irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / kernel / sched / deadline.c
blobcd64c979d0e1857aceb8f9f4383c507ad5fa6809
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
17 #include "sched.h"
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth;
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 return container_of(dl_se, struct task_struct, dl);
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 return container_of(dl_rq, struct rq, dl);
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
38 return &rq->dl;
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
48 struct sched_dl_entity *dl_se = &p->dl;
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
60 void init_dl_bw(struct dl_bw *dl_b)
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
72 void init_dl_rq(struct dl_rq *dl_rq)
74 dl_rq->rb_root = RB_ROOT;
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
88 #ifdef CONFIG_SMP
90 static inline int dl_overloaded(struct rq *rq)
92 return atomic_read(&rq->rd->dlo_count);
95 static inline void dl_set_overload(struct rq *rq)
97 if (!rq->online)
98 return;
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
111 static inline void dl_clear_overload(struct rq *rq)
113 if (!rq->online)
114 return;
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 static void update_dl_migration(struct dl_rq *dl_rq)
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
135 struct task_struct *p = dl_task_of(dl_se);
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
140 update_dl_migration(dl_rq);
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
145 struct task_struct *p = dl_task_of(dl_se);
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
150 update_dl_migration(dl_rq);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
179 if (leftmost) {
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 dl_rq->earliest_dl.next = p->dl.deadline;
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
190 struct dl_rq *dl_rq = &rq->dl;
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 if (next_node) {
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
210 static inline int has_pushable_dl_tasks(struct rq *rq)
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
215 static int push_dl_task(struct rq *rq);
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
219 return dl_task(prev);
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
228 static inline void queue_push_tasks(struct rq *rq)
230 if (!has_pushable_dl_tasks(rq))
231 return;
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
236 static inline void queue_pull_task(struct rq *rq)
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
245 struct rq *later_rq = NULL;
246 bool fallback = false;
248 later_rq = find_lock_later_rq(p, rq);
250 if (!later_rq) {
251 int cpu;
254 * If we cannot preempt any rq, fall back to pick any
255 * online cpu.
257 fallback = true;
258 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 if (cpu >= nr_cpu_ids) {
261 * Fail to find any suitable cpu.
262 * The task will never come back!
264 BUG_ON(dl_bandwidth_enabled());
267 * If admission control is disabled we
268 * try a little harder to let the task
269 * run.
271 cpu = cpumask_any(cpu_active_mask);
273 later_rq = cpu_rq(cpu);
274 double_lock_balance(rq, later_rq);
278 * By now the task is replenished and enqueued; migrate it.
280 deactivate_task(rq, p, 0);
281 set_task_cpu(p, later_rq->cpu);
282 activate_task(later_rq, p, 0);
284 if (!fallback)
285 resched_curr(later_rq);
287 double_unlock_balance(later_rq, rq);
289 return later_rq;
292 #else
294 static inline
295 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
299 static inline
300 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
304 static inline
305 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
309 static inline
310 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
314 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
316 return false;
319 static inline void pull_dl_task(struct rq *rq)
323 static inline void queue_push_tasks(struct rq *rq)
327 static inline void queue_pull_task(struct rq *rq)
330 #endif /* CONFIG_SMP */
332 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 int flags);
338 * We are being explicitly informed that a new instance is starting,
339 * and this means that:
340 * - the absolute deadline of the entity has to be placed at
341 * current time + relative deadline;
342 * - the runtime of the entity has to be set to the maximum value.
344 * The capability of specifying such event is useful whenever a -deadline
345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
346 * one, and to (try to!) reconcile itself with its own scheduling
347 * parameters.
349 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 struct sched_dl_entity *pi_se)
352 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 struct rq *rq = rq_of_dl_rq(dl_rq);
355 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
358 * We use the regular wall clock time to set deadlines in the
359 * future; in fact, we must consider execution overheads (time
360 * spent on hardirq context, etc.).
362 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
363 dl_se->runtime = pi_se->dl_runtime;
364 dl_se->dl_new = 0;
368 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
369 * possibility of a entity lasting more than what it declared, and thus
370 * exhausting its runtime.
372 * Here we are interested in making runtime overrun possible, but we do
373 * not want a entity which is misbehaving to affect the scheduling of all
374 * other entities.
375 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
376 * is used, in order to confine each entity within its own bandwidth.
378 * This function deals exactly with that, and ensures that when the runtime
379 * of a entity is replenished, its deadline is also postponed. That ensures
380 * the overrunning entity can't interfere with other entity in the system and
381 * can't make them miss their deadlines. Reasons why this kind of overruns
382 * could happen are, typically, a entity voluntarily trying to overcome its
383 * runtime, or it just underestimated it during sched_setattr().
385 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
386 struct sched_dl_entity *pi_se)
388 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
389 struct rq *rq = rq_of_dl_rq(dl_rq);
391 BUG_ON(pi_se->dl_runtime <= 0);
394 * This could be the case for a !-dl task that is boosted.
395 * Just go with full inherited parameters.
397 if (dl_se->dl_deadline == 0) {
398 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
399 dl_se->runtime = pi_se->dl_runtime;
403 * We keep moving the deadline away until we get some
404 * available runtime for the entity. This ensures correct
405 * handling of situations where the runtime overrun is
406 * arbitrary large.
