2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
52 struct ext4_inode_info
*ei
)
54 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
59 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
60 raw
->i_checksum_lo
= 0;
61 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
62 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
63 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
64 raw
->i_checksum_hi
= 0;
67 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
68 EXT4_INODE_SIZE(inode
->i_sb
));
70 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
71 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
72 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
73 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
78 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
79 struct ext4_inode_info
*ei
)
81 __u32 provided
, calculated
;
83 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
84 cpu_to_le32(EXT4_OS_LINUX
) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
89 provided
= le16_to_cpu(raw
->i_checksum_lo
);
90 calculated
= ext4_inode_csum(inode
, raw
, ei
);
91 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
92 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
93 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
97 return provided
== calculated
;
100 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
101 struct ext4_inode_info
*ei
)
105 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
106 cpu_to_le32(EXT4_OS_LINUX
) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
111 csum
= ext4_inode_csum(inode
, raw
, ei
);
112 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
113 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
114 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
115 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
118 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
121 trace_ext4_begin_ordered_truncate(inode
, new_size
);
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
128 if (!EXT4_I(inode
)->jinode
)
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
131 EXT4_I(inode
)->jinode
,
135 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
136 unsigned int length
);
137 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
138 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
140 struct inode
*inode
, struct page
*page
, loff_t from
,
141 loff_t length
, int flags
);
144 * Test whether an inode is a fast symlink.
146 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
148 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
149 (inode
->i_sb
->s_blocksize
>> 9) : 0;
151 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
159 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
170 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
171 jbd_debug(2, "restarting handle %p\n", handle
);
172 up_write(&EXT4_I(inode
)->i_data_sem
);
173 ret
= ext4_journal_restart(handle
, nblocks
);
174 down_write(&EXT4_I(inode
)->i_data_sem
);
175 ext4_discard_preallocations(inode
);
181 * Called at the last iput() if i_nlink is zero.
183 void ext4_evict_inode(struct inode
*inode
)
188 trace_ext4_evict_inode(inode
);
190 if (inode
->i_nlink
) {
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
206 * Note that directories do not have this problem because they
207 * don't use page cache.
209 if (ext4_should_journal_data(inode
) &&
210 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
211 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
212 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
213 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
215 jbd2_complete_transaction(journal
, commit_tid
);
216 filemap_write_and_wait(&inode
->i_data
);
218 truncate_inode_pages(&inode
->i_data
, 0);
219 ext4_ioend_shutdown(inode
);
223 if (!is_bad_inode(inode
))
224 dquot_initialize(inode
);
226 if (ext4_should_order_data(inode
))
227 ext4_begin_ordered_truncate(inode
, 0);
228 truncate_inode_pages(&inode
->i_data
, 0);
229 ext4_ioend_shutdown(inode
);
231 if (is_bad_inode(inode
))
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode
->i_sb
);
239 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
240 ext4_blocks_for_truncate(inode
)+3);
241 if (IS_ERR(handle
)) {
242 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL
, inode
);
249 sb_end_intwrite(inode
->i_sb
);
254 ext4_handle_sync(handle
);
256 err
= ext4_mark_inode_dirty(handle
, inode
);
258 ext4_warning(inode
->i_sb
,
259 "couldn't mark inode dirty (err %d)", err
);
263 ext4_truncate(inode
);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle
, 3)) {
272 err
= ext4_journal_extend(handle
, 3);
274 err
= ext4_journal_restart(handle
, 3);
276 ext4_warning(inode
->i_sb
,
277 "couldn't extend journal (err %d)", err
);
279 ext4_journal_stop(handle
);
280 ext4_orphan_del(NULL
, inode
);
281 sb_end_intwrite(inode
->i_sb
);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle
, inode
);
295 EXT4_I(inode
)->i_dtime
= get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle
, inode
))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode
);
308 ext4_free_inode(handle
, inode
);
309 ext4_journal_stop(handle
);
310 sb_end_intwrite(inode
->i_sb
);
313 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
317 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
319 return &EXT4_I(inode
)->i_reserved_quota
;
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
327 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
329 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
330 return ext4_ext_calc_metadata_amount(inode
, lblock
);
332 return ext4_ind_calc_metadata_amount(inode
, lblock
);
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
339 void ext4_da_update_reserve_space(struct inode
*inode
,
340 int used
, int quota_claim
)
342 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
343 struct ext4_inode_info
*ei
= EXT4_I(inode
);
345 spin_lock(&ei
->i_block_reservation_lock
);
346 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
347 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
348 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__
, inode
->i_ino
, used
,
351 ei
->i_reserved_data_blocks
);
353 used
= ei
->i_reserved_data_blocks
;
356 if (unlikely(ei
->i_allocated_meta_blocks
> ei
->i_reserved_meta_blocks
)) {
357 ext4_warning(inode
->i_sb
, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode
->i_ino
, ei
->i_allocated_meta_blocks
,
361 ei
->i_reserved_meta_blocks
, used
,
362 ei
->i_reserved_data_blocks
);
364 ei
->i_allocated_meta_blocks
= ei
->i_reserved_meta_blocks
;
367 /* Update per-inode reservations */
368 ei
->i_reserved_data_blocks
-= used
;
369 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
370 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
371 used
+ ei
->i_allocated_meta_blocks
);
372 ei
->i_allocated_meta_blocks
= 0;
374 if (ei
->i_reserved_data_blocks
== 0) {
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
380 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
381 ei
->i_reserved_meta_blocks
);
382 ei
->i_reserved_meta_blocks
= 0;
383 ei
->i_da_metadata_calc_len
= 0;
385 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
387 /* Update quota subsystem for data blocks */
389 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
396 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
404 if ((ei
->i_reserved_data_blocks
== 0) &&
405 (atomic_read(&inode
->i_writecount
) == 0))
406 ext4_discard_preallocations(inode
);
409 static int __check_block_validity(struct inode
*inode
, const char *func
,
411 struct ext4_map_blocks
*map
)
413 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
415 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map
->m_lblk
,
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
428 * Return the number of contiguous dirty pages in a given inode
429 * starting at page frame idx.
431 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
432 unsigned int max_pages
)
434 struct address_space
*mapping
= inode
->i_mapping
;
438 int i
, nr_pages
, done
= 0;
442 pagevec_init(&pvec
, 0);
445 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
447 (pgoff_t
)PAGEVEC_SIZE
);
450 for (i
= 0; i
< nr_pages
; i
++) {
451 struct page
*page
= pvec
.pages
[i
];
452 struct buffer_head
*bh
, *head
;
455 if (unlikely(page
->mapping
!= mapping
) ||
457 PageWriteback(page
) ||
458 page
->index
!= idx
) {
463 if (page_has_buffers(page
)) {
464 bh
= head
= page_buffers(page
);
466 if (!buffer_delay(bh
) &&
467 !buffer_unwritten(bh
))
469 bh
= bh
->b_this_page
;
470 } while (!done
&& (bh
!= head
));
477 if (num
>= max_pages
) {
482 pagevec_release(&pvec
);
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
490 struct ext4_map_blocks
*es_map
,
491 struct ext4_map_blocks
*map
,
498 * There is a race window that the result is not the same.
499 * e.g. xfstests #223 when dioread_nolock enables. The reason
500 * is that we lookup a block mapping in extent status tree with
501 * out taking i_data_sem. So at the time the unwritten extent
502 * could be converted.
504 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
505 down_read((&EXT4_I(inode
)->i_data_sem
));
506 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
507 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
508 EXT4_GET_BLOCKS_KEEP_SIZE
);
510 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
511 EXT4_GET_BLOCKS_KEEP_SIZE
);
513 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
514 up_read((&EXT4_I(inode
)->i_data_sem
));
516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 * because it shouldn't be marked in es_map->m_flags.
519 map
->m_flags
&= ~(EXT4_MAP_FROM_CLUSTER
| EXT4_MAP_BOUNDARY
);
522 * We don't check m_len because extent will be collpased in status
523 * tree. So the m_len might not equal.
525 if (es_map
->m_lblk
!= map
->m_lblk
||
526 es_map
->m_flags
!= map
->m_flags
||
527 es_map
->m_pblk
!= map
->m_pblk
) {
528 printk("ES cache assertation failed for inode: %lu "
529 "es_cached ex [%d/%d/%llu/%x] != "
530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
532 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
533 map
->m_len
, map
->m_pblk
, map
->m_flags
,
537 #endif /* ES_AGGRESSIVE_TEST */
540 * The ext4_map_blocks() function tries to look up the requested blocks,
541 * and returns if the blocks are already mapped.
543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544 * and store the allocated blocks in the result buffer head and mark it
547 * If file type is extents based, it will call ext4_ext_map_blocks(),
548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
551 * On success, it returns the number of blocks being mapped or allocate.
552 * if create==0 and the blocks are pre-allocated and uninitialized block,
553 * the result buffer head is unmapped. If the create ==1, it will make sure
554 * the buffer head is mapped.
556 * It returns 0 if plain look up failed (blocks have not been allocated), in
557 * that case, buffer head is unmapped
559 * It returns the error in case of allocation failure.
