4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
40 struct vfree_deferred
{
41 struct llist_head list
;
42 struct work_struct wq
;
44 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
46 static void __vunmap(const void *, int);
48 static void free_work(struct work_struct
*w
)
50 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
51 struct llist_node
*llnode
= llist_del_all(&p
->list
);
54 llnode
= llist_next(llnode
);
59 /*** Page table manipulation functions ***/
61 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
65 pte
= pte_offset_kernel(pmd
, addr
);
67 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
68 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
69 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
72 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
77 pmd
= pmd_offset(pud
, addr
);
79 next
= pmd_addr_end(addr
, end
);
80 if (pmd_clear_huge(pmd
))
82 if (pmd_none_or_clear_bad(pmd
))
84 vunmap_pte_range(pmd
, addr
, next
);
85 } while (pmd
++, addr
= next
, addr
!= end
);
88 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
93 pud
= pud_offset(pgd
, addr
);
95 next
= pud_addr_end(addr
, end
);
96 if (pud_clear_huge(pud
))
98 if (pud_none_or_clear_bad(pud
))
100 vunmap_pmd_range(pud
, addr
, next
);
101 } while (pud
++, addr
= next
, addr
!= end
);
104 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
110 pgd
= pgd_offset_k(addr
);
112 next
= pgd_addr_end(addr
, end
);
113 if (pgd_none_or_clear_bad(pgd
))
115 vunmap_pud_range(pgd
, addr
, next
);
116 } while (pgd
++, addr
= next
, addr
!= end
);
119 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
120 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
129 pte
= pte_alloc_kernel(pmd
, addr
);
133 struct page
*page
= pages
[*nr
];
135 if (WARN_ON(!pte_none(*pte
)))
139 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
141 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
145 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
146 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
151 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
155 next
= pmd_addr_end(addr
, end
);
156 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
158 } while (pmd
++, addr
= next
, addr
!= end
);
162 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
163 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
168 pud
= pud_alloc(&init_mm
, pgd
, addr
);
172 next
= pud_addr_end(addr
, end
);
173 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
175 } while (pud
++, addr
= next
, addr
!= end
);
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
186 pgprot_t prot
, struct page
**pages
)
190 unsigned long addr
= start
;
195 pgd
= pgd_offset_k(addr
);
197 next
= pgd_addr_end(addr
, end
);
198 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
201 } while (pgd
++, addr
= next
, addr
!= end
);
206 static int vmap_page_range(unsigned long start
, unsigned long end
,
207 pgprot_t prot
, struct page
**pages
)
211 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
212 flush_cache_vmap(start
, end
);
216 int is_vmalloc_or_module_addr(const void *x
)
219 * ARM, x86-64 and sparc64 put modules in a special place,
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr
= (unsigned long)x
;
225 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
228 return is_vmalloc_addr(x
);
232 * Walk a vmap address to the struct page it maps.
234 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
236 unsigned long addr
= (unsigned long) vmalloc_addr
;
237 struct page
*page
= NULL
;
238 pgd_t
*pgd
= pgd_offset_k(addr
);
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
246 if (!pgd_none(*pgd
)) {
247 pud_t
*pud
= pud_offset(pgd
, addr
);
248 if (!pud_none(*pud
)) {
249 pmd_t
*pmd
= pmd_offset(pud
, addr
);
250 if (!pmd_none(*pmd
)) {
253 ptep
= pte_offset_map(pmd
, addr
);
255 if (pte_present(pte
))
256 page
= pte_page(pte
);
263 EXPORT_SYMBOL(vmalloc_to_page
);
266 * Map a vmalloc()-space virtual address to the physical page frame number.
268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
270 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
272 EXPORT_SYMBOL(vmalloc_to_pfn
);
275 /*** Global kva allocator ***/
277 #define VM_LAZY_FREE 0x01
278 #define VM_LAZY_FREEING 0x02
279 #define VM_VM_AREA 0x04
281 static DEFINE_SPINLOCK(vmap_area_lock
);
282 /* Export for kexec only */
283 LIST_HEAD(vmap_area_list
);
284 static struct rb_root vmap_area_root
= RB_ROOT
;
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node
*free_vmap_cache
;
288 static unsigned long cached_hole_size
;
289 static unsigned long cached_vstart
;
290 static unsigned long cached_align
;
292 static unsigned long vmap_area_pcpu_hole
;
294 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
296 struct rb_node
*n
= vmap_area_root
.rb_node
;
299 struct vmap_area
*va
;
301 va
= rb_entry(n
, struct vmap_area
, rb_node
);
302 if (addr
< va
->va_start
)
304 else if (addr
>= va
->va_end
)
313 static void __insert_vmap_area(struct vmap_area
*va
)
315 struct rb_node
**p
= &vmap_area_root
.rb_node
;
316 struct rb_node
*parent
= NULL
;
320 struct vmap_area
*tmp_va
;
323 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
324 if (va
->va_start
< tmp_va
->va_end
)
326 else if (va
->va_end
> tmp_va
->va_start
)
332 rb_link_node(&va
->rb_node
, parent
, p
);
333 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
335 /* address-sort this list */
336 tmp
= rb_prev(&va
->rb_node
);
338 struct vmap_area
*prev
;
339 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
340 list_add_rcu(&va
->list
, &prev
->list
);
342 list_add_rcu(&va
->list
, &vmap_area_list
);
345 static void purge_vmap_area_lazy(void);
348 * Allocate a region of KVA of the specified size and alignment, within the
351 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
353 unsigned long vstart
, unsigned long vend
,
354 int node
, gfp_t gfp_mask
)
356 struct vmap_area
*va
;
360 struct vmap_area
*first
;
363 BUG_ON(offset_in_page(size
));
364 BUG_ON(!is_power_of_2(align
));
366 va
= kmalloc_node(sizeof(struct vmap_area
),
367 gfp_mask
& GFP_RECLAIM_MASK
, node
);
369 return ERR_PTR(-ENOMEM
);
372 * Only scan the relevant parts containing pointers to other objects
373 * to avoid false negatives.
375 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
378 spin_lock(&vmap_area_lock
);
380 * Invalidate cache if we have more permissive parameters.
381 * cached_hole_size notes the largest hole noticed _below_
382 * the vmap_area cached in free_vmap_cache: if size fits
383 * into that hole, we want to scan from vstart to reuse
384 * the hole instead of allocating above free_vmap_cache.
385 * Note that __free_vmap_area may update free_vmap_cache
386 * without updating cached_hole_size or cached_align.
