190 * task, this CPU does not need another grace period,
2191 * or a grace period is already in progress.
2192 * Either way, don't start a new grace period.
2194 return false;
2196 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2197 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2198 TPS("newreq"));
2201 * We can't do wakeups while holding the rnp->lock, as that
2202 * could cause possible deadlocks with the rq->lock. Defer
2203 * the wakeup to our caller.
2205 return true;
2209 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2210 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2211 * is invoked indirectly from rcu_advance_cbs(), which would result in
2212 * endless recursion -- or would do so if it wasn't for the self-deadlock
2213 * that is encountered beforehand.
2215 * Returns true if the grace-period kthread needs to be awakened.
2217 static bool rcu_start_gp(struct rcu_state *rsp)
2219 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2220 struct rcu_node *rnp = rcu_get_root(rsp);
2221 bool ret = false;
2224 * If there is no grace period in progress right now, any
2225 * callbacks we have up to this point will be satisfied by the
2226 * next grace period. Also, advancing the callbacks reduces the
2227 * probability of false positives from cpu_needs_another_gp()
2228 * resulting in pointless grace periods. So, advance callbacks
2229 * then start the grace period!
2231 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2232 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2233 return ret;
2237 * Report a full set of quiescent states to the specified rcu_state
2238 * data structure. This involves cleaning up after the prior grace
2239 * period and letting rcu_start_gp() start up the next grace period
2240 * if one is needed. Note that the caller must hold rnp->lock, which
2241 * is released before return.
2243 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2244 __releases(rcu_get_root(rsp)->lock)
2246 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2247 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2248 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2249 rcu_gp_kthread_wake(rsp);
2253 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2254 * Allows quiescent states for a group of CPUs to be reported at one go
2255 * to the specified rcu_node structure, though all the CPUs in the group
2256 * must be represented by the same rcu_node structure (which need not be a
2257 * leaf rcu_node structure, though it often will be). The gps parameter
2258 * is the grace-period snapshot, which means that the quiescent states
2259 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2260 * must be held upon entry, and it is released before return.
2262 static void
2263 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2264 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2265 __releases(rnp->lock)
2267 unsigned long oldmask = 0;
2268 struct rcu_node *rnp_c;
2270 /* Walk up the rcu_node hierarchy. */
2271 for (;;) {
2272 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2275 * Our bit has already been cleared, or the
2276 * relevant grace period is already over, so done.
2278 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279 return;
2281 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2282 rnp->qsmask &= ~mask;
2283 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2284 mask, rnp->qsmask, rnp->level,
2285 rnp->grplo, rnp->grphi,
2286 !!rnp->gp_tasks);
2287 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2289 /* Other bits still set at this level, so done. */
2290 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2291 return;
2293 mask = rnp->grpmask;
2294 if (rnp->parent == NULL) {
2296 /* No more levels. Exit loop holding root lock. */
2298 break;
2300 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2301 rnp_c = rnp;
2302 rnp = rnp->parent;
2303 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2304 oldmask = rnp_c->qsmask;
2308 * Get here if we are the last CPU to pass through a quiescent
2309 * state for this grace period. Invoke rcu_report_qs_rsp()
2310 * to clean up and start the next grace period if one is needed.
2312 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2316 * Record a quiescent state for all tasks that were previously queued
2317 * on the specified rcu_node structure and that were blocking the current
2318 * RCU grace period. The caller must hold the specified rnp->lock with
2319 * irqs disabled, and this lock is released upon return, but irqs remain
2320 * disabled.
2322 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2323 struct rcu_node *rnp, unsigned long flags)
2324 __releases(rnp->lock)
2326 unsigned long gps;
2327 unsigned long mask;
2328 struct rcu_node *rnp_p;
2330 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2331 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2332 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2333 return; /* Still need more quiescent states! */
2336 rnp_p = rnp->parent;
2337 if (rnp_p == NULL) {
2339 * Only one rcu_node structure in the tree, so don't
2340 * try to report up to its nonexistent parent!
2342 rcu_report_qs_rsp(rsp, flags);
2343 return;
2346 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2347 gps = rnp->gpnum;
2348 mask = rnp->grpmask;
2349 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2350 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2351 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2355 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2356 * structure. This must be either called from the specified CPU, or
2357 * called when the specified CPU is known to be offline (and when it is
2358 * also known that no other CPU is concurrently trying to help the offline
2359 * CPU). The lastcomp argument is used to make sure we are still in the
2360 * grace period of interest. We don't want to end the current grace period
2361 * based on quiescent states detected in an earlier grace period!
2363 static void
2364 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2366 unsigned long flags;
2367 unsigned long mask;
2368 bool needwake;
2369 struct rcu_node *rnp;
2371 rnp = rdp->mynode;
2372 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373 if ((rdp->cpu_no_qs.b.norm &&
2374 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2375 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2376 rdp->gpwrap) {
2379 * The grace period in which this quiescent state was
2380 * recorded has ended, so don't report it upwards.
2381 * We will instead need a new quiescent state that lies
2382 * within the current grace period.
2384 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2385 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2386 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2387 return;
2389 mask = rdp->grpmask;
2390 if ((rnp->qsmask & mask) == 0) {
2391 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2392 } else {
2393 rdp->core_needs_qs = 0;
2396 * This GP can't end until cpu checks in, so all of our
2397 * callbacks can be processed during the next GP.
2399 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2401 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2402 /* ^^^ Released rnp->lock */
2403 if (needwake)
2404 rcu_gp_kthread_wake(rsp);
2409 * Check to see if there is a new grace period of which this CPU
2410 * is not yet aware, and if so, set up local rcu_data state for it.
2411 * Otherwise, see if this CPU has just passed through its first
2412 * quiescent state for this grace period, and record that fact if so.
2414 static void
2415 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2417 /* Check for grace-period ends and beginnings. */
2418 note_gp_changes(rsp, rdp);
2421 * Does this CPU still need to do its part for current grace period?
2422 * If no, return and let the other CPUs do their part as well.
2424 if (!rdp->core_needs_qs)
2425 return;
2428 * Was there a quiescent state since the beginning of the grace
2429 * period? If no, then exit and wait for the next call.
2431 if (rdp->cpu_no_qs.b.norm &&
2432 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2433 return;
2436 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2437 * judge of that).
2439 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2443 * Send the specified CPU's RCU callbacks to the orphanage. The
2444 * specified CPU must be offline, and the caller must hold the
2445 * ->orphan_lock.
2447 static void
2448 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2449 struct rcu_node *rnp, struct rcu_data *rdp)
2451 /* No-CBs CPUs do not have orphanable callbacks. */
2452 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2453 return;
2456 * Orphan the callbacks. First adjust the counts. This is safe
2457 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2458 * cannot be running now. Thus no memory barrier is required.
2460 if (rdp->nxtlist != NULL) {
2461 rsp->qlen_lazy += rdp->qlen_lazy;
2462 rsp->qlen += rdp->qlen;
2463 rdp->n_cbs_orphaned += rdp->qlen;
2464 rdp->qlen_lazy = 0;
2465 WRITE_ONCE(rdp->qlen, 0);
2469 * Next, move those callbacks still needing a grace period to
2470 * the orphanage, where some other CPU will pick them up.
2471 * Some of the callbacks might have gone partway through a grace
2472 * period, but that is too bad. They get to start over because we
2473 * cannot assume that grace periods are synchronized across CPUs.
2474 * We don't bother updating the ->nxttail[] array yet, instead
2475 * we just reset the whole thing later on.
2477 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2478 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2479 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2480 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2484 * Then move the ready-to-invoke callbacks to the orphanage,
2485 * where some other CPU will pick them up. These will not be
2486 * required to pass though another grace period: They are done.
2488 if (rdp->nxtlist != NULL) {
2489 *rsp->orphan_donetail = rdp->nxtlist;
2490 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2494 * Finally, initialize the rcu_data structure's list to empty and
2495 * disallow further callbacks on this CPU.
2497 init_callback_list(rdp);
2498 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2502 * Adopt the RCU callbacks from the specified rcu_state structure's
2503 * orphanage. The caller must hold the ->orphan_lock.
2505 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2507 int i;
2508 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2510 /* No-CBs CPUs are handled specially. */
2511 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2512 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2513 return;
2515 /* Do the accounting first. */
2516 rdp->qlen_lazy += rsp->qlen_lazy;
2517 rdp->qlen += rsp->qlen;
2518 rdp->n_cbs_adopted += rsp->qlen;
2519 if (rsp->qlen_lazy != rsp->qlen)
2520 rcu_idle_count_callbacks_posted();
2521 rsp->qlen_lazy = 0;
2522 rsp->qlen = 0;
2525 * We do not need a memory barrier here because the only way we
2526 * can get here if there is an rcu_barrier() in flight is if
2527 * we are the task doing the rcu_barrier().