561 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
562 struct ext4_map_blocks
*map
, int flags
)
564 struct extent_status es
;
566 #ifdef ES_AGGRESSIVE_TEST
567 struct ext4_map_blocks orig_map
;
569 memcpy(&orig_map
, map
, sizeof(*map
));
573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
575 (unsigned long) map
->m_lblk
);
577 /* Lookup extent status tree firstly */
578 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
579 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
580 map
->m_pblk
= ext4_es_pblock(&es
) +
581 map
->m_lblk
- es
.es_lblk
;
582 map
->m_flags
|= ext4_es_is_written(&es
) ?
583 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
584 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
585 if (retval
> map
->m_len
)
588 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
593 #ifdef ES_AGGRESSIVE_TEST
594 ext4_map_blocks_es_recheck(handle
, inode
, map
,
601 * Try to see if we can get the block without requesting a new
604 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
605 down_read((&EXT4_I(inode
)->i_data_sem
));
606 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
607 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
608 EXT4_GET_BLOCKS_KEEP_SIZE
);
610 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
611 EXT4_GET_BLOCKS_KEEP_SIZE
);
615 unsigned long long status
;
617 #ifdef ES_AGGRESSIVE_TEST
618 if (retval
!= map
->m_len
) {
619 printk("ES len assertation failed for inode: %lu "
620 "retval %d != map->m_len %d "
621 "in %s (lookup)\n", inode
->i_ino
, retval
,
622 map
->m_len
, __func__
);
626 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
627 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
628 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
629 ext4_find_delalloc_range(inode
, map
->m_lblk
,
630 map
->m_lblk
+ map
->m_len
- 1))
631 status
|= EXTENT_STATUS_DELAYED
;
632 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
633 map
->m_len
, map
->m_pblk
, status
);
637 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
638 up_read((&EXT4_I(inode
)->i_data_sem
));
641 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
642 int ret
= check_block_validity(inode
, map
);
647 /* If it is only a block(s) look up */
648 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
652 * Returns if the blocks have already allocated
654 * Note that if blocks have been preallocated
655 * ext4_ext_get_block() returns the create = 0
656 * with buffer head unmapped.
658 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
662 * Here we clear m_flags because after allocating an new extent,
663 * it will be set again.
665 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
668 * New blocks allocate and/or writing to uninitialized extent
669 * will possibly result in updating i_data, so we take
670 * the write lock of i_data_sem, and call get_blocks()
671 * with create == 1 flag.
673 down_write((&EXT4_I(inode
)->i_data_sem
));
676 * if the caller is from delayed allocation writeout path
677 * we have already reserved fs blocks for allocation
678 * let the underlying get_block() function know to
679 * avoid double accounting
681 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
682 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
684 * We need to check for EXT4 here because migrate
685 * could have changed the inode type in between
687 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
688 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
690 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
692 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
694 * We allocated new blocks which will result in
695 * i_data's format changing. Force the migrate
696 * to fail by clearing migrate flags
698 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
702 * Update reserved blocks/metadata blocks after successful
703 * block allocation which had been deferred till now. We don't
704 * support fallocate for non extent files. So we can update
705 * reserve space here.
708 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
709 ext4_da_update_reserve_space(inode
, retval
, 1);
711 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
712 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
716 unsigned long long status
;
718 #ifdef ES_AGGRESSIVE_TEST
719 if (retval
!= map
->m_len
) {
720 printk("ES len assertation failed for inode: %lu "
721 "retval %d != map->m_len %d "
722 "in %s (allocation)\n", inode
->i_ino
, retval
,
723 map
->m_len
, __func__
);
728 * If the extent has been zeroed out, we don't need to update
729 * extent status tree.
731 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
732 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
733 if (ext4_es_is_written(&es
))
736 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
737 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
738 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
739 ext4_find_delalloc_range(inode
, map
->m_lblk
,
740 map
->m_lblk
+ map
->m_len
- 1))
741 status
|= EXTENT_STATUS_DELAYED
;
742 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
743 map
->m_pblk
, status
);
749 up_write((&EXT4_I(inode
)->i_data_sem
));
750 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
751 int ret
= check_block_validity(inode
, map
);
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
761 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
762 struct buffer_head
*bh
, int flags
)
764 handle_t
*handle
= ext4_journal_current_handle();
765 struct ext4_map_blocks map
;
766 int ret
= 0, started
= 0;
769 if (ext4_has_inline_data(inode
))
773 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
775 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
776 /* Direct IO write... */
777 if (map
.m_len
> DIO_MAX_BLOCKS
)
778 map
.m_len
= DIO_MAX_BLOCKS
;
779 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
780 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
782 if (IS_ERR(handle
)) {
783 ret
= PTR_ERR(handle
);
789 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
791 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
792 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
793 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
797 ext4_journal_stop(handle
);
801 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
802 struct buffer_head
*bh
, int create
)
804 return _ext4_get_block(inode
, iblock
, bh
,
805 create
? EXT4_GET_BLOCKS_CREATE
: 0);
809 * `handle' can be NULL if create is zero
811 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
812 ext4_lblk_t block
, int create
, int *errp
)
814 struct ext4_map_blocks map
;
815 struct buffer_head
*bh
;
818 J_ASSERT(handle
!= NULL
|| create
== 0);
822 err
= ext4_map_blocks(handle
, inode
, &map
,
823 create
? EXT4_GET_BLOCKS_CREATE
: 0);
825 /* ensure we send some value back into *errp */
828 if (create
&& err
== 0)
829 err
= -ENOSPC
; /* should never happen */
835 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
840 if (map
.m_flags
& EXT4_MAP_NEW
) {
841 J_ASSERT(create
!= 0);
842 J_ASSERT(handle
!= NULL
);
845 * Now that we do not always journal data, we should
846 * keep in mind whether this should always journal the
847 * new buffer as metadata. For now, regular file
848 * writes use ext4_get_block instead, so it's not a
852 BUFFER_TRACE(bh
, "call get_create_access");
853 fatal
= ext4_journal_get_create_access(handle
, bh
);
854 if (!fatal
&& !buffer_uptodate(bh
)) {
855 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
856 set_buffer_uptodate(bh
);
859 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
860 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
864 BUFFER_TRACE(bh
, "not a new buffer");
874 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
875 ext4_lblk_t block
, int create
, int *err
)
877 struct buffer_head
*bh
;
879 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
882 if (buffer_uptodate(bh
))
884 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
886 if (buffer_uptodate(bh
))
893 int ext4_walk_page_buffers(handle_t
*handle
,
894 struct buffer_head
*head
,
898 int (*fn
)(handle_t
*handle
,
899 struct buffer_head
*bh
))
901 struct buffer_head
*bh
;
902 unsigned block_start
, block_end
;
903 unsigned blocksize
= head
->b_size
;
905 struct buffer_head
*next
;
907 for (bh
= head
, block_start
= 0;
908 ret
== 0 && (bh
!= head
|| !block_start
);
909 block_start
= block_end
, bh
= next
) {
910 next
= bh
->b_this_page
;
911 block_end
= block_start
+ blocksize
;
912 if (block_end
<= from
|| block_start
>= to
) {
913 if (partial
&& !buffer_uptodate(bh
))
917 err
= (*fn
)(handle
, bh
);
925 * To preserve ordering, it is essential that the hole instantiation and
926 * the data write be encapsulated in a single transaction. We cannot
927 * close off a transaction and start a new one between the ext4_get_block()
928 * and the commit_write(). So doing the jbd2_journal_start at the start of
929 * prepare_write() is the right place.
931 * Also, this function can nest inside ext4_writepage(). In that case, we
932 * *know* that ext4_writepage() has generated enough buffer credits to do the
933 * whole page. So we won't block on the journal in that case, which is good,
934 * because the caller may be PF_MEMALLOC.
936 * By accident, ext4 can be reentered when a transaction is open via
937 * quota file writes. If we were to commit the transaction while thus
938 * reentered, there can be a deadlock - we would be holding a quota
939 * lock, and the commit would never complete if another thread had a
940 * transaction open and was blocking on the quota lock - a ranking
943 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944 * will _not_ run commit under these circumstances because handle->h_ref
945 * is elevated. We'll still have enough credits for the tiny quotafile
948 int do_journal_get_write_access(handle_t
*handle
,
949 struct buffer_head
*bh
)
951 int dirty
= buffer_dirty(bh
);
954 if (!buffer_mapped(bh
) || buffer_freed(bh
))
957 * __block_write_begin() could have dirtied some buffers. Clean
958 * the dirty bit as jbd2_journal_get_write_access() could complain
959 * otherwise about fs integrity issues. Setting of the dirty bit
960 * by __block_write_begin() isn't a real problem here as we clear
961 * the bit before releasing a page lock and thus writeback cannot
962 * ever write the buffer.
965 clear_buffer_dirty(bh
);
966 ret
= ext4_journal_get_write_access(handle
, bh
);
968 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
972 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
973 struct buffer_head
*bh_result
, int create
);
974 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
975 loff_t pos
, unsigned len
, unsigned flags
,
976 struct page
**pagep
, void **fsdata
)
978 struct inode
*inode
= mapping
->host
;
979 int ret
, needed_blocks
;
986 trace_ext4_write_begin(inode
, pos
, len
, flags
);
988 * Reserve one block more for addition to orphan list in case
989 * we allocate blocks but write fails for some reason
991 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
992 index
= pos
>> PAGE_CACHE_SHIFT
;
993 from
= pos
& (PAGE_CACHE_SIZE
- 1);
996 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
997 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1006 * grab_cache_page_write_begin() can take a long time if the
1007 * system is thrashing due to memory pressure, or if the page
1008 * is being written back. So grab it first before we start
1009 * the transaction handle. This also allows us to allocate
1010 * the page (if needed) without using GFP_NOFS.