388 if (!free_vmap_cache
||
389 size
< cached_hole_size
||
390 vstart
< cached_vstart
||
391 align
< cached_align
) {
393 cached_hole_size
= 0;
394 free_vmap_cache
= NULL
;
396 /* record if we encounter less permissive parameters */
397 cached_vstart
= vstart
;
398 cached_align
= align
;
400 /* find starting point for our search */
401 if (free_vmap_cache
) {
402 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
403 addr
= ALIGN(first
->va_end
, align
);
406 if (addr
+ size
< addr
)
410 addr
= ALIGN(vstart
, align
);
411 if (addr
+ size
< addr
)
414 n
= vmap_area_root
.rb_node
;
418 struct vmap_area
*tmp
;
419 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
420 if (tmp
->va_end
>= addr
) {
422 if (tmp
->va_start
<= addr
)
433 /* from the starting point, walk areas until a suitable hole is found */
434 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
435 if (addr
+ cached_hole_size
< first
->va_start
)
436 cached_hole_size
= first
->va_start
- addr
;
437 addr
= ALIGN(first
->va_end
, align
);
438 if (addr
+ size
< addr
)
441 if (list_is_last(&first
->list
, &vmap_area_list
))
444 first
= list_entry(first
->list
.next
,
445 struct vmap_area
, list
);
449 if (addr
+ size
> vend
)
453 va
->va_end
= addr
+ size
;
455 __insert_vmap_area(va
);
456 free_vmap_cache
= &va
->rb_node
;
457 spin_unlock(&vmap_area_lock
);
459 BUG_ON(va
->va_start
& (align
-1));
460 BUG_ON(va
->va_start
< vstart
);
461 BUG_ON(va
->va_end
> vend
);
466 spin_unlock(&vmap_area_lock
);
468 purge_vmap_area_lazy();
472 if (printk_ratelimit())
473 pr_warn("vmap allocation for size %lu failed: "
474 "use vmalloc=<size> to increase size.\n", size
);
476 return ERR_PTR(-EBUSY
);
479 static void __free_vmap_area(struct vmap_area
*va
)
481 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
483 if (free_vmap_cache
) {
484 if (va
->va_end
< cached_vstart
) {
485 free_vmap_cache
= NULL
;
487 struct vmap_area
*cache
;
488 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
489 if (va
->va_start
<= cache
->va_start
) {
490 free_vmap_cache
= rb_prev(&va
->rb_node
);
492 * We don't try to update cached_hole_size or
493 * cached_align, but it won't go very wrong.
498 rb_erase(&va
->rb_node
, &vmap_area_root
);
499 RB_CLEAR_NODE(&va
->rb_node
);
500 list_del_rcu(&va
->list
);
503 * Track the highest possible candidate for pcpu area
504 * allocation. Areas outside of vmalloc area can be returned
505 * here too, consider only end addresses which fall inside
506 * vmalloc area proper.
508 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
509 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
511 kfree_rcu(va
, rcu_head
);
515 * Free a region of KVA allocated by alloc_vmap_area
517 static void free_vmap_area(struct vmap_area
*va
)
519 spin_lock(&vmap_area_lock
);
520 __free_vmap_area(va
);
521 spin_unlock(&vmap_area_lock
);
525 * Clear the pagetable entries of a given vmap_area
527 static void unmap_vmap_area(struct vmap_area
*va
)
529 vunmap_page_range(va
->va_start
, va
->va_end
);
532 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
535 * Unmap page tables and force a TLB flush immediately if
536 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
537 * bugs similarly to those in linear kernel virtual address
538 * space after a page has been freed.
540 * All the lazy freeing logic is still retained, in order to
541 * minimise intrusiveness of this debugging feature.
543 * This is going to be *slow* (linear kernel virtual address
544 * debugging doesn't do a broadcast TLB flush so it is a lot
547 #ifdef CONFIG_DEBUG_PAGEALLOC
548 vunmap_page_range(start
, end
);
549 flush_tlb_kernel_range(start
, end
);
554 * lazy_max_pages is the maximum amount of virtual address space we gather up
555 * before attempting to purge with a TLB flush.
557 * There is a tradeoff here: a larger number will cover more kernel page tables
558 * and take slightly longer to purge, but it will linearly reduce the number of
559 * global TLB flushes that must be performed. It would seem natural to scale
560 * this number up linearly with the number of CPUs (because vmapping activity
561 * could also scale linearly with the number of CPUs), however it is likely
562 * that in practice, workloads might be constrained in other ways that mean
563 * vmap activity will not scale linearly with CPUs. Also, I want to be
564 * conservative and not introduce a big latency on huge systems, so go with
565 * a less aggressive log scale. It will still be an improvement over the old
566 * code, and it will be simple to change the scale factor if we find that it
567 * becomes a problem on bigger systems.
569 static unsigned long lazy_max_pages(void)
573 log
= fls(num_online_cpus());
575 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
578 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
580 /* for per-CPU blocks */
581 static void purge_fragmented_blocks_allcpus(void);
584 * called before a call to iounmap() if the caller wants vm_area_struct's
587 void set_iounmap_nonlazy(void)
589 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
593 * Purges all lazily-freed vmap areas.
595 * If sync is 0 then don't purge if there is already a purge in progress.
596 * If force_flush is 1, then flush kernel TLBs between *start and *end even
597 * if we found no lazy vmap areas to unmap (callers can use this to optimise
598 * their own TLB flushing).
599 * Returns with *start = min(*start, lowest purged address)
600 * *end = max(*end, highest purged address)
602 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
603 int sync
, int force_flush
)
605 static DEFINE_SPINLOCK(purge_lock
);
607 struct vmap_area
*va
;
608 struct vmap_area
*n_va
;
612 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
613 * should not expect such behaviour. This just simplifies locking for
614 * the case that isn't actually used at the moment anyway.
616 if (!sync
&& !force_flush
) {
617 if (!spin_trylock(&purge_lock
))
620 spin_lock(&purge_lock
);
623 purge_fragmented_blocks_allcpus();
626 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
627 if (va
->flags
& VM_LAZY_FREE
) {
628 if (va
->va_start
< *start
)
629 *start
= va
->va_start
;
630 if (va
->va_end
> *end
)
632 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
633 list_add_tail(&va
->purge_list
, &valist
);
634 va
->flags
|= VM_LAZY_FREEING
;
635 va
->flags
&= ~VM_LAZY_FREE
;
641 atomic_sub(nr
, &vmap_lazy_nr
);
643 if (nr
|| force_flush
)
644 flush_tlb_kernel_range(*start
, *end
);
647 spin_lock(&vmap_area_lock
);
648 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
649 __free_vmap_area(va
);
650 spin_unlock(&vmap_area_lock
);
652 spin_unlock(&purge_lock
);
656 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
657 * is already purging.
659 static void try_purge_vmap_area_lazy(void)
661 unsigned long start
= ULONG_MAX
, end
= 0;
663 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
667 * Kick off a purge of the outstanding lazy areas.
669 static void purge_vmap_area_lazy(void)
671 unsigned long start
= ULONG_MAX
, end
= 0;
673 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
677 * Free a vmap area, caller ensuring that the area has been unmapped
678 * and flush_cache_vunmap had been called for the correct range
681 static void free_vmap_area_noflush(struct vmap_area
*va
)
683 va
->flags
|= VM_LAZY_FREE
;
684 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
685 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
686 try_purge_vmap_area_lazy();
690 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
691 * called for the correct range previously.