2530 /* First adopt the ready-to-invoke callbacks. */
2531 if (rsp->orphan_donelist != NULL) {
2532 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2533 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2534 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2535 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2536 rdp->nxttail[i] = rsp->orphan_donetail;
2537 rsp->orphan_donelist = NULL;
2538 rsp->orphan_donetail = &rsp->orphan_donelist;
2541 /* And then adopt the callbacks that still need a grace period. */
2542 if (rsp->orphan_nxtlist != NULL) {
2543 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2544 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2545 rsp->orphan_nxtlist = NULL;
2546 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2551 * Trace the fact that this CPU is going offline.
2553 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2555 RCU_TRACE(unsigned long mask);
2556 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2557 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2559 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2560 return;
2562 RCU_TRACE(mask = rdp->grpmask);
2563 trace_rcu_grace_period(rsp->name,
2564 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2565 TPS("cpuofl"));
2569 * All CPUs for the specified rcu_node structure have gone offline,
2570 * and all tasks that were preempted within an RCU read-side critical
2571 * section while running on one of those CPUs have since exited their RCU
2572 * read-side critical section. Some other CPU is reporting this fact with
2573 * the specified rcu_node structure's ->lock held and interrupts disabled.
2574 * This function therefore goes up the tree of rcu_node structures,
2575 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2576 * the leaf rcu_node structure's ->qsmaskinit field has already been
2577 * updated
2579 * This function does check that the specified rcu_node structure has
2580 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2581 * prematurely. That said, invoking it after the fact will cost you
2582 * a needless lock acquisition. So once it has done its work, don't
2583 * invoke it again.
2585 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2587 long mask;
2588 struct rcu_node *rnp = rnp_leaf;
2590 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2591 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2592 return;
2593 for (;;) {
2594 mask = rnp->grpmask;
2595 rnp = rnp->parent;
2596 if (!rnp)
2597 break;
2598 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2599 rnp->qsmaskinit &= ~mask;
2600 rnp->qsmask &= ~mask;
2601 if (rnp->qsmaskinit) {
2602 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2603 return;
2605 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2610 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2611 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2612 * bit masks.
2614 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2616 unsigned long flags;
2617 unsigned long mask;
2618 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2622 return;
2624 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2625 mask = rdp->grpmask;
2626 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
2627 rnp->qsmaskinitnext &= ~mask;
2628 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2632 * The CPU has been completely removed, and some other CPU is reporting
2633 * this fact from process context. Do the remainder of the cleanup,
2634 * including orphaning the outgoing CPU's RCU callbacks, and also
2635 * adopting them. There can only be one CPU hotplug operation at a time,
2636 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2638 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2640 unsigned long flags;
2641 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2642 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2644 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2645 return;
2647 /* Adjust any no-longer-needed kthreads. */
2648 rcu_boost_kthread_setaffinity(rnp, -1);
2650 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2651 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2652 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2653 rcu_adopt_orphan_cbs(rsp, flags);
2654 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2656 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2657 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2658 cpu, rdp->qlen, rdp->nxtlist);
2662 * Invoke any RCU callbacks that have made it to the end of their grace
2663 * period. Thottle as specified by rdp->blimit.
2665 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2667 unsigned long flags;
2668 struct rcu_head *next, *list, **tail;
2669 long bl, count, count_lazy;
2670 int i;
2672 /* If no callbacks are ready, just return. */
2673 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2674 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2675 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2676 need_resched(), is_idle_task(current),
2677 rcu_is_callbacks_kthread());
2678 return;
2682 * Extract the list of ready callbacks, disabling to prevent
2683 * races with call_rcu() from interrupt handlers.
2685 local_irq_save(flags);
2686 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2687 bl = rdp->blimit;
2688 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2689 list = rdp->nxtlist;
2690 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2691 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2692 tail = rdp->nxttail[RCU_DONE_TAIL];
2693 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2694 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2695 rdp->nxttail[i] = &rdp->nxtlist;
2696 local_irq_restore(flags);
2698 /* Invoke callbacks. */
2699 count = count_lazy = 0;
2700 while (list) {
2701 next = list->next;
2702 prefetch(next);
2703 debug_rcu_head_unqueue(list);
2704 if (__rcu_reclaim(rsp->name, list))
2705 count_lazy++;
2706 list = next;
2707 /* Stop only if limit reached and CPU has something to do. */
2708 if (++count >= bl &&
2709 (need_resched() ||
2710 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2711 break;
2714 local_irq_save(flags);
2715 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2716 is_idle_task(current),
2717 rcu_is_callbacks_kthread());
2719 /* Update count, and requeue any remaining callbacks. */
2720 if (list != NULL) {
2721 *tail = rdp->nxtlist;
2722 rdp->nxtlist = list;
2723 for (i = 0; i < RCU_NEXT_SIZE; i++)
2724 if (&rdp->nxtlist == rdp->nxttail[i])
2725 rdp->nxttail[i] = tail;
2726 else
2727 break;
2729 smp_mb(); /* List handling before counting for rcu_barrier(). */
2730 rdp->qlen_lazy -= count_lazy;
2731 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2732 rdp->n_cbs_invoked += count;
2734 /* Reinstate batch limit if we have worked down the excess. */
2735 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2736 rdp->blimit = blimit;
2738 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2739 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2740 rdp->qlen_last_fqs_check = 0;
2741 rdp->n_force_qs_snap = rsp->n_force_qs;
2742 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2743 rdp->qlen_last_fqs_check = rdp->qlen;
2744 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2746 local_irq_restore(flags);
2748 /* Re-invoke RCU core processing if there are callbacks remaining. */
2749 if (cpu_has_callbacks_ready_to_invoke(rdp))
2750 invoke_rcu_core();
2754 * Check to see if this CPU is in a non-context-switch quiescent state
2755 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2756 * Also schedule RCU core processing.
2758 * This function must be called from hardirq context. It is normally
2759 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2760 * false, there is no point in invoking rcu_check_callbacks().
2762 void rcu_check_callbacks(int user)
2764 trace_rcu_utilization(TPS("Start scheduler-tick"));
2765 increment_cpu_stall_ticks();
2766 if (user || rcu_is_cpu_rrupt_from_idle()) {
2769 * Get here if this CPU took its interrupt from user
2770 * mode or from the idle loop, and if this is not a
2771 * nested interrupt. In this case, the CPU is in
2772 * a quiescent state, so note it.
2774 * No memory barrier is required here because both
2775 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2776 * variables that other CPUs neither access nor modify,
2777 * at least not while the corresponding CPU is online.
2780 rcu_sched_qs();
2781 rcu_bh_qs();
2783 } else if (!in_softirq()) {
2786 * Get here if this CPU did not take its interrupt from
2787 * softirq, in other words, if it is not interrupting
2788 * a rcu_bh read-side critical section. This is an _bh
2789 * critical section, so note it.
2792 rcu_bh_qs();
2794 rcu_preempt_check_callbacks();
2795 if (rcu_pending())
2796 invoke_rcu_core();
2797 if (user)
2798 rcu_note_voluntary_context_switch(current);
2799 trace_rcu_utilization(TPS("End scheduler-tick"));
2803 * Scan the leaf rcu_node structures, processing dyntick state for any that
2804 * have not yet encountered a quiescent state, using the function specified.
2805 * Also initiate boosting for any threads blocked on the root rcu_node.
2807 * The caller must have suppressed start of new grace periods.
2809 static void force_qs_rnp(struct rcu_state *rsp,
2810 int (*f)(struct rcu_data *rsp, bool *isidle,
2811 unsigned long *maxj),
2812 bool *isidle, unsigned long *maxj)
2814 unsigned long bit;
2815 int cpu;
2816 unsigned long flags;
2817 unsigned long mask;
2818 struct rcu_node *rnp;
2820 rcu_for_each_leaf_node(rsp, rnp) {
2821 cond_resched_rcu_qs();
2822 mask = 0;
2823 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2824 if (rnp->qsmask == 0) {
2825 if (rcu_state_p == &rcu_sched_state ||
2826 rsp != rcu_state_p ||
2827 rcu_preempt_blocked_readers_cgp(rnp)) {
2829 * No point in scanning bits because they
2830 * are all zero. But we might need to
2831 * priority-boost blocked readers.