408 while (dl_se->runtime <= 0) {
409 dl_se->deadline += pi_se->dl_period;
410 dl_se->runtime += pi_se->dl_runtime;
414 * At this point, the deadline really should be "in
415 * the future" with respect to rq->clock. If it's
416 * not, we are, for some reason, lagging too much!
417 * Anyway, after having warn userspace abut that,
418 * we still try to keep the things running by
419 * resetting the deadline and the budget of the
420 * entity.
422 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
423 printk_deferred_once("sched: DL replenish lagged to much\n");
424 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
425 dl_se->runtime = pi_se->dl_runtime;
428 if (dl_se->dl_yielded)
429 dl_se->dl_yielded = 0;
430 if (dl_se->dl_throttled)
431 dl_se->dl_throttled = 0;
435 * Here we check if --at time t-- an entity (which is probably being
436 * [re]activated or, in general, enqueued) can use its remaining runtime
437 * and its current deadline _without_ exceeding the bandwidth it is
438 * assigned (function returns true if it can't). We are in fact applying
439 * one of the CBS rules: when a task wakes up, if the residual runtime
440 * over residual deadline fits within the allocated bandwidth, then we
441 * can keep the current (absolute) deadline and residual budget without
442 * disrupting the schedulability of the system. Otherwise, we should
443 * refill the runtime and set the deadline a period in the future,
444 * because keeping the current (absolute) deadline of the task would
445 * result in breaking guarantees promised to other tasks (refer to
446 * Documentation/scheduler/sched-deadline.txt for more informations).
448 * This function returns true if:
450 * runtime / (deadline - t) > dl_runtime / dl_period ,
452 * IOW we can't recycle current parameters.
454 * Notice that the bandwidth check is done against the period. For
455 * task with deadline equal to period this is the same of using
456 * dl_deadline instead of dl_period in the equation above.
458 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
459 struct sched_dl_entity *pi_se, u64 t)
461 u64 left, right;
464 * left and right are the two sides of the equation above,
465 * after a bit of shuffling to use multiplications instead
466 * of divisions.
468 * Note that none of the time values involved in the two
469 * multiplications are absolute: dl_deadline and dl_runtime
470 * are the relative deadline and the maximum runtime of each
471 * instance, runtime is the runtime left for the last instance
472 * and (deadline - t), since t is rq->clock, is the time left
473 * to the (absolute) deadline. Even if overflowing the u64 type
474 * is very unlikely to occur in both cases, here we scale down
475 * as we want to avoid that risk at all. Scaling down by 10
476 * means that we reduce granularity to 1us. We are fine with it,
477 * since this is only a true/false check and, anyway, thinking
478 * of anything below microseconds resolution is actually fiction
479 * (but still we want to give the user that illusion >;).
481 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
482 right = ((dl_se->deadline - t) >> DL_SCALE) *
483 (pi_se->dl_runtime >> DL_SCALE);
485 return dl_time_before(right, left);
489 * When a -deadline entity is queued back on the runqueue, its runtime and
490 * deadline might need updating.
492 * The policy here is that we update the deadline of the entity only if:
493 * - the current deadline is in the past,
494 * - using the remaining runtime with the current deadline would make
495 * the entity exceed its bandwidth.
497 static void update_dl_entity(struct sched_dl_entity *dl_se,
498 struct sched_dl_entity *pi_se)
500 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
501 struct rq *rq = rq_of_dl_rq(dl_rq);
504 * The arrival of a new instance needs special treatment, i.e.,
505 * the actual scheduling parameters have to be "renewed".
507 if (dl_se->dl_new) {
508 setup_new_dl_entity(dl_se, pi_se);
509 return;
512 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
513 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
514 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
515 dl_se->runtime = pi_se->dl_runtime;
520 * If the entity depleted all its runtime, and if we want it to sleep
521 * while waiting for some new execution time to become available, we
522 * set the bandwidth enforcement timer to the replenishment instant
523 * and try to activate it.
525 * Notice that it is important for the caller to know if the timer
526 * actually started or not (i.e., the replenishment instant is in
527 * the future or in the past).
529 static int start_dl_timer(struct task_struct *p)
531 struct sched_dl_entity *dl_se = &p->dl;
532 struct hrtimer *timer = &dl_se->dl_timer;
533 struct rq *rq = task_rq(p);
534 ktime_t now, act;
535 s64 delta;
537 lockdep_assert_held(&rq->lock);
540 * We want the timer to fire at the deadline, but considering
541 * that it is actually coming from rq->clock and not from
542 * hrtimer's time base reading.
544 act = ns_to_ktime(dl_se->deadline);
545 now = hrtimer_cb_get_time(timer);
546 delta = ktime_to_ns(now) - rq_clock(rq);
547 act = ktime_add_ns(act, delta);
550 * If the expiry time already passed, e.g., because the value
551 * chosen as the deadline is too small, don't even try to
552 * start the timer in the past!
554 if (ktime_us_delta(act, now) < 0)
555 return 0;
558 * !enqueued will guarantee another callback; even if one is already in
559 * progress. This ensures a balanced {get,put}_task_struct().
561 * The race against __run_timer() clearing the enqueued state is
562 * harmless because we're holding task_rq()->lock, therefore the timer
563 * expiring after we've done the check will wait on its task_rq_lock()
564 * and observe our state.
566 if (!hrtimer_is_queued(timer)) {
567 get_task_struct(p);
568 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
571 return 1;
575 * This is the bandwidth enforcement timer callback. If here, we know
576 * a task is not on its dl_rq, since the fact that the timer was running
577 * means the task is throttled and needs a runtime replenishment.