693 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
696 free_vmap_area_noflush(va
);
700 * Free and unmap a vmap area
702 static void free_unmap_vmap_area(struct vmap_area
*va
)
704 flush_cache_vunmap(va
->va_start
, va
->va_end
);
705 free_unmap_vmap_area_noflush(va
);
708 static struct vmap_area
*find_vmap_area(unsigned long addr
)
710 struct vmap_area
*va
;
712 spin_lock(&vmap_area_lock
);
713 va
= __find_vmap_area(addr
);
714 spin_unlock(&vmap_area_lock
);
719 static void free_unmap_vmap_area_addr(unsigned long addr
)
721 struct vmap_area
*va
;
723 va
= find_vmap_area(addr
);
725 free_unmap_vmap_area(va
);
729 /*** Per cpu kva allocator ***/
732 * vmap space is limited especially on 32 bit architectures. Ensure there is
733 * room for at least 16 percpu vmap blocks per CPU.
736 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
737 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
738 * instead (we just need a rough idea)
740 #if BITS_PER_LONG == 32
741 #define VMALLOC_SPACE (128UL*1024*1024)
743 #define VMALLOC_SPACE (128UL*1024*1024*1024)
746 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
747 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
748 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
749 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
750 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
751 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
752 #define VMAP_BBMAP_BITS \
753 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
754 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
755 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
757 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
759 static bool vmap_initialized __read_mostly
= false;
761 struct vmap_block_queue
{
763 struct list_head free
;
768 struct vmap_area
*va
;
769 unsigned long free
, dirty
;
770 unsigned long dirty_min
, dirty_max
; /*< dirty range */
771 struct list_head free_list
;
772 struct rcu_head rcu_head
;
773 struct list_head purge
;
776 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
777 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
780 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
781 * in the free path. Could get rid of this if we change the API to return a
782 * "cookie" from alloc, to be passed to free. But no big deal yet.
784 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
785 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
788 * We should probably have a fallback mechanism to allocate virtual memory
789 * out of partially filled vmap blocks. However vmap block sizing should be
790 * fairly reasonable according to the vmalloc size, so it shouldn't be a
794 static unsigned long addr_to_vb_idx(unsigned long addr
)
796 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
797 addr
/= VMAP_BLOCK_SIZE
;
801 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
805 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
806 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
811 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
812 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
813 * @order: how many 2^order pages should be occupied in newly allocated block
814 * @gfp_mask: flags for the page level allocator
816 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
818 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
820 struct vmap_block_queue
*vbq
;
821 struct vmap_block
*vb
;
822 struct vmap_area
*va
;
823 unsigned long vb_idx
;
827 node
= numa_node_id();
829 vb
= kmalloc_node(sizeof(struct vmap_block
),
830 gfp_mask
& GFP_RECLAIM_MASK
, node
);
832 return ERR_PTR(-ENOMEM
);
834 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
835 VMALLOC_START
, VMALLOC_END
,
842 err
= radix_tree_preload(gfp_mask
);
849 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
850 spin_lock_init(&vb
->lock
);
852 /* At least something should be left free */
853 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
854 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
856 vb
->dirty_min
= VMAP_BBMAP_BITS
;
858 INIT_LIST_HEAD(&vb
->free_list
);
860 vb_idx
= addr_to_vb_idx(va
->va_start
);
861 spin_lock(&vmap_block_tree_lock
);
862 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
863 spin_unlock(&vmap_block_tree_lock
);
865 radix_tree_preload_end();
867 vbq
= &get_cpu_var(vmap_block_queue
);
868 spin_lock(&vbq
->lock
);
869 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
870 spin_unlock(&vbq
->lock
);
871 put_cpu_var(vmap_block_queue
);
876 static void free_vmap_block(struct vmap_block
*vb
)
878 struct vmap_block
*tmp
;
879 unsigned long vb_idx
;
881 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
882 spin_lock(&vmap_block_tree_lock
);
883 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
884 spin_unlock(&vmap_block_tree_lock
);
887 free_vmap_area_noflush(vb
->va
);
888 kfree_rcu(vb
, rcu_head
);
891 static void purge_fragmented_blocks(int cpu
)
894 struct vmap_block
*vb
;
895 struct vmap_block
*n_vb
;
896 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
899 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
901 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
904 spin_lock(&vb
->lock
);
905 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
906 vb
->free
= 0; /* prevent further allocs after releasing lock */
907 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
909 vb
->dirty_max
= VMAP_BBMAP_BITS
;
910 spin_lock(&vbq
->lock
);
911 list_del_rcu(&vb
->free_list
);
912 spin_unlock(&vbq
->lock
);
913 spin_unlock(&vb
->lock
);
914 list_add_tail(&vb
->purge
, &purge
);
916 spin_unlock(&vb
->lock
);
920 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
921 list_del(&vb
->purge
);
926 static void purge_fragmented_blocks_allcpus(void)
930 for_each_possible_cpu(cpu
)
931 purge_fragmented_blocks(cpu
);
934 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
936 struct vmap_block_queue
*vbq
;
937 struct vmap_block
*vb
;
941 BUG_ON(offset_in_page(size
));
942 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
943 if (WARN_ON(size
== 0)) {
945 * Allocating 0 bytes isn't what caller wants since
946 * get_order(0) returns funny result. Just warn and terminate
951 order
= get_order(size
);
954 vbq
= &get_cpu_var(vmap_block_queue
);
955 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
956 unsigned long pages_off
;
958 spin_lock(&vb
->lock
);
959 if (vb
->free
< (1UL << order
)) {
960 spin_unlock(&vb
->lock
);
964 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
965 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
966 vb
->free
-= 1UL << order
;
968 spin_lock(&vbq
->lock
);
969 list_del_rcu(&vb
->free_list
);
970 spin_unlock(&vbq
->lock
);
973 spin_unlock(&vb
->lock
);
977 put_cpu_var(vmap_block_queue
);
980 /* Allocate new block if nothing was found */
982 vaddr
= new_vmap_block(order
, gfp_mask
);
987 static void vb_free(const void *addr
, unsigned long size
)
989 unsigned long offset
;
990 unsigned long vb_idx
;
992 struct vmap_block
*vb
;
994 BUG_ON(offset_in_page(size
));
995 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
997 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
999 order
= get_order(size
);
1001 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1002 offset
>>= PAGE_SHIFT
;
1004 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1006 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1010 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1012 spin_lock(&vb
->lock
);
1014 /* Expand dirty range */
1015 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1016 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1018 vb
->dirty
+= 1UL << order
;
1019 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1021 spin_unlock(&vb
->lock
);
1022 free_vmap_block(vb
);
1024 spin_unlock(&vb
->lock
);
1028 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1030 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1031 * to amortize TLB flushing overheads. What this means is that any page you
1032 * have now, may, in a former life, have been mapped into kernel virtual
1033 * address by the vmap layer and so there might be some CPUs with TLB entries
1034 * still referencing that page (additional to the regular 1:1 kernel mapping).
1036 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1037 * be sure that none of the pages we have control over will have any aliases
1038 * from the vmap layer.