1013 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1019 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1020 if (IS_ERR(handle
)) {
1021 page_cache_release(page
);
1022 return PTR_ERR(handle
);
1026 if (page
->mapping
!= mapping
) {
1027 /* The page got truncated from under us */
1029 page_cache_release(page
);
1030 ext4_journal_stop(handle
);
1033 wait_on_page_writeback(page
);
1035 if (ext4_should_dioread_nolock(inode
))
1036 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1038 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1040 if (!ret
&& ext4_should_journal_data(inode
)) {
1041 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1043 do_journal_get_write_access
);
1049 * __block_write_begin may have instantiated a few blocks
1050 * outside i_size. Trim these off again. Don't need
1051 * i_size_read because we hold i_mutex.
1053 * Add inode to orphan list in case we crash before
1056 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1057 ext4_orphan_add(handle
, inode
);
1059 ext4_journal_stop(handle
);
1060 if (pos
+ len
> inode
->i_size
) {
1061 ext4_truncate_failed_write(inode
);
1063 * If truncate failed early the inode might
1064 * still be on the orphan list; we need to
1065 * make sure the inode is removed from the
1066 * orphan list in that case.
1069 ext4_orphan_del(NULL
, inode
);
1072 if (ret
== -ENOSPC
&&
1073 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1075 page_cache_release(page
);
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1086 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1088 set_buffer_uptodate(bh
);
1089 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1090 clear_buffer_meta(bh
);
1091 clear_buffer_prio(bh
);
1096 * We need to pick up the new inode size which generic_commit_write gave us
1097 * `file' can be NULL - eg, when called from page_symlink().
1099 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1100 * buffers are managed internally.
1102 static int ext4_write_end(struct file
*file
,
1103 struct address_space
*mapping
,
1104 loff_t pos
, unsigned len
, unsigned copied
,
1105 struct page
*page
, void *fsdata
)
1107 handle_t
*handle
= ext4_journal_current_handle();
1108 struct inode
*inode
= mapping
->host
;
1110 int i_size_changed
= 0;
1112 trace_ext4_write_end(inode
, pos
, len
, copied
);
1113 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1114 ret
= ext4_jbd2_file_inode(handle
, inode
);
1117 page_cache_release(page
);
1122 if (ext4_has_inline_data(inode
))
1123 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1126 copied
= block_write_end(file
, mapping
, pos
,
1127 len
, copied
, page
, fsdata
);
1130 * No need to use i_size_read() here, the i_size
1131 * cannot change under us because we hole i_mutex.
1133 * But it's important to update i_size while still holding page lock:
1134 * page writeout could otherwise come in and zero beyond i_size.
1136 if (pos
+ copied
> inode
->i_size
) {
1137 i_size_write(inode
, pos
+ copied
);
1141 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1142 /* We need to mark inode dirty even if
1143 * new_i_size is less that inode->i_size
1144 * but greater than i_disksize. (hint delalloc)
1146 ext4_update_i_disksize(inode
, (pos
+ copied
));
1150 page_cache_release(page
);
1153 * Don't mark the inode dirty under page lock. First, it unnecessarily
1154 * makes the holding time of page lock longer. Second, it forces lock
1155 * ordering of page lock and transaction start for journaling
1159 ext4_mark_inode_dirty(handle
, inode
);
1163 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1164 /* if we have allocated more blocks and copied
1165 * less. We will have blocks allocated outside
1166 * inode->i_size. So truncate them
1168 ext4_orphan_add(handle
, inode
);
1170 ret2
= ext4_journal_stop(handle
);
1174 if (pos
+ len
> inode
->i_size
) {
1175 ext4_truncate_failed_write(inode
);
1177 * If truncate failed early the inode might still be
1178 * on the orphan list; we need to make sure the inode
1179 * is removed from the orphan list in that case.
1182 ext4_orphan_del(NULL
, inode
);
1185 return ret
? ret
: copied
;
1188 static int ext4_journalled_write_end(struct file
*file
,
1189 struct address_space
*mapping
,
1190 loff_t pos
, unsigned len
, unsigned copied
,
1191 struct page
*page
, void *fsdata
)
1193 handle_t
*handle
= ext4_journal_current_handle();
1194 struct inode
*inode
= mapping
->host
;
1200 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1201 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1204 BUG_ON(!ext4_handle_valid(handle
));
1206 if (ext4_has_inline_data(inode
))
1207 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1211 if (!PageUptodate(page
))
1213 page_zero_new_buffers(page
, from
+copied
, to
);
1216 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1217 to
, &partial
, write_end_fn
);
1219 SetPageUptodate(page
);
1221 new_i_size
= pos
+ copied
;
1222 if (new_i_size
> inode
->i_size
)
1223 i_size_write(inode
, pos
+copied
);
1224 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1225 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1226 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1227 ext4_update_i_disksize(inode
, new_i_size
);
1228 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1234 page_cache_release(page
);
1235 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1236 /* if we have allocated more blocks and copied
1237 * less. We will have blocks allocated outside
1238 * inode->i_size. So truncate them
1240 ext4_orphan_add(handle
, inode
);
1242 ret2
= ext4_journal_stop(handle
);
1245 if (pos
+ len
> inode
->i_size
) {
1246 ext4_truncate_failed_write(inode
);
1248 * If truncate failed early the inode might still be
1249 * on the orphan list; we need to make sure the inode
1250 * is removed from the orphan list in that case.
1253 ext4_orphan_del(NULL
, inode
);
1256 return ret
? ret
: copied
;
1260 * Reserve a metadata for a single block located at lblock
1262 static int ext4_da_reserve_metadata(struct inode
*inode
, ext4_lblk_t lblock
)
1265 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1266 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1267 unsigned int md_needed
;
1268 ext4_lblk_t save_last_lblock
;
1272 * recalculate the amount of metadata blocks to reserve
1273 * in order to allocate nrblocks
1274 * worse case is one extent per block
1277 spin_lock(&ei
->i_block_reservation_lock
);
1279 * ext4_calc_metadata_amount() has side effects, which we have
1280 * to be prepared undo if we fail to claim space.
1282 save_len
= ei
->i_da_metadata_calc_len
;
1283 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1284 md_needed
= EXT4_NUM_B2C(sbi
,
1285 ext4_calc_metadata_amount(inode
, lblock
));
1286 trace_ext4_da_reserve_space(inode
, md_needed
);
1289 * We do still charge estimated metadata to the sb though;
1290 * we cannot afford to run out of free blocks.
1292 if (ext4_claim_free_clusters(sbi
, md_needed
, 0)) {
1293 ei
->i_da_metadata_calc_len
= save_len
;
1294 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1295 spin_unlock(&ei
->i_block_reservation_lock
);
1296 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1302 ei
->i_reserved_meta_blocks
+= md_needed
;
1303 spin_unlock(&ei
->i_block_reservation_lock
);
1305 return 0; /* success */
1309 * Reserve a single cluster located at lblock
1311 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1314 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1315 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1316 unsigned int md_needed
;
1318 ext4_lblk_t save_last_lblock
;
1322 * We will charge metadata quota at writeout time; this saves
1323 * us from metadata over-estimation, though we may go over by
1324 * a small amount in the end. Here we just reserve for data.
1326 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1331 * recalculate the amount of metadata blocks to reserve
1332 * in order to allocate nrblocks
1333 * worse case is one extent per block
1336 spin_lock(&ei
->i_block_reservation_lock
);
1338 * ext4_calc_metadata_amount() has side effects, which we have
1339 * to be prepared undo if we fail to claim space.
1341 save_len
= ei
->i_da_metadata_calc_len
;
1342 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1343 md_needed
= EXT4_NUM_B2C(sbi
,
1344 ext4_calc_metadata_amount(inode
, lblock
));
1345 trace_ext4_da_reserve_space(inode
, md_needed
);
1348 * We do still charge estimated metadata to the sb though;
1349 * we cannot afford to run out of free blocks.
1351 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1352 ei
->i_da_metadata_calc_len
= save_len
;
1353 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1354 spin_unlock(&ei
->i_block_reservation_lock
);
1355 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1359 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1362 ei
->i_reserved_data_blocks
++;
1363 ei
->i_reserved_meta_blocks
+= md_needed
;
1364 spin_unlock(&ei
->i_block_reservation_lock
);
1366 return 0; /* success */
1369 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1371 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1372 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1375 return; /* Nothing to release, exit */
1377 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1379 trace_ext4_da_release_space(inode
, to_free
);
1380 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1382 * if there aren't enough reserved blocks, then the
1383 * counter is messed up somewhere. Since this
1384 * function is called from invalidate page, it's
1385 * harmless to return without any action.