579 * However, what we actually do depends on the fact the task is active,
580 * (it is on its rq) or has been removed from there by a call to
581 * dequeue_task_dl(). In the former case we must issue the runtime
582 * replenishment and add the task back to the dl_rq; in the latter, we just
583 * do nothing but clearing dl_throttled, so that runtime and deadline
584 * updating (and the queueing back to dl_rq) will be done by the
585 * next call to enqueue_task_dl().
587 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
589 struct sched_dl_entity *dl_se = container_of(timer,
590 struct sched_dl_entity,
591 dl_timer);
592 struct task_struct *p = dl_task_of(dl_se);
593 unsigned long flags;
594 struct rq *rq;
596 rq = task_rq_lock(p, &flags);
599 * The task might have changed its scheduling policy to something
600 * different than SCHED_DEADLINE (through switched_fromd_dl()).
602 if (!dl_task(p)) {
603 __dl_clear_params(p);
604 goto unlock;
608 * This is possible if switched_from_dl() raced against a running
609 * callback that took the above !dl_task() path and we've since then
610 * switched back into SCHED_DEADLINE.
612 * There's nothing to do except drop our task reference.
614 if (dl_se->dl_new)
615 goto unlock;
618 * The task might have been boosted by someone else and might be in the
619 * boosting/deboosting path, its not throttled.
621 if (dl_se->dl_boosted)
622 goto unlock;
625 * Spurious timer due to start_dl_timer() race; or we already received
626 * a replenishment from rt_mutex_setprio().
628 if (!dl_se->dl_throttled)
629 goto unlock;
631 sched_clock_tick();
632 update_rq_clock(rq);
635 * If the throttle happened during sched-out; like:
637 * schedule()
638 * deactivate_task()
639 * dequeue_task_dl()
640 * update_curr_dl()
641 * start_dl_timer()
642 * __dequeue_task_dl()
643 * prev->on_rq = 0;
645 * We can be both throttled and !queued. Replenish the counter
646 * but do not enqueue -- wait for our wakeup to do that.
648 if (!task_on_rq_queued(p)) {
649 replenish_dl_entity(dl_se, dl_se);
650 goto unlock;
653 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
654 if (dl_task(rq->curr))
655 check_preempt_curr_dl(rq, p, 0);
656 else
657 resched_curr(rq);
659 #ifdef CONFIG_SMP
661 * Perform balancing operations here; after the replenishments. We
662 * cannot drop rq->lock before this, otherwise the assertion in
663 * start_dl_timer() about not missing updates is not true.
665 * If we find that the rq the task was on is no longer available, we
666 * need to select a new rq.
668 * XXX figure out if select_task_rq_dl() deals with offline cpus.
670 if (unlikely(!rq->online))
671 rq = dl_task_offline_migration(rq, p);
674 * Queueing this task back might have overloaded rq, check if we need
675 * to kick someone away.
677 if (has_pushable_dl_tasks(rq)) {
679 * Nothing relies on rq->lock after this, so its safe to drop
680 * rq->lock.
682 lockdep_unpin_lock(&rq->lock);
683 push_dl_task(rq);
684 lockdep_pin_lock(&rq->lock);
686 #endif
688 unlock:
689 task_rq_unlock(rq, p, &flags);
692 * This can free the task_struct, including this hrtimer, do not touch
693 * anything related to that after this.
695 put_task_struct(p);
697 return HRTIMER_NORESTART;
700 void init_dl_task_timer(struct sched_dl_entity *dl_se)
702 struct hrtimer *timer = &dl_se->dl_timer;
704 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
705 timer->function = dl_task_timer;
708 static
709 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
711 return (dl_se->runtime <= 0);
714 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
717 * Update the current task's runtime statistics (provided it is still
718 * a -deadline task and has not been removed from the dl_rq).
720 static void update_curr_dl(struct rq *rq)
722 struct task_struct *curr = rq->curr;
723 struct sched_dl_entity *dl_se = &curr->dl;
724 u64 delta_exec;
726 if (!dl_task(curr) || !on_dl_rq(dl_se))
727 return;
730 * Consumed budget is computed considering the time as
731 * observed by schedulable tasks (excluding time spent
732 * in hardirq context, etc.). Deadlines are instead
733 * computed using hard walltime. This seems to be the more
734 * natural solution, but the full ramifications of this
735 * approach need further study.
737 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
738 if (unlikely((s64)delta_exec <= 0))
739 return;
741 schedstat_set(curr->se.statistics.exec_max,
742 max(curr->se.statistics.exec_max, delta_exec));
744 curr->se.sum_exec_runtime += delta_exec;
745 account_group_exec_runtime(curr, delta_exec);
747 curr->se.exec_start = rq_clock_task(rq);
748 cpuacct_charge(curr, delta_exec);
750 sched_rt_avg_update(rq, delta_exec);
752 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
753 if (dl_runtime_exceeded(dl_se)) {
754 dl_se->dl_throttled = 1;
755 __dequeue_task_dl(rq, curr, 0);
756 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
757 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
759 if (!is_leftmost(curr, &rq->dl))
760 resched_curr(rq);
764 * Because -- for now -- we share the rt bandwidth, we need to
765 * account our runtime there too, otherwise actual rt tasks
766 * would be able to exceed the shared quota.
768 * Account to the root rt group for now.