1040 void vm_unmap_aliases(void)
1042 unsigned long start
= ULONG_MAX
, end
= 0;
1046 if (unlikely(!vmap_initialized
))
1049 for_each_possible_cpu(cpu
) {
1050 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1051 struct vmap_block
*vb
;
1054 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1055 spin_lock(&vb
->lock
);
1057 unsigned long va_start
= vb
->va
->va_start
;
1060 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1061 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1063 start
= min(s
, start
);
1068 spin_unlock(&vb
->lock
);
1073 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1075 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1078 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1079 * @mem: the pointer returned by vm_map_ram
1080 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1082 void vm_unmap_ram(const void *mem
, unsigned int count
)
1084 unsigned long size
= count
<< PAGE_SHIFT
;
1085 unsigned long addr
= (unsigned long)mem
;
1088 BUG_ON(addr
< VMALLOC_START
);
1089 BUG_ON(addr
> VMALLOC_END
);
1090 BUG_ON(addr
& (PAGE_SIZE
-1));
1092 debug_check_no_locks_freed(mem
, size
);
1093 vmap_debug_free_range(addr
, addr
+size
);
1095 if (likely(count
<= VMAP_MAX_ALLOC
))
1098 free_unmap_vmap_area_addr(addr
);
1100 EXPORT_SYMBOL(vm_unmap_ram
);
1103 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1104 * @pages: an array of pointers to the pages to be mapped
1105 * @count: number of pages
1106 * @node: prefer to allocate data structures on this node
1107 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1109 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1110 * faster than vmap so it's good. But if you mix long-life and short-life
1111 * objects with vm_map_ram(), it could consume lots of address space through
1112 * fragmentation (especially on a 32bit machine). You could see failures in
1113 * the end. Please use this function for short-lived objects.
1115 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1117 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1119 unsigned long size
= count
<< PAGE_SHIFT
;
1123 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1124 mem
= vb_alloc(size
, GFP_KERNEL
);
1127 addr
= (unsigned long)mem
;
1129 struct vmap_area
*va
;
1130 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1131 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1135 addr
= va
->va_start
;
1138 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1139 vm_unmap_ram(mem
, count
);
1144 EXPORT_SYMBOL(vm_map_ram
);
1146 static struct vm_struct
*vmlist __initdata
;
1148 * vm_area_add_early - add vmap area early during boot
1149 * @vm: vm_struct to add
1151 * This function is used to add fixed kernel vm area to vmlist before
1152 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1153 * should contain proper values and the other fields should be zero.
1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1157 void __init
vm_area_add_early(struct vm_struct
*vm
)
1159 struct vm_struct
*tmp
, **p
;
1161 BUG_ON(vmap_initialized
);
1162 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1163 if (tmp
->addr
>= vm
->addr
) {
1164 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1167 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1174 * vm_area_register_early - register vmap area early during boot
1175 * @vm: vm_struct to register
1176 * @align: requested alignment
1178 * This function is used to register kernel vm area before
1179 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1180 * proper values on entry and other fields should be zero. On return,
1181 * vm->addr contains the allocated address.
1183 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1185 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1187 static size_t vm_init_off __initdata
;
1190 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1191 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1193 vm
->addr
= (void *)addr
;
1195 vm_area_add_early(vm
);
1198 void __init
vmalloc_init(void)
1200 struct vmap_area
*va
;
1201 struct vm_struct
*tmp
;
1204 for_each_possible_cpu(i
) {
1205 struct vmap_block_queue
*vbq
;
1206 struct vfree_deferred
*p
;
1208 vbq
= &per_cpu(vmap_block_queue
, i
);
1209 spin_lock_init(&vbq
->lock
);
1210 INIT_LIST_HEAD(&vbq
->free
);
1211 p
= &per_cpu(vfree_deferred
, i
);
1212 init_llist_head(&p
->list
);
1213 INIT_WORK(&p
->wq
, free_work
);
1216 /* Import existing vmlist entries. */
1217 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1218 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1219 va
->flags
= VM_VM_AREA
;
1220 va
->va_start
= (unsigned long)tmp
->addr
;
1221 va
->va_end
= va
->va_start
+ tmp
->size
;
1223 __insert_vmap_area(va
);
1226 vmap_area_pcpu_hole
= VMALLOC_END
;
1228 vmap_initialized
= true;
1232 * map_kernel_range_noflush - map kernel VM area with the specified pages
1233 * @addr: start of the VM area to map
1234 * @size: size of the VM area to map
1235 * @prot: page protection flags to use
1236 * @pages: pages to map
1238 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1239 * specify should have been allocated using get_vm_area() and its
1243 * This function does NOT do any cache flushing. The caller is
1244 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1245 * before calling this function.
1248 * The number of pages mapped on success, -errno on failure.
1250 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1251 pgprot_t prot
, struct page
**pages
)
1253 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1257 * unmap_kernel_range_noflush - unmap kernel VM area
1258 * @addr: start of the VM area to unmap
1259 * @size: size of the VM area to unmap
1261 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1262 * specify should have been allocated using get_vm_area() and its
1266 * This function does NOT do any cache flushing. The caller is
1267 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1268 * before calling this function and flush_tlb_kernel_range() after.
1270 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1272 vunmap_page_range(addr
, addr
+ size
);
1274 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1277 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1278 * @addr: start of the VM area to unmap
1279 * @size: size of the VM area to unmap
1281 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1282 * the unmapping and tlb after.
1284 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1286 unsigned long end
= addr
+ size
;
1288 flush_cache_vunmap(addr
, end
);
1289 vunmap_page_range(addr
, end
);
1290 flush_tlb_kernel_range(addr
, end
);
1292 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1294 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1296 unsigned long addr
= (unsigned long)area
->addr
;
1297 unsigned long end
= addr
+ get_vm_area_size(area
);
1300 err
= vmap_page_range(addr
, end
, prot
, pages
);
1302 return err
> 0 ? 0 : err
;
1304 EXPORT_SYMBOL_GPL(map_vm_area
);
1306 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1307 unsigned long flags
, const void *caller
)
1309 spin_lock(&vmap_area_lock
);
1311 vm
->addr
= (void *)va
->va_start
;
1312 vm
->size
= va
->va_end
- va
->va_start
;
1313 vm
->caller
= caller
;
1315 va
->flags
|= VM_VM_AREA
;
1316 spin_unlock(&vmap_area_lock
);
1319 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1322 * Before removing VM_UNINITIALIZED,
1323 * we should make sure that vm has proper values.
1324 * Pair with smp_rmb() in show_numa_info().
1327 vm
->flags
&= ~VM_UNINITIALIZED
;
1330 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1331 unsigned long align
, unsigned long flags
, unsigned long start
,
1332 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1334 struct vmap_area
*va
;
1335 struct vm_struct
*area
;
1337 BUG_ON(in_interrupt());
1338 if (flags
& VM_IOREMAP
)
1339 align
= 1ul << clamp_t(int, fls_long(size
),
1340 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1342 size
= PAGE_ALIGN(size
);
1343 if (unlikely(!size
))
1346 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1347 if (unlikely(!area
))
1350 if (!(flags
& VM_NO_GUARD
))
1353 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1359 setup_vmalloc_vm(area
, va
, flags
, caller
);
1364 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1365 unsigned long start
, unsigned long end
)
1367 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1368 GFP_KERNEL
, __builtin_return_address(0));
1370 EXPORT_SYMBOL_GPL(__get_vm_area
);
1372 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1373 unsigned long start
, unsigned long end
,
1376 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1377 GFP_KERNEL
, caller
);
1381 * get_vm_area - reserve a contiguous kernel virtual area
1382 * @size: size of the area
1383 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1385 * Search an area of @size in the kernel virtual mapping area,
1386 * and reserved it for out purposes. Returns the area descriptor
1387 * on success or %NULL on failure.