1387 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1388 "ino %lu, to_free %d with only %d reserved "
1389 "data blocks", inode
->i_ino
, to_free
,
1390 ei
->i_reserved_data_blocks
);
1392 to_free
= ei
->i_reserved_data_blocks
;
1394 ei
->i_reserved_data_blocks
-= to_free
;
1396 if (ei
->i_reserved_data_blocks
== 0) {
1398 * We can release all of the reserved metadata blocks
1399 * only when we have written all of the delayed
1400 * allocation blocks.
1401 * Note that in case of bigalloc, i_reserved_meta_blocks,
1402 * i_reserved_data_blocks, etc. refer to number of clusters.
1404 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1405 ei
->i_reserved_meta_blocks
);
1406 ei
->i_reserved_meta_blocks
= 0;
1407 ei
->i_da_metadata_calc_len
= 0;
1410 /* update fs dirty data blocks counter */
1411 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1413 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1415 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1418 static void ext4_da_page_release_reservation(struct page
*page
,
1419 unsigned int offset
,
1420 unsigned int length
)
1423 struct buffer_head
*head
, *bh
;
1424 unsigned int curr_off
= 0;
1425 struct inode
*inode
= page
->mapping
->host
;
1426 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1427 unsigned int stop
= offset
+ length
;
1431 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1433 head
= page_buffers(page
);
1436 unsigned int next_off
= curr_off
+ bh
->b_size
;
1438 if (next_off
> stop
)
1441 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1443 clear_buffer_delay(bh
);
1445 curr_off
= next_off
;
1446 } while ((bh
= bh
->b_this_page
) != head
);
1449 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1450 ext4_es_remove_extent(inode
, lblk
, to_release
);
1453 /* If we have released all the blocks belonging to a cluster, then we
1454 * need to release the reserved space for that cluster. */
1455 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1456 while (num_clusters
> 0) {
1457 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1458 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1459 if (sbi
->s_cluster_ratio
== 1 ||
1460 !ext4_find_delalloc_cluster(inode
, lblk
))
1461 ext4_da_release_space(inode
, 1);
1468 * Delayed allocation stuff
1472 * mpage_da_submit_io - walks through extent of pages and try to write
1473 * them with writepage() call back
1475 * @mpd->inode: inode
1476 * @mpd->first_page: first page of the extent
1477 * @mpd->next_page: page after the last page of the extent
1479 * By the time mpage_da_submit_io() is called we expect all blocks
1480 * to be allocated. this may be wrong if allocation failed.
1482 * As pages are already locked by write_cache_pages(), we can't use it
1484 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1485 struct ext4_map_blocks
*map
)
1487 struct pagevec pvec
;
1488 unsigned long index
, end
;
1489 int ret
= 0, err
, nr_pages
, i
;
1490 struct inode
*inode
= mpd
->inode
;
1491 struct address_space
*mapping
= inode
->i_mapping
;
1492 loff_t size
= i_size_read(inode
);
1493 unsigned int len
, block_start
;
1494 struct buffer_head
*bh
, *page_bufs
= NULL
;
1495 sector_t pblock
= 0, cur_logical
= 0;
1496 struct ext4_io_submit io_submit
;
1498 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1499 memset(&io_submit
, 0, sizeof(io_submit
));
1501 * We need to start from the first_page to the next_page - 1
1502 * to make sure we also write the mapped dirty buffer_heads.
1503 * If we look at mpd->b_blocknr we would only be looking
1504 * at the currently mapped buffer_heads.
1506 index
= mpd
->first_page
;
1507 end
= mpd
->next_page
- 1;
1509 pagevec_init(&pvec
, 0);
1510 while (index
<= end
) {
1511 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1514 for (i
= 0; i
< nr_pages
; i
++) {
1516 struct page
*page
= pvec
.pages
[i
];
1518 index
= page
->index
;
1522 if (index
== size
>> PAGE_CACHE_SHIFT
)
1523 len
= size
& ~PAGE_CACHE_MASK
;
1525 len
= PAGE_CACHE_SIZE
;
1527 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1529 pblock
= map
->m_pblk
+ (cur_logical
-
1534 BUG_ON(!PageLocked(page
));
1535 BUG_ON(PageWriteback(page
));
1537 bh
= page_bufs
= page_buffers(page
);
1540 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1541 (cur_logical
<= (map
->m_lblk
+
1542 (map
->m_len
- 1)))) {
1543 if (buffer_delay(bh
)) {
1544 clear_buffer_delay(bh
);
1545 bh
->b_blocknr
= pblock
;
1547 if (buffer_unwritten(bh
) ||
1549 BUG_ON(bh
->b_blocknr
!= pblock
);
1550 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1551 set_buffer_uninit(bh
);
1552 clear_buffer_unwritten(bh
);
1556 * skip page if block allocation undone and
1559 if (ext4_bh_delay_or_unwritten(NULL
, bh
))
1561 bh
= bh
->b_this_page
;
1562 block_start
+= bh
->b_size
;
1565 } while (bh
!= page_bufs
);
1572 clear_page_dirty_for_io(page
);
1573 err
= ext4_bio_write_page(&io_submit
, page
, len
,
1576 mpd
->pages_written
++;
1578 * In error case, we have to continue because
1579 * remaining pages are still locked
1584 pagevec_release(&pvec
);
1586 ext4_io_submit(&io_submit
);
1590 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1594 struct pagevec pvec
;
1595 struct inode
*inode
= mpd
->inode
;
1596 struct address_space
*mapping
= inode
->i_mapping
;
1597 ext4_lblk_t start
, last
;
1599 index
= mpd
->first_page
;
1600 end
= mpd
->next_page
- 1;
1602 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1603 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1604 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1606 pagevec_init(&pvec
, 0);
1607 while (index
<= end
) {
1608 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1611 for (i
= 0; i
< nr_pages
; i
++) {
1612 struct page
*page
= pvec
.pages
[i
];
1613 if (page
->index
> end
)
1615 BUG_ON(!PageLocked(page
));
1616 BUG_ON(PageWriteback(page
));
1617 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1618 ClearPageUptodate(page
);
1621 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1622 pagevec_release(&pvec
);
1627 static void ext4_print_free_blocks(struct inode
*inode
)
1629 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1630 struct super_block
*sb
= inode
->i_sb
;
1631 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1633 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1634 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1635 ext4_count_free_clusters(sb
)));
1636 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1637 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1638 (long long) EXT4_C2B(EXT4_SB(sb
),
1639 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1640 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1641 (long long) EXT4_C2B(EXT4_SB(sb
),
1642 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1643 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1644 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1645 ei
->i_reserved_data_blocks
);
1646 ext4_msg(sb
, KERN_CRIT
, "i_reserved_meta_blocks=%u",
1647 ei
->i_reserved_meta_blocks
);
1648 ext4_msg(sb
, KERN_CRIT
, "i_allocated_meta_blocks=%u",
1649 ei
->i_allocated_meta_blocks
);
1654 * mpage_da_map_and_submit - go through given space, map them
1655 * if necessary, and then submit them for I/O
1657 * @mpd - bh describing space
1659 * The function skips space we know is already mapped to disk blocks.
1662 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1664 int err
, blks
, get_blocks_flags
;
1665 struct ext4_map_blocks map
, *mapp
= NULL
;
1666 sector_t next
= mpd
->b_blocknr
;
1667 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1668 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1669 handle_t
*handle
= NULL
;
1672 * If the blocks are mapped already, or we couldn't accumulate
1673 * any blocks, then proceed immediately to the submission stage.
1675 if ((mpd
->b_size
== 0) ||
1676 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1677 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1678 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1681 handle
= ext4_journal_current_handle();
1685 * Call ext4_map_blocks() to allocate any delayed allocation
1686 * blocks, or to convert an uninitialized extent to be
1687 * initialized (in the case where we have written into
1688 * one or more preallocated blocks).
1690 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1691 * indicate that we are on the delayed allocation path. This
1692 * affects functions in many different parts of the allocation
1693 * call path. This flag exists primarily because we don't
1694 * want to change *many* call functions, so ext4_map_blocks()
1695 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1696 * inode's allocation semaphore is taken.
1698 * If the blocks in questions were delalloc blocks, set
1699 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1700 * variables are updated after the blocks have been allocated.
1703 map
.m_len
= max_blocks
;
1705 * We're in delalloc path and it is possible that we're going to
1706 * need more metadata blocks than previously reserved. However
1707 * we must not fail because we're in writeback and there is
1708 * nothing we can do about it so it might result in data loss.
1709 * So use reserved blocks to allocate metadata if possible.
1711 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
1712 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
1713 if (ext4_should_dioread_nolock(mpd
->inode
))
1714 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1715 if (mpd
->b_state
& (1 << BH_Delay
))
1716 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1719 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1721 struct super_block
*sb
= mpd
->inode
->i_sb
;
1725 * If get block returns EAGAIN or ENOSPC and there
1726 * appears to be free blocks we will just let
1727 * mpage_da_submit_io() unlock all of the pages.
