irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / mm / shmem.c
blob5813b7fa85b64667c7ea7f9c73da84e073b6d325
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount *shm_mnt;
38 #ifdef CONFIG_SHMEM
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
76 #include "internal.h"
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages / 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 #endif
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 return sb->s_fs_info;
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 return 0;
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 static inline int shmem_acct_block(unsigned long flags)
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
199 static int shmem_reserve_inode(struct super_block *sb)
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
211 return 0;
214 static void shmem_free_inode(struct super_block *sb)
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
234 * It has to be called with the spinlock held.
236 static void shmem_recalc_inode(struct inode *inode)
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
253 * Replace item expected in radix tree by a new item, while holding tree lock.
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
258 void **pslot;
259 void *item;
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
283 void *item;
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
292 * Like add_to_page_cache_locked, but error if expected item has gone.
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
298 int error;
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
323 return error;
327 * Like delete_from_page_cache, but substitutes swap for page.
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
331 struct address_space *mapping = page->mapping;
332 int error;
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
346 * Remove swap entry from radix tree, free the swap and its page cache.
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
351 void *old;
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
365 void shmem_unlock_mapping(struct address_space *mapping)
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
371 pagevec_init(&pvec, 0);
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
375 while (!mapping_unevictable(mapping)) {
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
385 pagevec_remove_exceptionals(&pvec);
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
393 * Remove range of pages and swap entries from radix tree, and free them.
394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
399 struct address_space *mapping = inode->i_mapping;
400 struct shmem_inode_info *info = SHMEM_I(inode);
401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 struct pagevec pvec;
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
408 pgoff_t index;
409 int i;
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
414 pagevec_init(&pvec, 0);
415 index = start;
416 while (index < end) {
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
420 if (!pvec.nr)
421 break;
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
425 index = indices[i];
426 if (index >= end)
427 break;
429 if (radix_tree_exceptional_entry(page)) {
430 if (unfalloc)
431 continue;
432 nr_swaps_freed += !shmem_free_swap(mapping,
433 index, page);
434 continue;
437 if (!trylock_page(page))
438 continue;
439 if (!unfalloc || !PageUptodate(page)) {
440 if (page->mapping == mapping) {
441 VM_BUG_ON_PAGE(PageWriteback(page), page);
442 truncate_inode_page(mapping, page);
445 unlock_page(page);
447 pagevec_remove_exceptionals(&pvec);
448 pagevec_release(&pvec);
449 cond_resched();
450 index++;
453 if (partial_start) {
454 struct page *page = NULL;
455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 if (page) {
457 unsigned int top = PAGE_CACHE_SIZE;
458 if (start > end) {
459 top = partial_end;
460 partial_end = 0;
462 zero_user_segment(page, partial_start, top);
463 set_page_dirty(page);
464 unlock_page(page);
465 page_cache_release(page);
468 if (partial_end) {
469 struct page *page = NULL;
470 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 if (page) {
472 zero_user_segment(page, 0, partial_end);
473 set_page_dirty(page);
474 unlock_page(page);
475 page_cache_release(page);
478 if (start >= end)
479 return;
481 index = start;
482 while (index < end) {
483 cond_resched();
485 pvec.nr = find_get_entries(mapping, index,
486 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487 pvec.pages, indices);
488 if (!pvec.nr) {
489 /* If all gone or hole-punch or unfalloc, we're done */
490 if (index == start || end != -1)
491 break;
492 /* But if truncating, restart to make sure all gone */
493 index = start;
494 continue;
496 for (i = 0; i < pagevec_count(&pvec); i++) {
497 struct page *page = pvec.pages[i];
499 index = indices[i];
500 if (index >= end)
501 break;
503 if (radix_tree_exceptional_entry(page)) {
504 if (unfalloc)
505 continue;
506 if (shmem_free_swap(mapping, index, page)) {
507 /* Swap was replaced by page: retry */
508 index--;
509 break;
511 nr_swaps_freed++;
512 continue;
515 lock_page(page);
516 if (!unfalloc || !PageUptodate(page)) {
517 if (page->mapping == mapping) {
518 VM_BUG_ON_PAGE(PageWriteback(page), page);
519 truncate_inode_page(mapping, page);
520 } else {
521 /* Page was replaced by swap: retry */
522 unlock_page(page);
523 index--;
524 break;
527 unlock_page(page);
529 pagevec_remove_exceptionals(&pvec);
530 pagevec_release(&pvec);
531 index++;
534 spin_lock(&info->lock);
535 info->swapped -= nr_swaps_freed;
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
542 shmem_undo_range(inode, lstart, lend, false);
543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548 struct kstat *stat)
550 struct inode *inode = dentry->d_inode;
551 struct shmem_inode_info *info = SHMEM_I(inode);
553 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
554 spin_lock(&info->lock);
555 shmem_recalc_inode(inode);
556 spin_unlock(&info->lock);
558 generic_fillattr(inode, stat);
559 return 0;
562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
564 struct inode *inode = d_inode(dentry);
565 struct shmem_inode_info *info = SHMEM_I(inode);
566 int error;
568 error = inode_change_ok(inode, attr);
569 if (error)
570 return error;
572 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573 loff_t oldsize = inode->i_size;
574 loff_t newsize = attr->ia_size;
576 /* protected by i_mutex */
577 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579 return -EPERM;
581 if (newsize != oldsize) {
582 error = shmem_reacct_size(SHMEM_I(inode)->flags,
583 oldsize, newsize);
584 if (error)
585 return error;
586 i_size_write(inode, newsize);
587 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
589 if (newsize <= oldsize) {
590 loff_t holebegin = round_up(newsize, PAGE_SIZE);
591 if (oldsize > holebegin)
592 unmap_mapping_range(inode->i_mapping,
593 holebegin, 0, 1);
594 if (info->alloced)
595 shmem_truncate_range(inode,
596 newsize, (loff_t)-1);
597 /* unmap again to remove racily COWed private pages */
598 if (oldsize > holebegin)
599 unmap_mapping_range(inode->i_mapping,
600 holebegin, 0, 1);
604 setattr_copy(inode, attr);
605 if (attr->ia_valid & ATTR_MODE)
606 error = posix_acl_chmod(inode, inode->i_mode);
607 return error;
610 static void shmem_evict_inode(struct inode *inode)
612 struct shmem_inode_info *info = SHMEM_I(inode);
614 if (inode->i_mapping->a_ops == &shmem_aops) {
615 shmem_unacct_size(info->flags, inode->i_size);
616 inode->i_size = 0;
617 shmem_truncate_range(inode, 0, (loff_t)-1);
618 if (!list_empty(&info->swaplist)) {
619 mutex_lock(&shmem_swaplist_mutex);
620 list_del_init(&info->swaplist);
621 mutex_unlock(&shmem_swaplist_mutex);
623 } else
624 kfree(info->symlink);
626 simple_xattrs_free(&info->xattrs);
627 WARN_ON(inode->i_blocks);
628 shmem_free_inode(inode->i_sb);
629 clear_inode(inode);
633 * If swap found in inode, free it and move page from swapcache to filecache.
635 static int shmem_unuse_inode(struct shmem_inode_info *info,
636 swp_entry_t swap, struct page **pagep)
638 struct address_space *mapping = info->vfs_inode.i_mapping;
639 void *radswap;
640 pgoff_t index;
641 gfp_t gfp;
642 int error = 0;
644 radswap = swp_to_radix_entry(swap);
645 index = radix_tree_locate_item(&mapping->page_tree, radswap);
646 if (index == -1)
647 return -EAGAIN; /* tell shmem_unuse we found nothing */
650 * Move _head_ to start search for next from here.
651 * But be careful: shmem_evict_inode checks list_empty without taking
652 * mutex, and there's an instant in list_move_tail when info->swaplist
653 * would appear empty, if it were the only one on shmem_swaplist.
655 if (shmem_swaplist.next != &info->swaplist)
656 list_move_tail(&shmem_swaplist, &info->swaplist);
658 gfp = mapping_gfp_mask(mapping);
659 if (shmem_should_replace_page(*pagep, gfp)) {
660 mutex_unlock(&shmem_swaplist_mutex);
661 error = shmem_replace_page(pagep, gfp, info, index);
662 mutex_lock(&shmem_swaplist_mutex);
664 * We needed to drop mutex to make that restrictive page
665 * allocation, but the inode might have been freed while we
666 * dropped it: although a racing shmem_evict_inode() cannot
667 * complete without emptying the radix_tree, our page lock
668 * on this swapcache page is not enough to prevent that -
669 * free_swap_and_cache() of our swap entry will only
670 * trylock_page(), removing swap from radix_tree whatever.
672 * We must not proceed to shmem_add_to_page_cache() if the
673 * inode has been freed, but of course we cannot rely on
674 * inode or mapping or info to check that. However, we can
675 * safely check if our swap entry is still in use (and here
676 * it can't have got reused for another page): if it's still
677 * in use, then the inode cannot have been freed yet, and we
678 * can safely proceed (if it's no longer in use, that tells
679 * nothing about the inode, but we don't need to unuse swap).
681 if (!page_swapcount(*pagep))
682 error = -ENOENT;
686 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
687 * but also to hold up shmem_evict_inode(): so inode cannot be freed
688 * beneath us (pagelock doesn't help until the page is in pagecache).
690 if (!error)
691 error = shmem_add_to_page_cache(*pagep, mapping, index,
692 radswap);
693 if (error != -ENOMEM) {
695 * Truncation and eviction use free_swap_and_cache(), which
696 * only does trylock page: if we raced, best clean up here.
698 delete_from_swap_cache(*pagep);
699 set_page_dirty(*pagep);
700 if (!error) {
701 spin_lock(&info->lock);
702 info->swapped--;
703 spin_unlock(&info->lock);
704 swap_free(swap);
707 return error;
711 * Search through swapped inodes to find and replace swap by page.
713 int shmem_unuse(swp_entry_t swap, struct page *page)
715 struct list_head *this, *next;
716 struct shmem_inode_info *info;
717 struct mem_cgroup *memcg;
718 int error = 0;
721 * There's a faint possibility that swap page was replaced before
722 * caller locked it: caller will come back later with the right page.
724 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
725 goto out;
728 * Charge page using GFP_KERNEL while we can wait, before taking
729 * the shmem_swaplist_mutex which might hold up shmem_writepage().
730 * Charged back to the user (not to caller) when swap account is used.