2833 rcu_initiate_boost(rnp, flags);
2834 /* rcu_initiate_boost() releases rnp->lock */
2835 continue;
2837 if (rnp->parent &&
2838 (rnp->parent->qsmask & rnp->grpmask)) {
2840 * Race between grace-period
2841 * initialization and task exiting RCU
2842 * read-side critical section: Report.
2844 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2845 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2846 continue;
2849 cpu = rnp->grplo;
2850 bit = 1;
2851 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2852 if ((rnp->qsmask & bit) != 0) {
2853 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2854 mask |= bit;
2857 if (mask != 0) {
2858 /* Idle/offline CPUs, report (releases rnp->lock. */
2859 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2860 } else {
2861 /* Nothing to do here, so just drop the lock. */
2862 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2868 * Force quiescent states on reluctant CPUs, and also detect which
2869 * CPUs are in dyntick-idle mode.
2871 static void force_quiescent_state(struct rcu_state *rsp)
2873 unsigned long flags;
2874 bool ret;
2875 struct rcu_node *rnp;
2876 struct rcu_node *rnp_old = NULL;
2878 /* Funnel through hierarchy to reduce memory contention. */
2879 rnp = __this_cpu_read(rsp->rda->mynode);
2880 for (; rnp != NULL; rnp = rnp->parent) {
2881 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2882 !raw_spin_trylock(&rnp->fqslock);
2883 if (rnp_old != NULL)
2884 raw_spin_unlock(&rnp_old->fqslock);
2885 if (ret) {
2886 rsp->n_force_qs_lh++;
2887 return;
2889 rnp_old = rnp;
2891 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2893 /* Reached the root of the rcu_node tree, acquire lock. */
2894 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2895 raw_spin_unlock(&rnp_old->fqslock);
2896 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2897 rsp->n_force_qs_lh++;
2898 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2899 return; /* Someone beat us to it. */
2901 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2902 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2903 rcu_gp_kthread_wake(rsp);
2907 * This does the RCU core processing work for the specified rcu_state
2908 * and rcu_data structures. This may be called only from the CPU to
2909 * whom the rdp belongs.
2911 static void
2912 __rcu_process_callbacks(struct rcu_state *rsp)
2914 unsigned long flags;
2915 bool needwake;
2916 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2918 WARN_ON_ONCE(rdp->beenonline == 0);
2920 /* Update RCU state based on any recent quiescent states. */
2921 rcu_check_quiescent_state(rsp, rdp);
2923 /* Does this CPU require a not-yet-started grace period? */
2924 local_irq_save(flags);
2925 if (cpu_needs_another_gp(rsp, rdp)) {
2926 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2927 needwake = rcu_start_gp(rsp);
2928 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2929 if (needwake)
2930 rcu_gp_kthread_wake(rsp);
2931 } else {
2932 local_irq_restore(flags);
2935 /* If there are callbacks ready, invoke them. */
2936 if (cpu_has_callbacks_ready_to_invoke(rdp))
2937 invoke_rcu_callbacks(rsp, rdp);
2939 /* Do any needed deferred wakeups of rcuo kthreads. */
2940 do_nocb_deferred_wakeup(rdp);
2944 * Do RCU core processing for the current CPU.
2946 static void rcu_process_callbacks(struct softirq_action *unused)
2948 struct rcu_state *rsp;
2950 if (cpu_is_offline(smp_processor_id()))
2951 return;
2952 trace_rcu_utilization(TPS("Start RCU core"));
2953 for_each_rcu_flavor(rsp)
2954 __rcu_process_callbacks(rsp);
2955 trace_rcu_utilization(TPS("End RCU core"));
2959 * Schedule RCU callback invocation. If the specified type of RCU
2960 * does not support RCU priority boosting, just do a direct call,
2961 * otherwise wake up the per-CPU kernel kthread. Note that because we
2962 * are running on the current CPU with softirqs disabled, the
2963 * rcu_cpu_kthread_task cannot disappear out from under us.
2965 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2967 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2968 return;
2969 if (likely(!rsp->boost)) {
2970 rcu_do_batch(rsp, rdp);
2971 return;
2973 invoke_rcu_callbacks_kthread();
2976 static void invoke_rcu_core(void)
2978 if (cpu_online(smp_processor_id()))
2979 raise_softirq(RCU_SOFTIRQ);
2983 * Handle any core-RCU processing required by a call_rcu() invocation.
2985 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2986 struct rcu_head *head, unsigned long flags)
2988 bool needwake;
2991 * If called from an extended quiescent state, invoke the RCU
2992 * core in order to force a re-evaluation of RCU's idleness.
2994 if (!rcu_is_watching())
2995 invoke_rcu_core();
2997 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2998 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2999 return;
3002 * Force the grace period if too many callbacks or too long waiting.
3003 * Enforce hysteresis, and don't invoke force_quiescent_state()
3004 * if some other CPU has recently done so. Also, don't bother
3005 * invoking force_quiescent_state() if the newly enqueued callback
3006 * is the only one waiting for a grace period to complete.
3008 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3010 /* Are we ignoring a completed grace period? */
3011 note_gp_changes(rsp, rdp);
3013 /* Start a new grace period if one not already started. */
3014 if (!rcu_gp_in_progress(rsp)) {
3015 struct rcu_node *rnp_root = rcu_get_root(rsp);
3017 raw_spin_lock_rcu_node(rnp_root);
3018 needwake = rcu_start_gp(rsp);
3019 raw_spin_unlock(&rnp_root->lock);
3020 if (needwake)
3021 rcu_gp_kthread_wake(rsp);
3022 } else {
3023 /* Give the grace period a kick. */
3024 rdp->blimit = LONG_MAX;
3025 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3026 *rdp->nxttail[RCU_DONE_TAIL] != head)
3027 force_quiescent_state(rsp);
3028 rdp->n_force_qs_snap = rsp->n_force_qs;
3029 rdp->qlen_last_fqs_check = rdp->qlen;
3035 * RCU callback function to leak a callback.
3037 static void rcu_leak_callback(struct rcu_head *rhp)
3042 * Helper function for call_rcu() and friends. The cpu argument will
3043 * normally be -1, indicating "currently running CPU". It may specify
3044 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3045 * is expected to specify a CPU.
3047 static void
3048 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3049 struct rcu_state *rsp, int cpu, bool lazy)
3051 unsigned long flags;
3052 struct rcu_data *rdp;
3054 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3055 if (debug_rcu_head_queue(head)) {
3056 /* Probable double call_rcu(), so leak the callback. */
3057 WRITE_ONCE(head->func, rcu_leak_callback);
3058 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3059 return;
3061 head->func = func;
3062 head->next = NULL;
3065 * Opportunistically note grace-period endings and beginnings.
3066 * Note that we might see a beginning right after we see an
3067 * end, but never vice versa, since this CPU has to pass through
3068 * a quiescent state betweentimes.
3070 local_irq_save(flags);
3071 rdp = this_cpu_ptr(rsp->rda);
3073 /* Add the callback to our list. */
3074 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3075 int offline;
3077 if (cpu != -1)
3078 rdp = per_cpu_ptr(rsp->rda, cpu);
3079 if (likely(rdp->mynode)) {
3080 /* Post-boot, so this should be for a no-CBs CPU. */
3081 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3082 WARN_ON_ONCE(offline);
3083 /* Offline CPU, _call_rcu() illegal, leak callback. */
3084 local_irq_restore(flags);
3085 return;
3088 * Very early boot, before rcu_init(). Initialize if needed
3089 * and then drop through to queue the callback.
3091 BUG_ON(cpu != -1);
3092 WARN_ON_ONCE(!rcu_is_watching());
3093 if (!likely(rdp->nxtlist))
3094 init_default_callback_list(rdp);
3096 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3097 if (lazy)
3098 rdp->qlen_lazy++;
3099 else
3100 rcu_idle_count_callbacks_posted();
3101 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3102 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3103 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3105 if (__is_kfree_rcu_offset((unsigned long)func))
3106 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3107 rdp->qlen_lazy, rdp->qlen);
3108 else
3109 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3111 /* Go handle any RCU core processing required. */
3112 __call_rcu_core(rsp, rdp, head, flags);
3113 local_irq_restore(flags);
3117 * Queue an RCU-sched callback for invocation after a grace period.
3119 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3121 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3123 EXPORT_SYMBOL_GPL(call_rcu_sched);
3126 * Queue an RCU callback for invocation after a quicker grace period.
3128 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3130 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3132 EXPORT_SYMBOL_GPL(call_rcu_bh);
3135 * Queue an RCU callback for lazy invocation after a grace period.