1389 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1391 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1392 NUMA_NO_NODE
, GFP_KERNEL
,
1393 __builtin_return_address(0));
1396 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1399 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1400 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1404 * find_vm_area - find a continuous kernel virtual area
1405 * @addr: base address
1407 * Search for the kernel VM area starting at @addr, and return it.
1408 * It is up to the caller to do all required locking to keep the returned
1411 struct vm_struct
*find_vm_area(const void *addr
)
1413 struct vmap_area
*va
;
1415 va
= find_vmap_area((unsigned long)addr
);
1416 if (va
&& va
->flags
& VM_VM_AREA
)
1423 * remove_vm_area - find and remove a continuous kernel virtual area
1424 * @addr: base address
1426 * Search for the kernel VM area starting at @addr, and remove it.
1427 * This function returns the found VM area, but using it is NOT safe
1428 * on SMP machines, except for its size or flags.
1430 struct vm_struct
*remove_vm_area(const void *addr
)
1432 struct vmap_area
*va
;
1434 va
= find_vmap_area((unsigned long)addr
);
1435 if (va
&& va
->flags
& VM_VM_AREA
) {
1436 struct vm_struct
*vm
= va
->vm
;
1438 spin_lock(&vmap_area_lock
);
1440 va
->flags
&= ~VM_VM_AREA
;
1441 spin_unlock(&vmap_area_lock
);
1443 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1444 kasan_free_shadow(vm
);
1445 free_unmap_vmap_area(va
);
1452 static void __vunmap(const void *addr
, int deallocate_pages
)
1454 struct vm_struct
*area
;
1459 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1463 area
= remove_vm_area(addr
);
1464 if (unlikely(!area
)) {
1465 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1470 debug_check_no_locks_freed(addr
, get_vm_area_size(area
));
1471 debug_check_no_obj_freed(addr
, get_vm_area_size(area
));
1473 if (deallocate_pages
) {
1476 for (i
= 0; i
< area
->nr_pages
; i
++) {
1477 struct page
*page
= area
->pages
[i
];
1483 if (area
->flags
& VM_VPAGES
)
1494 * vfree - release memory allocated by vmalloc()
1495 * @addr: memory base address
1497 * Free the virtually continuous memory area starting at @addr, as
1498 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1499 * NULL, no operation is performed.
1501 * Must not be called in NMI context (strictly speaking, only if we don't
1502 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1503 * conventions for vfree() arch-depenedent would be a really bad idea)
1505 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1507 void vfree(const void *addr
)
1511 kmemleak_free(addr
);
1515 if (unlikely(in_interrupt())) {
1516 struct vfree_deferred
*p
= this_cpu_ptr(&vfree_deferred
);
1517 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1518 schedule_work(&p
->wq
);
1522 EXPORT_SYMBOL(vfree
);
1525 * vunmap - release virtual mapping obtained by vmap()
1526 * @addr: memory base address
1528 * Free the virtually contiguous memory area starting at @addr,
1529 * which was created from the page array passed to vmap().
1531 * Must not be called in interrupt context.
1533 void vunmap(const void *addr
)
1535 BUG_ON(in_interrupt());
1540 EXPORT_SYMBOL(vunmap
);
1543 * vmap - map an array of pages into virtually contiguous space
1544 * @pages: array of page pointers
1545 * @count: number of pages to map
1546 * @flags: vm_area->flags
1547 * @prot: page protection for the mapping
1549 * Maps @count pages from @pages into contiguous kernel virtual
1552 void *vmap(struct page
**pages
, unsigned int count
,
1553 unsigned long flags
, pgprot_t prot
)
1555 struct vm_struct
*area
;
1559 if (count
> totalram_pages
)
1562 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1563 __builtin_return_address(0));
1567 if (map_vm_area(area
, prot
, pages
)) {
1574 EXPORT_SYMBOL(vmap
);
1576 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1577 gfp_t gfp_mask
, pgprot_t prot
,
1578 int node
, const void *caller
);
1579 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1580 pgprot_t prot
, int node
)
1582 const int order
= 0;
1583 struct page
**pages
;
1584 unsigned int nr_pages
, array_size
, i
;
1585 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1586 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
1588 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1589 array_size
= (nr_pages
* sizeof(struct page
*));
1591 area
->nr_pages
= nr_pages
;
1592 /* Please note that the recursion is strictly bounded. */
1593 if (array_size
> PAGE_SIZE
) {
1594 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1595 PAGE_KERNEL
, node
, area
->caller
);
1596 area
->flags
|= VM_VPAGES
;
1598 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1600 area
->pages
= pages
;
1602 remove_vm_area(area
->addr
);
1607 for (i
= 0; i
< area
->nr_pages
; i
++) {
1610 if (node
== NUMA_NO_NODE
)
1611 page
= alloc_page(alloc_mask
);
1613 page
= alloc_pages_node(node
, alloc_mask
, order
);
1615 if (unlikely(!page
)) {
1616 /* Successfully allocated i pages, free them in __vunmap() */
1620 area
->pages
[i
] = page
;
1621 if (gfpflags_allow_blocking(gfp_mask
))
1625 if (map_vm_area(area
, prot
, pages
))
1630 warn_alloc_failed(gfp_mask
, order
,
1631 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1632 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1638 * __vmalloc_node_range - allocate virtually contiguous memory
1639 * @size: allocation size
1640 * @align: desired alignment
1641 * @start: vm area range start
1642 * @end: vm area range end
1643 * @gfp_mask: flags for the page level allocator
1644 * @prot: protection mask for the allocated pages
1645 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1646 * @node: node to use for allocation or NUMA_NO_NODE
1647 * @caller: caller's return address
1649 * Allocate enough pages to cover @size from the page level
1650 * allocator with @gfp_mask flags. Map them into contiguous
1651 * kernel virtual space, using a pagetable protection of @prot.
1653 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1654 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1655 pgprot_t prot
, unsigned long vm_flags
, int node
,
1658 struct vm_struct
*area
;
1660 unsigned long real_size
= size
;
1662 size
= PAGE_ALIGN(size
);
1663 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1666 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
1667 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
1671 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
1676 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1677 * flag. It means that vm_struct is not fully initialized.
1678 * Now, it is fully initialized, so remove this flag here.
1680 clear_vm_uninitialized_flag(area
);
1683 * A ref_count = 2 is needed because vm_struct allocated in
1684 * __get_vm_area_node() contains a reference to the virtual address of
1685 * the vmalloc'ed block.
1687 kmemleak_alloc(addr
, real_size
, 2, gfp_mask
);
1692 warn_alloc_failed(gfp_mask
, 0,
1693 "vmalloc: allocation failure: %lu bytes\n",
1699 * __vmalloc_node - allocate virtually contiguous memory
1700 * @size: allocation size
1701 * @align: desired alignment
1702 * @gfp_mask: flags for the page level allocator
1703 * @prot: protection mask for the allocated pages
1704 * @node: node to use for allocation or NUMA_NO_NODE
1705 * @caller: caller's return address
1707 * Allocate enough pages to cover @size from the page level
1708 * allocator with @gfp_mask flags. Map them into contiguous
1709 * kernel virtual space, using a pagetable protection of @prot.