732 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
733 if (error)
734 goto out;
735 /* No radix_tree_preload: swap entry keeps a place for page in tree */
736 error = -EAGAIN;
738 mutex_lock(&shmem_swaplist_mutex);
739 list_for_each_safe(this, next, &shmem_swaplist) {
740 info = list_entry(this, struct shmem_inode_info, swaplist);
741 if (info->swapped)
742 error = shmem_unuse_inode(info, swap, &page);
743 else
744 list_del_init(&info->swaplist);
745 cond_resched();
746 if (error != -EAGAIN)
747 break;
748 /* found nothing in this: move on to search the next */
750 mutex_unlock(&shmem_swaplist_mutex);
752 if (error) {
753 if (error != -ENOMEM)
754 error = 0;
755 mem_cgroup_cancel_charge(page, memcg);
756 } else
757 mem_cgroup_commit_charge(page, memcg, true);
758 out:
759 unlock_page(page);
760 page_cache_release(page);
761 return error;
765 * Move the page from the page cache to the swap cache.
767 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
769 struct shmem_inode_info *info;
770 struct address_space *mapping;
771 struct inode *inode;
772 swp_entry_t swap;
773 pgoff_t index;
775 BUG_ON(!PageLocked(page));
776 mapping = page->mapping;
777 index = page->index;
778 inode = mapping->host;
779 info = SHMEM_I(inode);
780 if (info->flags & VM_LOCKED)
781 goto redirty;
782 if (!total_swap_pages)
783 goto redirty;
786 * Our capabilities prevent regular writeback or sync from ever calling
787 * shmem_writepage; but a stacking filesystem might use ->writepage of
788 * its underlying filesystem, in which case tmpfs should write out to
789 * swap only in response to memory pressure, and not for the writeback
790 * threads or sync.
792 if (!wbc->for_reclaim) {
793 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
794 goto redirty;
798 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
799 * value into swapfile.c, the only way we can correctly account for a
800 * fallocated page arriving here is now to initialize it and write it.
802 * That's okay for a page already fallocated earlier, but if we have
803 * not yet completed the fallocation, then (a) we want to keep track
804 * of this page in case we have to undo it, and (b) it may not be a
805 * good idea to continue anyway, once we're pushing into swap. So
806 * reactivate the page, and let shmem_fallocate() quit when too many.
808 if (!PageUptodate(page)) {
809 if (inode->i_private) {
810 struct shmem_falloc *shmem_falloc;
811 spin_lock(&inode->i_lock);
812 shmem_falloc = inode->i_private;
813 if (shmem_falloc &&
814 !shmem_falloc->waitq &&
815 index >= shmem_falloc->start &&
816 index < shmem_falloc->next)
817 shmem_falloc->nr_unswapped++;
818 else
819 shmem_falloc = NULL;
820 spin_unlock(&inode->i_lock);
821 if (shmem_falloc)
822 goto redirty;
824 clear_highpage(page);
825 flush_dcache_page(page);
826 SetPageUptodate(page);
829 swap = get_swap_page();
830 if (!swap.val)
831 goto redirty;
834 * Add inode to shmem_unuse()'s list of swapped-out inodes,
835 * if it's not already there. Do it now before the page is
836 * moved to swap cache, when its pagelock no longer protects
837 * the inode from eviction. But don't unlock the mutex until
838 * we've incremented swapped, because shmem_unuse_inode() will
839 * prune a !swapped inode from the swaplist under this mutex.
841 mutex_lock(&shmem_swaplist_mutex);
842 if (list_empty(&info->swaplist))
843 list_add_tail(&info->swaplist, &shmem_swaplist);
845 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
846 spin_lock(&info->lock);
847 shmem_recalc_inode(inode);
848 info->swapped++;
849 spin_unlock(&info->lock);
851 swap_shmem_alloc(swap);
852 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
854 mutex_unlock(&shmem_swaplist_mutex);
855 BUG_ON(page_mapped(page));
856 swap_writepage(page, wbc);
857 return 0;
860 mutex_unlock(&shmem_swaplist_mutex);
861 swapcache_free(swap);
862 redirty:
863 set_page_dirty(page);
864 if (wbc->for_reclaim)
865 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
866 unlock_page(page);
867 return 0;
870 #ifdef CONFIG_NUMA
871 #ifdef CONFIG_TMPFS
872 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
874 char buffer[64];
876 if (!mpol || mpol->mode == MPOL_DEFAULT)
877 return; /* show nothing */
879 mpol_to_str(buffer, sizeof(buffer), mpol);
881 seq_printf(seq, ",mpol=%s", buffer);
884 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
886 struct mempolicy *mpol = NULL;
887 if (sbinfo->mpol) {
888 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
889 mpol = sbinfo->mpol;
890 mpol_get(mpol);
891 spin_unlock(&sbinfo->stat_lock);
893 return mpol;
895 #endif /* CONFIG_TMPFS */
897 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
898 struct shmem_inode_info *info, pgoff_t index)
900 struct vm_area_struct pvma;
901 struct page *page;
903 /* Create a pseudo vma that just contains the policy */
904 pvma.vm_start = 0;
905 /* Bias interleave by inode number to distribute better across nodes */
906 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
907 pvma.vm_ops = NULL;
908 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
910 page = swapin_readahead(swap, gfp, &pvma, 0);
912 /* Drop reference taken by mpol_shared_policy_lookup() */
913 mpol_cond_put(pvma.vm_policy);
915 return page;
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 struct shmem_inode_info *info, pgoff_t index)
921 struct vm_area_struct pvma;
922 struct page *page;
924 /* Create a pseudo vma that just contains the policy */
925 pvma.vm_start = 0;
926 /* Bias interleave by inode number to distribute better across nodes */
927 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
928 pvma.vm_ops = NULL;
929 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
931 page = alloc_page_vma(gfp, &pvma, 0);
933 /* Drop reference taken by mpol_shared_policy_lookup() */
934 mpol_cond_put(pvma.vm_policy);
936 return page;
938 #else /* !CONFIG_NUMA */
939 #ifdef CONFIG_TMPFS
940 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
943 #endif /* CONFIG_TMPFS */
945 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
946 struct shmem_inode_info *info, pgoff_t index)
948 return swapin_readahead(swap, gfp, NULL, 0);
951 static inline struct page *shmem_alloc_page(gfp_t gfp,
952 struct shmem_inode_info *info, pgoff_t index)
954 return alloc_page(gfp);
956 #endif /* CONFIG_NUMA */
958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
959 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
961 return NULL;
963 #endif
966 * When a page is moved from swapcache to shmem filecache (either by the
967 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
968 * shmem_unuse_inode()), it may have been read in earlier from swap, in
969 * ignorance of the mapping it belongs to. If that mapping has special
970 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
971 * we may need to copy to a suitable page before moving to filecache.
973 * In a future release, this may well be extended to respect cpuset and
974 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
975 * but for now it is a simple matter of zone.
977 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
979 return page_zonenum(page) > gfp_zone(gfp);
982 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
983 struct shmem_inode_info *info, pgoff_t index)
985 struct page *oldpage, *newpage;
986 struct address_space *swap_mapping;
987 pgoff_t swap_index;
988 int error;
990 oldpage = *pagep;
991 swap_index = page_private(oldpage);
992 swap_mapping = page_mapping(oldpage);
995 * We have arrived here because our zones are constrained, so don't
996 * limit chance of success by further cpuset and node constraints.
998 gfp &= ~GFP_CONSTRAINT_MASK;
999 newpage = shmem_alloc_page(gfp, info, index);
1000 if (!newpage)
1001 return -ENOMEM;
1003 page_cache_get(newpage);
1004 copy_highpage(newpage, oldpage);
1005 flush_dcache_page(newpage);
1007 __set_page_locked(newpage);
1008 SetPageUptodate(newpage);
1009 SetPageSwapBacked(newpage);
1010 set_page_private(newpage, swap_index);
1011 SetPageSwapCache(newpage);
1014 * Our caller will very soon move newpage out of swapcache, but it's
1015 * a nice clean interface for us to replace oldpage by newpage there.
1017 spin_lock_irq(&swap_mapping->tree_lock);
1018 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1019 newpage);
1020 if (!error) {
1021 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1022 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1024 spin_unlock_irq(&swap_mapping->tree_lock);
1026 if (unlikely(error)) {
1028 * Is this possible? I think not, now that our callers check
1029 * both PageSwapCache and page_private after getting page lock;
1030 * but be defensive. Reverse old to newpage for clear and free.
1032 oldpage = newpage;
1033 } else {
1034 mem_cgroup_replace_page(oldpage, newpage);
1035 lru_cache_add_anon(newpage);
1036 *pagep = newpage;
1039 ClearPageSwapCache(oldpage);
1040 set_page_private(oldpage, 0);
1042 unlock_page(oldpage);
1043 page_cache_release(oldpage);
1044 page_cache_release(oldpage);
1045 return error;
1049 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1051 * If we allocate a new one we do not mark it dirty. That's up to the
1052 * vm. If we swap it in we mark it dirty since we also free the swap
1053 * entry since a page cannot live in both the swap and page cache
1055 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1056 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1058 struct address_space *mapping = inode->i_mapping;
1059 struct shmem_inode_info *info;
1060 struct shmem_sb_info *sbinfo;
1061 struct mem_cgroup *memcg;
1062 struct page *page;
1063 swp_entry_t swap;
1064 int error;
1065 int once = 0;
1066 int alloced = 0;
1068 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1069 return -EFBIG;
1070 repeat:
1071 swap.val = 0;
1072 page = find_lock_entry(mapping, index);
1073 if (radix_tree_exceptional_entry(page)) {
1074 swap = radix_to_swp_entry(page);
1075 page = NULL;
1078 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1079 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1080 error = -EINVAL;
1081 goto unlock;
1084 if (page && sgp == SGP_WRITE)
1085 mark_page_accessed(page);
1087 /* fallocated page? */
1088 if (page && !PageUptodate(page)) {
1089 if (sgp != SGP_READ)
1090 goto clear;
1091 unlock_page(page);
1092 page_cache_release(page);
1093 page = NULL;
1095 if (page || (sgp == SGP_READ && !swap.val)) {
1096 *pagep = page;
1097 return 0;
1101 * Fast cache lookup did not find it:
1102 * bring it back from swap or allocate.
1104 info = SHMEM_I(inode);
1105 sbinfo = SHMEM_SB(inode->i_sb);
1107 if (swap.val) {
1108 /* Look it up and read it in.. */
1109 page = lookup_swap_cache(swap);
1110 if (!page) {
1111 /* here we actually do the io */
1112 if (fault_type)
1113 *fault_type |= VM_FAULT_MAJOR;
1114 page = shmem_swapin(swap, gfp, info, index);
1115 if (!page) {
1116 error = -ENOMEM;
1117 goto failed;
1121 /* We have to do this with page locked to prevent races */
1122 lock_page(page);
1123 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1124 !shmem_confirm_swap(mapping, index, swap)) {
1125 error = -EEXIST; /* try again */
1126 goto unlock;
1128 if (!PageUptodate(page)) {
1129 error = -EIO;
1130 goto failed;
1132 wait_on_page_writeback(page);
1134 if (shmem_should_replace_page(page, gfp)) {
1135 error = shmem_replace_page(&page, gfp, info, index);
1136 if (error)
1137 goto failed;
1140 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1141 if (!error) {
1142 error = shmem_add_to_page_cache(page, mapping, index,
1143 swp_to_radix_entry(swap));
1145 * We already confirmed swap under page lock, and make
1146 * no memory allocation here, so usually no possibility
1147 * of error; but free_swap_and_cache() only trylocks a
1148 * page, so it is just possible that the entry has been
1149 * truncated or holepunched since swap was confirmed.