1732 if (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)) {
1738 * get block failure will cause us to loop in
1739 * writepages, because a_ops->writepage won't be able
1740 * to make progress. The page will be redirtied by
1741 * writepage and writepages will again try to write
1744 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1745 ext4_msg(sb
, KERN_CRIT
,
1746 "delayed block allocation failed for inode %lu "
1747 "at logical offset %llu with max blocks %zd "
1748 "with error %d", mpd
->inode
->i_ino
,
1749 (unsigned long long) next
,
1750 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1751 ext4_msg(sb
, KERN_CRIT
,
1752 "This should not happen!! Data will be lost");
1754 ext4_print_free_blocks(mpd
->inode
);
1756 /* invalidate all the pages */
1757 ext4_da_block_invalidatepages(mpd
);
1759 /* Mark this page range as having been completed */
1766 if (map
.m_flags
& EXT4_MAP_NEW
) {
1767 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1770 for (i
= 0; i
< map
.m_len
; i
++)
1771 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1775 * Update on-disk size along with block allocation.
1777 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1778 if (disksize
> i_size_read(mpd
->inode
))
1779 disksize
= i_size_read(mpd
->inode
);
1780 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1781 ext4_update_i_disksize(mpd
->inode
, disksize
);
1782 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1784 ext4_error(mpd
->inode
->i_sb
,
1785 "Failed to mark inode %lu dirty",
1790 mpage_da_submit_io(mpd
, mapp
);
1794 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1795 (1 << BH_Delay) | (1 << BH_Unwritten))
1798 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1800 * @mpd->lbh - extent of blocks
1801 * @logical - logical number of the block in the file
1802 * @b_state - b_state of the buffer head added
1804 * the function is used to collect contig. blocks in same state
1806 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, sector_t logical
,
1807 unsigned long b_state
)
1810 int blkbits
= mpd
->inode
->i_blkbits
;
1811 int nrblocks
= mpd
->b_size
>> blkbits
;
1814 * XXX Don't go larger than mballoc is willing to allocate
1815 * This is a stopgap solution. We eventually need to fold
1816 * mpage_da_submit_io() into this function and then call
1817 * ext4_map_blocks() multiple times in a loop
1819 if (nrblocks
>= (8*1024*1024 >> blkbits
))
1822 /* check if the reserved journal credits might overflow */
1823 if (!ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
)) {
1824 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1826 * With non-extent format we are limited by the journal
1827 * credit available. Total credit needed to insert
1828 * nrblocks contiguous blocks is dependent on the
1829 * nrblocks. So limit nrblocks.
1835 * First block in the extent
1837 if (mpd
->b_size
== 0) {
1838 mpd
->b_blocknr
= logical
;
1839 mpd
->b_size
= 1 << blkbits
;
1840 mpd
->b_state
= b_state
& BH_FLAGS
;
1844 next
= mpd
->b_blocknr
+ nrblocks
;
1846 * Can we merge the block to our big extent?
1848 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1849 mpd
->b_size
+= 1 << blkbits
;
1855 * We couldn't merge the block to our extent, so we
1856 * need to flush current extent and start new one
1858 mpage_da_map_and_submit(mpd
);
1862 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1864 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1868 * This function is grabs code from the very beginning of
1869 * ext4_map_blocks, but assumes that the caller is from delayed write
1870 * time. This function looks up the requested blocks and sets the
1871 * buffer delay bit under the protection of i_data_sem.
1873 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1874 struct ext4_map_blocks
*map
,
1875 struct buffer_head
*bh
)
1877 struct extent_status es
;
1879 sector_t invalid_block
= ~((sector_t
) 0xffff);
1880 #ifdef ES_AGGRESSIVE_TEST
1881 struct ext4_map_blocks orig_map
;
1883 memcpy(&orig_map
, map
, sizeof(*map
));
1886 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1890 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1891 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1892 (unsigned long) map
->m_lblk
);
1894 /* Lookup extent status tree firstly */
1895 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1897 if (ext4_es_is_hole(&es
)) {
1899 down_read((&EXT4_I(inode
)->i_data_sem
));
1904 * Delayed extent could be allocated by fallocate.
1905 * So we need to check it.
1907 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1908 map_bh(bh
, inode
->i_sb
, invalid_block
);
1910 set_buffer_delay(bh
);
1914 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1915 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1916 if (retval
> map
->m_len
)
1917 retval
= map
->m_len
;
1918 map
->m_len
= retval
;
1919 if (ext4_es_is_written(&es
))
1920 map
->m_flags
|= EXT4_MAP_MAPPED
;
1921 else if (ext4_es_is_unwritten(&es
))
1922 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1926 #ifdef ES_AGGRESSIVE_TEST
1927 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1933 * Try to see if we can get the block without requesting a new
1934 * file system block.
1936 down_read((&EXT4_I(inode
)->i_data_sem
));
1937 if (ext4_has_inline_data(inode
)) {
1939 * We will soon create blocks for this page, and let
1940 * us pretend as if the blocks aren't allocated yet.
1941 * In case of clusters, we have to handle the work
1942 * of mapping from cluster so that the reserved space
1943 * is calculated properly.
1945 if ((EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) &&
1946 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
1947 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
1949 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1950 retval
= ext4_ext_map_blocks(NULL
, inode
, map
,
1951 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1953 retval
= ext4_ind_map_blocks(NULL
, inode
, map
,
1954 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1960 * XXX: __block_prepare_write() unmaps passed block,
1964 * If the block was allocated from previously allocated cluster,
1965 * then we don't need to reserve it again. However we still need
1966 * to reserve metadata for every block we're going to write.
1968 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1969 ret
= ext4_da_reserve_space(inode
, iblock
);
1971 /* not enough space to reserve */
1976 ret
= ext4_da_reserve_metadata(inode
, iblock
);
1978 /* not enough space to reserve */
1984 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1985 ~0, EXTENT_STATUS_DELAYED
);
1991 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1992 * and it should not appear on the bh->b_state.
1994 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1996 map_bh(bh
, inode
->i_sb
, invalid_block
);
1998 set_buffer_delay(bh
);
1999 } else if (retval
> 0) {
2001 unsigned long long status
;
2003 #ifdef ES_AGGRESSIVE_TEST
2004 if (retval
!= map
->m_len
) {
2005 printk("ES len assertation failed for inode: %lu "
2006 "retval %d != map->m_len %d "
2007 "in %s (lookup)\n", inode
->i_ino
, retval
,
2008 map
->m_len
, __func__
);
2012 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
2013 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
2014 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
2015 map
->m_pblk
, status
);
2021 up_read((&EXT4_I(inode
)->i_data_sem
));
2027 * This is a special get_blocks_t callback which is used by
2028 * ext4_da_write_begin(). It will either return mapped block or
2029 * reserve space for a single block.
2031 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2032 * We also have b_blocknr = -1 and b_bdev initialized properly
2034 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2035 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2036 * initialized properly.
2038 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2039 struct buffer_head
*bh
, int create
)
2041 struct ext4_map_blocks map
;
2044 BUG_ON(create
== 0);
2045 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
2047 map
.m_lblk
= iblock
;
2051 * first, we need to know whether the block is allocated already
2052 * preallocated blocks are unmapped but should treated
2053 * the same as allocated blocks.
2055 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
2059 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
2060 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
2062 if (buffer_unwritten(bh
)) {
2063 /* A delayed write to unwritten bh should be marked
2064 * new and mapped. Mapped ensures that we don't do
2065 * get_block multiple times when we write to the same
2066 * offset and new ensures that we do proper zero out
2067 * for partial write.
2070 set_buffer_mapped(bh
);
2075 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2081 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2087 static int __ext4_journalled_writepage(struct page
*page
,
2090 struct address_space
*mapping
= page
->mapping
;
2091 struct inode
*inode
= mapping
->host
;
2092 struct buffer_head
*page_bufs
= NULL
;
2093 handle_t
*handle
= NULL
;
2094 int ret
= 0, err
= 0;
2095 int inline_data
= ext4_has_inline_data(inode
);
2096 struct buffer_head
*inode_bh
= NULL
;
2098 ClearPageChecked(page
);
2101 BUG_ON(page
->index
!= 0);
2102 BUG_ON(len
> ext4_get_max_inline_size(inode
));
2103 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
2104 if (inode_bh
== NULL
)
2107 page_bufs
= page_buffers(page
);
2112 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
2115 /* As soon as we unlock the page, it can go away, but we have
2116 * references to buffers so we are safe */
2119 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2120 ext4_writepage_trans_blocks(inode
));
2121 if (IS_ERR(handle
)) {
2122 ret
= PTR_ERR(handle
);
2126 BUG_ON(!ext4_handle_valid(handle
));
2129 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
2131 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
2134 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2135 do_journal_get_write_access
);
2137 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2142 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
2143 err
= ext4_journal_stop(handle
);
2147 if (!ext4_has_inline_data(inode
))
2148 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
2150 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2157 * Note that we don't need to start a transaction unless we're journaling data
2158 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2159 * need to file the inode to the transaction's list in ordered mode because if
2160 * we are writing back data added by write(), the inode is already there and if
2161 * we are writing back data modified via mmap(), no one guarantees in which
2162 * transaction the data will hit the disk. In case we are journaling data, we
2163 * cannot start transaction directly because transaction start ranks above page
2164 * lock so we have to do some magic.
2166 * This function can get called via...