770 * The solution we're working towards is having the RT groups scheduled
771 * using deadline servers -- however there's a few nasties to figure
772 * out before that can happen.
774 if (rt_bandwidth_enabled()) {
775 struct rt_rq *rt_rq = &rq->rt;
777 raw_spin_lock(&rt_rq->rt_runtime_lock);
779 * We'll let actual RT tasks worry about the overflow here, we
780 * have our own CBS to keep us inline; only account when RT
781 * bandwidth is relevant.
783 if (sched_rt_bandwidth_account(rt_rq))
784 rt_rq->rt_time += delta_exec;
785 raw_spin_unlock(&rt_rq->rt_runtime_lock);
789 #ifdef CONFIG_SMP
791 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
793 struct rq *rq = rq_of_dl_rq(dl_rq);
795 if (dl_rq->earliest_dl.curr == 0 ||
796 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
797 dl_rq->earliest_dl.curr = deadline;
798 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
802 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
804 struct rq *rq = rq_of_dl_rq(dl_rq);
807 * Since we may have removed our earliest (and/or next earliest)
808 * task we must recompute them.
810 if (!dl_rq->dl_nr_running) {
811 dl_rq->earliest_dl.curr = 0;
812 dl_rq->earliest_dl.next = 0;
813 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
814 } else {
815 struct rb_node *leftmost = dl_rq->rb_leftmost;
816 struct sched_dl_entity *entry;
818 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
819 dl_rq->earliest_dl.curr = entry->deadline;
820 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
824 #else
826 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
827 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
829 #endif /* CONFIG_SMP */
831 static inline
832 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
834 int prio = dl_task_of(dl_se)->prio;
835 u64 deadline = dl_se->deadline;
837 WARN_ON(!dl_prio(prio));
838 dl_rq->dl_nr_running++;
839 add_nr_running(rq_of_dl_rq(dl_rq), 1);
841 inc_dl_deadline(dl_rq, deadline);
842 inc_dl_migration(dl_se, dl_rq);
845 static inline
846 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
848 int prio = dl_task_of(dl_se)->prio;
850 WARN_ON(!dl_prio(prio));
851 WARN_ON(!dl_rq->dl_nr_running);
852 dl_rq->dl_nr_running--;
853 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
855 dec_dl_deadline(dl_rq, dl_se->deadline);
856 dec_dl_migration(dl_se, dl_rq);
859 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
861 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
862 struct rb_node **link = &dl_rq->rb_root.rb_node;
863 struct rb_node *parent = NULL;
864 struct sched_dl_entity *entry;
865 int leftmost = 1;
867 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
869 while (*link) {
870 parent = *link;
871 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
872 if (dl_time_before(dl_se->deadline, entry->deadline))
873 link = &parent->rb_left;
874 else {
875 link = &parent->rb_right;
876 leftmost = 0;
880 if (leftmost)
881 dl_rq->rb_leftmost = &dl_se->rb_node;
883 rb_link_node(&dl_se->rb_node, parent, link);
884 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
886 inc_dl_tasks(dl_se, dl_rq);
889 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
891 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
893 if (RB_EMPTY_NODE(&dl_se->rb_node))
894 return;
896 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
897 struct rb_node *next_node;
899 next_node = rb_next(&dl_se->rb_node);
900 dl_rq->rb_leftmost = next_node;
903 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
904 RB_CLEAR_NODE(&dl_se->rb_node);
906 dec_dl_tasks(dl_se, dl_rq);
909 static void
910 enqueue_dl_entity(struct sched_dl_entity *dl_se,
911 struct sched_dl_entity *pi_se, int flags)
913 BUG_ON(on_dl_rq(dl_se));
916 * If this is a wakeup or a new instance, the scheduling
917 * parameters of the task might need updating. Otherwise,
918 * we want a replenishment of its runtime.
920 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
921 update_dl_entity(dl_se, pi_se);
922 else if (flags & ENQUEUE_REPLENISH)
923 replenish_dl_entity(dl_se, pi_se);
925 __enqueue_dl_entity(dl_se);
928 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
930 __dequeue_dl_entity(dl_se);
933 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
935 struct task_struct *pi_task = rt_mutex_get_top_task(p);
936 struct sched_dl_entity *pi_se = &p->dl;
939 * Use the scheduling parameters of the top pi-waiter
940 * task if we have one and its (absolute) deadline is
941 * smaller than our one... OTW we keep our runtime and
942 * deadline.
944 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
945 pi_se = &pi_task->dl;
946 } else if (!dl_prio(p->normal_prio)) {
948 * Special case in which we have a !SCHED_DEADLINE task
949 * that is going to be deboosted, but exceedes its
950 * runtime while doing so. No point in replenishing
951 * it, as it's going to return back to its original
952 * scheduling class after this.
954 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
955 return;
959 * If p is throttled, we do nothing. In fact, if it exhausted
960 * its budget it needs a replenishment and, since it now is on
961 * its rq, the bandwidth timer callback (which clearly has not
962 * run yet) will take care of this.
964 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
965 return;
967 enqueue_dl_entity(&p->dl, pi_se, flags);
969 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
970 enqueue_pushable_dl_task(rq, p);
973 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
975 dequeue_dl_entity(&p->dl);
976 dequeue_pushable_dl_task(rq, p);
979 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
981 update_curr_dl(rq);
982 __dequeue_task_dl(rq, p, flags);
986 * Yield task semantic for -deadline tasks is:
988 * get off from the CPU until our next instance, with
989 * a new runtime. This is of little use now, since we
990 * don't have a bandwidth reclaiming mechanism. Anyway,
991 * bandwidth reclaiming is planned for the future, and
992 * yield_task_dl will indicate that some spare budget
993 * is available for other task instances to use it.