1150 * shmem_undo_range() will have done some of the
1151 * unaccounting, now delete_from_swap_cache() will do
1152 * the rest.
1153 * Reset swap.val? No, leave it so "failed" goes back to
1154 * "repeat": reading a hole and writing should succeed.
1156 if (error) {
1157 mem_cgroup_cancel_charge(page, memcg);
1158 delete_from_swap_cache(page);
1161 if (error)
1162 goto failed;
1164 mem_cgroup_commit_charge(page, memcg, true);
1166 spin_lock(&info->lock);
1167 info->swapped--;
1168 shmem_recalc_inode(inode);
1169 spin_unlock(&info->lock);
1171 if (sgp == SGP_WRITE)
1172 mark_page_accessed(page);
1174 delete_from_swap_cache(page);
1175 set_page_dirty(page);
1176 swap_free(swap);
1178 } else {
1179 if (shmem_acct_block(info->flags)) {
1180 error = -ENOSPC;
1181 goto failed;
1183 if (sbinfo->max_blocks) {
1184 if (percpu_counter_compare(&sbinfo->used_blocks,
1185 sbinfo->max_blocks) >= 0) {
1186 error = -ENOSPC;
1187 goto unacct;
1189 percpu_counter_inc(&sbinfo->used_blocks);
1192 page = shmem_alloc_page(gfp, info, index);
1193 if (!page) {
1194 error = -ENOMEM;
1195 goto decused;
1198 __SetPageSwapBacked(page);
1199 __set_page_locked(page);
1200 if (sgp == SGP_WRITE)
1201 __SetPageReferenced(page);
1203 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1204 if (error)
1205 goto decused;
1206 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207 if (!error) {
1208 error = shmem_add_to_page_cache(page, mapping, index,
1209 NULL);
1210 radix_tree_preload_end();
1212 if (error) {
1213 mem_cgroup_cancel_charge(page, memcg);
1214 goto decused;
1216 mem_cgroup_commit_charge(page, memcg, false);
1217 lru_cache_add_anon(page);
1219 spin_lock(&info->lock);
1220 info->alloced++;
1221 inode->i_blocks += BLOCKS_PER_PAGE;
1222 shmem_recalc_inode(inode);
1223 spin_unlock(&info->lock);
1224 alloced = true;
1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229 if (sgp == SGP_FALLOC)
1230 sgp = SGP_WRITE;
1231 clear:
1233 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 * it now, lest undo on failure cancel our earlier guarantee.
1237 if (sgp != SGP_WRITE) {
1238 clear_highpage(page);
1239 flush_dcache_page(page);
1240 SetPageUptodate(page);
1242 if (sgp == SGP_DIRTY)
1243 set_page_dirty(page);
1246 /* Perhaps the file has been truncated since we checked */
1247 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249 if (alloced) {
1250 ClearPageDirty(page);
1251 delete_from_page_cache(page);
1252 spin_lock(&info->lock);
1253 shmem_recalc_inode(inode);
1254 spin_unlock(&info->lock);
1256 error = -EINVAL;
1257 goto unlock;
1259 *pagep = page;
1260 return 0;
1263 * Error recovery.
1265 decused:
1266 if (sbinfo->max_blocks)
1267 percpu_counter_add(&sbinfo->used_blocks, -1);
1268 unacct:
1269 shmem_unacct_blocks(info->flags, 1);
1270 failed:
1271 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1272 error = -EEXIST;
1273 unlock:
1274 if (page) {
1275 unlock_page(page);
1276 page_cache_release(page);
1278 if (error == -ENOSPC && !once++) {
1279 info = SHMEM_I(inode);
1280 spin_lock(&info->lock);
1281 shmem_recalc_inode(inode);
1282 spin_unlock(&info->lock);
1283 goto repeat;
1285 if (error == -EEXIST) /* from above or from radix_tree_insert */
1286 goto repeat;
1287 return error;
1290 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1292 struct inode *inode = file_inode(vma->vm_file);
1293 int error;
1294 int ret = VM_FAULT_LOCKED;
1297 * Trinity finds that probing a hole which tmpfs is punching can
1298 * prevent the hole-punch from ever completing: which in turn
1299 * locks writers out with its hold on i_mutex. So refrain from
1300 * faulting pages into the hole while it's being punched. Although
1301 * shmem_undo_range() does remove the additions, it may be unable to
1302 * keep up, as each new page needs its own unmap_mapping_range() call,
1303 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1305 * It does not matter if we sometimes reach this check just before the
1306 * hole-punch begins, so that one fault then races with the punch:
1307 * we just need to make racing faults a rare case.
1309 * The implementation below would be much simpler if we just used a
1310 * standard mutex or completion: but we cannot take i_mutex in fault,
1311 * and bloating every shmem inode for this unlikely case would be sad.
1313 if (unlikely(inode->i_private)) {
1314 struct shmem_falloc *shmem_falloc;
1316 spin_lock(&inode->i_lock);
1317 shmem_falloc = inode->i_private;
1318 if (shmem_falloc &&
1319 shmem_falloc->waitq &&
1320 vmf->pgoff >= shmem_falloc->start &&
1321 vmf->pgoff < shmem_falloc->next) {
1322 wait_queue_head_t *shmem_falloc_waitq;
1323 DEFINE_WAIT(shmem_fault_wait);
1325 ret = VM_FAULT_NOPAGE;
1326 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1327 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1328 /* It's polite to up mmap_sem if we can */
1329 up_read(&vma->vm_mm->mmap_sem);
1330 ret = VM_FAULT_RETRY;
1333 shmem_falloc_waitq = shmem_falloc->waitq;
1334 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1335 TASK_UNINTERRUPTIBLE);
1336 spin_unlock(&inode->i_lock);
1337 schedule();
1340 * shmem_falloc_waitq points into the shmem_fallocate()
1341 * stack of the hole-punching task: shmem_falloc_waitq
1342 * is usually invalid by the time we reach here, but
1343 * finish_wait() does not dereference it in that case;
1344 * though i_lock needed lest racing with wake_up_all().
1346 spin_lock(&inode->i_lock);
1347 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1348 spin_unlock(&inode->i_lock);
1349 return ret;
1351 spin_unlock(&inode->i_lock);
1354 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1355 if (error)
1356 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1358 if (ret & VM_FAULT_MAJOR) {
1359 count_vm_event(PGMAJFAULT);
1360 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1362 return ret;
1365 #ifdef CONFIG_NUMA
1366 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1368 struct inode *inode = file_inode(vma->vm_file);
1369 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1372 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1373 unsigned long addr)
1375 struct inode *inode = file_inode(vma->vm_file);
1376 pgoff_t index;
1378 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1379 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1381 #endif
1383 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1385 struct inode *inode = file_inode(file);
1386 struct shmem_inode_info *info = SHMEM_I(inode);
1387 int retval = -ENOMEM;
1389 spin_lock(&info->lock);
1390 if (lock && !(info->flags & VM_LOCKED)) {
1391 if (!user_shm_lock(inode->i_size, user))
1392 goto out_nomem;
1393 info->flags |= VM_LOCKED;
1394 mapping_set_unevictable(file->f_mapping);
1396 if (!lock && (info->flags & VM_LOCKED) && user) {
1397 user_shm_unlock(inode->i_size, user);
1398 info->flags &= ~VM_LOCKED;
1399 mapping_clear_unevictable(file->f_mapping);
1401 retval = 0;
1403 out_nomem:
1404 spin_unlock(&info->lock);
1405 return retval;
1408 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1410 file_accessed(file);
1411 vma->vm_ops = &shmem_vm_ops;
1412 return 0;
1415 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1416 umode_t mode, dev_t dev, unsigned long flags)
1418 struct inode *inode;
1419 struct shmem_inode_info *info;
1420 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1422 if (shmem_reserve_inode(sb))
1423 return NULL;
1425 inode = new_inode(sb);
1426 if (inode) {
1427 inode->i_ino = get_next_ino();
1428 inode_init_owner(inode, dir, mode);
1429 inode->i_blocks = 0;
1430 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1431 inode->i_generation = get_seconds();
1432 info = SHMEM_I(inode);
1433 memset(info, 0, (char *)inode - (char *)info);
1434 spin_lock_init(&info->lock);
1435 info->seals = F_SEAL_SEAL;
1436 info->flags = flags & VM_NORESERVE;
1437 INIT_LIST_HEAD(&info->swaplist);
1438 simple_xattrs_init(&info->xattrs);
1439 cache_no_acl(inode);
1441 switch (mode & S_IFMT) {
1442 default:
1443 inode->i_op = &shmem_special_inode_operations;
1444 init_special_inode(inode, mode, dev);
1445 break;
1446 case S_IFREG:
1447 inode->i_mapping->a_ops = &shmem_aops;
1448 inode->i_op = &shmem_inode_operations;
1449 inode->i_fop = &shmem_file_operations;
1450 mpol_shared_policy_init(&info->policy,
1451 shmem_get_sbmpol(sbinfo));
1452 break;
1453 case S_IFDIR:
1454 inc_nlink(inode);
1455 /* Some things misbehave if size == 0 on a directory */
1456 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1457 inode->i_op = &shmem_dir_inode_operations;
1458 inode->i_fop = &simple_dir_operations;
1459 break;
1460 case S_IFLNK:
1462 * Must not load anything in the rbtree,
1463 * mpol_free_shared_policy will not be called.