2167 * - ext4_da_writepages after taking page lock (have journal handle)
2168 * - journal_submit_inode_data_buffers (no journal handle)
2169 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2170 * - grab_page_cache when doing write_begin (have journal handle)
2172 * We don't do any block allocation in this function. If we have page with
2173 * multiple blocks we need to write those buffer_heads that are mapped. This
2174 * is important for mmaped based write. So if we do with blocksize 1K
2175 * truncate(f, 1024);
2176 * a = mmap(f, 0, 4096);
2178 * truncate(f, 4096);
2179 * we have in the page first buffer_head mapped via page_mkwrite call back
2180 * but other buffer_heads would be unmapped but dirty (dirty done via the
2181 * do_wp_page). So writepage should write the first block. If we modify
2182 * the mmap area beyond 1024 we will again get a page_fault and the
2183 * page_mkwrite callback will do the block allocation and mark the
2184 * buffer_heads mapped.
2186 * We redirty the page if we have any buffer_heads that is either delay or
2187 * unwritten in the page.
2189 * We can get recursively called as show below.
2191 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2194 * But since we don't do any block allocation we should not deadlock.
2195 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2197 static int ext4_writepage(struct page
*page
,
2198 struct writeback_control
*wbc
)
2203 struct buffer_head
*page_bufs
= NULL
;
2204 struct inode
*inode
= page
->mapping
->host
;
2205 struct ext4_io_submit io_submit
;
2207 trace_ext4_writepage(page
);
2208 size
= i_size_read(inode
);
2209 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2210 len
= size
& ~PAGE_CACHE_MASK
;
2212 len
= PAGE_CACHE_SIZE
;
2214 page_bufs
= page_buffers(page
);
2216 * We cannot do block allocation or other extent handling in this
2217 * function. If there are buffers needing that, we have to redirty
2218 * the page. But we may reach here when we do a journal commit via
2219 * journal_submit_inode_data_buffers() and in that case we must write
2220 * allocated buffers to achieve data=ordered mode guarantees.
2222 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2223 ext4_bh_delay_or_unwritten
)) {
2224 redirty_page_for_writepage(wbc
, page
);
2225 if (current
->flags
& PF_MEMALLOC
) {
2227 * For memory cleaning there's no point in writing only
2228 * some buffers. So just bail out. Warn if we came here
2229 * from direct reclaim.
2231 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
2238 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2240 * It's mmapped pagecache. Add buffers and journal it. There
2241 * doesn't seem much point in redirtying the page here.
2243 return __ext4_journalled_writepage(page
, len
);
2245 memset(&io_submit
, 0, sizeof(io_submit
));
2246 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
);
2247 ext4_io_submit(&io_submit
);
2252 * This is called via ext4_da_writepages() to
2253 * calculate the total number of credits to reserve to fit
2254 * a single extent allocation into a single transaction,
2255 * ext4_da_writpeages() will loop calling this before
2256 * the block allocation.
2259 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2261 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2264 * With non-extent format the journal credit needed to
2265 * insert nrblocks contiguous block is dependent on
2266 * number of contiguous block. So we will limit
2267 * number of contiguous block to a sane value
2269 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2270 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2271 max_blocks
= EXT4_MAX_TRANS_DATA
;
2273 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2277 * write_cache_pages_da - walk the list of dirty pages of the given
2278 * address space and accumulate pages that need writing, and call
2279 * mpage_da_map_and_submit to map a single contiguous memory region
2280 * and then write them.
2282 static int write_cache_pages_da(handle_t
*handle
,
2283 struct address_space
*mapping
,
2284 struct writeback_control
*wbc
,
2285 struct mpage_da_data
*mpd
,
2286 pgoff_t
*done_index
)
2288 struct buffer_head
*bh
, *head
;
2289 struct inode
*inode
= mapping
->host
;
2290 struct pagevec pvec
;
2291 unsigned int nr_pages
;
2294 long nr_to_write
= wbc
->nr_to_write
;
2295 int i
, tag
, ret
= 0;
2297 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2300 pagevec_init(&pvec
, 0);
2301 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2302 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2304 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2305 tag
= PAGECACHE_TAG_TOWRITE
;
2307 tag
= PAGECACHE_TAG_DIRTY
;
2309 *done_index
= index
;
2310 while (index
<= end
) {
2311 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2312 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2316 for (i
= 0; i
< nr_pages
; i
++) {
2317 struct page
*page
= pvec
.pages
[i
];
2320 * At this point, the page may be truncated or
2321 * invalidated (changing page->mapping to NULL), or
2322 * even swizzled back from swapper_space to tmpfs file
2323 * mapping. However, page->index will not change
2324 * because we have a reference on the page.
2326 if (page
->index
> end
)
2329 *done_index
= page
->index
+ 1;
2332 * If we can't merge this page, and we have
2333 * accumulated an contiguous region, write it
2335 if ((mpd
->next_page
!= page
->index
) &&
2336 (mpd
->next_page
!= mpd
->first_page
)) {
2337 mpage_da_map_and_submit(mpd
);
2338 goto ret_extent_tail
;
2344 * If the page is no longer dirty, or its
2345 * mapping no longer corresponds to inode we
2346 * are writing (which means it has been
2347 * truncated or invalidated), or the page is
2348 * already under writeback and we are not
2349 * doing a data integrity writeback, skip the page
2351 if (!PageDirty(page
) ||
2352 (PageWriteback(page
) &&
2353 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2354 unlikely(page
->mapping
!= mapping
)) {
2359 wait_on_page_writeback(page
);
2360 BUG_ON(PageWriteback(page
));
2363 * If we have inline data and arrive here, it means that
2364 * we will soon create the block for the 1st page, so
2365 * we'd better clear the inline data here.
2367 if (ext4_has_inline_data(inode
)) {
2368 BUG_ON(ext4_test_inode_state(inode
,
2369 EXT4_STATE_MAY_INLINE_DATA
));
2370 ext4_destroy_inline_data(handle
, inode
);
2373 if (mpd
->next_page
!= page
->index
)
2374 mpd
->first_page
= page
->index
;
2375 mpd
->next_page
= page
->index
+ 1;
2376 logical
= (sector_t
) page
->index
<<
2377 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2379 /* Add all dirty buffers to mpd */
2380 head
= page_buffers(page
);
2383 BUG_ON(buffer_locked(bh
));
2385 * We need to try to allocate unmapped blocks
2386 * in the same page. Otherwise we won't make
2387 * progress with the page in ext4_writepage
2389 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2390 mpage_add_bh_to_extent(mpd
, logical
,
2393 goto ret_extent_tail
;
2394 } else if (buffer_dirty(bh
) &&
2395 buffer_mapped(bh
)) {
2397 * mapped dirty buffer. We need to
2398 * update the b_state because we look
2399 * at b_state in mpage_da_map_blocks.
2400 * We don't update b_size because if we
2401 * find an unmapped buffer_head later
2402 * we need to use the b_state flag of
2405 if (mpd
->b_size
== 0)
2407 bh
->b_state
& BH_FLAGS
;
2410 } while ((bh
= bh
->b_this_page
) != head
);
2412 if (nr_to_write
> 0) {
2414 if (nr_to_write
== 0 &&
2415 wbc
->sync_mode
== WB_SYNC_NONE
)
2417 * We stop writing back only if we are
2418 * not doing integrity sync. In case of
2419 * integrity sync we have to keep going
2420 * because someone may be concurrently
2421 * dirtying pages, and we might have
2422 * synced a lot of newly appeared dirty
2423 * pages, but have not synced all of the
2429 pagevec_release(&pvec
);
2434 ret
= MPAGE_DA_EXTENT_TAIL
;
2436 pagevec_release(&pvec
);
2442 static int ext4_da_writepages(struct address_space
*mapping
,
2443 struct writeback_control
*wbc
)
2446 int range_whole
= 0;
2447 handle_t
*handle
= NULL
;
2448 struct mpage_da_data mpd
;
2449 struct inode
*inode
= mapping
->host
;
2450 int pages_written
= 0;
2451 unsigned int max_pages
;
2452 int range_cyclic
, cycled
= 1, io_done
= 0;
2453 int needed_blocks
, ret
= 0;
2454 long desired_nr_to_write
, nr_to_writebump
= 0;
2455 loff_t range_start
= wbc
->range_start
;
2456 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2457 pgoff_t done_index
= 0;
2459 struct blk_plug plug
;
2461 trace_ext4_da_writepages(inode
, wbc
);
2464 * No pages to write? This is mainly a kludge to avoid starting
2465 * a transaction for special inodes like journal inode on last iput()
2466 * because that could violate lock ordering on umount
2468 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2472 * If the filesystem has aborted, it is read-only, so return
2473 * right away instead of dumping stack traces later on that
2474 * will obscure the real source of the problem. We test
2475 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2476 * the latter could be true if the filesystem is mounted
2477 * read-only, and in that case, ext4_da_writepages should
2478 * *never* be called, so if that ever happens, we would want
2481 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2484 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2487 range_cyclic
= wbc
->range_cyclic
;
2488 if (wbc
->range_cyclic
) {
2489 index
= mapping
->writeback_index
;
2492 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2493 wbc
->range_end
= LLONG_MAX
;
2494 wbc
->range_cyclic
= 0;
2497 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2498 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2502 * This works around two forms of stupidity. The first is in
2503 * the writeback code, which caps the maximum number of pages
2504 * written to be 1024 pages. This is wrong on multiple
2505 * levels; different architectues have a different page size,
2506 * which changes the maximum amount of data which gets
2507 * written. Secondly, 4 megabytes is way too small. XFS
2508 * forces this value to be 16 megabytes by multiplying
2509 * nr_to_write parameter by four, and then relies on its
2510 * allocator to allocate larger extents to make them
2511 * contiguous. Unfortunately this brings us to the second
2512 * stupidity, which is that ext4's mballoc code only allocates
2513 * at most 2048 blocks. So we force contiguous writes up to
2514 * the number of dirty blocks in the inode, or
2515 * sbi->max_writeback_mb_bump whichever is smaller.