995 static void yield_task_dl(struct rq *rq)
997 struct task_struct *p = rq->curr;
1000 * We make the task go to sleep until its current deadline by
1001 * forcing its runtime to zero. This way, update_curr_dl() stops
1002 * it and the bandwidth timer will wake it up and will give it
1003 * new scheduling parameters (thanks to dl_yielded=1).
1005 if (p->dl.runtime > 0) {
1006 rq->curr->dl.dl_yielded = 1;
1007 p->dl.runtime = 0;
1009 update_rq_clock(rq);
1010 update_curr_dl(rq);
1012 * Tell update_rq_clock() that we've just updated,
1013 * so we don't do microscopic update in schedule()
1014 * and double the fastpath cost.
1016 rq_clock_skip_update(rq, true);
1019 #ifdef CONFIG_SMP
1021 static int find_later_rq(struct task_struct *task);
1023 static int
1024 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1026 struct task_struct *curr;
1027 struct rq *rq;
1029 if (sd_flag != SD_BALANCE_WAKE)
1030 goto out;
1032 rq = cpu_rq(cpu);
1034 rcu_read_lock();
1035 curr = READ_ONCE(rq->curr); /* unlocked access */
1038 * If we are dealing with a -deadline task, we must
1039 * decide where to wake it up.
1040 * If it has a later deadline and the current task
1041 * on this rq can't move (provided the waking task
1042 * can!) we prefer to send it somewhere else. On the
1043 * other hand, if it has a shorter deadline, we
1044 * try to make it stay here, it might be important.
1046 if (unlikely(dl_task(curr)) &&
1047 (curr->nr_cpus_allowed < 2 ||
1048 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1049 (p->nr_cpus_allowed > 1)) {
1050 int target = find_later_rq(p);
1052 if (target != -1 &&
1053 (dl_time_before(p->dl.deadline,
1054 cpu_rq(target)->dl.earliest_dl.curr) ||
1055 (cpu_rq(target)->dl.dl_nr_running == 0)))
1056 cpu = target;
1058 rcu_read_unlock();
1060 out:
1061 return cpu;
1064 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1067 * Current can't be migrated, useless to reschedule,
1068 * let's hope p can move out.
1070 if (rq->curr->nr_cpus_allowed == 1 ||
1071 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1072 return;
1075 * p is migratable, so let's not schedule it and
1076 * see if it is pushed or pulled somewhere else.
1078 if (p->nr_cpus_allowed != 1 &&
1079 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1080 return;
1082 resched_curr(rq);
1085 #endif /* CONFIG_SMP */
1088 * Only called when both the current and waking task are -deadline
1089 * tasks.
1091 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1092 int flags)
1094 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1095 resched_curr(rq);
1096 return;
1099 #ifdef CONFIG_SMP
1101 * In the unlikely case current and p have the same deadline
1102 * let us try to decide what's the best thing to do...
1104 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1105 !test_tsk_need_resched(rq->curr))
1106 check_preempt_equal_dl(rq, p);
1107 #endif /* CONFIG_SMP */
1110 #ifdef CONFIG_SCHED_HRTICK
1111 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1113 hrtick_start(rq, p->dl.runtime);
1115 #else /* !CONFIG_SCHED_HRTICK */
1116 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1119 #endif
1121 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1122 struct dl_rq *dl_rq)
1124 struct rb_node *left = dl_rq->rb_leftmost;
1126 if (!left)
1127 return NULL;
1129 return rb_entry(left, struct sched_dl_entity, rb_node);
1132 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1134 struct sched_dl_entity *dl_se;
1135 struct task_struct *p;
1136 struct dl_rq *dl_rq;
1138 dl_rq = &rq->dl;
1140 if (need_pull_dl_task(rq, prev)) {
1142 * This is OK, because current is on_cpu, which avoids it being
1143 * picked for load-balance and preemption/IRQs are still
1144 * disabled avoiding further scheduler activity on it and we're
1145 * being very careful to re-start the picking loop.
1147 lockdep_unpin_lock(&rq->lock);
1148 pull_dl_task(rq);
1149 lockdep_pin_lock(&rq->lock);
1151 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1152 * means a stop task can slip in, in which case we need to
1153 * re-start task selection.
1155 if (rq->stop && task_on_rq_queued(rq->stop))
1156 return RETRY_TASK;
1160 * When prev is DL, we may throttle it in put_prev_task().
1161 * So, we update time before we check for dl_nr_running.
1163 if (prev->sched_class == &dl_sched_class)
1164 update_curr_dl(rq);
1166 if (unlikely(!dl_rq->dl_nr_running))
1167 return NULL;
1169 put_prev_task(rq, prev);
1171 dl_se = pick_next_dl_entity(rq, dl_rq);
1172 BUG_ON(!dl_se);
1174 p = dl_task_of(dl_se);
1175 p->se.exec_start = rq_clock_task(rq);
1177 /* Running task will never be pushed. */
1178 dequeue_pushable_dl_task(rq, p);
1180 if (hrtick_enabled(rq))
1181 start_hrtick_dl(rq, p);
1183 queue_push_tasks(rq);
1185 return p;
1188 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1190 update_curr_dl(rq);
1192 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1193 enqueue_pushable_dl_task(rq, p);
1196 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1198 update_curr_dl(rq);
1201 * Even when we have runtime, update_curr_dl() might have resulted in us
1202 * not being the leftmost task anymore. In that case NEED_RESCHED will
1203 * be set and schedule() will start a new hrtick for the next task.