1465 mpol_shared_policy_init(&info->policy, NULL);
1466 break;
1468 } else
1469 shmem_free_inode(sb);
1470 return inode;
1473 bool shmem_mapping(struct address_space *mapping)
1475 if (!mapping->host)
1476 return false;
1478 return mapping->host->i_sb->s_op == &shmem_ops;
1481 #ifdef CONFIG_TMPFS
1482 static const struct inode_operations shmem_symlink_inode_operations;
1483 static const struct inode_operations shmem_short_symlink_operations;
1485 #ifdef CONFIG_TMPFS_XATTR
1486 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1487 #else
1488 #define shmem_initxattrs NULL
1489 #endif
1491 static int
1492 shmem_write_begin(struct file *file, struct address_space *mapping,
1493 loff_t pos, unsigned len, unsigned flags,
1494 struct page **pagep, void **fsdata)
1496 struct inode *inode = mapping->host;
1497 struct shmem_inode_info *info = SHMEM_I(inode);
1498 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1500 /* i_mutex is held by caller */
1501 if (unlikely(info->seals)) {
1502 if (info->seals & F_SEAL_WRITE)
1503 return -EPERM;
1504 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1505 return -EPERM;
1508 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1511 static int
1512 shmem_write_end(struct file *file, struct address_space *mapping,
1513 loff_t pos, unsigned len, unsigned copied,
1514 struct page *page, void *fsdata)
1516 struct inode *inode = mapping->host;
1518 if (pos + copied > inode->i_size)
1519 i_size_write(inode, pos + copied);
1521 if (!PageUptodate(page)) {
1522 if (copied < PAGE_CACHE_SIZE) {
1523 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1524 zero_user_segments(page, 0, from,
1525 from + copied, PAGE_CACHE_SIZE);
1527 SetPageUptodate(page);
1529 set_page_dirty(page);
1530 unlock_page(page);
1531 page_cache_release(page);
1533 return copied;
1536 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1538 struct file *file = iocb->ki_filp;
1539 struct inode *inode = file_inode(file);
1540 struct address_space *mapping = inode->i_mapping;
1541 pgoff_t index;
1542 unsigned long offset;
1543 enum sgp_type sgp = SGP_READ;
1544 int error = 0;
1545 ssize_t retval = 0;
1546 loff_t *ppos = &iocb->ki_pos;
1549 * Might this read be for a stacking filesystem? Then when reading
1550 * holes of a sparse file, we actually need to allocate those pages,
1551 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1553 if (!iter_is_iovec(to))
1554 sgp = SGP_DIRTY;
1556 index = *ppos >> PAGE_CACHE_SHIFT;
1557 offset = *ppos & ~PAGE_CACHE_MASK;
1559 for (;;) {
1560 struct page *page = NULL;
1561 pgoff_t end_index;
1562 unsigned long nr, ret;
1563 loff_t i_size = i_size_read(inode);
1565 end_index = i_size >> PAGE_CACHE_SHIFT;
1566 if (index > end_index)
1567 break;
1568 if (index == end_index) {
1569 nr = i_size & ~PAGE_CACHE_MASK;
1570 if (nr <= offset)
1571 break;
1574 error = shmem_getpage(inode, index, &page, sgp, NULL);
1575 if (error) {
1576 if (error == -EINVAL)
1577 error = 0;
1578 break;
1580 if (page)
1581 unlock_page(page);
1584 * We must evaluate after, since reads (unlike writes)
1585 * are called without i_mutex protection against truncate
1587 nr = PAGE_CACHE_SIZE;
1588 i_size = i_size_read(inode);
1589 end_index = i_size >> PAGE_CACHE_SHIFT;
1590 if (index == end_index) {
1591 nr = i_size & ~PAGE_CACHE_MASK;
1592 if (nr <= offset) {
1593 if (page)
1594 page_cache_release(page);
1595 break;
1598 nr -= offset;
1600 if (page) {
1602 * If users can be writing to this page using arbitrary
1603 * virtual addresses, take care about potential aliasing
1604 * before reading the page on the kernel side.
1606 if (mapping_writably_mapped(mapping))
1607 flush_dcache_page(page);
1609 * Mark the page accessed if we read the beginning.
1611 if (!offset)
1612 mark_page_accessed(page);
1613 } else {
1614 page = ZERO_PAGE(0);
1615 page_cache_get(page);
1619 * Ok, we have the page, and it's up-to-date, so
1620 * now we can copy it to user space...
1622 ret = copy_page_to_iter(page, offset, nr, to);
1623 retval += ret;
1624 offset += ret;
1625 index += offset >> PAGE_CACHE_SHIFT;
1626 offset &= ~PAGE_CACHE_MASK;
1628 page_cache_release(page);
1629 if (!iov_iter_count(to))
1630 break;
1631 if (ret < nr) {
1632 error = -EFAULT;
1633 break;
1635 cond_resched();
1638 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1639 file_accessed(file);
1640 return retval ? retval : error;
1643 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1644 struct pipe_inode_info *pipe, size_t len,
1645 unsigned int flags)
1647 struct address_space *mapping = in->f_mapping;
1648 struct inode *inode = mapping->host;
1649 unsigned int loff, nr_pages, req_pages;
1650 struct page *pages[PIPE_DEF_BUFFERS];
1651 struct partial_page partial[PIPE_DEF_BUFFERS];
1652 struct page *page;
1653 pgoff_t index, end_index;
1654 loff_t isize, left;
1655 int error, page_nr;
1656 struct splice_pipe_desc spd = {
1657 .pages = pages,
1658 .partial = partial,
1659 .nr_pages_max = PIPE_DEF_BUFFERS,
1660 .flags = flags,
1661 .ops = &page_cache_pipe_buf_ops,
1662 .spd_release = spd_release_page,
1665 isize = i_size_read(inode);
1666 if (unlikely(*ppos >= isize))
1667 return 0;
1669 left = isize - *ppos;
1670 if (unlikely(left < len))
1671 len = left;
1673 if (splice_grow_spd(pipe, &spd))
1674 return -ENOMEM;
1676 index = *ppos >> PAGE_CACHE_SHIFT;
1677 loff = *ppos & ~PAGE_CACHE_MASK;
1678 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1679 nr_pages = min(req_pages, spd.nr_pages_max);
1681 spd.nr_pages = find_get_pages_contig(mapping, index,
1682 nr_pages, spd.pages);
1683 index += spd.nr_pages;
1684 error = 0;
1686 while (spd.nr_pages < nr_pages) {
1687 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1688 if (error)
1689 break;
1690 unlock_page(page);
1691 spd.pages[spd.nr_pages++] = page;
1692 index++;
1695 index = *ppos >> PAGE_CACHE_SHIFT;
1696 nr_pages = spd.nr_pages;
1697 spd.nr_pages = 0;
1699 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1700 unsigned int this_len;
1702 if (!len)
1703 break;
1705 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1706 page = spd.pages[page_nr];
1708 if (!PageUptodate(page) || page->mapping != mapping) {
1709 error = shmem_getpage(inode, index, &page,
1710 SGP_CACHE, NULL);
1711 if (error)
1712 break;
1713 unlock_page(page);
1714 page_cache_release(spd.pages[page_nr]);
1715 spd.pages[page_nr] = page;
1718 isize = i_size_read(inode);
1719 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1720 if (unlikely(!isize || index > end_index))
1721 break;
1723 if (end_index == index) {
1724 unsigned int plen;
1726 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1727 if (plen <= loff)
1728 break;
1730 this_len = min(this_len, plen - loff);
1731 len = this_len;
1734 spd.partial[page_nr].offset = loff;
1735 spd.partial[page_nr].len = this_len;
1736 len -= this_len;
1737 loff = 0;
1738 spd.nr_pages++;
1739 index++;
1742 while (page_nr < nr_pages)
1743 page_cache_release(spd.pages[page_nr++]);
1745 if (spd.nr_pages)
1746 error = splice_to_pipe(pipe, &spd);
1748 splice_shrink_spd(&spd);
1750 if (error > 0) {
1751 *ppos += error;
1752 file_accessed(in);
1754 return error;
1758 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1760 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1761 pgoff_t index, pgoff_t end, int whence)
1763 struct page *page;
1764 struct pagevec pvec;
1765 pgoff_t indices[PAGEVEC_SIZE];
1766 bool done = false;
1767 int i;
1769 pagevec_init(&pvec, 0);
1770 pvec.nr = 1; /* start small: we may be there already */
1771 while (!done) {
1772 pvec.nr = find_get_entries(mapping, index,
1773 pvec.nr, pvec.pages, indices);
1774 if (!pvec.nr) {
1775 if (whence == SEEK_DATA)
1776 index = end;
1777 break;
1779 for (i = 0; i < pvec.nr; i++, index++) {
1780 if (index < indices[i]) {
1781 if (whence == SEEK_HOLE) {
1782 done = true;
1783 break;
1785 index = indices[i];
1787 page = pvec.pages[i];
1788 if (page && !radix_tree_exceptional_entry(page)) {
1789 if (!PageUptodate(page))
1790 page = NULL;
1792 if (index >= end ||
1793 (page && whence == SEEK_DATA) ||
1794 (!page && whence == SEEK_HOLE)) {
1795 done = true;
1796 break;
1799 pagevec_remove_exceptionals(&pvec);
1800 pagevec_release(&pvec);
1801 pvec.nr = PAGEVEC_SIZE;
1802 cond_resched();
1804 return index;
1807 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1809 struct address_space *mapping = file->f_mapping;
1810 struct inode *inode = mapping->host;
1811 pgoff_t start, end;
1812 loff_t new_offset;
1814 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1815 return generic_file_llseek_size(file, offset, whence,
1816 MAX_LFS_FILESIZE, i_size_read(inode));
1817 mutex_lock(&inode->i_mutex);
1818 /* We're holding i_mutex so we can access i_size directly */
1820 if (offset < 0)
1821 offset = -EINVAL;
1822 else if (offset >= inode->i_size)
1823 offset = -ENXIO;
1824 else {
1825 start = offset >> PAGE_CACHE_SHIFT;
1826 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1827 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1828 new_offset <<= PAGE_CACHE_SHIFT;
1829 if (new_offset > offset) {
1830 if (new_offset < inode->i_size)
1831 offset = new_offset;
1832 else if (whence == SEEK_DATA)
1833 offset = -ENXIO;
1834 else
1835 offset = inode->i_size;
1839 if (offset >= 0)
1840 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1841 mutex_unlock(&inode->i_mutex);
1842 return offset;
1846 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1847 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1849 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1850 #define LAST_SCAN 4 /* about 150ms max */
1852 static void shmem_tag_pins(struct address_space *mapping)
1854 struct radix_tree_iter iter;
1855 void **slot;
1856 pgoff_t start;
1857 struct page *page;
1859 lru_add_drain();
1860 start = 0;
1861 rcu_read_lock();
1863 restart:
1864 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1865 page = radix_tree_deref_slot(slot);
1866 if (!page || radix_tree_exception(page)) {
1867 if (radix_tree_deref_retry(page))
1868 goto restart;
1869 } else if (page_count(page) - page_mapcount(page) > 1) {
1870 spin_lock_irq(&mapping->tree_lock);
1871 radix_tree_tag_set(&mapping->page_tree, iter.index,
1872 SHMEM_TAG_PINNED);
1873 spin_unlock_irq(&mapping->tree_lock);
1876 if (need_resched()) {
1877 cond_resched_rcu();
1878 start = iter.index + 1;
1879 goto restart;
1882 rcu_read_unlock();
1886 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1887 * via get_user_pages(), drivers might have some pending I/O without any active
1888 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1889 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1890 * them to be dropped.