2517 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2518 if (!range_cyclic
&& range_whole
) {
2519 if (wbc
->nr_to_write
== LONG_MAX
)
2520 desired_nr_to_write
= wbc
->nr_to_write
;
2522 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2524 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2526 if (desired_nr_to_write
> max_pages
)
2527 desired_nr_to_write
= max_pages
;
2529 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2530 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2531 wbc
->nr_to_write
= desired_nr_to_write
;
2535 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2536 tag_pages_for_writeback(mapping
, index
, end
);
2538 blk_start_plug(&plug
);
2539 while (!ret
&& wbc
->nr_to_write
> 0) {
2542 * we insert one extent at a time. So we need
2543 * credit needed for single extent allocation.
2544 * journalled mode is currently not supported
2547 BUG_ON(ext4_should_journal_data(inode
));
2548 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2550 /* start a new transaction*/
2551 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2553 if (IS_ERR(handle
)) {
2554 ret
= PTR_ERR(handle
);
2555 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2556 "%ld pages, ino %lu; err %d", __func__
,
2557 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2558 blk_finish_plug(&plug
);
2559 goto out_writepages
;
2563 * Now call write_cache_pages_da() to find the next
2564 * contiguous region of logical blocks that need
2565 * blocks to be allocated by ext4 and submit them.
2567 ret
= write_cache_pages_da(handle
, mapping
,
2568 wbc
, &mpd
, &done_index
);
2570 * If we have a contiguous extent of pages and we
2571 * haven't done the I/O yet, map the blocks and submit
2574 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2575 mpage_da_map_and_submit(&mpd
);
2576 ret
= MPAGE_DA_EXTENT_TAIL
;
2578 trace_ext4_da_write_pages(inode
, &mpd
);
2579 wbc
->nr_to_write
-= mpd
.pages_written
;
2581 ext4_journal_stop(handle
);
2583 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2584 /* commit the transaction which would
2585 * free blocks released in the transaction
2588 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2590 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2592 * Got one extent now try with rest of the pages.
2593 * If mpd.retval is set -EIO, journal is aborted.
2594 * So we don't need to write any more.
2596 pages_written
+= mpd
.pages_written
;
2599 } else if (wbc
->nr_to_write
)
2601 * There is no more writeout needed
2602 * or we requested for a noblocking writeout
2603 * and we found the device congested
2607 blk_finish_plug(&plug
);
2608 if (!io_done
&& !cycled
) {
2611 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2612 wbc
->range_end
= mapping
->writeback_index
- 1;
2617 wbc
->range_cyclic
= range_cyclic
;
2618 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2620 * set the writeback_index so that range_cyclic
2621 * mode will write it back later
2623 mapping
->writeback_index
= done_index
;
2626 wbc
->nr_to_write
-= nr_to_writebump
;
2627 wbc
->range_start
= range_start
;
2628 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2632 static int ext4_nonda_switch(struct super_block
*sb
)
2634 s64 free_clusters
, dirty_clusters
;
2635 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2638 * switch to non delalloc mode if we are running low
2639 * on free block. The free block accounting via percpu
2640 * counters can get slightly wrong with percpu_counter_batch getting
2641 * accumulated on each CPU without updating global counters
2642 * Delalloc need an accurate free block accounting. So switch
2643 * to non delalloc when we are near to error range.
2646 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2648 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2650 * Start pushing delalloc when 1/2 of free blocks are dirty.
2652 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2653 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2655 if (2 * free_clusters
< 3 * dirty_clusters
||
2656 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2658 * free block count is less than 150% of dirty blocks
2659 * or free blocks is less than watermark
2666 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2667 loff_t pos
, unsigned len
, unsigned flags
,
2668 struct page
**pagep
, void **fsdata
)
2670 int ret
, retries
= 0;
2673 struct inode
*inode
= mapping
->host
;
2676 index
= pos
>> PAGE_CACHE_SHIFT
;
2678 if (ext4_nonda_switch(inode
->i_sb
)) {
2679 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2680 return ext4_write_begin(file
, mapping
, pos
,
2681 len
, flags
, pagep
, fsdata
);
2683 *fsdata
= (void *)0;
2684 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2686 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2687 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2697 * grab_cache_page_write_begin() can take a long time if the
2698 * system is thrashing due to memory pressure, or if the page
2699 * is being written back. So grab it first before we start
2700 * the transaction handle. This also allows us to allocate
2701 * the page (if needed) without using GFP_NOFS.
2704 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2710 * With delayed allocation, we don't log the i_disksize update
2711 * if there is delayed block allocation. But we still need
2712 * to journalling the i_disksize update if writes to the end
2713 * of file which has an already mapped buffer.
2716 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, 1);
2717 if (IS_ERR(handle
)) {
2718 page_cache_release(page
);
2719 return PTR_ERR(handle
);
2723 if (page
->mapping
!= mapping
) {
2724 /* The page got truncated from under us */
2726 page_cache_release(page
);
2727 ext4_journal_stop(handle
);
2730 /* In case writeback began while the page was unlocked */
2731 wait_on_page_writeback(page
);
2733 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2736 ext4_journal_stop(handle
);
2738 * block_write_begin may have instantiated a few blocks
2739 * outside i_size. Trim these off again. Don't need
2740 * i_size_read because we hold i_mutex.
2742 if (pos
+ len
> inode
->i_size
)
2743 ext4_truncate_failed_write(inode
);
2745 if (ret
== -ENOSPC
&&
2746 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2749 page_cache_release(page
);
2758 * Check if we should update i_disksize
2759 * when write to the end of file but not require block allocation
2761 static int ext4_da_should_update_i_disksize(struct page
*page
,
2762 unsigned long offset
)
2764 struct buffer_head
*bh
;
2765 struct inode
*inode
= page
->mapping
->host
;
2769 bh
= page_buffers(page
);
2770 idx
= offset
>> inode
->i_blkbits
;
2772 for (i
= 0; i
< idx
; i
++)
2773 bh
= bh
->b_this_page
;
2775 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2780 static int ext4_da_write_end(struct file
*file
,
2781 struct address_space
*mapping
,
2782 loff_t pos
, unsigned len
, unsigned copied
,
2783 struct page
*page
, void *fsdata
)
2785 struct inode
*inode
= mapping
->host
;
2787 handle_t
*handle
= ext4_journal_current_handle();
2789 unsigned long start
, end
;
2790 int write_mode
= (int)(unsigned long)fsdata
;
2792 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2793 return ext4_write_end(file
, mapping
, pos
,
2794 len
, copied
, page
, fsdata
);
2796 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2797 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2798 end
= start
+ copied
- 1;
2801 * generic_write_end() will run mark_inode_dirty() if i_size
2802 * changes. So let's piggyback the i_disksize mark_inode_dirty
2805 new_i_size
= pos
+ copied
;
2806 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2807 if (ext4_has_inline_data(inode
) ||
2808 ext4_da_should_update_i_disksize(page
, end
)) {
2809 down_write(&EXT4_I(inode
)->i_data_sem
);
2810 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
2811 EXT4_I(inode
)->i_disksize
= new_i_size
;
2812 up_write(&EXT4_I(inode
)->i_data_sem
);
2813 /* We need to mark inode dirty even if
2814 * new_i_size is less that inode->i_size
2815 * bu greater than i_disksize.(hint delalloc)
2817 ext4_mark_inode_dirty(handle
, inode
);
2821 if (write_mode
!= CONVERT_INLINE_DATA
&&
2822 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2823 ext4_has_inline_data(inode
))
2824 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2827 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2833 ret2
= ext4_journal_stop(handle
);
2837 return ret
? ret
: copied
;
2840 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2841 unsigned int length
)
2844 * Drop reserved blocks
2846 BUG_ON(!PageLocked(page
));
2847 if (!page_has_buffers(page
))
2850 ext4_da_page_release_reservation(page
, offset
, length
);
2853 ext4_invalidatepage(page
, offset
, length
);
2859 * Force all delayed allocation blocks to be allocated for a given inode.
2861 int ext4_alloc_da_blocks(struct inode
*inode
)
2863 trace_ext4_alloc_da_blocks(inode
);
2865 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2866 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2870 * We do something simple for now. The filemap_flush() will
2871 * also start triggering a write of the data blocks, which is
2872 * not strictly speaking necessary (and for users of
2873 * laptop_mode, not even desirable). However, to do otherwise
2874 * would require replicating code paths in:
2876 * ext4_da_writepages() ->
2877 * write_cache_pages() ---> (via passed in callback function)
2878 * __mpage_da_writepage() -->
2879 * mpage_add_bh_to_extent()
2880 * mpage_da_map_blocks()
2882 * The problem is that write_cache_pages(), located in
2883 * mm/page-writeback.c, marks pages clean in preparation for
2884 * doing I/O, which is not desirable if we're not planning on
2887 * We could call write_cache_pages(), and then redirty all of
2888 * the pages by calling redirty_page_for_writepage() but that
2889 * would be ugly in the extreme. So instead we would need to
2890 * replicate parts of the code in the above functions,
2891 * simplifying them because we wouldn't actually intend to
2892 * write out the pages, but rather only collect contiguous
2893 * logical block extents, call the multi-block allocator, and
2894 * then update the buffer heads with the block allocations.
