irqchip/s3c24xx: Mark init_eint as __maybe_unused
[linux/fpc-iii.git] / net / ipv4 / syncookies.c
blob4cbe9f0a428179d8c35fa5f0a05dd2b445498c11
1 /*
2 * Syncookies implementation for the Linux kernel
4 * Copyright (C) 1997 Andi Kleen
5 * Based on ideas by D.J.Bernstein and Eric Schenk.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/cryptohash.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <net/tcp.h>
20 #include <net/route.h>
22 extern int sysctl_tcp_syncookies;
24 static u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS] __read_mostly;
26 #define COOKIEBITS 24 /* Upper bits store count */
27 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
29 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
30 * stores TCP options:
32 * MSB LSB
33 * | 31 ... 6 | 5 | 4 | 3 2 1 0 |
34 * | Timestamp | ECN | SACK | WScale |
36 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
37 * any) to figure out which TCP options we should use for the rebuilt
38 * connection.
40 * A WScale setting of '0xf' (which is an invalid scaling value)
41 * means that original syn did not include the TCP window scaling option.
43 #define TS_OPT_WSCALE_MASK 0xf
44 #define TS_OPT_SACK BIT(4)
45 #define TS_OPT_ECN BIT(5)
46 /* There is no TS_OPT_TIMESTAMP:
47 * if ACK contains timestamp option, we already know it was
48 * requested/supported by the syn/synack exchange.
50 #define TSBITS 6
51 #define TSMASK (((__u32)1 << TSBITS) - 1)
53 static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
54 ipv4_cookie_scratch);
56 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
57 u32 count, int c)
59 __u32 *tmp;
61 net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
63 tmp = this_cpu_ptr(ipv4_cookie_scratch);
64 memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
65 tmp[0] = (__force u32)saddr;
66 tmp[1] = (__force u32)daddr;
67 tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
68 tmp[3] = count;
69 sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
71 return tmp[17];
76 * when syncookies are in effect and tcp timestamps are enabled we encode
77 * tcp options in the lower bits of the timestamp value that will be
78 * sent in the syn-ack.
79 * Since subsequent timestamps use the normal tcp_time_stamp value, we
80 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
82 __u32 cookie_init_timestamp(struct request_sock *req)
84 struct inet_request_sock *ireq;
85 u32 ts, ts_now = tcp_time_stamp;
86 u32 options = 0;
88 ireq = inet_rsk(req);
90 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
91 if (ireq->sack_ok)
92 options |= TS_OPT_SACK;
93 if (ireq->ecn_ok)
94 options |= TS_OPT_ECN;
96 ts = ts_now & ~TSMASK;
97 ts |= options;
98 if (ts > ts_now) {
99 ts >>= TSBITS;
100 ts--;
101 ts <<= TSBITS;
102 ts |= options;
104 return ts;
108 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
109 __be16 dport, __u32 sseq, __u32 data)
112 * Compute the secure sequence number.
113 * The output should be:
114 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
115 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
116 * Where sseq is their sequence number and count increases every
117 * minute by 1.
118 * As an extra hack, we add a small "data" value that encodes the
119 * MSS into the second hash value.
121 u32 count = tcp_cookie_time();
122 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
123 sseq + (count << COOKIEBITS) +
124 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
125 & COOKIEMASK));
129 * This retrieves the small "data" value from the syncookie.
130 * If the syncookie is bad, the data returned will be out of
131 * range. This must be checked by the caller.
133 * The count value used to generate the cookie must be less than
134 * MAX_SYNCOOKIE_AGE minutes in the past.
135 * The return value (__u32)-1 if this test fails.
137 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
138 __be16 sport, __be16 dport, __u32 sseq)
140 u32 diff, count = tcp_cookie_time();
142 /* Strip away the layers from the cookie */
143 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
145 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
146 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
147 if (diff >= MAX_SYNCOOKIE_AGE)
148 return (__u32)-1;
150 return (cookie -
151 cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
152 & COOKIEMASK; /* Leaving the data behind */
156 * MSS Values are chosen based on the 2011 paper
157 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
158 * Values ..
159 * .. lower than 536 are rare (< 0.2%)
160 * .. between 537 and 1299 account for less than < 1.5% of observed values
161 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
162 * .. exceeding 1460 are very rare (< 0.04%)
164 * 1460 is the single most frequently announced mss value (30 to 46% depending
165 * on monitor location). Table must be sorted.
167 static __u16 const msstab[] = {
168 536,
169 1300,
170 1440, /* 1440, 1452: PPPoE */
171 1460,
175 * Generate a syncookie. mssp points to the mss, which is returned
176 * rounded down to the value encoded in the cookie.
178 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
179 u16 *mssp)
181 int mssind;
182 const __u16 mss = *mssp;
184 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
185 if (mss >= msstab[mssind])
186 break;
187 *mssp = msstab[mssind];
189 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
190 th->source, th->dest, ntohl(th->seq),
191 mssind);
193 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
195 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
197 const struct iphdr *iph = ip_hdr(skb);
198 const struct tcphdr *th = tcp_hdr(skb);
200 return __cookie_v4_init_sequence(iph, th, mssp);
204 * Check if a ack sequence number is a valid syncookie.
205 * Return the decoded mss if it is, or 0 if not.