1205 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1206 is_leftmost(p, &rq->dl))
1207 start_hrtick_dl(rq, p);
1210 static void task_fork_dl(struct task_struct *p)
1213 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1214 * sched_fork()
1218 static void task_dead_dl(struct task_struct *p)
1220 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1223 * Since we are TASK_DEAD we won't slip out of the domain!
1225 raw_spin_lock_irq(&dl_b->lock);
1226 /* XXX we should retain the bw until 0-lag */
1227 dl_b->total_bw -= p->dl.dl_bw;
1228 raw_spin_unlock_irq(&dl_b->lock);
1231 static void set_curr_task_dl(struct rq *rq)
1233 struct task_struct *p = rq->curr;
1235 p->se.exec_start = rq_clock_task(rq);
1237 /* You can't push away the running task */
1238 dequeue_pushable_dl_task(rq, p);
1241 #ifdef CONFIG_SMP
1243 /* Only try algorithms three times */
1244 #define DL_MAX_TRIES 3
1246 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1248 if (!task_running(rq, p) &&
1249 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1250 return 1;
1251 return 0;
1255 * Return the earliest pushable rq's task, which is suitable to be executed
1256 * on the CPU, NULL otherwise:
1258 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1260 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1261 struct task_struct *p = NULL;
1263 if (!has_pushable_dl_tasks(rq))
1264 return NULL;
1266 next_node:
1267 if (next_node) {
1268 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1270 if (pick_dl_task(rq, p, cpu))
1271 return p;
1273 next_node = rb_next(next_node);
1274 goto next_node;
1277 return NULL;
1280 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1282 static int find_later_rq(struct task_struct *task)
1284 struct sched_domain *sd;
1285 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1286 int this_cpu = smp_processor_id();
1287 int best_cpu, cpu = task_cpu(task);
1289 /* Make sure the mask is initialized first */
1290 if (unlikely(!later_mask))
1291 return -1;
1293 if (task->nr_cpus_allowed == 1)
1294 return -1;
1297 * We have to consider system topology and task affinity
1298 * first, then we can look for a suitable cpu.
1300 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1301 task, later_mask);
1302 if (best_cpu == -1)
1303 return -1;
1306 * If we are here, some target has been found,
1307 * the most suitable of which is cached in best_cpu.
1308 * This is, among the runqueues where the current tasks
1309 * have later deadlines than the task's one, the rq
1310 * with the latest possible one.
1312 * Now we check how well this matches with task's
1313 * affinity and system topology.
1315 * The last cpu where the task run is our first
1316 * guess, since it is most likely cache-hot there.
1318 if (cpumask_test_cpu(cpu, later_mask))
1319 return cpu;
1321 * Check if this_cpu is to be skipped (i.e., it is
1322 * not in the mask) or not.
1324 if (!cpumask_test_cpu(this_cpu, later_mask))
1325 this_cpu = -1;
1327 rcu_read_lock();
1328 for_each_domain(cpu, sd) {
1329 if (sd->flags & SD_WAKE_AFFINE) {
1332 * If possible, preempting this_cpu is
1333 * cheaper than migrating.
1335 if (this_cpu != -1 &&
1336 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1337 rcu_read_unlock();
1338 return this_cpu;
1342 * Last chance: if best_cpu is valid and is
1343 * in the mask, that becomes our choice.
1345 if (best_cpu < nr_cpu_ids &&
1346 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1347 rcu_read_unlock();
1348 return best_cpu;
1352 rcu_read_unlock();
1355 * At this point, all our guesses failed, we just return
1356 * 'something', and let the caller sort the things out.
1358 if (this_cpu != -1)
1359 return this_cpu;
1361 cpu = cpumask_any(later_mask);
1362 if (cpu < nr_cpu_ids)
1363 return cpu;
1365 return -1;
1368 /* Locks the rq it finds */
1369 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1371 struct rq *later_rq = NULL;
1372 int tries;
1373 int cpu;
1375 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1376 cpu = find_later_rq(task);
1378 if ((cpu == -1) || (cpu == rq->cpu))
1379 break;
1381 later_rq = cpu_rq(cpu);
1383 if (later_rq->dl.dl_nr_running &&
1384 !dl_time_before(task->dl.deadline,
1385 later_rq->dl.earliest_dl.curr)) {
1387 * Target rq has tasks of equal or earlier deadline,
1388 * retrying does not release any lock and is unlikely
1389 * to yield a different result.
1391 later_rq = NULL;
1392 break;
1395 /* Retry if something changed. */
1396 if (double_lock_balance(rq, later_rq)) {
1397 if (unlikely(task_rq(task) != rq ||
1398 !cpumask_test_cpu(later_rq->cpu,
1399 &task->cpus_allowed) ||
1400 task_running(rq, task) ||
1401 !task_on_rq_queued(task))) {
1402 double_unlock_balance(rq, later_rq);
1403 later_rq = NULL;
1404 break;
1409 * If the rq we found has no -deadline task, or
1410 * its earliest one has a later deadline than our
1411 * task, the rq is a good one.