1711 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1712 gfp_t gfp_mask
, pgprot_t prot
,
1713 int node
, const void *caller
)
1715 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1716 gfp_mask
, prot
, 0, node
, caller
);
1719 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1721 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1722 __builtin_return_address(0));
1724 EXPORT_SYMBOL(__vmalloc
);
1726 static inline void *__vmalloc_node_flags(unsigned long size
,
1727 int node
, gfp_t flags
)
1729 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1730 node
, __builtin_return_address(0));
1734 * vmalloc - allocate virtually contiguous memory
1735 * @size: allocation size
1736 * Allocate enough pages to cover @size from the page level
1737 * allocator and map them into contiguous kernel virtual space.
1739 * For tight control over page level allocator and protection flags
1740 * use __vmalloc() instead.
1742 void *vmalloc(unsigned long size
)
1744 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1745 GFP_KERNEL
| __GFP_HIGHMEM
);
1747 EXPORT_SYMBOL(vmalloc
);
1750 * vzalloc - allocate virtually contiguous memory with zero fill
1751 * @size: allocation size
1752 * Allocate enough pages to cover @size from the page level
1753 * allocator and map them into contiguous kernel virtual space.
1754 * The memory allocated is set to zero.
1756 * For tight control over page level allocator and protection flags
1757 * use __vmalloc() instead.
1759 void *vzalloc(unsigned long size
)
1761 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1762 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1764 EXPORT_SYMBOL(vzalloc
);
1767 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1768 * @size: allocation size
1770 * The resulting memory area is zeroed so it can be mapped to userspace
1771 * without leaking data.
1773 void *vmalloc_user(unsigned long size
)
1775 struct vm_struct
*area
;
1778 ret
= __vmalloc_node(size
, SHMLBA
,
1779 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1780 PAGE_KERNEL
, NUMA_NO_NODE
,
1781 __builtin_return_address(0));
1783 area
= find_vm_area(ret
);
1784 area
->flags
|= VM_USERMAP
;
1788 EXPORT_SYMBOL(vmalloc_user
);
1791 * vmalloc_node - allocate memory on a specific node
1792 * @size: allocation size
1795 * Allocate enough pages to cover @size from the page level
1796 * allocator and map them into contiguous kernel virtual space.
1798 * For tight control over page level allocator and protection flags
1799 * use __vmalloc() instead.
1801 void *vmalloc_node(unsigned long size
, int node
)
1803 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1804 node
, __builtin_return_address(0));
1806 EXPORT_SYMBOL(vmalloc_node
);
1809 * vzalloc_node - allocate memory on a specific node with zero fill
1810 * @size: allocation size
1813 * Allocate enough pages to cover @size from the page level
1814 * allocator and map them into contiguous kernel virtual space.
1815 * The memory allocated is set to zero.
1817 * For tight control over page level allocator and protection flags
1818 * use __vmalloc_node() instead.
1820 void *vzalloc_node(unsigned long size
, int node
)
1822 return __vmalloc_node_flags(size
, node
,
1823 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1825 EXPORT_SYMBOL(vzalloc_node
);
1827 #ifndef PAGE_KERNEL_EXEC
1828 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1832 * vmalloc_exec - allocate virtually contiguous, executable memory
1833 * @size: allocation size
1835 * Kernel-internal function to allocate enough pages to cover @size
1836 * the page level allocator and map them into contiguous and
1837 * executable kernel virtual space.
1839 * For tight control over page level allocator and protection flags
1840 * use __vmalloc() instead.
1843 void *vmalloc_exec(unsigned long size
)
1845 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1846 NUMA_NO_NODE
, __builtin_return_address(0));
1849 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1850 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1851 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1852 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1854 #define GFP_VMALLOC32 GFP_KERNEL
1858 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1859 * @size: allocation size
1861 * Allocate enough 32bit PA addressable pages to cover @size from the
1862 * page level allocator and map them into contiguous kernel virtual space.
1864 void *vmalloc_32(unsigned long size
)
1866 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1867 NUMA_NO_NODE
, __builtin_return_address(0));
1869 EXPORT_SYMBOL(vmalloc_32
);
1872 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1873 * @size: allocation size
1875 * The resulting memory area is 32bit addressable and zeroed so it can be
1876 * mapped to userspace without leaking data.
1878 void *vmalloc_32_user(unsigned long size
)
1880 struct vm_struct
*area
;
1883 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1884 NUMA_NO_NODE
, __builtin_return_address(0));
1886 area
= find_vm_area(ret
);
1887 area
->flags
|= VM_USERMAP
;
1891 EXPORT_SYMBOL(vmalloc_32_user
);
1894 * small helper routine , copy contents to buf from addr.
1895 * If the page is not present, fill zero.
1898 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1904 unsigned long offset
, length
;
1906 offset
= offset_in_page(addr
);
1907 length
= PAGE_SIZE
- offset
;
1910 p
= vmalloc_to_page(addr
);
1912 * To do safe access to this _mapped_ area, we need
1913 * lock. But adding lock here means that we need to add
1914 * overhead of vmalloc()/vfree() calles for this _debug_
1915 * interface, rarely used. Instead of that, we'll use
1916 * kmap() and get small overhead in this access function.
1920 * we can expect USER0 is not used (see vread/vwrite's
1921 * function description)
1923 void *map
= kmap_atomic(p
);
1924 memcpy(buf
, map
+ offset
, length
);
1927 memset(buf
, 0, length
);
1937 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1943 unsigned long offset
, length
;
1945 offset
= offset_in_page(addr
);
1946 length
= PAGE_SIZE
- offset
;
1949 p
= vmalloc_to_page(addr
);
1951 * To do safe access to this _mapped_ area, we need
1952 * lock. But adding lock here means that we need to add
1953 * overhead of vmalloc()/vfree() calles for this _debug_
1954 * interface, rarely used. Instead of that, we'll use
1955 * kmap() and get small overhead in this access function.
1959 * we can expect USER0 is not used (see vread/vwrite's
1960 * function description)
1962 void *map
= kmap_atomic(p
);
1963 memcpy(map
+ offset
, buf
, length
);
1975 * vread() - read vmalloc area in a safe way.
1976 * @buf: buffer for reading data
1977 * @addr: vm address.
1978 * @count: number of bytes to be read.
1980 * Returns # of bytes which addr and buf should be increased.
1981 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1982 * includes any intersect with alive vmalloc area.
1984 * This function checks that addr is a valid vmalloc'ed area, and
1985 * copy data from that area to a given buffer. If the given memory range
1986 * of [addr...addr+count) includes some valid address, data is copied to
1987 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1988 * IOREMAP area is treated as memory hole and no copy is done.
1990 * If [addr...addr+count) doesn't includes any intersects with alive
1991 * vm_struct area, returns 0. @buf should be kernel's buffer.
1993 * Note: In usual ops, vread() is never necessary because the caller
1994 * should know vmalloc() area is valid and can use memcpy().
1995 * This is for routines which have to access vmalloc area without
1996 * any informaion, as /dev/kmem.