1891 * The caller must guarantee that no new user will acquire writable references
1892 * to those pages to avoid races.
1894 static int shmem_wait_for_pins(struct address_space *mapping)
1896 struct radix_tree_iter iter;
1897 void **slot;
1898 pgoff_t start;
1899 struct page *page;
1900 int error, scan;
1902 shmem_tag_pins(mapping);
1904 error = 0;
1905 for (scan = 0; scan <= LAST_SCAN; scan++) {
1906 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1907 break;
1909 if (!scan)
1910 lru_add_drain_all();
1911 else if (schedule_timeout_killable((HZ << scan) / 200))
1912 scan = LAST_SCAN;
1914 start = 0;
1915 rcu_read_lock();
1916 restart:
1917 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1918 start, SHMEM_TAG_PINNED) {
1920 page = radix_tree_deref_slot(slot);
1921 if (radix_tree_exception(page)) {
1922 if (radix_tree_deref_retry(page))
1923 goto restart;
1925 page = NULL;
1928 if (page &&
1929 page_count(page) - page_mapcount(page) != 1) {
1930 if (scan < LAST_SCAN)
1931 goto continue_resched;
1934 * On the last scan, we clean up all those tags
1935 * we inserted; but make a note that we still
1936 * found pages pinned.
1938 error = -EBUSY;
1941 spin_lock_irq(&mapping->tree_lock);
1942 radix_tree_tag_clear(&mapping->page_tree,
1943 iter.index, SHMEM_TAG_PINNED);
1944 spin_unlock_irq(&mapping->tree_lock);
1945 continue_resched:
1946 if (need_resched()) {
1947 cond_resched_rcu();
1948 start = iter.index + 1;
1949 goto restart;
1952 rcu_read_unlock();
1955 return error;
1958 #define F_ALL_SEALS (F_SEAL_SEAL | \
1959 F_SEAL_SHRINK | \
1960 F_SEAL_GROW | \
1961 F_SEAL_WRITE)
1963 int shmem_add_seals(struct file *file, unsigned int seals)
1965 struct inode *inode = file_inode(file);
1966 struct shmem_inode_info *info = SHMEM_I(inode);
1967 int error;
1970 * SEALING
1971 * Sealing allows multiple parties to share a shmem-file but restrict
1972 * access to a specific subset of file operations. Seals can only be
1973 * added, but never removed. This way, mutually untrusted parties can
1974 * share common memory regions with a well-defined policy. A malicious
1975 * peer can thus never perform unwanted operations on a shared object.
1977 * Seals are only supported on special shmem-files and always affect
1978 * the whole underlying inode. Once a seal is set, it may prevent some
1979 * kinds of access to the file. Currently, the following seals are
1980 * defined:
1981 * SEAL_SEAL: Prevent further seals from being set on this file
1982 * SEAL_SHRINK: Prevent the file from shrinking
1983 * SEAL_GROW: Prevent the file from growing
1984 * SEAL_WRITE: Prevent write access to the file
1986 * As we don't require any trust relationship between two parties, we
1987 * must prevent seals from being removed. Therefore, sealing a file
1988 * only adds a given set of seals to the file, it never touches
1989 * existing seals. Furthermore, the "setting seals"-operation can be
1990 * sealed itself, which basically prevents any further seal from being
1991 * added.
1993 * Semantics of sealing are only defined on volatile files. Only
1994 * anonymous shmem files support sealing. More importantly, seals are
1995 * never written to disk. Therefore, there's no plan to support it on
1996 * other file types.
1999 if (file->f_op != &shmem_file_operations)
2000 return -EINVAL;
2001 if (!(file->f_mode & FMODE_WRITE))
2002 return -EPERM;
2003 if (seals & ~(unsigned int)F_ALL_SEALS)
2004 return -EINVAL;
2006 mutex_lock(&inode->i_mutex);
2008 if (info->seals & F_SEAL_SEAL) {
2009 error = -EPERM;
2010 goto unlock;
2013 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2014 error = mapping_deny_writable(file->f_mapping);
2015 if (error)
2016 goto unlock;
2018 error = shmem_wait_for_pins(file->f_mapping);
2019 if (error) {
2020 mapping_allow_writable(file->f_mapping);
2021 goto unlock;
2025 info->seals |= seals;
2026 error = 0;
2028 unlock:
2029 mutex_unlock(&inode->i_mutex);
2030 return error;
2032 EXPORT_SYMBOL_GPL(shmem_add_seals);
2034 int shmem_get_seals(struct file *file)
2036 if (file->f_op != &shmem_file_operations)
2037 return -EINVAL;
2039 return SHMEM_I(file_inode(file))->seals;
2041 EXPORT_SYMBOL_GPL(shmem_get_seals);
2043 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2045 long error;
2047 switch (cmd) {
2048 case F_ADD_SEALS:
2049 /* disallow upper 32bit */
2050 if (arg > UINT_MAX)
2051 return -EINVAL;
2053 error = shmem_add_seals(file, arg);
2054 break;
2055 case F_GET_SEALS:
2056 error = shmem_get_seals(file);
2057 break;
2058 default:
2059 error = -EINVAL;
2060 break;
2063 return error;
2066 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2067 loff_t len)
2069 struct inode *inode = file_inode(file);
2070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2071 struct shmem_inode_info *info = SHMEM_I(inode);
2072 struct shmem_falloc shmem_falloc;
2073 pgoff_t start, index, end;
2074 int error;
2076 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2077 return -EOPNOTSUPP;
2079 mutex_lock(&inode->i_mutex);
2081 if (mode & FALLOC_FL_PUNCH_HOLE) {
2082 struct address_space *mapping = file->f_mapping;
2083 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2084 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2085 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2087 /* protected by i_mutex */
2088 if (info->seals & F_SEAL_WRITE) {
2089 error = -EPERM;
2090 goto out;
2093 shmem_falloc.waitq = &shmem_falloc_waitq;
2094 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2095 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2096 spin_lock(&inode->i_lock);
2097 inode->i_private = &shmem_falloc;
2098 spin_unlock(&inode->i_lock);
2100 if ((u64)unmap_end > (u64)unmap_start)
2101 unmap_mapping_range(mapping, unmap_start,
2102 1 + unmap_end - unmap_start, 0);
2103 shmem_truncate_range(inode, offset, offset + len - 1);
2104 /* No need to unmap again: hole-punching leaves COWed pages */
2106 spin_lock(&inode->i_lock);
2107 inode->i_private = NULL;
2108 wake_up_all(&shmem_falloc_waitq);
2109 spin_unlock(&inode->i_lock);
2110 error = 0;
2111 goto out;
2114 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2115 error = inode_newsize_ok(inode, offset + len);
2116 if (error)
2117 goto out;
2119 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2120 error = -EPERM;
2121 goto out;
2124 start = offset >> PAGE_CACHE_SHIFT;
2125 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2126 /* Try to avoid a swapstorm if len is impossible to satisfy */
2127 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2128 error = -ENOSPC;
2129 goto out;
2132 shmem_falloc.waitq = NULL;
2133 shmem_falloc.start = start;
2134 shmem_falloc.next = start;
2135 shmem_falloc.nr_falloced = 0;
2136 shmem_falloc.nr_unswapped = 0;
2137 spin_lock(&inode->i_lock);
2138 inode->i_private = &shmem_falloc;
2139 spin_unlock(&inode->i_lock);
2141 for (index = start; index < end; index++) {
2142 struct page *page;
2145 * Good, the fallocate(2) manpage permits EINTR: we may have
2146 * been interrupted because we are using up too much memory.
2148 if (signal_pending(current))
2149 error = -EINTR;
2150 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2151 error = -ENOMEM;
2152 else
2153 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2154 NULL);
2155 if (error) {
2156 /* Remove the !PageUptodate pages we added */
2157 shmem_undo_range(inode,
2158 (loff_t)start << PAGE_CACHE_SHIFT,
2159 (loff_t)index << PAGE_CACHE_SHIFT, true);
2160 goto undone;
2164 * Inform shmem_writepage() how far we have reached.
2165 * No need for lock or barrier: we have the page lock.
2167 shmem_falloc.next++;
2168 if (!PageUptodate(page))
2169 shmem_falloc.nr_falloced++;
2172 * If !PageUptodate, leave it that way so that freeable pages
2173 * can be recognized if we need to rollback on error later.
2174 * But set_page_dirty so that memory pressure will swap rather
2175 * than free the pages we are allocating (and SGP_CACHE pages
2176 * might still be clean: we now need to mark those dirty too).
2178 set_page_dirty(page);
2179 unlock_page(page);
2180 page_cache_release(page);
2181 cond_resched();
2184 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2185 i_size_write(inode, offset + len);
2186 inode->i_ctime = CURRENT_TIME;
2187 undone:
2188 spin_lock(&inode->i_lock);
2189 inode->i_private = NULL;
2190 spin_unlock(&inode->i_lock);
2191 out:
2192 mutex_unlock(&inode->i_mutex);
2193 return error;
2196 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2198 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2200 buf->f_type = TMPFS_MAGIC;
2201 buf->f_bsize = PAGE_CACHE_SIZE;
2202 buf->f_namelen = NAME_MAX;
2203 if (sbinfo->max_blocks) {
2204 buf->f_blocks = sbinfo->max_blocks;
2205 buf->f_bavail =
2206 buf->f_bfree = sbinfo->max_blocks -
2207 percpu_counter_sum(&sbinfo->used_blocks);
2209 if (sbinfo->max_inodes) {
2210 buf->f_files = sbinfo->max_inodes;
2211 buf->f_ffree = sbinfo->free_inodes;
2213 /* else leave those fields 0 like simple_statfs */
2214 return 0;
2218 * File creation. Allocate an inode, and we're done..
2220 static int
2221 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2223 struct inode *inode;
2224 int error = -ENOSPC;
2226 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2227 if (inode) {
2228 error = simple_acl_create(dir, inode);
2229 if (error)
2230 goto out_iput;
2231 error = security_inode_init_security(inode, dir,
2232 &dentry->d_name,
2233 shmem_initxattrs, NULL);
2234 if (error && error != -EOPNOTSUPP)
2235 goto out_iput;
2237 error = 0;
2238 dir->i_size += BOGO_DIRENT_SIZE;
2239 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2240 d_instantiate(dentry, inode);
2241 dget(dentry); /* Extra count - pin the dentry in core */
2243 return error;
2244 out_iput:
2245 iput(inode);
2246 return error;
2249 static int
2250 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2252 struct inode *inode;
2253 int error = -ENOSPC;
2255 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2256 if (inode) {
2257 error = security_inode_init_security(inode, dir,
2258 NULL,
2259 shmem_initxattrs, NULL);
2260 if (error && error != -EOPNOTSUPP)
2261 goto out_iput;
2262 error = simple_acl_create(dir, inode);
2263 if (error)
2264 goto out_iput;
2265 d_tmpfile(dentry, inode);
2267 return error;
2268 out_iput:
2269 iput(inode);
2270 return error;
2273 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2275 int error;
2277 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2278 return error;
2279 inc_nlink(dir);
2280 return 0;
2283 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2284 bool excl)
2286 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2290 * Link a file..