1413 if (!later_rq->dl.dl_nr_running ||
1414 dl_time_before(task->dl.deadline,
1415 later_rq->dl.earliest_dl.curr))
1416 break;
1418 /* Otherwise we try again. */
1419 double_unlock_balance(rq, later_rq);
1420 later_rq = NULL;
1423 return later_rq;
1426 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1428 struct task_struct *p;
1430 if (!has_pushable_dl_tasks(rq))
1431 return NULL;
1433 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1434 struct task_struct, pushable_dl_tasks);
1436 BUG_ON(rq->cpu != task_cpu(p));
1437 BUG_ON(task_current(rq, p));
1438 BUG_ON(p->nr_cpus_allowed <= 1);
1440 BUG_ON(!task_on_rq_queued(p));
1441 BUG_ON(!dl_task(p));
1443 return p;
1447 * See if the non running -deadline tasks on this rq
1448 * can be sent to some other CPU where they can preempt
1449 * and start executing.
1451 static int push_dl_task(struct rq *rq)
1453 struct task_struct *next_task;
1454 struct rq *later_rq;
1455 int ret = 0;
1457 if (!rq->dl.overloaded)
1458 return 0;
1460 next_task = pick_next_pushable_dl_task(rq);
1461 if (!next_task)
1462 return 0;
1464 retry:
1465 if (unlikely(next_task == rq->curr)) {
1466 WARN_ON(1);
1467 return 0;
1471 * If next_task preempts rq->curr, and rq->curr
1472 * can move away, it makes sense to just reschedule
1473 * without going further in pushing next_task.
1475 if (dl_task(rq->curr) &&
1476 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1477 rq->curr->nr_cpus_allowed > 1) {
1478 resched_curr(rq);
1479 return 0;
1482 /* We might release rq lock */
1483 get_task_struct(next_task);
1485 /* Will lock the rq it'll find */
1486 later_rq = find_lock_later_rq(next_task, rq);
1487 if (!later_rq) {
1488 struct task_struct *task;
1491 * We must check all this again, since
1492 * find_lock_later_rq releases rq->lock and it is
1493 * then possible that next_task has migrated.
1495 task = pick_next_pushable_dl_task(rq);
1496 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1498 * The task is still there. We don't try
1499 * again, some other cpu will pull it when ready.
1501 goto out;
1504 if (!task)
1505 /* No more tasks */
1506 goto out;
1508 put_task_struct(next_task);
1509 next_task = task;
1510 goto retry;
1513 deactivate_task(rq, next_task, 0);
1514 set_task_cpu(next_task, later_rq->cpu);
1515 activate_task(later_rq, next_task, 0);
1516 ret = 1;
1518 resched_curr(later_rq);
1520 double_unlock_balance(rq, later_rq);
1522 out:
1523 put_task_struct(next_task);
1525 return ret;
1528 static void push_dl_tasks(struct rq *rq)
1530 /* push_dl_task() will return true if it moved a -deadline task */
1531 while (push_dl_task(rq))
1535 static void pull_dl_task(struct rq *this_rq)
1537 int this_cpu = this_rq->cpu, cpu;
1538 struct task_struct *p;
1539 bool resched = false;
1540 struct rq *src_rq;
1541 u64 dmin = LONG_MAX;
1543 if (likely(!dl_overloaded(this_rq)))
1544 return;
1547 * Match the barrier from dl_set_overloaded; this guarantees that if we
1548 * see overloaded we must also see the dlo_mask bit.
1550 smp_rmb();
1552 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1553 if (this_cpu == cpu)
1554 continue;
1556 src_rq = cpu_rq(cpu);
1559 * It looks racy, abd it is! However, as in sched_rt.c,
1560 * we are fine with this.
1562 if (this_rq->dl.dl_nr_running &&
1563 dl_time_before(this_rq->dl.earliest_dl.curr,
1564 src_rq->dl.earliest_dl.next))
1565 continue;
1567 /* Might drop this_rq->lock */
1568 double_lock_balance(this_rq, src_rq);
1571 * If there are no more pullable tasks on the
1572 * rq, we're done with it.
1574 if (src_rq->dl.dl_nr_running <= 1)
1575 goto skip;
1577 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1580 * We found a task to be pulled if:
1581 * - it preempts our current (if there's one),
1582 * - it will preempt the last one we pulled (if any).
1584 if (p && dl_time_before(p->dl.deadline, dmin) &&
1585 (!this_rq->dl.dl_nr_running ||
1586 dl_time_before(p->dl.deadline,
1587 this_rq->dl.earliest_dl.curr))) {
1588 WARN_ON(p == src_rq->curr);
1589 WARN_ON(!task_on_rq_queued(p));
1592 * Then we pull iff p has actually an earlier
1593 * deadline than the current task of its runqueue.
1595 if (dl_time_before(p->dl.deadline,
1596 src_rq->curr->dl.deadline))
1597 goto skip;
1599 resched = true;
1601 deactivate_task(src_rq, p, 0);
1602 set_task_cpu(p, this_cpu);
1603 activate_task(this_rq, p, 0);
1604 dmin = p->dl.deadline;
1606 /* Is there any other task even earlier? */
1608 skip:
1609 double_unlock_balance(this_rq, src_rq);
1612 if (resched)
1613 resched_curr(this_rq);
1617 * Since the task is not running and a reschedule is not going to happen
1618 * anytime soon on its runqueue, we try pushing it away now.