3136 * This will likely be later named something like "call_rcu_lazy()",
3137 * but this change will require some way of tagging the lazy RCU
3138 * callbacks in the list of pending callbacks. Until then, this
3139 * function may only be called from __kfree_rcu().
3141 void kfree_call_rcu(struct rcu_head *head,
3142 rcu_callback_t func)
3144 __call_rcu(head, func, rcu_state_p, -1, 1);
3146 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3149 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3150 * any blocking grace-period wait automatically implies a grace period
3151 * if there is only one CPU online at any point time during execution
3152 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3153 * occasionally incorrectly indicate that there are multiple CPUs online
3154 * when there was in fact only one the whole time, as this just adds
3155 * some overhead: RCU still operates correctly.
3157 static inline int rcu_blocking_is_gp(void)
3159 int ret;
3161 might_sleep(); /* Check for RCU read-side critical section. */
3162 preempt_disable();
3163 ret = num_online_cpus() <= 1;
3164 preempt_enable();
3165 return ret;
3169 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3171 * Control will return to the caller some time after a full rcu-sched
3172 * grace period has elapsed, in other words after all currently executing
3173 * rcu-sched read-side critical sections have completed. These read-side
3174 * critical sections are delimited by rcu_read_lock_sched() and
3175 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3176 * local_irq_disable(), and so on may be used in place of
3177 * rcu_read_lock_sched().
3179 * This means that all preempt_disable code sequences, including NMI and
3180 * non-threaded hardware-interrupt handlers, in progress on entry will
3181 * have completed before this primitive returns. However, this does not
3182 * guarantee that softirq handlers will have completed, since in some
3183 * kernels, these handlers can run in process context, and can block.
3185 * Note that this guarantee implies further memory-ordering guarantees.
3186 * On systems with more than one CPU, when synchronize_sched() returns,
3187 * each CPU is guaranteed to have executed a full memory barrier since the
3188 * end of its last RCU-sched read-side critical section whose beginning
3189 * preceded the call to synchronize_sched(). In addition, each CPU having
3190 * an RCU read-side critical section that extends beyond the return from
3191 * synchronize_sched() is guaranteed to have executed a full memory barrier
3192 * after the beginning of synchronize_sched() and before the beginning of
3193 * that RCU read-side critical section. Note that these guarantees include
3194 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3195 * that are executing in the kernel.
3197 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3198 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3199 * to have executed a full memory barrier during the execution of
3200 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3201 * again only if the system has more than one CPU).
3203 * This primitive provides the guarantees made by the (now removed)
3204 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3205 * guarantees that rcu_read_lock() sections will have completed.
3206 * In "classic RCU", these two guarantees happen to be one and
3207 * the same, but can differ in realtime RCU implementations.
3209 void synchronize_sched(void)
3211 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3212 lock_is_held(&rcu_lock_map) ||
3213 lock_is_held(&rcu_sched_lock_map),
3214 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3215 if (rcu_blocking_is_gp())
3216 return;
3217 if (rcu_gp_is_expedited())
3218 synchronize_sched_expedited();
3219 else
3220 wait_rcu_gp(call_rcu_sched);
3222 EXPORT_SYMBOL_GPL(synchronize_sched);
3225 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3227 * Control will return to the caller some time after a full rcu_bh grace
3228 * period has elapsed, in other words after all currently executing rcu_bh
3229 * read-side critical sections have completed. RCU read-side critical
3230 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3231 * and may be nested.
3233 * See the description of synchronize_sched() for more detailed information
3234 * on memory ordering guarantees.
3236 void synchronize_rcu_bh(void)
3238 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3239 lock_is_held(&rcu_lock_map) ||
3240 lock_is_held(&rcu_sched_lock_map),
3241 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3242 if (rcu_blocking_is_gp())
3243 return;
3244 if (rcu_gp_is_expedited())
3245 synchronize_rcu_bh_expedited();
3246 else
3247 wait_rcu_gp(call_rcu_bh);
3249 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3252 * get_state_synchronize_rcu - Snapshot current RCU state
3254 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3255 * to determine whether or not a full grace period has elapsed in the
3256 * meantime.
3258 unsigned long get_state_synchronize_rcu(void)
3261 * Any prior manipulation of RCU-protected data must happen
3262 * before the load from ->gpnum.
3264 smp_mb(); /* ^^^ */
3267 * Make sure this load happens before the purportedly
3268 * time-consuming work between get_state_synchronize_rcu()
3269 * and cond_synchronize_rcu().
3271 return smp_load_acquire(&rcu_state_p->gpnum);
3273 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3276 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3278 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3280 * If a full RCU grace period has elapsed since the earlier call to
3281 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3282 * synchronize_rcu() to wait for a full grace period.
3284 * Yes, this function does not take counter wrap into account. But
3285 * counter wrap is harmless. If the counter wraps, we have waited for
3286 * more than 2 billion grace periods (and way more on a 64-bit system!),
3287 * so waiting for one additional grace period should be just fine.
3289 void cond_synchronize_rcu(unsigned long oldstate)
3291 unsigned long newstate;
3294 * Ensure that this load happens before any RCU-destructive
3295 * actions the caller might carry out after we return.
3297 newstate = smp_load_acquire(&rcu_state_p->completed);
3298 if (ULONG_CMP_GE(oldstate, newstate))
3299 synchronize_rcu();
3301 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3304 * get_state_synchronize_sched - Snapshot current RCU-sched state
3306 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3307 * to determine whether or not a full grace period has elapsed in the
3308 * meantime.
3310 unsigned long get_state_synchronize_sched(void)
3313 * Any prior manipulation of RCU-protected data must happen
3314 * before the load from ->gpnum.
3316 smp_mb(); /* ^^^ */
3319 * Make sure this load happens before the purportedly
3320 * time-consuming work between get_state_synchronize_sched()
3321 * and cond_synchronize_sched().
3323 return smp_load_acquire(&rcu_sched_state.gpnum);
3325 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3328 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3330 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3332 * If a full RCU-sched grace period has elapsed since the earlier call to
3333 * get_state_synchronize_sched(), just return. Otherwise, invoke
3334 * synchronize_sched() to wait for a full grace period.
3336 * Yes, this function does not take counter wrap into account. But
3337 * counter wrap is harmless. If the counter wraps, we have waited for
3338 * more than 2 billion grace periods (and way more on a 64-bit system!),
3339 * so waiting for one additional grace period should be just fine.
3341 void cond_synchronize_sched(unsigned long oldstate)
3343 unsigned long newstate;
3346 * Ensure that this load happens before any RCU-destructive
3347 * actions the caller might carry out after we return.
3349 newstate = smp_load_acquire(&rcu_sched_state.completed);
3350 if (ULONG_CMP_GE(oldstate, newstate))
3351 synchronize_sched();
3353 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3355 /* Adjust sequence number for start of update-side operation. */
3356 static void rcu_seq_start(unsigned long *sp)
3358 WRITE_ONCE(*sp, *sp + 1);
3359 smp_mb(); /* Ensure update-side operation after counter increment. */
3360 WARN_ON_ONCE(!(*sp & 0x1));
3363 /* Adjust sequence number for end of update-side operation. */
3364 static void rcu_seq_end(unsigned long *sp)
3366 smp_mb(); /* Ensure update-side operation before counter increment. */
3367 WRITE_ONCE(*sp, *sp + 1);
3368 WARN_ON_ONCE(*sp & 0x1);
3371 /* Take a snapshot of the update side's sequence number. */
3372 static unsigned long rcu_seq_snap(unsigned long *sp)
3374 unsigned long s;
3376 s = (READ_ONCE(*sp) + 3) & ~0x1;
3377 smp_mb(); /* Above access must not bleed into critical section. */
3378 return s;
3382 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3383 * full update-side operation has occurred.
3385 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3387 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3390 /* Wrapper functions for expedited grace periods. */
3391 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3393 rcu_seq_start(&rsp->expedited_sequence);
3395 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3397 rcu_seq_end(&rsp->expedited_sequence);
3398 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3400 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3402 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3403 return rcu_seq_snap(&rsp->expedited_sequence);
3405 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3407 return rcu_seq_done(&rsp->expedited_sequence, s);
3411 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3412 * recent CPU-online activity. Note that these masks are not cleared
3413 * when CPUs go offline, so they reflect the union of all CPUs that have
3414 * ever been online. This means that this function normally takes its
3415 * no-work-to-do fastpath.