2292 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2294 struct inode *inode = d_inode(old_dentry);
2295 int ret;
2298 * No ordinary (disk based) filesystem counts links as inodes;
2299 * but each new link needs a new dentry, pinning lowmem, and
2300 * tmpfs dentries cannot be pruned until they are unlinked.
2302 ret = shmem_reserve_inode(inode->i_sb);
2303 if (ret)
2304 goto out;
2306 dir->i_size += BOGO_DIRENT_SIZE;
2307 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2308 inc_nlink(inode);
2309 ihold(inode); /* New dentry reference */
2310 dget(dentry); /* Extra pinning count for the created dentry */
2311 d_instantiate(dentry, inode);
2312 out:
2313 return ret;
2316 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2318 struct inode *inode = d_inode(dentry);
2320 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2321 shmem_free_inode(inode->i_sb);
2323 dir->i_size -= BOGO_DIRENT_SIZE;
2324 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2325 drop_nlink(inode);
2326 dput(dentry); /* Undo the count from "create" - this does all the work */
2327 return 0;
2330 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2332 if (!simple_empty(dentry))
2333 return -ENOTEMPTY;
2335 drop_nlink(d_inode(dentry));
2336 drop_nlink(dir);
2337 return shmem_unlink(dir, dentry);
2340 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2342 bool old_is_dir = d_is_dir(old_dentry);
2343 bool new_is_dir = d_is_dir(new_dentry);
2345 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2346 if (old_is_dir) {
2347 drop_nlink(old_dir);
2348 inc_nlink(new_dir);
2349 } else {
2350 drop_nlink(new_dir);
2351 inc_nlink(old_dir);
2354 old_dir->i_ctime = old_dir->i_mtime =
2355 new_dir->i_ctime = new_dir->i_mtime =
2356 d_inode(old_dentry)->i_ctime =
2357 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2359 return 0;
2362 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2364 struct dentry *whiteout;
2365 int error;
2367 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2368 if (!whiteout)
2369 return -ENOMEM;
2371 error = shmem_mknod(old_dir, whiteout,
2372 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2373 dput(whiteout);
2374 if (error)
2375 return error;
2378 * Cheat and hash the whiteout while the old dentry is still in
2379 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2381 * d_lookup() will consistently find one of them at this point,
2382 * not sure which one, but that isn't even important.
2384 d_rehash(whiteout);
2385 return 0;
2389 * The VFS layer already does all the dentry stuff for rename,
2390 * we just have to decrement the usage count for the target if
2391 * it exists so that the VFS layer correctly free's it when it
2392 * gets overwritten.
2394 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2396 struct inode *inode = d_inode(old_dentry);
2397 int they_are_dirs = S_ISDIR(inode->i_mode);
2399 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2400 return -EINVAL;
2402 if (flags & RENAME_EXCHANGE)
2403 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2405 if (!simple_empty(new_dentry))
2406 return -ENOTEMPTY;
2408 if (flags & RENAME_WHITEOUT) {
2409 int error;
2411 error = shmem_whiteout(old_dir, old_dentry);
2412 if (error)
2413 return error;
2416 if (d_really_is_positive(new_dentry)) {
2417 (void) shmem_unlink(new_dir, new_dentry);
2418 if (they_are_dirs) {
2419 drop_nlink(d_inode(new_dentry));
2420 drop_nlink(old_dir);
2422 } else if (they_are_dirs) {
2423 drop_nlink(old_dir);
2424 inc_nlink(new_dir);
2427 old_dir->i_size -= BOGO_DIRENT_SIZE;
2428 new_dir->i_size += BOGO_DIRENT_SIZE;
2429 old_dir->i_ctime = old_dir->i_mtime =
2430 new_dir->i_ctime = new_dir->i_mtime =
2431 inode->i_ctime = CURRENT_TIME;
2432 return 0;
2435 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2437 int error;
2438 int len;
2439 struct inode *inode;
2440 struct page *page;
2441 struct shmem_inode_info *info;
2443 len = strlen(symname) + 1;
2444 if (len > PAGE_CACHE_SIZE)
2445 return -ENAMETOOLONG;
2447 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2448 if (!inode)
2449 return -ENOSPC;
2451 error = security_inode_init_security(inode, dir, &dentry->d_name,
2452 shmem_initxattrs, NULL);
2453 if (error) {
2454 if (error != -EOPNOTSUPP) {
2455 iput(inode);
2456 return error;
2458 error = 0;
2461 info = SHMEM_I(inode);
2462 inode->i_size = len-1;
2463 if (len <= SHORT_SYMLINK_LEN) {
2464 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2465 if (!info->symlink) {
2466 iput(inode);
2467 return -ENOMEM;
2469 inode->i_op = &shmem_short_symlink_operations;
2470 inode->i_link = info->symlink;
2471 } else {
2472 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2473 if (error) {
2474 iput(inode);
2475 return error;
2477 inode->i_mapping->a_ops = &shmem_aops;
2478 inode->i_op = &shmem_symlink_inode_operations;
2479 inode_nohighmem(inode);
2480 memcpy(page_address(page), symname, len);
2481 SetPageUptodate(page);
2482 set_page_dirty(page);
2483 unlock_page(page);
2484 page_cache_release(page);
2486 dir->i_size += BOGO_DIRENT_SIZE;
2487 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2488 d_instantiate(dentry, inode);
2489 dget(dentry);
2490 return 0;
2493 static void shmem_put_link(void *arg)
2495 mark_page_accessed(arg);
2496 put_page(arg);
2499 static const char *shmem_get_link(struct dentry *dentry,
2500 struct inode *inode,
2501 struct delayed_call *done)
2503 struct page *page = NULL;
2504 int error;
2505 if (!dentry) {
2506 page = find_get_page(inode->i_mapping, 0);
2507 if (!page)
2508 return ERR_PTR(-ECHILD);
2509 if (!PageUptodate(page)) {
2510 put_page(page);
2511 return ERR_PTR(-ECHILD);
2513 } else {
2514 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2515 if (error)
2516 return ERR_PTR(error);
2517 unlock_page(page);
2519 set_delayed_call(done, shmem_put_link, page);
2520 return page_address(page);
2523 #ifdef CONFIG_TMPFS_XATTR
2525 * Superblocks without xattr inode operations may get some security.* xattr
2526 * support from the LSM "for free". As soon as we have any other xattrs
2527 * like ACLs, we also need to implement the security.* handlers at
2528 * filesystem level, though.
2532 * Callback for security_inode_init_security() for acquiring xattrs.
2534 static int shmem_initxattrs(struct inode *inode,
2535 const struct xattr *xattr_array,
2536 void *fs_info)
2538 struct shmem_inode_info *info = SHMEM_I(inode);
2539 const struct xattr *xattr;
2540 struct simple_xattr *new_xattr;
2541 size_t len;
2543 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2544 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2545 if (!new_xattr)
2546 return -ENOMEM;
2548 len = strlen(xattr->name) + 1;
2549 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2550 GFP_KERNEL);
2551 if (!new_xattr->name) {
2552 kfree(new_xattr);
2553 return -ENOMEM;
2556 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2557 XATTR_SECURITY_PREFIX_LEN);
2558 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2559 xattr->name, len);
2561 simple_xattr_list_add(&info->xattrs, new_xattr);
2564 return 0;
2567 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2568 struct dentry *dentry, const char *name,
2569 void *buffer, size_t size)
2571 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2573 name = xattr_full_name(handler, name);
2574 return simple_xattr_get(&info->xattrs, name, buffer, size);
2577 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2578 struct dentry *dentry, const char *name,
2579 const void *value, size_t size, int flags)
2581 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2583 name = xattr_full_name(handler, name);
2584 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2587 static const struct xattr_handler shmem_security_xattr_handler = {
2588 .prefix = XATTR_SECURITY_PREFIX,
2589 .get = shmem_xattr_handler_get,
2590 .set = shmem_xattr_handler_set,
2593 static const struct xattr_handler shmem_trusted_xattr_handler = {
2594 .prefix = XATTR_TRUSTED_PREFIX,
2595 .get = shmem_xattr_handler_get,
2596 .set = shmem_xattr_handler_set,
2599 static const struct xattr_handler *shmem_xattr_handlers[] = {
2600 #ifdef CONFIG_TMPFS_POSIX_ACL
2601 &posix_acl_access_xattr_handler,
2602 &posix_acl_default_xattr_handler,
2603 #endif
2604 &shmem_security_xattr_handler,
2605 &shmem_trusted_xattr_handler,
2606 NULL
2609 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2611 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2612 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2614 #endif /* CONFIG_TMPFS_XATTR */
2616 static const struct inode_operations shmem_short_symlink_operations = {
2617 .readlink = generic_readlink,
2618 .get_link = simple_get_link,
2619 #ifdef CONFIG_TMPFS_XATTR
2620 .setxattr = generic_setxattr,
2621 .getxattr = generic_getxattr,
2622 .listxattr = shmem_listxattr,
2623 .removexattr = generic_removexattr,
2624 #endif
2627 static const struct inode_operations shmem_symlink_inode_operations = {
2628 .readlink = generic_readlink,
2629 .get_link = shmem_get_link,
2630 #ifdef CONFIG_TMPFS_XATTR
2631 .setxattr = generic_setxattr,
2632 .getxattr = generic_getxattr,
2633 .listxattr = shmem_listxattr,
2634 .removexattr = generic_removexattr,
2635 #endif
2638 static struct dentry *shmem_get_parent(struct dentry *child)
2640 return ERR_PTR(-ESTALE);
2643 static int shmem_match(struct inode *ino, void *vfh)
2645 __u32 *fh = vfh;
2646 __u64 inum = fh[2];
2647 inum = (inum << 32) | fh[1];
2648 return ino->i_ino == inum && fh[0] == ino->i_generation;
2651 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2652 struct fid *fid, int fh_len, int fh_type)
2654 struct inode *inode;
2655 struct dentry *dentry = NULL;
2656 u64 inum;
2658 if (fh_len < 3)
2659 return NULL;
2661 inum = fid->raw[2];
2662 inum = (inum << 32) | fid->raw[1];
2664 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2665 shmem_match, fid->raw);
2666 if (inode) {
2667 dentry = d_find_alias(inode);
2668 iput(inode);
2671 return dentry;
2674 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2675 struct inode *parent)
2677 if (*len < 3) {
2678 *len = 3;
2679 return FILEID_INVALID;
2682 if (inode_unhashed(inode)) {
2683 /* Unfortunately insert_inode_hash is not idempotent,
2684 * so as we hash inodes here rather than at creation
2685 * time, we need a lock to ensure we only try
2686 * to do it once
2688 static DEFINE_SPINLOCK(lock);
2689 spin_lock(&lock);
2690 if (inode_unhashed(inode))
2691 __insert_inode_hash(inode,
2692 inode->i_ino + inode->i_generation);
2693 spin_unlock(&lock);
2696 fh[0] = inode->i_generation;
2697 fh[1] = inode->i_ino;
2698 fh[2] = ((__u64)inode->i_ino) >> 32;
2700 *len = 3;
2701 return 1;
2704 static const struct export_operations shmem_export_ops = {
2705 .get_parent = shmem_get_parent,
2706 .encode_fh = shmem_encode_fh,
2707 .fh_to_dentry = shmem_fh_to_dentry,
2710 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2711 bool remount)
2713 char *this_char, *value, *rest;
2714 struct mempolicy *mpol = NULL;
2715 uid_t uid;
2716 gid_t gid;
2718 while (options != NULL) {
2719 this_char = options;
2720 for (;;) {
2722 * NUL-terminate this option: unfortunately,
2723 * mount options form a comma-separated list,
2724 * but mpol's nodelist may also contain commas.