1620 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1622 if (!task_running(rq, p) &&
1623 !test_tsk_need_resched(rq->curr) &&
1624 p->nr_cpus_allowed > 1 &&
1625 dl_task(rq->curr) &&
1626 (rq->curr->nr_cpus_allowed < 2 ||
1627 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1628 push_dl_tasks(rq);
1632 static void set_cpus_allowed_dl(struct task_struct *p,
1633 const struct cpumask *new_mask)
1635 struct root_domain *src_rd;
1636 struct rq *rq;
1638 BUG_ON(!dl_task(p));
1640 rq = task_rq(p);
1641 src_rd = rq->rd;
1643 * Migrating a SCHED_DEADLINE task between exclusive
1644 * cpusets (different root_domains) entails a bandwidth
1645 * update. We already made space for us in the destination
1646 * domain (see cpuset_can_attach()).
1648 if (!cpumask_intersects(src_rd->span, new_mask)) {
1649 struct dl_bw *src_dl_b;
1651 src_dl_b = dl_bw_of(cpu_of(rq));
1653 * We now free resources of the root_domain we are migrating
1654 * off. In the worst case, sched_setattr() may temporary fail
1655 * until we complete the update.
1657 raw_spin_lock(&src_dl_b->lock);
1658 __dl_clear(src_dl_b, p->dl.dl_bw);
1659 raw_spin_unlock(&src_dl_b->lock);
1662 set_cpus_allowed_common(p, new_mask);
1665 /* Assumes rq->lock is held */
1666 static void rq_online_dl(struct rq *rq)
1668 if (rq->dl.overloaded)
1669 dl_set_overload(rq);
1671 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1672 if (rq->dl.dl_nr_running > 0)
1673 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1676 /* Assumes rq->lock is held */
1677 static void rq_offline_dl(struct rq *rq)
1679 if (rq->dl.overloaded)
1680 dl_clear_overload(rq);
1682 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1683 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1686 void __init init_sched_dl_class(void)
1688 unsigned int i;
1690 for_each_possible_cpu(i)
1691 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1692 GFP_KERNEL, cpu_to_node(i));
1695 #endif /* CONFIG_SMP */
1697 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1700 * Start the deadline timer; if we switch back to dl before this we'll
1701 * continue consuming our current CBS slice. If we stay outside of
1702 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1703 * task.
1705 if (!start_dl_timer(p))
1706 __dl_clear_params(p);
1709 * Since this might be the only -deadline task on the rq,
1710 * this is the right place to try to pull some other one
1711 * from an overloaded cpu, if any.
1713 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1714 return;
1716 queue_pull_task(rq);
1720 * When switching to -deadline, we may overload the rq, then
1721 * we try to push someone off, if possible.
1723 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1725 if (task_on_rq_queued(p) && rq->curr != p) {
1726 #ifdef CONFIG_SMP
1727 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1728 queue_push_tasks(rq);
1729 #else
1730 if (dl_task(rq->curr))
1731 check_preempt_curr_dl(rq, p, 0);
1732 else
1733 resched_curr(rq);
1734 #endif
1739 * If the scheduling parameters of a -deadline task changed,
1740 * a push or pull operation might be needed.
1742 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1743 int oldprio)
1745 if (task_on_rq_queued(p) || rq->curr == p) {
1746 #ifdef CONFIG_SMP
1748 * This might be too much, but unfortunately
1749 * we don't have the old deadline value, and
1750 * we can't argue if the task is increasing
1751 * or lowering its prio, so...
1753 if (!rq->dl.overloaded)
1754 queue_pull_task(rq);
1757 * If we now have a earlier deadline task than p,
1758 * then reschedule, provided p is still on this
1759 * runqueue.
1761 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1762 resched_curr(rq);
1763 #else
1765 * Again, we don't know if p has a earlier
1766 * or later deadline, so let's blindly set a
1767 * (maybe not needed) rescheduling point.
1769 resched_curr(rq);
1770 #endif /* CONFIG_SMP */
1771 } else
1772 switched_to_dl(rq, p);
1775 const struct sched_class dl_sched_class = {
1776 .next = &rt_sched_class,
1777 .enqueue_task = enqueue_task_dl,
1778 .dequeue_task = dequeue_task_dl,
1779 .yield_task = yield_task_dl,
1781 .check_preempt_curr = check_preempt_curr_dl,
1783 .pick_next_task = pick_next_task_dl,
1784 .put_prev_task = put_prev_task_dl,
1786 #ifdef CONFIG_SMP
1787 .select_task_rq = select_task_rq_dl,
1788 .set_cpus_allowed = set_cpus_allowed_dl,
1789 .rq_online = rq_online_dl,
1790 .rq_offline = rq_offline_dl,
1791 .task_woken = task_woken_dl,
1792 #endif
1794 .set_curr_task = set_curr_task_dl,
1795 .task_tick = task_tick_dl,
1796 .task_fork = task_fork_dl,
1797 .task_dead = task_dead_dl,
1799 .prio_changed = prio_changed_dl,
1800 .switched_from = switched_from_dl,
1801 .switched_to = switched_to_dl,
1803 .update_curr = update_curr_dl,
1806 #ifdef CONFIG_SCHED_DEBUG
1807 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1809 void print_dl_stats(struct seq_file *m, int cpu)
1811 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1813 #endif /* CONFIG_SCHED_DEBUG */