3417 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3419 bool done;
3420 unsigned long flags;
3421 unsigned long mask;
3422 unsigned long oldmask;
3423 int ncpus = READ_ONCE(rsp->ncpus);
3424 struct rcu_node *rnp;
3425 struct rcu_node *rnp_up;
3427 /* If no new CPUs onlined since last time, nothing to do. */
3428 if (likely(ncpus == rsp->ncpus_snap))
3429 return;
3430 rsp->ncpus_snap = ncpus;
3433 * Each pass through the following loop propagates newly onlined
3434 * CPUs for the current rcu_node structure up the rcu_node tree.
3436 rcu_for_each_leaf_node(rsp, rnp) {
3437 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3438 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3439 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3440 continue; /* No new CPUs, nothing to do. */
3443 /* Update this node's mask, track old value for propagation. */
3444 oldmask = rnp->expmaskinit;
3445 rnp->expmaskinit = rnp->expmaskinitnext;
3446 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3448 /* If was already nonzero, nothing to propagate. */
3449 if (oldmask)
3450 continue;
3452 /* Propagate the new CPU up the tree. */
3453 mask = rnp->grpmask;
3454 rnp_up = rnp->parent;
3455 done = false;
3456 while (rnp_up) {
3457 raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3458 if (rnp_up->expmaskinit)
3459 done = true;
3460 rnp_up->expmaskinit |= mask;
3461 raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
3462 if (done)
3463 break;
3464 mask = rnp_up->grpmask;
3465 rnp_up = rnp_up->parent;
3471 * Reset the ->expmask values in the rcu_node tree in preparation for
3472 * a new expedited grace period.
3474 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3476 unsigned long flags;
3477 struct rcu_node *rnp;
3479 sync_exp_reset_tree_hotplug(rsp);
3480 rcu_for_each_node_breadth_first(rsp, rnp) {
3481 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3482 WARN_ON_ONCE(rnp->expmask);
3483 rnp->expmask = rnp->expmaskinit;
3484 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3489 * Return non-zero if there is no RCU expedited grace period in progress
3490 * for the specified rcu_node structure, in other words, if all CPUs and
3491 * tasks covered by the specified rcu_node structure have done their bit
3492 * for the current expedited grace period. Works only for preemptible
3493 * RCU -- other RCU implementation use other means.
3495 * Caller must hold the root rcu_node's exp_funnel_mutex.
3497 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3499 return rnp->exp_tasks == NULL &&
3500 READ_ONCE(rnp->expmask) == 0;
3504 * Report the exit from RCU read-side critical section for the last task
3505 * that queued itself during or before the current expedited preemptible-RCU
3506 * grace period. This event is reported either to the rcu_node structure on
3507 * which the task was queued or to one of that rcu_node structure's ancestors,
3508 * recursively up the tree. (Calm down, calm down, we do the recursion
3509 * iteratively!)
3511 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3512 * specified rcu_node structure's ->lock.
3514 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3515 bool wake, unsigned long flags)
3516 __releases(rnp->lock)
3518 unsigned long mask;
3520 for (;;) {
3521 if (!sync_rcu_preempt_exp_done(rnp)) {
3522 if (!rnp->expmask)
3523 rcu_initiate_boost(rnp, flags);
3524 else
3525 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3526 break;
3528 if (rnp->parent == NULL) {
3529 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3530 if (wake) {
3531 smp_mb(); /* EGP done before wake_up(). */
3532 wake_up(&rsp->expedited_wq);
3534 break;
3536 mask = rnp->grpmask;
3537 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
3538 rnp = rnp->parent;
3539 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3540 WARN_ON_ONCE(!(rnp->expmask & mask));
3541 rnp->expmask &= ~mask;
3546 * Report expedited quiescent state for specified node. This is a
3547 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3549 * Caller must hold the root rcu_node's exp_funnel_mutex.
3551 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3552 struct rcu_node *rnp, bool wake)
3554 unsigned long flags;
3556 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3557 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3561 * Report expedited quiescent state for multiple CPUs, all covered by the
3562 * specified leaf rcu_node structure. Caller must hold the root
3563 * rcu_node's exp_funnel_mutex.
3565 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3566 unsigned long mask, bool wake)
3568 unsigned long flags;
3570 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3571 if (!(rnp->expmask & mask)) {
3572 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3573 return;
3575 rnp->expmask &= ~mask;
3576 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3580 * Report expedited quiescent state for specified rcu_data (CPU).
3581 * Caller must hold the root rcu_node's exp_funnel_mutex.
3583 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3584 bool wake)
3586 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3589 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3590 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3591 struct rcu_data *rdp,
3592 atomic_long_t *stat, unsigned long s)
3594 if (rcu_exp_gp_seq_done(rsp, s)) {
3595 if (rnp)
3596 mutex_unlock(&rnp->exp_funnel_mutex);
3597 else if (rdp)
3598 mutex_unlock(&rdp->exp_funnel_mutex);
3599 /* Ensure test happens before caller kfree(). */
3600 smp_mb__before_atomic(); /* ^^^ */
3601 atomic_long_inc(stat);
3602 return true;
3604 return false;
3608 * Funnel-lock acquisition for expedited grace periods. Returns a
3609 * pointer to the root rcu_node structure, or NULL if some other
3610 * task did the expedited grace period for us.
3612 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3614 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3615 struct rcu_node *rnp0;
3616 struct rcu_node *rnp1 = NULL;
3619 * First try directly acquiring the root lock in order to reduce
3620 * latency in the common case where expedited grace periods are
3621 * rare. We check mutex_is_locked() to avoid pathological levels of
3622 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3624 rnp0 = rcu_get_root(rsp);
3625 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3626 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3627 if (sync_exp_work_done(rsp, rnp0, NULL,
3628 &rdp->expedited_workdone0, s))
3629 return NULL;
3630 return rnp0;
3635 * Each pass through the following loop works its way
3636 * up the rcu_node tree, returning if others have done the
3637 * work or otherwise falls through holding the root rnp's
3638 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3639 * can be inexact, as it is just promoting locality and is not
3640 * strictly needed for correctness.
3642 if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3643 return NULL;
3644 mutex_lock(&rdp->exp_funnel_mutex);
3645 rnp0 = rdp->mynode;
3646 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3647 if (sync_exp_work_done(rsp, rnp1, rdp,
3648 &rdp->expedited_workdone2, s))
3649 return NULL;
3650 mutex_lock(&rnp0->exp_funnel_mutex);
3651 if (rnp1)
3652 mutex_unlock(&rnp1->exp_funnel_mutex);
3653 else
3654 mutex_unlock(&rdp->exp_funnel_mutex);
3655 rnp1 = rnp0;
3657 if (sync_exp_work_done(rsp, rnp1, rdp,
3658 &rdp->expedited_workdone3, s))
3659 return NULL;
3660 return rnp1;
3663 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3664 static void sync_sched_exp_handler(void *data)
3666 struct rcu_data *rdp;
3667 struct rcu_node *rnp;
3668 struct rcu_state *rsp = data;
3670 rdp = this_cpu_ptr(rsp->rda);
3671 rnp = rdp->mynode;
3672 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3673 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3674 return;
3675 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3676 resched_cpu(smp_processor_id());
3679 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3680 static void sync_sched_exp_online_cleanup(int cpu)
3682 struct rcu_data *rdp;
3683 int ret;
3684 struct rcu_node *rnp;
3685 struct rcu_state *rsp = &rcu_sched_state;
3687 rdp = per_cpu_ptr(rsp->rda, cpu);
3688 rnp = rdp->mynode;
3689 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3690 return;
3691 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3692 WARN_ON_ONCE(ret);
3696 * Select the nodes that the upcoming expedited grace period needs
3697 * to wait for.
3699 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3700 smp_call_func_t func)
3702 int cpu;
3703 unsigned long flags;
3704 unsigned long mask;
3705 unsigned long mask_ofl_test;
3706 unsigned long mask_ofl_ipi;
3707 int ret;
3708 struct rcu_node *rnp;
3710 sync_exp_reset_tree(rsp);
3711 rcu_for_each_leaf_node(rsp, rnp) {
3712 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3714 /* Each pass checks a CPU for identity, offline, and idle. */
3715 mask_ofl_test = 0;
3716 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3718 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3720 if (raw_smp_processor_id() == cpu ||
3721 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3722 mask_ofl_test |= rdp->grpmask;
3724 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3727 * Need to wait for any blocked tasks as well. Note that
3728 * additional blocking tasks will also block the expedited
3729 * GP until such time as the ->expmask bits are cleared.