207 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
208 u32 cookie)
210 __u32 seq = ntohl(th->seq) - 1;
211 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
212 th->source, th->dest, seq);
214 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
216 EXPORT_SYMBOL_GPL(__cookie_v4_check);
218 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
219 struct request_sock *req,
220 struct dst_entry *dst)
222 struct inet_connection_sock *icsk = inet_csk(sk);
223 struct sock *child;
224 bool own_req;
226 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
227 NULL, &own_req);
228 if (child) {
229 atomic_set(&req->rsk_refcnt, 1);
230 sock_rps_save_rxhash(child, skb);
231 inet_csk_reqsk_queue_add(sk, req, child);
232 } else {
233 reqsk_free(req);
235 return child;
237 EXPORT_SYMBOL(tcp_get_cookie_sock);
240 * when syncookies are in effect and tcp timestamps are enabled we stored
241 * additional tcp options in the timestamp.
242 * This extracts these options from the timestamp echo.
244 * return false if we decode a tcp option that is disabled
245 * on the host.
247 bool cookie_timestamp_decode(struct tcp_options_received *tcp_opt)
249 /* echoed timestamp, lowest bits contain options */
250 u32 options = tcp_opt->rcv_tsecr;
252 if (!tcp_opt->saw_tstamp) {
253 tcp_clear_options(tcp_opt);
254 return true;
257 if (!sysctl_tcp_timestamps)
258 return false;
260 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
262 if (tcp_opt->sack_ok && !sysctl_tcp_sack)
263 return false;
265 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
266 return true; /* no window scaling */
268 tcp_opt->wscale_ok = 1;
269 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
271 return sysctl_tcp_window_scaling != 0;
273 EXPORT_SYMBOL(cookie_timestamp_decode);
275 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
276 const struct net *net, const struct dst_entry *dst)
278 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
280 if (!ecn_ok)
281 return false;
283 if (net->ipv4.sysctl_tcp_ecn)
284 return true;
286 return dst_feature(dst, RTAX_FEATURE_ECN);
288 EXPORT_SYMBOL(cookie_ecn_ok);
290 /* On input, sk is a listener.
291 * Output is listener if incoming packet would not create a child
292 * NULL if memory could not be allocated.
294 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
296 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
297 struct tcp_options_received tcp_opt;
298 struct inet_request_sock *ireq;
299 struct tcp_request_sock *treq;
300 struct tcp_sock *tp = tcp_sk(sk);
301 const struct tcphdr *th = tcp_hdr(skb);
302 __u32 cookie = ntohl(th->ack_seq) - 1;
303 struct sock *ret = sk;
304 struct request_sock *req;
305 int mss;
306 struct rtable *rt;
307 __u8 rcv_wscale;
308 struct flowi4 fl4;
310 if (!sysctl_tcp_syncookies || !th->ack || th->rst)
311 goto out;
313 if (tcp_synq_no_recent_overflow(sk))
314 goto out;
316 mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
317 if (mss == 0) {
318 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
319 goto out;
322 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
324 /* check for timestamp cookie support */
325 memset(&tcp_opt, 0, sizeof(tcp_opt));
326 tcp_parse_options(skb, &tcp_opt, 0, NULL);
328 if (!cookie_timestamp_decode(&tcp_opt))
329 goto out;
331 ret = NULL;
332 req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
333 if (!req)
334 goto out;
336 ireq = inet_rsk(req);
337 treq = tcp_rsk(req);
338 treq->rcv_isn = ntohl(th->seq) - 1;
339 treq->snt_isn = cookie;
340 req->mss = mss;
341 ireq->ir_num = ntohs(th->dest);
342 ireq->ir_rmt_port = th->source;
343 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
344 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
345 ireq->ir_mark = inet_request_mark(sk, skb);
346 ireq->snd_wscale = tcp_opt.snd_wscale;
347 ireq->sack_ok = tcp_opt.sack_ok;
348 ireq->wscale_ok = tcp_opt.wscale_ok;
349 ireq->tstamp_ok = tcp_opt.saw_tstamp;
350 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
351 treq->snt_synack.v64 = 0;
352 treq->tfo_listener = false;
354 ireq->ir_iif = sk->sk_bound_dev_if;
356 /* We throwed the options of the initial SYN away, so we hope
357 * the ACK carries the same options again (see RFC1122 4.2.3.8)
359 ireq->opt = tcp_v4_save_options(skb);
361 if (security_inet_conn_request(sk, skb, req)) {
362 reqsk_free(req);
363 goto out;
366 req->num_retrans = 0;
369 * We need to lookup the route here to get at the correct
370 * window size. We should better make sure that the window size
371 * hasn't changed since we received the original syn, but I see
372 * no easy way to do this.
374 flowi4_init_output(&fl4, sk->sk_bound_dev_if, ireq->ir_mark,
375 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
376 inet_sk_flowi_flags(sk),
377 opt->srr ? opt->faddr : ireq->ir_rmt_addr,
378 ireq->ir_loc_addr, th->source, th->dest);
379 security_req_classify_flow(req, flowi4_to_flowi(&fl4));
380 rt = ip_route_output_key(sock_net(sk), &fl4);
381 if (IS_ERR(rt)) {
382 reqsk_free(req);
383 goto out;
386 /* Try to redo what tcp_v4_send_synack did. */
387 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
389 tcp_select_initial_window(tcp_full_space(sk), req->mss,
390 &req->rsk_rcv_wnd, &req->rsk_window_clamp,
391 ireq->wscale_ok, &rcv_wscale,
392 dst_metric(&rt->dst, RTAX_INITRWND));
394 ireq->rcv_wscale = rcv_wscale;
395 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
397 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
398 /* ip_queue_xmit() depends on our flow being setup
399 * Normal sockets get it right from inet_csk_route_child_sock()
401 if (ret)
402 inet_sk(ret)->cork.fl.u.ip4 = fl4;
403 out: return ret;