2000 long vread(char *buf
, char *addr
, unsigned long count
)
2002 struct vmap_area
*va
;
2003 struct vm_struct
*vm
;
2004 char *vaddr
, *buf_start
= buf
;
2005 unsigned long buflen
= count
;
2008 /* Don't allow overflow */
2009 if ((unsigned long) addr
+ count
< count
)
2010 count
= -(unsigned long) addr
;
2012 spin_lock(&vmap_area_lock
);
2013 list_for_each_entry(va
, &vmap_area_list
, list
) {
2017 if (!(va
->flags
& VM_VM_AREA
))
2021 vaddr
= (char *) vm
->addr
;
2022 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2024 while (addr
< vaddr
) {
2032 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2035 if (!(vm
->flags
& VM_IOREMAP
))
2036 aligned_vread(buf
, addr
, n
);
2037 else /* IOREMAP area is treated as memory hole */
2044 spin_unlock(&vmap_area_lock
);
2046 if (buf
== buf_start
)
2048 /* zero-fill memory holes */
2049 if (buf
!= buf_start
+ buflen
)
2050 memset(buf
, 0, buflen
- (buf
- buf_start
));
2056 * vwrite() - write vmalloc area in a safe way.
2057 * @buf: buffer for source data
2058 * @addr: vm address.
2059 * @count: number of bytes to be read.
2061 * Returns # of bytes which addr and buf should be incresed.
2062 * (same number to @count).
2063 * If [addr...addr+count) doesn't includes any intersect with valid
2064 * vmalloc area, returns 0.
2066 * This function checks that addr is a valid vmalloc'ed area, and
2067 * copy data from a buffer to the given addr. If specified range of
2068 * [addr...addr+count) includes some valid address, data is copied from
2069 * proper area of @buf. If there are memory holes, no copy to hole.
2070 * IOREMAP area is treated as memory hole and no copy is done.
2072 * If [addr...addr+count) doesn't includes any intersects with alive
2073 * vm_struct area, returns 0. @buf should be kernel's buffer.
2075 * Note: In usual ops, vwrite() is never necessary because the caller
2076 * should know vmalloc() area is valid and can use memcpy().
2077 * This is for routines which have to access vmalloc area without
2078 * any informaion, as /dev/kmem.
2081 long vwrite(char *buf
, char *addr
, unsigned long count
)
2083 struct vmap_area
*va
;
2084 struct vm_struct
*vm
;
2086 unsigned long n
, buflen
;
2089 /* Don't allow overflow */
2090 if ((unsigned long) addr
+ count
< count
)
2091 count
= -(unsigned long) addr
;
2094 spin_lock(&vmap_area_lock
);
2095 list_for_each_entry(va
, &vmap_area_list
, list
) {
2099 if (!(va
->flags
& VM_VM_AREA
))
2103 vaddr
= (char *) vm
->addr
;
2104 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2106 while (addr
< vaddr
) {
2113 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2116 if (!(vm
->flags
& VM_IOREMAP
)) {
2117 aligned_vwrite(buf
, addr
, n
);
2125 spin_unlock(&vmap_area_lock
);
2132 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2133 * @vma: vma to cover
2134 * @uaddr: target user address to start at
2135 * @kaddr: virtual address of vmalloc kernel memory
2136 * @size: size of map area
2138 * Returns: 0 for success, -Exxx on failure
2140 * This function checks that @kaddr is a valid vmalloc'ed area,
2141 * and that it is big enough to cover the range starting at
2142 * @uaddr in @vma. Will return failure if that criteria isn't
2145 * Similar to remap_pfn_range() (see mm/memory.c)
2147 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2148 void *kaddr
, unsigned long size
)
2150 struct vm_struct
*area
;
2152 size
= PAGE_ALIGN(size
);
2154 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2157 area
= find_vm_area(kaddr
);
2161 if (!(area
->flags
& VM_USERMAP
))
2164 if (kaddr
+ size
> area
->addr
+ area
->size
)
2168 struct page
*page
= vmalloc_to_page(kaddr
);
2171 ret
= vm_insert_page(vma
, uaddr
, page
);
2180 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2184 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2187 * remap_vmalloc_range - map vmalloc pages to userspace
2188 * @vma: vma to cover (map full range of vma)
2189 * @addr: vmalloc memory
2190 * @pgoff: number of pages into addr before first page to map
2192 * Returns: 0 for success, -Exxx on failure
2194 * This function checks that addr is a valid vmalloc'ed area, and
2195 * that it is big enough to cover the vma. Will return failure if
2196 * that criteria isn't met.
2198 * Similar to remap_pfn_range() (see mm/memory.c)
2200 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2201 unsigned long pgoff
)
2203 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2204 addr
+ (pgoff
<< PAGE_SHIFT
),
2205 vma
->vm_end
- vma
->vm_start
);
2207 EXPORT_SYMBOL(remap_vmalloc_range
);
2210 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2213 void __weak
vmalloc_sync_all(void)
2218 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2230 * alloc_vm_area - allocate a range of kernel address space
2231 * @size: size of the area
2232 * @ptes: returns the PTEs for the address space
2234 * Returns: NULL on failure, vm_struct on success
2236 * This function reserves a range of kernel address space, and
2237 * allocates pagetables to map that range. No actual mappings
2240 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2241 * allocated for the VM area are returned.
2243 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2245 struct vm_struct
*area
;
2247 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2248 __builtin_return_address(0));
2253 * This ensures that page tables are constructed for this region
2254 * of kernel virtual address space and mapped into init_mm.
2256 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2257 size
, f
, ptes
? &ptes
: NULL
)) {
2264 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2266 void free_vm_area(struct vm_struct
*area
)
2268 struct vm_struct
*ret
;
2269 ret
= remove_vm_area(area
->addr
);
2270 BUG_ON(ret
!= area
);
2273 EXPORT_SYMBOL_GPL(free_vm_area
);
2276 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2278 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2282 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2283 * @end: target address
2284 * @pnext: out arg for the next vmap_area
2285 * @pprev: out arg for the previous vmap_area
2287 * Returns: %true if either or both of next and prev are found,
2288 * %false if no vmap_area exists
2290 * Find vmap_areas end addresses of which enclose @end. ie. if not
2291 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2293 static bool pvm_find_next_prev(unsigned long end
,
2294 struct vmap_area
**pnext
,
2295 struct vmap_area
**pprev
)
2297 struct rb_node
*n
= vmap_area_root
.rb_node
;
2298 struct vmap_area
*va
= NULL
;
2301 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2302 if (end
< va
->va_end
)
2304 else if (end
> va
->va_end
)
2313 if (va
->va_end
> end
) {
2315 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2318 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2324 * pvm_determine_end - find the highest aligned address between two vmap_areas
2325 * @pnext: in/out arg for the next vmap_area
2326 * @pprev: in/out arg for the previous vmap_area
2329 * Returns: determined end address
2331 * Find the highest aligned address between *@pnext and *@pprev below
2332 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2333 * down address is between the end addresses of the two vmap_areas.