2726 options = strchr(options, ',');
2727 if (options == NULL)
2728 break;
2729 options++;
2730 if (!isdigit(*options)) {
2731 options[-1] = '\0';
2732 break;
2735 if (!*this_char)
2736 continue;
2737 if ((value = strchr(this_char,'=')) != NULL) {
2738 *value++ = 0;
2739 } else {
2740 printk(KERN_ERR
2741 "tmpfs: No value for mount option '%s'\n",
2742 this_char);
2743 goto error;
2746 if (!strcmp(this_char,"size")) {
2747 unsigned long long size;
2748 size = memparse(value,&rest);
2749 if (*rest == '%') {
2750 size <<= PAGE_SHIFT;
2751 size *= totalram_pages;
2752 do_div(size, 100);
2753 rest++;
2755 if (*rest)
2756 goto bad_val;
2757 sbinfo->max_blocks =
2758 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2759 } else if (!strcmp(this_char,"nr_blocks")) {
2760 sbinfo->max_blocks = memparse(value, &rest);
2761 if (*rest)
2762 goto bad_val;
2763 } else if (!strcmp(this_char,"nr_inodes")) {
2764 sbinfo->max_inodes = memparse(value, &rest);
2765 if (*rest)
2766 goto bad_val;
2767 } else if (!strcmp(this_char,"mode")) {
2768 if (remount)
2769 continue;
2770 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2771 if (*rest)
2772 goto bad_val;
2773 } else if (!strcmp(this_char,"uid")) {
2774 if (remount)
2775 continue;
2776 uid = simple_strtoul(value, &rest, 0);
2777 if (*rest)
2778 goto bad_val;
2779 sbinfo->uid = make_kuid(current_user_ns(), uid);
2780 if (!uid_valid(sbinfo->uid))
2781 goto bad_val;
2782 } else if (!strcmp(this_char,"gid")) {
2783 if (remount)
2784 continue;
2785 gid = simple_strtoul(value, &rest, 0);
2786 if (*rest)
2787 goto bad_val;
2788 sbinfo->gid = make_kgid(current_user_ns(), gid);
2789 if (!gid_valid(sbinfo->gid))
2790 goto bad_val;
2791 } else if (!strcmp(this_char,"mpol")) {
2792 mpol_put(mpol);
2793 mpol = NULL;
2794 if (mpol_parse_str(value, &mpol))
2795 goto bad_val;
2796 } else {
2797 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2798 this_char);
2799 goto error;
2802 sbinfo->mpol = mpol;
2803 return 0;
2805 bad_val:
2806 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2807 value, this_char);
2808 error:
2809 mpol_put(mpol);
2810 return 1;
2814 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2816 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2817 struct shmem_sb_info config = *sbinfo;
2818 unsigned long inodes;
2819 int error = -EINVAL;
2821 config.mpol = NULL;
2822 if (shmem_parse_options(data, &config, true))
2823 return error;
2825 spin_lock(&sbinfo->stat_lock);
2826 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2827 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2828 goto out;
2829 if (config.max_inodes < inodes)
2830 goto out;
2832 * Those tests disallow limited->unlimited while any are in use;
2833 * but we must separately disallow unlimited->limited, because
2834 * in that case we have no record of how much is already in use.
2836 if (config.max_blocks && !sbinfo->max_blocks)
2837 goto out;
2838 if (config.max_inodes && !sbinfo->max_inodes)
2839 goto out;
2841 error = 0;
2842 sbinfo->max_blocks = config.max_blocks;
2843 sbinfo->max_inodes = config.max_inodes;
2844 sbinfo->free_inodes = config.max_inodes - inodes;
2847 * Preserve previous mempolicy unless mpol remount option was specified.
2849 if (config.mpol) {
2850 mpol_put(sbinfo->mpol);
2851 sbinfo->mpol = config.mpol; /* transfers initial ref */
2853 out:
2854 spin_unlock(&sbinfo->stat_lock);
2855 return error;
2858 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2860 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2862 if (sbinfo->max_blocks != shmem_default_max_blocks())
2863 seq_printf(seq, ",size=%luk",
2864 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2865 if (sbinfo->max_inodes != shmem_default_max_inodes())
2866 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2867 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2868 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2869 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2870 seq_printf(seq, ",uid=%u",
2871 from_kuid_munged(&init_user_ns, sbinfo->uid));
2872 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2873 seq_printf(seq, ",gid=%u",
2874 from_kgid_munged(&init_user_ns, sbinfo->gid));
2875 shmem_show_mpol(seq, sbinfo->mpol);
2876 return 0;
2879 #define MFD_NAME_PREFIX "memfd:"
2880 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2881 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2883 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2885 SYSCALL_DEFINE2(memfd_create,
2886 const char __user *, uname,
2887 unsigned int, flags)
2889 struct shmem_inode_info *info;
2890 struct file *file;
2891 int fd, error;
2892 char *name;
2893 long len;
2895 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2896 return -EINVAL;
2898 /* length includes terminating zero */
2899 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2900 if (len <= 0)
2901 return -EFAULT;
2902 if (len > MFD_NAME_MAX_LEN + 1)
2903 return -EINVAL;
2905 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2906 if (!name)
2907 return -ENOMEM;
2909 strcpy(name, MFD_NAME_PREFIX);
2910 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2911 error = -EFAULT;
2912 goto err_name;
2915 /* terminating-zero may have changed after strnlen_user() returned */
2916 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2917 error = -EFAULT;
2918 goto err_name;
2921 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2922 if (fd < 0) {
2923 error = fd;
2924 goto err_name;
2927 file = shmem_file_setup(name, 0, VM_NORESERVE);
2928 if (IS_ERR(file)) {
2929 error = PTR_ERR(file);
2930 goto err_fd;
2932 info = SHMEM_I(file_inode(file));
2933 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2934 file->f_flags |= O_RDWR | O_LARGEFILE;
2935 if (flags & MFD_ALLOW_SEALING)
2936 info->seals &= ~F_SEAL_SEAL;
2938 fd_install(fd, file);
2939 kfree(name);
2940 return fd;
2942 err_fd:
2943 put_unused_fd(fd);
2944 err_name:
2945 kfree(name);
2946 return error;
2949 #endif /* CONFIG_TMPFS */
2951 static void shmem_put_super(struct super_block *sb)
2953 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2955 percpu_counter_destroy(&sbinfo->used_blocks);
2956 mpol_put(sbinfo->mpol);
2957 kfree(sbinfo);
2958 sb->s_fs_info = NULL;
2961 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2963 struct inode *inode;
2964 struct shmem_sb_info *sbinfo;
2965 int err = -ENOMEM;
2967 /* Round up to L1_CACHE_BYTES to resist false sharing */
2968 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2969 L1_CACHE_BYTES), GFP_KERNEL);
2970 if (!sbinfo)
2971 return -ENOMEM;
2973 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2974 sbinfo->uid = current_fsuid();
2975 sbinfo->gid = current_fsgid();
2976 sb->s_fs_info = sbinfo;
2978 #ifdef CONFIG_TMPFS
2980 * Per default we only allow half of the physical ram per
2981 * tmpfs instance, limiting inodes to one per page of lowmem;
2982 * but the internal instance is left unlimited.