3731 if (rcu_preempt_has_tasks(rnp))
3732 rnp->exp_tasks = rnp->blkd_tasks.next;
3733 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3735 /* IPI the remaining CPUs for expedited quiescent state. */
3736 mask = 1;
3737 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3738 if (!(mask_ofl_ipi & mask))
3739 continue;
3740 retry_ipi:
3741 ret = smp_call_function_single(cpu, func, rsp, 0);
3742 if (!ret) {
3743 mask_ofl_ipi &= ~mask;
3744 continue;
3746 /* Failed, raced with offline. */
3747 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748 if (cpu_online(cpu) &&
3749 (rnp->expmask & mask)) {
3750 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3751 schedule_timeout_uninterruptible(1);
3752 if (cpu_online(cpu) &&
3753 (rnp->expmask & mask))
3754 goto retry_ipi;
3755 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3757 if (!(rnp->expmask & mask))
3758 mask_ofl_ipi &= ~mask;
3759 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3761 /* Report quiescent states for those that went offline. */
3762 mask_ofl_test |= mask_ofl_ipi;
3763 if (mask_ofl_test)
3764 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3768 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3770 int cpu;
3771 unsigned long jiffies_stall;
3772 unsigned long jiffies_start;
3773 unsigned long mask;
3774 int ndetected;
3775 struct rcu_node *rnp;
3776 struct rcu_node *rnp_root = rcu_get_root(rsp);
3777 int ret;
3779 jiffies_stall = rcu_jiffies_till_stall_check();
3780 jiffies_start = jiffies;
3782 for (;;) {
3783 ret = wait_event_interruptible_timeout(
3784 rsp->expedited_wq,
3785 sync_rcu_preempt_exp_done(rnp_root),
3786 jiffies_stall);
3787 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3788 return;
3789 if (ret < 0) {
3790 /* Hit a signal, disable CPU stall warnings. */
3791 wait_event(rsp->expedited_wq,
3792 sync_rcu_preempt_exp_done(rnp_root));
3793 return;
3795 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3796 rsp->name);
3797 ndetected = 0;
3798 rcu_for_each_leaf_node(rsp, rnp) {
3799 ndetected = rcu_print_task_exp_stall(rnp);
3800 mask = 1;
3801 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3802 struct rcu_data *rdp;
3804 if (!(rnp->expmask & mask))
3805 continue;
3806 ndetected++;
3807 rdp = per_cpu_ptr(rsp->rda, cpu);
3808 pr_cont(" %d-%c%c%c", cpu,
3809 "O."[cpu_online(cpu)],
3810 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3811 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3813 mask <<= 1;
3815 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3816 jiffies - jiffies_start, rsp->expedited_sequence,
3817 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3818 if (!ndetected) {
3819 pr_err("blocking rcu_node structures:");
3820 rcu_for_each_node_breadth_first(rsp, rnp) {
3821 if (rnp == rnp_root)
3822 continue; /* printed unconditionally */
3823 if (sync_rcu_preempt_exp_done(rnp))
3824 continue;
3825 pr_cont(" l=%u:%d-%d:%#lx/%c",
3826 rnp->level, rnp->grplo, rnp->grphi,
3827 rnp->expmask,
3828 ".T"[!!rnp->exp_tasks]);
3830 pr_cont("\n");
3832 rcu_for_each_leaf_node(rsp, rnp) {
3833 mask = 1;
3834 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3835 if (!(rnp->expmask & mask))
3836 continue;
3837 dump_cpu_task(cpu);
3840 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3845 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3847 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3848 * approach to force the grace period to end quickly. This consumes
3849 * significant time on all CPUs and is unfriendly to real-time workloads,
3850 * so is thus not recommended for any sort of common-case code. In fact,
3851 * if you are using synchronize_sched_expedited() in a loop, please
3852 * restructure your code to batch your updates, and then use a single
3853 * synchronize_sched() instead.
3855 * This implementation can be thought of as an application of sequence
3856 * locking to expedited grace periods, but using the sequence counter to
3857 * determine when someone else has already done the work instead of for
3858 * retrying readers.
3860 void synchronize_sched_expedited(void)
3862 unsigned long s;
3863 struct rcu_node *rnp;
3864 struct rcu_state *rsp = &rcu_sched_state;
3866 /* If only one CPU, this is automatically a grace period. */
3867 if (rcu_blocking_is_gp())
3868 return;
3870 /* If expedited grace periods are prohibited, fall back to normal. */
3871 if (rcu_gp_is_normal()) {
3872 wait_rcu_gp(call_rcu_sched);
3873 return;
3876 /* Take a snapshot of the sequence number. */
3877 s = rcu_exp_gp_seq_snap(rsp);
3879 rnp = exp_funnel_lock(rsp, s);
3880 if (rnp == NULL)
3881 return; /* Someone else did our work for us. */
3883 rcu_exp_gp_seq_start(rsp);
3884 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3885 synchronize_sched_expedited_wait(rsp);
3887 rcu_exp_gp_seq_end(rsp);
3888 mutex_unlock(&rnp->exp_funnel_mutex);
3890 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3893 * Check to see if there is any immediate RCU-related work to be done
3894 * by the current CPU, for the specified type of RCU, returning 1 if so.
3895 * The checks are in order of increasing expense: checks that can be
3896 * carried out against CPU-local state are performed first. However,
3897 * we must check for CPU stalls first, else we might not get a chance.
3899 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3901 struct rcu_node *rnp = rdp->mynode;
3903 rdp->n_rcu_pending++;
3905 /* Check for CPU stalls, if enabled. */
3906 check_cpu_stall(rsp, rdp);
3908 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3909 if (rcu_nohz_full_cpu(rsp))
3910 return 0;
3912 /* Is the RCU core waiting for a quiescent state from this CPU? */
3913 if (rcu_scheduler_fully_active &&
3914 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3915 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3916 rdp->n_rp_core_needs_qs++;
3917 } else if (rdp->core_needs_qs &&
3918 (!rdp->cpu_no_qs.b.norm ||
3919 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3920 rdp->n_rp_report_qs++;
3921 return 1;
3924 /* Does this CPU have callbacks ready to invoke? */
3925 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3926 rdp->n_rp_cb_ready++;
3927 return 1;
3930 /* Has RCU gone idle with this CPU needing another grace period? */
3931 if (cpu_needs_another_gp(rsp, rdp)) {
3932 rdp->n_rp_cpu_needs_gp++;
3933 return 1;
3936 /* Has another RCU grace period completed? */
3937 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3938 rdp->n_rp_gp_completed++;
3939 return 1;
3942 /* Has a new RCU grace period started? */
3943 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3944 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3945 rdp->n_rp_gp_started++;
3946 return 1;
3949 /* Does this CPU need a deferred NOCB wakeup? */
3950 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3951 rdp->n_rp_nocb_defer_wakeup++;
3952 return 1;
3955 /* nothing to do */
3956 rdp->n_rp_need_nothing++;
3957 return 0;
3961 * Check to see if there is any immediate RCU-related work to be done
3962 * by the current CPU, returning 1 if so. This function is part of the
3963 * RCU implementation; it is -not- an exported member of the RCU API.
3965 static int rcu_pending(void)
3967 struct rcu_state *rsp;
3969 for_each_rcu_flavor(rsp)
3970 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3971 return 1;
3972 return 0;
3976 * Return true if the specified CPU has any callback. If all_lazy is
3977 * non-NULL, store an indication of whether all callbacks are lazy.
3978 * (If there are no callbacks, all of them are deemed to be lazy.)
3980 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3982 bool al = true;
3983 bool hc = false;
3984 struct rcu_data *rdp;
3985 struct rcu_state *rsp;
3987 for_each_rcu_flavor(rsp) {
3988 rdp = this_cpu_ptr(rsp->rda);
3989 if (!rdp->nxtlist)
3990 continue;
3991 hc = true;
3992 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3993 al = false;
3994 break;
3997 if (all_lazy)
3998 *all_lazy = al;
3999 return hc;
4003 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
4004 * the compiler is expected to optimize this away.
4006 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
4007 int cpu, unsigned long done)
4009 trace_rcu_barrier(rsp->name, s, cpu,
4010 atomic_read(&rsp->barrier_cpu_count), done);
4014 * RCU callback function for _rcu_barrier(). If we are last, wake
4015 * up the task executing _rcu_barrier().
4017 static void rcu_barrier_callback(struct rcu_head *rhp)
4019 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
4020 struct rcu_state *rsp = rdp->rsp;
4022 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4023 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4024 complete(&rsp->barrier_completion);
4025 } else {
4026 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4031 * Called with preemption disabled, and from cross-cpu IRQ context.