2335 * Please note that the address returned by this function may fall
2336 * inside *@pnext vmap_area. The caller is responsible for checking
2339 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2340 struct vmap_area
**pprev
,
2341 unsigned long align
)
2343 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2347 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2351 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2353 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2360 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2361 * @offsets: array containing offset of each area
2362 * @sizes: array containing size of each area
2363 * @nr_vms: the number of areas to allocate
2364 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2366 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2367 * vm_structs on success, %NULL on failure
2369 * Percpu allocator wants to use congruent vm areas so that it can
2370 * maintain the offsets among percpu areas. This function allocates
2371 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2372 * be scattered pretty far, distance between two areas easily going up
2373 * to gigabytes. To avoid interacting with regular vmallocs, these
2374 * areas are allocated from top.
2376 * Despite its complicated look, this allocator is rather simple. It
2377 * does everything top-down and scans areas from the end looking for
2378 * matching slot. While scanning, if any of the areas overlaps with
2379 * existing vmap_area, the base address is pulled down to fit the
2380 * area. Scanning is repeated till all the areas fit and then all
2381 * necessary data structres are inserted and the result is returned.
2383 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2384 const size_t *sizes
, int nr_vms
,
2387 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2388 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2389 struct vmap_area
**vas
, *prev
, *next
;
2390 struct vm_struct
**vms
;
2391 int area
, area2
, last_area
, term_area
;
2392 unsigned long base
, start
, end
, last_end
;
2393 bool purged
= false;
2395 /* verify parameters and allocate data structures */
2396 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
2397 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2398 start
= offsets
[area
];
2399 end
= start
+ sizes
[area
];
2401 /* is everything aligned properly? */
2402 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2403 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2405 /* detect the area with the highest address */
2406 if (start
> offsets
[last_area
])
2409 for (area2
= 0; area2
< nr_vms
; area2
++) {
2410 unsigned long start2
= offsets
[area2
];
2411 unsigned long end2
= start2
+ sizes
[area2
];
2416 BUG_ON(start2
>= start
&& start2
< end
);
2417 BUG_ON(end2
<= end
&& end2
> start
);
2420 last_end
= offsets
[last_area
] + sizes
[last_area
];
2422 if (vmalloc_end
- vmalloc_start
< last_end
) {
2427 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2428 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2432 for (area
= 0; area
< nr_vms
; area
++) {
2433 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2434 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2435 if (!vas
[area
] || !vms
[area
])
2439 spin_lock(&vmap_area_lock
);
2441 /* start scanning - we scan from the top, begin with the last area */
2442 area
= term_area
= last_area
;
2443 start
= offsets
[area
];
2444 end
= start
+ sizes
[area
];
2446 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2447 base
= vmalloc_end
- last_end
;
2450 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2453 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2454 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2457 * base might have underflowed, add last_end before
2460 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2461 spin_unlock(&vmap_area_lock
);
2463 purge_vmap_area_lazy();
2471 * If next overlaps, move base downwards so that it's
2472 * right below next and then recheck.
2474 if (next
&& next
->va_start
< base
+ end
) {
2475 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2481 * If prev overlaps, shift down next and prev and move
2482 * base so that it's right below new next and then
2485 if (prev
&& prev
->va_end
> base
+ start
) {
2487 prev
= node_to_va(rb_prev(&next
->rb_node
));
2488 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2494 * This area fits, move on to the previous one. If
2495 * the previous one is the terminal one, we're done.
2497 area
= (area
+ nr_vms
- 1) % nr_vms
;
2498 if (area
== term_area
)
2500 start
= offsets
[area
];
2501 end
= start
+ sizes
[area
];
2502 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2505 /* we've found a fitting base, insert all va's */
2506 for (area
= 0; area
< nr_vms
; area
++) {
2507 struct vmap_area
*va
= vas
[area
];
2509 va
->va_start
= base
+ offsets
[area
];
2510 va
->va_end
= va
->va_start
+ sizes
[area
];
2511 __insert_vmap_area(va
);
2514 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2516 spin_unlock(&vmap_area_lock
);
2518 /* insert all vm's */
2519 for (area
= 0; area
< nr_vms
; area
++)
2520 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2527 for (area
= 0; area
< nr_vms
; area
++) {
2538 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2539 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2540 * @nr_vms: the number of allocated areas
2542 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2544 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2548 for (i
= 0; i
< nr_vms
; i
++)
2549 free_vm_area(vms
[i
]);
2552 #endif /* CONFIG_SMP */
2554 #ifdef CONFIG_PROC_FS
2555 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2556 __acquires(&vmap_area_lock
)
2559 struct vmap_area
*va
;
2561 spin_lock(&vmap_area_lock
);
2562 va
= list_entry((&vmap_area_list
)->next
, typeof(*va
), list
);
2563 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2565 va
= list_entry(va
->list
.next
, typeof(*va
), list
);
2567 if (!n
&& &va
->list
!= &vmap_area_list
)
2574 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2576 struct vmap_area
*va
= p
, *next
;
2579 next
= list_entry(va
->list
.next
, typeof(*va
), list
);
2580 if (&next
->list
!= &vmap_area_list
)
2586 static void s_stop(struct seq_file
*m
, void *p
)
2587 __releases(&vmap_area_lock
)
2589 spin_unlock(&vmap_area_lock
);
2592 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2594 if (IS_ENABLED(CONFIG_NUMA
)) {
2595 unsigned int nr
, *counters
= m
->private;
2600 if (v
->flags
& VM_UNINITIALIZED
)
2602 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2605 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2607 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2608 counters
[page_to_nid(v
->pages
[nr
])]++;
2610 for_each_node_state(nr
, N_HIGH_MEMORY
)
2612 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2616 static int s_show(struct seq_file
*m
, void *p
)
2618 struct vmap_area
*va
= p
;
2619 struct vm_struct
*v
;
2622 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2623 * behalf of vmap area is being tear down or vm_map_ram allocation.
2625 if (!(va
->flags
& VM_VM_AREA
))
2630 seq_printf(m
, "0x%pK-0x%pK %7ld",
2631 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2634 seq_printf(m
, " %pS", v
->caller
);
2637 seq_printf(m
, " pages=%d", v
->nr_pages
);
2640 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2642 if (v
->flags
& VM_IOREMAP
)
2643 seq_puts(m
, " ioremap");
2645 if (v
->flags
& VM_ALLOC
)
2646 seq_puts(m
, " vmalloc");
2648 if (v
->flags
& VM_MAP
)
2649 seq_puts(m
, " vmap");
2651 if (v
->flags
& VM_USERMAP
)
2652 seq_puts(m
, " user");
2654 if (v
->flags
& VM_VPAGES
)
2655 seq_puts(m
, " vpages");
2657 show_numa_info(m
, v
);
2662 static const struct seq_operations vmalloc_op
= {
2669 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2671 if (IS_ENABLED(CONFIG_NUMA
))
2672 return seq_open_private(file
, &vmalloc_op
,
2673 nr_node_ids
* sizeof(unsigned int));
2675 return seq_open(file
, &vmalloc_op
);
2678 static const struct file_operations proc_vmalloc_operations
= {
2679 .open
= vmalloc_open
,
2681 .llseek
= seq_lseek
,
2682 .release
= seq_release_private
,
2685 static int __init
proc_vmalloc_init(void)
2687 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2690 module_init(proc_vmalloc_init
);