2984 if (!(sb->s_flags & MS_KERNMOUNT)) {
2985 sbinfo->max_blocks = shmem_default_max_blocks();
2986 sbinfo->max_inodes = shmem_default_max_inodes();
2987 if (shmem_parse_options(data, sbinfo, false)) {
2988 err = -EINVAL;
2989 goto failed;
2991 } else {
2992 sb->s_flags |= MS_NOUSER;
2994 sb->s_export_op = &shmem_export_ops;
2995 sb->s_flags |= MS_NOSEC;
2996 #else
2997 sb->s_flags |= MS_NOUSER;
2998 #endif
3000 spin_lock_init(&sbinfo->stat_lock);
3001 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3002 goto failed;
3003 sbinfo->free_inodes = sbinfo->max_inodes;
3005 sb->s_maxbytes = MAX_LFS_FILESIZE;
3006 sb->s_blocksize = PAGE_CACHE_SIZE;
3007 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3008 sb->s_magic = TMPFS_MAGIC;
3009 sb->s_op = &shmem_ops;
3010 sb->s_time_gran = 1;
3011 #ifdef CONFIG_TMPFS_XATTR
3012 sb->s_xattr = shmem_xattr_handlers;
3013 #endif
3014 #ifdef CONFIG_TMPFS_POSIX_ACL
3015 sb->s_flags |= MS_POSIXACL;
3016 #endif
3018 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3019 if (!inode)
3020 goto failed;
3021 inode->i_uid = sbinfo->uid;
3022 inode->i_gid = sbinfo->gid;
3023 sb->s_root = d_make_root(inode);
3024 if (!sb->s_root)
3025 goto failed;
3026 return 0;
3028 failed:
3029 shmem_put_super(sb);
3030 return err;
3033 static struct kmem_cache *shmem_inode_cachep;
3035 static struct inode *shmem_alloc_inode(struct super_block *sb)
3037 struct shmem_inode_info *info;
3038 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3039 if (!info)
3040 return NULL;
3041 return &info->vfs_inode;
3044 static void shmem_destroy_callback(struct rcu_head *head)
3046 struct inode *inode = container_of(head, struct inode, i_rcu);
3047 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3050 static void shmem_destroy_inode(struct inode *inode)
3052 if (S_ISREG(inode->i_mode))
3053 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3054 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3057 static void shmem_init_inode(void *foo)
3059 struct shmem_inode_info *info = foo;
3060 inode_init_once(&info->vfs_inode);
3063 static int shmem_init_inodecache(void)
3065 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3066 sizeof(struct shmem_inode_info),
3067 0, SLAB_PANIC, shmem_init_inode);
3068 return 0;
3071 static void shmem_destroy_inodecache(void)
3073 kmem_cache_destroy(shmem_inode_cachep);
3076 static const struct address_space_operations shmem_aops = {
3077 .writepage = shmem_writepage,
3078 .set_page_dirty = __set_page_dirty_no_writeback,
3079 #ifdef CONFIG_TMPFS
3080 .write_begin = shmem_write_begin,
3081 .write_end = shmem_write_end,
3082 #endif
3083 #ifdef CONFIG_MIGRATION
3084 .migratepage = migrate_page,
3085 #endif
3086 .error_remove_page = generic_error_remove_page,
3089 static const struct file_operations shmem_file_operations = {
3090 .mmap = shmem_mmap,
3091 #ifdef CONFIG_TMPFS
3092 .llseek = shmem_file_llseek,
3093 .read_iter = shmem_file_read_iter,
3094 .write_iter = generic_file_write_iter,
3095 .fsync = noop_fsync,
3096 .splice_read = shmem_file_splice_read,
3097 .splice_write = iter_file_splice_write,
3098 .fallocate = shmem_fallocate,
3099 #endif
3102 static const struct inode_operations shmem_inode_operations = {
3103 .getattr = shmem_getattr,
3104 .setattr = shmem_setattr,
3105 #ifdef CONFIG_TMPFS_XATTR
3106 .setxattr = generic_setxattr,
3107 .getxattr = generic_getxattr,
3108 .listxattr = shmem_listxattr,
3109 .removexattr = generic_removexattr,
3110 .set_acl = simple_set_acl,
3111 #endif
3114 static const struct inode_operations shmem_dir_inode_operations = {
3115 #ifdef CONFIG_TMPFS
3116 .create = shmem_create,
3117 .lookup = simple_lookup,
3118 .link = shmem_link,
3119 .unlink = shmem_unlink,
3120 .symlink = shmem_symlink,
3121 .mkdir = shmem_mkdir,
3122 .rmdir = shmem_rmdir,
3123 .mknod = shmem_mknod,
3124 .rename2 = shmem_rename2,
3125 .tmpfile = shmem_tmpfile,
3126 #endif
3127 #ifdef CONFIG_TMPFS_XATTR
3128 .setxattr = generic_setxattr,
3129 .getxattr = generic_getxattr,
3130 .listxattr = shmem_listxattr,
3131 .removexattr = generic_removexattr,
3132 #endif
3133 #ifdef CONFIG_TMPFS_POSIX_ACL
3134 .setattr = shmem_setattr,
3135 .set_acl = simple_set_acl,
3136 #endif
3139 static const struct inode_operations shmem_special_inode_operations = {
3140 #ifdef CONFIG_TMPFS_XATTR
3141 .setxattr = generic_setxattr,
3142 .getxattr = generic_getxattr,
3143 .listxattr = shmem_listxattr,
3144 .removexattr = generic_removexattr,
3145 #endif
3146 #ifdef CONFIG_TMPFS_POSIX_ACL
3147 .setattr = shmem_setattr,
3148 .set_acl = simple_set_acl,
3149 #endif
3152 static const struct super_operations shmem_ops = {
3153 .alloc_inode = shmem_alloc_inode,
3154 .destroy_inode = shmem_destroy_inode,
3155 #ifdef CONFIG_TMPFS
3156 .statfs = shmem_statfs,
3157 .remount_fs = shmem_remount_fs,
3158 .show_options = shmem_show_options,
3159 #endif
3160 .evict_inode = shmem_evict_inode,
3161 .drop_inode = generic_delete_inode,
3162 .put_super = shmem_put_super,
3165 static const struct vm_operations_struct shmem_vm_ops = {
3166 .fault = shmem_fault,
3167 .map_pages = filemap_map_pages,
3168 #ifdef CONFIG_NUMA
3169 .set_policy = shmem_set_policy,
3170 .get_policy = shmem_get_policy,
3171 #endif
3174 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3175 int flags, const char *dev_name, void *data)
3177 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3180 static struct file_system_type shmem_fs_type = {
3181 .owner = THIS_MODULE,
3182 .name = "tmpfs",
3183 .mount = shmem_mount,
3184 .kill_sb = kill_litter_super,
3185 .fs_flags = FS_USERNS_MOUNT,
3188 int __init shmem_init(void)
3190 int error;
3192 /* If rootfs called this, don't re-init */
3193 if (shmem_inode_cachep)
3194 return 0;
3196 error = shmem_init_inodecache();
3197 if (error)
3198 goto out3;
3200 error = register_filesystem(&shmem_fs_type);
3201 if (error) {
3202 printk(KERN_ERR "Could not register tmpfs\n");
3203 goto out2;
3206 shm_mnt = kern_mount(&shmem_fs_type);
3207 if (IS_ERR(shm_mnt)) {
3208 error = PTR_ERR(shm_mnt);
3209 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3210 goto out1;
3212 return 0;
3214 out1:
3215 unregister_filesystem(&shmem_fs_type);
3216 out2:
3217 shmem_destroy_inodecache();
3218 out3:
3219 shm_mnt = ERR_PTR(error);
3220 return error;
3223 #else /* !CONFIG_SHMEM */
3226 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3228 * This is intended for small system where the benefits of the full
3229 * shmem code (swap-backed and resource-limited) are outweighed by
3230 * their complexity. On systems without swap this code should be
3231 * effectively equivalent, but much lighter weight.
3234 static struct file_system_type shmem_fs_type = {
3235 .name = "tmpfs",
3236 .mount = ramfs_mount,
3237 .kill_sb = kill_litter_super,
3238 .fs_flags = FS_USERNS_MOUNT,
3241 int __init shmem_init(void)
3243 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3245 shm_mnt = kern_mount(&shmem_fs_type);
3246 BUG_ON(IS_ERR(shm_mnt));
3248 return 0;
3251 int shmem_unuse(swp_entry_t swap, struct page *page)
3253 return 0;
3256 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3258 return 0;
3261 void shmem_unlock_mapping(struct address_space *mapping)
3265 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3267 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3269 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3271 #define shmem_vm_ops generic_file_vm_ops
3272 #define shmem_file_operations ramfs_file_operations
3273 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3274 #define shmem_acct_size(flags, size) 0
3275 #define shmem_unacct_size(flags, size) do {} while (0)
3277 #endif /* CONFIG_SHMEM */
3279 /* common code */
3281 static struct dentry_operations anon_ops = {
3282 .d_dname = simple_dname
3285 static struct file *__shmem_file_setup(const char *name, loff_t size,
3286 unsigned long flags, unsigned int i_flags)
3288 struct file *res;
3289 struct inode *inode;
3290 struct path path;
3291 struct super_block *sb;
3292 struct qstr this;
3294 if (IS_ERR(shm_mnt))
3295 return ERR_CAST(shm_mnt);
3297 if (size < 0 || size > MAX_LFS_FILESIZE)
3298 return ERR_PTR(-EINVAL);
3300 if (shmem_acct_size(flags, size))
3301 return ERR_PTR(-ENOMEM);
3303 res = ERR_PTR(-ENOMEM);
3304 this.name = name;
3305 this.len = strlen(name);
3306 this.hash = 0; /* will go */
3307 sb = shm_mnt->mnt_sb;
3308 path.mnt = mntget(shm_mnt);
3309 path.dentry = d_alloc_pseudo(sb, &this);
3310 if (!path.dentry)
3311 goto put_memory;
3312 d_set_d_op(path.dentry, &anon_ops);
3314 res = ERR_PTR(-ENOSPC);
3315 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3316 if (!inode)
3317 goto put_memory;
3319 inode->i_flags |= i_flags;
3320 d_instantiate(path.dentry, inode);
3321 inode->i_size = size;
3322 clear_nlink(inode); /* It is unlinked */
3323 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3324 if (IS_ERR(res))
3325 goto put_path;
3327 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3328 &shmem_file_operations);
3329 if (IS_ERR(res))
3330 goto put_path;
3332 return res;
3334 put_memory:
3335 shmem_unacct_size(flags, size);
3336 put_path:
3337 path_put(&path);
3338 return res;
3342 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3343 * kernel internal. There will be NO LSM permission checks against the
3344 * underlying inode. So users of this interface must do LSM checks at a
3345 * higher layer. The users are the big_key and shm implementations. LSM
3346 * checks are provided at the key or shm level rather than the inode.
3347 * @name: name for dentry (to be seen in /proc/<pid>/maps
3348 * @size: size to be set for the file
3349 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3351 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3353 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3357 * shmem_file_setup - get an unlinked file living in tmpfs
3358 * @name: name for dentry (to be seen in /proc/<pid>/maps
3359 * @size: size to be set for the file
3360 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3362 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3364 return __shmem_file_setup(name, size, flags, 0);
3366 EXPORT_SYMBOL_GPL(shmem_file_setup);
3369 * shmem_zero_setup - setup a shared anonymous mapping
3370 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3372 int shmem_zero_setup(struct vm_area_struct *vma)
3374 struct file *file;
3375 loff_t size = vma->vm_end - vma->vm_start;
3378 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3379 * between XFS directory reading and selinux: since this file is only
3380 * accessible to the user through its mapping, use S_PRIVATE flag to
3381 * bypass file security, in the same way as shmem_kernel_file_setup().
3383 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3384 if (IS_ERR(file))
3385 return PTR_ERR(file);
3387 if (vma->vm_file)
3388 fput(vma->vm_file);
3389 vma->vm_file = file;
3390 vma->vm_ops = &shmem_vm_ops;
3391 return 0;
3395 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3396 * @mapping: the page's address_space
3397 * @index: the page index
3398 * @gfp: the page allocator flags to use if allocating
3400 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3401 * with any new page allocations done using the specified allocation flags.
3402 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3403 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3404 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3406 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3407 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3409 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3410 pgoff_t index, gfp_t gfp)
3412 #ifdef CONFIG_SHMEM
3413 struct inode *inode = mapping->host;
3414 struct page *page;
3415 int error;
3417 BUG_ON(mapping->a_ops != &shmem_aops);
3418 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3419 if (error)
3420 page = ERR_PTR(error);
3421 else
3422 unlock_page(page);
3423 return page;
3424 #else
3426 * The tiny !SHMEM case uses ramfs without swap
3428 return read_cache_page_gfp(mapping, index, gfp);
3429 #endif
3431 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);