4033 static void rcu_barrier_func(void *type)
4035 struct rcu_state *rsp = type;
4036 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4038 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4039 atomic_inc(&rsp->barrier_cpu_count);
4040 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4044 * Orchestrate the specified type of RCU barrier, waiting for all
4045 * RCU callbacks of the specified type to complete.
4047 static void _rcu_barrier(struct rcu_state *rsp)
4049 int cpu;
4050 struct rcu_data *rdp;
4051 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4053 _rcu_barrier_trace(rsp, "Begin", -1, s);
4055 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4056 mutex_lock(&rsp->barrier_mutex);
4058 /* Did someone else do our work for us? */
4059 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4060 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4061 smp_mb(); /* caller's subsequent code after above check. */
4062 mutex_unlock(&rsp->barrier_mutex);
4063 return;
4066 /* Mark the start of the barrier operation. */
4067 rcu_seq_start(&rsp->barrier_sequence);
4068 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4071 * Initialize the count to one rather than to zero in order to
4072 * avoid a too-soon return to zero in case of a short grace period
4073 * (or preemption of this task). Exclude CPU-hotplug operations
4074 * to ensure that no offline CPU has callbacks queued.
4076 init_completion(&rsp->barrier_completion);
4077 atomic_set(&rsp->barrier_cpu_count, 1);
4078 get_online_cpus();
4081 * Force each CPU with callbacks to register a new callback.
4082 * When that callback is invoked, we will know that all of the
4083 * corresponding CPU's preceding callbacks have been invoked.
4085 for_each_possible_cpu(cpu) {
4086 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4087 continue;
4088 rdp = per_cpu_ptr(rsp->rda, cpu);
4089 if (rcu_is_nocb_cpu(cpu)) {
4090 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4091 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4092 rsp->barrier_sequence);
4093 } else {
4094 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4095 rsp->barrier_sequence);
4096 smp_mb__before_atomic();
4097 atomic_inc(&rsp->barrier_cpu_count);
4098 __call_rcu(&rdp->barrier_head,
4099 rcu_barrier_callback, rsp, cpu, 0);
4101 } else if (READ_ONCE(rdp->qlen)) {
4102 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4103 rsp->barrier_sequence);
4104 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4105 } else {
4106 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4107 rsp->barrier_sequence);
4110 put_online_cpus();
4113 * Now that we have an rcu_barrier_callback() callback on each
4114 * CPU, and thus each counted, remove the initial count.
4116 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4117 complete(&rsp->barrier_completion);
4119 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4120 wait_for_completion(&rsp->barrier_completion);
4122 /* Mark the end of the barrier operation. */
4123 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4124 rcu_seq_end(&rsp->barrier_sequence);
4126 /* Other rcu_barrier() invocations can now safely proceed. */
4127 mutex_unlock(&rsp->barrier_mutex);
4131 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4133 void rcu_barrier_bh(void)
4135 _rcu_barrier(&rcu_bh_state);
4137 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4140 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4142 void rcu_barrier_sched(void)
4144 _rcu_barrier(&rcu_sched_state);
4146 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4149 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4150 * first CPU in a given leaf rcu_node structure coming online. The caller
4151 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4152 * disabled.
4154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4156 long mask;
4157 struct rcu_node *rnp = rnp_leaf;
4159 for (;;) {
4160 mask = rnp->grpmask;
4161 rnp = rnp->parent;
4162 if (rnp == NULL)
4163 return;
4164 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4165 rnp->qsmaskinit |= mask;
4166 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
4171 * Do boot-time initialization of a CPU's per-CPU RCU data.
4173 static void __init
4174 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4176 unsigned long flags;
4177 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4178 struct rcu_node *rnp = rcu_get_root(rsp);
4180 /* Set up local state, ensuring consistent view of global state. */
4181 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4182 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4183 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4184 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4185 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4186 rdp->cpu = cpu;
4187 rdp->rsp = rsp;
4188 mutex_init(&rdp->exp_funnel_mutex);
4189 rcu_boot_init_nocb_percpu_data(rdp);
4190 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4194 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4195 * offline event can be happening at a given time. Note also that we
4196 * can accept some slop in the rsp->completed access due to the fact
4197 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4199 static void
4200 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4202 unsigned long flags;
4203 unsigned long mask;
4204 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4205 struct rcu_node *rnp = rcu_get_root(rsp);
4207 /* Set up local state, ensuring consistent view of global state. */
4208 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4209 rdp->qlen_last_fqs_check = 0;
4210 rdp->n_force_qs_snap = rsp->n_force_qs;
4211 rdp->blimit = blimit;
4212 if (!rdp->nxtlist)
4213 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
4214 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4215 rcu_sysidle_init_percpu_data(rdp->dynticks);
4216 atomic_set(&rdp->dynticks->dynticks,
4217 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4218 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
4221 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4222 * propagation up the rcu_node tree will happen at the beginning
4223 * of the next grace period.
4225 rnp = rdp->mynode;
4226 mask = rdp->grpmask;
4227 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4228 rnp->qsmaskinitnext |= mask;
4229 rnp->expmaskinitnext |= mask;
4230 if (!rdp->beenonline)
4231 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4232 rdp->beenonline = true; /* We have now been online. */
4233 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4234 rdp->completed = rnp->completed;
4235 rdp->cpu_no_qs.b.norm = true;
4236 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4237 rdp->core_needs_qs = false;
4238 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4239 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4242 static void rcu_prepare_cpu(int cpu)
4244 struct rcu_state *rsp;
4246 for_each_rcu_flavor(rsp)
4247 rcu_init_percpu_data(cpu, rsp);
4251 * Handle CPU online/offline notification events.
4253 int rcu_cpu_notify(struct notifier_block *self,
4254 unsigned long action, void *hcpu)
4256 long cpu = (long)hcpu;
4257 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4258 struct rcu_node *rnp = rdp->mynode;
4259 struct rcu_state *rsp;
4261 switch (action) {
4262 case CPU_UP_PREPARE:
4263 case CPU_UP_PREPARE_FROZEN:
4264 rcu_prepare_cpu(cpu);
4265 rcu_prepare_kthreads(cpu);
4266 rcu_spawn_all_nocb_kthreads(cpu);
4267 break;
4268 case CPU_ONLINE:
4269 case CPU_DOWN_FAILED:
4270 sync_sched_exp_online_cleanup(cpu);
4271 rcu_boost_kthread_setaffinity(rnp, -1);
4272 break;
4273 case CPU_DOWN_PREPARE:
4274 rcu_boost_kthread_setaffinity(rnp, cpu);
4275 break;
4276 case CPU_DYING:
4277 case CPU_DYING_FROZEN:
4278 for_each_rcu_flavor(rsp)
4279 rcu_cleanup_dying_cpu(rsp);
4280 break;
4281 case CPU_DYING_IDLE:
4282 /* QS for any half-done expedited RCU-sched GP. */
4283 preempt_disable();
4284 rcu_report_exp_rdp(&rcu_sched_state,
4285 this_cpu_ptr(rcu_sched_state.rda), true);
4286 preempt_enable();
4288 for_each_rcu_flavor(rsp) {
4289 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4291 break;
4292 case CPU_DEAD:
4293 case CPU_DEAD_FROZEN:
4294 case CPU_UP_CANCELED:
4295 case CPU_UP_CANCELED_FROZEN:
4296 for_each_rcu_flavor(rsp) {
4297 rcu_cleanup_dead_cpu(cpu, rsp);
4298 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4300 break;
4301 default:
4302 break;
4304 return NOTIFY_OK;
4307 static int rcu_pm_notify(struct notifier_block *self,
4308 unsigned long action, void *hcpu)
4310 switch (action) {
4311 case PM_HIBERNATION_PREPARE:
4312 case PM_SUSPEND_PREPARE:
4313 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4314 rcu_expedite_gp();
4315 break;
4316 case PM_POST_HIBERNATION:
4317 case PM_POST_SUSPEND:
4318 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4319 rcu_unexpedite_gp();
4320 break;
4321 default:
4322 break;
4324 return NOTIFY_OK;
4328 * Spawn the kthreads that handle each RCU flavor's grace periods.
4330 static int __init rcu_spawn_gp_kthread(void)
4332 unsigned long flags;
4333 int kthread_prio_in = kthread_prio;
4334 struct rcu_node *rnp;
4335 struct rcu_state *rsp;
4336 struct sched_param sp;
4337 struct task_struct *t;
4339 /* Force priority into range. */
4340 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4341 kthread_prio = 1;
4342 else if (kthread_prio < 0)
4343 kthread_prio = 0;
4344 else if (kthread_prio > 99)
4345 kthread_prio = 99;
4346 if (kthread_prio != kthread_prio_in)
4347 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4348 kthread_prio, kthread_prio_in);
4350 rcu_scheduler_fully_active = 1;
4351 for_each_rcu_flavor(rsp) {
4352 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4353 BUG_ON(IS_ERR(t));
4354 rnp = rcu_get_root(rsp);
4355 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4356 rsp->gp_kthread = t;
4357 if (kthread_prio) {
4358 sp.sched_priority = kthread_prio;
4359 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4361 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4362 wake_up_process(t);
4364 rcu_spawn_nocb_kthreads();
4365 rcu_spawn_boost_kthreads();
4366 return 0;
4368 early_initcall(rcu_spawn_gp_kthread);
4371 * This function is invoked towards the end of the scheduler's initialization
4372 * process. Before this is called, the idle task might contain
4373 * RCU read-side critical sections (during which time, this idle
4374 * task is booting the system). After this function is called, the
4375 * idle tasks are prohibited from containing RCU read-side critical
4376 * sections. This function also enables RCU lockdep checking.
4378 void rcu_scheduler_starting(void)
4380 WARN_ON(num_online_cpus() != 1);
4381 WARN_ON(nr_context_switches() > 0);
4382 rcu_scheduler_active = 1;
4386 * Compute the per-level fanout, either using the exact fanout specified
4387 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4389 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4391 int i;
4393 if (rcu_fanout_exact) {
4394 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4395 for (i = rcu_num_lvls - 2; i >= 0; i--)
4396 levelspread[i] = RCU_FANOUT;
4397 } else {
4398 int ccur;
4399 int cprv;
4401 cprv = nr_cpu_ids;
4402 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4403 ccur = levelcnt[i];
4404 levelspread[i] = (cprv + ccur - 1) / ccur;
4405 cprv = ccur;
4411 * Helper function for rcu_init() that initializes one rcu_state structure.
4413 static void __init rcu_init_one(struct rcu_state *rsp)
4415 static const char * const buf[] = RCU_NODE_NAME_INIT;
4416 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4417 static const char * const exp[] = RCU_EXP_NAME_INIT;
4418 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4419 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4420 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4421 static u8 fl_mask = 0x1;
4423 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4424 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4425 int cpustride = 1;
4426 int i;
4427 int j;
4428 struct rcu_node *rnp;
4430 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4432 /* Silence gcc 4.8 false positive about array index out of range. */
4433 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4434 panic("rcu_init_one: rcu_num_lvls out of range");
4436 /* Initialize the level-tracking arrays. */
4438 for (i = 0; i < rcu_num_lvls; i++)
4439 levelcnt[i] = num_rcu_lvl[i];
4440 for (i = 1; i < rcu_num_lvls; i++)
4441 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4442 rcu_init_levelspread(levelspread, levelcnt);
4443 rsp->flavor_mask = fl_mask;
4444 fl_mask <<= 1;
4446 /* Initialize the elements themselves, starting from the leaves. */
4448 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4449 cpustride *= levelspread[i];
4450 rnp = rsp->level[i];
4451 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4452 raw_spin_lock_init(&rnp->lock);
4453 lockdep_set_class_and_name(&rnp->lock,
4454 &rcu_node_class[i], buf[i]);
4455 raw_spin_lock_init(&rnp->fqslock);
4456 lockdep_set_class_and_name(&rnp->fqslock,
4457 &rcu_fqs_class[i], fqs[i]);
4458 rnp->gpnum = rsp->gpnum;
4459 rnp->completed = rsp->completed;
4460 rnp->qsmask = 0;
4461 rnp->qsmaskinit = 0;
4462 rnp->grplo = j * cpustride;
4463 rnp->grphi = (j + 1) * cpustride - 1;
4464 if (rnp->grphi >= nr_cpu_ids)
4465 rnp->grphi = nr_cpu_ids - 1;
4466 if (i == 0) {
4467 rnp->grpnum = 0;
4468 rnp->grpmask = 0;
4469 rnp->parent = NULL;
4470 } else {
4471 rnp->grpnum = j % levelspread[i - 1];
4472 rnp->grpmask = 1UL << rnp->grpnum;
4473 rnp->parent = rsp->level[i - 1] +
4474 j / levelspread[i - 1];
4476 rnp->level = i;
4477 INIT_LIST_HEAD(&rnp->blkd_tasks);
4478 rcu_init_one_nocb(rnp);
4479 mutex_init(&rnp->exp_funnel_mutex);
4480 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4481 &rcu_exp_class[i], exp[i]);
4485 init_waitqueue_head(&rsp->gp_wq);
4486 init_waitqueue_head(&rsp->expedited_wq);
4487 rnp = rsp->level[rcu_num_lvls - 1];
4488 for_each_possible_cpu(i) {
4489 while (i > rnp->grphi)
4490 rnp++;
4491 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4492 rcu_boot_init_percpu_data(i, rsp);
4494 list_add(&rsp->flavors, &rcu_struct_flavors);
4498 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4499 * replace the definitions in tree.h because those are needed to size
4500 * the ->node array in the rcu_state structure.
4502 static void __init rcu_init_geometry(void)
4504 ulong d;
4505 int i;
4506 int rcu_capacity[RCU_NUM_LVLS];
4509 * Initialize any unspecified boot parameters.
4510 * The default values of jiffies_till_first_fqs and
4511 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4512 * value, which is a function of HZ, then adding one for each
4513 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4515 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4516 if (jiffies_till_first_fqs == ULONG_MAX)
4517 jiffies_till_first_fqs = d;
4518 if (jiffies_till_next_fqs == ULONG_MAX)
4519 jiffies_till_next_fqs = d;
4521 /* If the compile-time values are accurate, just leave. */
4522 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4523 nr_cpu_ids == NR_CPUS)
4524 return;
4525 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4526 rcu_fanout_leaf, nr_cpu_ids);
4529 * The boot-time rcu_fanout_leaf parameter must be at least two
4530 * and cannot exceed the number of bits in the rcu_node masks.
4531 * Complain and fall back to the compile-time values if this
4532 * limit is exceeded.
4534 if (rcu_fanout_leaf < 2 ||
4535 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4536 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4537 WARN_ON(1);
4538 return;
4542 * Compute number of nodes that can be handled an rcu_node tree
4543 * with the given number of levels.
4545 rcu_capacity[0] = rcu_fanout_leaf;
4546 for (i = 1; i < RCU_NUM_LVLS; i++)
4547 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4550 * The tree must be able to accommodate the configured number of CPUs.
4551 * If this limit is exceeded, fall back to the compile-time values.
4553 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4554 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4555 WARN_ON(1);
4556 return;
4559 /* Calculate the number of levels in the tree. */
4560 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4562 rcu_num_lvls = i + 1;
4564 /* Calculate the number of rcu_nodes at each level of the tree. */
4565 for (i = 0; i < rcu_num_lvls; i++) {
4566 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4567 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4570 /* Calculate the total number of rcu_node structures. */
4571 rcu_num_nodes = 0;
4572 for (i = 0; i < rcu_num_lvls; i++)
4573 rcu_num_nodes += num_rcu_lvl[i];
4577 * Dump out the structure of the rcu_node combining tree associated
4578 * with the rcu_state structure referenced by rsp.
4580 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4582 int level = 0;
4583 struct rcu_node *rnp;
4585 pr_info("rcu_node tree layout dump\n");
4586 pr_info(" ");
4587 rcu_for_each_node_breadth_first(rsp, rnp) {
4588 if (rnp->level != level) {
4589 pr_cont("\n");
4590 pr_info(" ");
4591 level = rnp->level;
4593 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4595 pr_cont("\n");
4598 void __init rcu_init(void)
4600 int cpu;
4602 rcu_early_boot_tests();
4604 rcu_bootup_announce();
4605 rcu_init_geometry();
4606 rcu_init_one(&rcu_bh_state);
4607 rcu_init_one(&rcu_sched_state);
4608 if (dump_tree)
4609 rcu_dump_rcu_node_tree(&rcu_sched_state);
4610 __rcu_init_preempt();
4611 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4614 * We don't need protection against CPU-hotplug here because
4615 * this is called early in boot, before either interrupts
4616 * or the scheduler are operational.
4618 cpu_notifier(rcu_cpu_notify, 0);
4619 pm_notifier(rcu_pm_notify, 0);
4620 for_each_online_cpu(cpu)
4621 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4624 #include "tree_plugin.h"