2896 * For now, though, we'll cheat by calling filemap_flush(),
2897 * which will map the blocks, and start the I/O, but not
2898 * actually wait for the I/O to complete.
2900 return filemap_flush(inode
->i_mapping
);
2904 * bmap() is special. It gets used by applications such as lilo and by
2905 * the swapper to find the on-disk block of a specific piece of data.
2907 * Naturally, this is dangerous if the block concerned is still in the
2908 * journal. If somebody makes a swapfile on an ext4 data-journaling
2909 * filesystem and enables swap, then they may get a nasty shock when the
2910 * data getting swapped to that swapfile suddenly gets overwritten by
2911 * the original zero's written out previously to the journal and
2912 * awaiting writeback in the kernel's buffer cache.
2914 * So, if we see any bmap calls here on a modified, data-journaled file,
2915 * take extra steps to flush any blocks which might be in the cache.
2917 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2919 struct inode
*inode
= mapping
->host
;
2924 * We can get here for an inline file via the FIBMAP ioctl
2926 if (ext4_has_inline_data(inode
))
2929 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2930 test_opt(inode
->i_sb
, DELALLOC
)) {
2932 * With delalloc we want to sync the file
2933 * so that we can make sure we allocate
2936 filemap_write_and_wait(mapping
);
2939 if (EXT4_JOURNAL(inode
) &&
2940 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2942 * This is a REALLY heavyweight approach, but the use of
2943 * bmap on dirty files is expected to be extremely rare:
2944 * only if we run lilo or swapon on a freshly made file
2945 * do we expect this to happen.
2947 * (bmap requires CAP_SYS_RAWIO so this does not
2948 * represent an unprivileged user DOS attack --- we'd be
2949 * in trouble if mortal users could trigger this path at
2952 * NB. EXT4_STATE_JDATA is not set on files other than
2953 * regular files. If somebody wants to bmap a directory
2954 * or symlink and gets confused because the buffer
2955 * hasn't yet been flushed to disk, they deserve
2956 * everything they get.
2959 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2960 journal
= EXT4_JOURNAL(inode
);
2961 jbd2_journal_lock_updates(journal
);
2962 err
= jbd2_journal_flush(journal
);
2963 jbd2_journal_unlock_updates(journal
);
2969 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2972 static int ext4_readpage(struct file
*file
, struct page
*page
)
2975 struct inode
*inode
= page
->mapping
->host
;
2977 trace_ext4_readpage(page
);
2979 if (ext4_has_inline_data(inode
))
2980 ret
= ext4_readpage_inline(inode
, page
);
2983 return mpage_readpage(page
, ext4_get_block
);
2989 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2990 struct list_head
*pages
, unsigned nr_pages
)
2992 struct inode
*inode
= mapping
->host
;
2994 /* If the file has inline data, no need to do readpages. */
2995 if (ext4_has_inline_data(inode
))
2998 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3001 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3002 unsigned int length
)
3004 trace_ext4_invalidatepage(page
, offset
, length
);
3006 /* No journalling happens on data buffers when this function is used */
3007 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3009 block_invalidatepage(page
, offset
, length
);
3012 static int __ext4_journalled_invalidatepage(struct page
*page
,
3013 unsigned int offset
,
3014 unsigned int length
)
3016 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3018 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3021 * If it's a full truncate we just forget about the pending dirtying
3023 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
3024 ClearPageChecked(page
);
3026 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3029 /* Wrapper for aops... */
3030 static void ext4_journalled_invalidatepage(struct page
*page
,
3031 unsigned int offset
,
3032 unsigned int length
)
3034 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3037 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3039 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3041 trace_ext4_releasepage(page
);
3043 /* Page has dirty journalled data -> cannot release */
3044 if (PageChecked(page
))
3047 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3049 return try_to_free_buffers(page
);
3053 * ext4_get_block used when preparing for a DIO write or buffer write.
3054 * We allocate an uinitialized extent if blocks haven't been allocated.
3055 * The extent will be converted to initialized after the IO is complete.
3057 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3058 struct buffer_head
*bh_result
, int create
)
3060 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3061 inode
->i_ino
, create
);
3062 return _ext4_get_block(inode
, iblock
, bh_result
,
3063 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3066 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
3067 struct buffer_head
*bh_result
, int create
)
3069 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3070 inode
->i_ino
, create
);
3071 return _ext4_get_block(inode
, iblock
, bh_result
,
3072 EXT4_GET_BLOCKS_NO_LOCK
);
3075 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3076 ssize_t size
, void *private, int ret
,
3079 struct inode
*inode
= file_inode(iocb
->ki_filp
);
3080 ext4_io_end_t
*io_end
= iocb
->private;
3082 /* if not async direct IO or dio with 0 bytes write, just return */
3083 if (!io_end
|| !size
)
3086 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3087 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3088 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3091 iocb
->private = NULL
;
3093 /* if not aio dio with unwritten extents, just free io and return */
3094 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
3095 ext4_free_io_end(io_end
);
3097 inode_dio_done(inode
);
3099 aio_complete(iocb
, ret
, 0);
3103 io_end
->offset
= offset
;
3104 io_end
->size
= size
;
3106 io_end
->iocb
= iocb
;
3107 io_end
->result
= ret
;
3110 ext4_add_complete_io(io_end
);
3114 * For ext4 extent files, ext4 will do direct-io write to holes,
3115 * preallocated extents, and those write extend the file, no need to
3116 * fall back to buffered IO.
3118 * For holes, we fallocate those blocks, mark them as uninitialized
3119 * If those blocks were preallocated, we mark sure they are split, but
3120 * still keep the range to write as uninitialized.
3122 * The unwritten extents will be converted to written when DIO is completed.
3123 * For async direct IO, since the IO may still pending when return, we
3124 * set up an end_io call back function, which will do the conversion
3125 * when async direct IO completed.
3127 * If the O_DIRECT write will extend the file then add this inode to the
3128 * orphan list. So recovery will truncate it back to the original size
3129 * if the machine crashes during the write.
3132 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3133 const struct iovec
*iov
, loff_t offset
,
3134 unsigned long nr_segs
)
3136 struct file
*file
= iocb
->ki_filp
;
3137 struct inode
*inode
= file
->f_mapping
->host
;
3139 size_t count
= iov_length(iov
, nr_segs
);
3141 get_block_t
*get_block_func
= NULL
;
3143 loff_t final_size
= offset
+ count
;
3145 /* Use the old path for reads and writes beyond i_size. */
3146 if (rw
!= WRITE
|| final_size
> inode
->i_size
)
3147 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3149 BUG_ON(iocb
->private == NULL
);
3151 /* If we do a overwrite dio, i_mutex locking can be released */
3152 overwrite
= *((int *)iocb
->private);
3155 atomic_inc(&inode
->i_dio_count
);
3156 down_read(&EXT4_I(inode
)->i_data_sem
);
3157 mutex_unlock(&inode
->i_mutex
);
3161 * We could direct write to holes and fallocate.
3163 * Allocated blocks to fill the hole are marked as
3164 * uninitialized to prevent parallel buffered read to expose
3165 * the stale data before DIO complete the data IO.
3167 * As to previously fallocated extents, ext4 get_block will
3168 * just simply mark the buffer mapped but still keep the
3169 * extents uninitialized.
3171 * For non AIO case, we will convert those unwritten extents
3172 * to written after return back from blockdev_direct_IO.
3174 * For async DIO, the conversion needs to be deferred when the
3175 * IO is completed. The ext4 end_io callback function will be
3176 * called to take care of the conversion work. Here for async
3177 * case, we allocate an io_end structure to hook to the iocb.
3179 iocb
->private = NULL
;
3180 ext4_inode_aio_set(inode
, NULL
);
3181 if (!is_sync_kiocb(iocb
)) {
3182 ext4_io_end_t
*io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3187 io_end
->flag
|= EXT4_IO_END_DIRECT
;
3188 iocb
->private = io_end
;
3190 * we save the io structure for current async direct
3191 * IO, so that later ext4_map_blocks() could flag the
3192 * io structure whether there is a unwritten extents
3193 * needs to be converted when IO is completed.
3195 ext4_inode_aio_set(inode
, io_end
);
3199 get_block_func
= ext4_get_block_write_nolock
;
3201 get_block_func
= ext4_get_block_write
;
3202 dio_flags
= DIO_LOCKING
;
3204 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3205 inode
->i_sb
->s_bdev
, iov
,
3213 ext4_inode_aio_set(inode
, NULL
);
3215 * The io_end structure takes a reference to the inode, that
3216 * structure needs to be destroyed and the reference to the
3217 * inode need to be dropped, when IO is complete, even with 0
3218 * byte write, or failed.
3220 * In the successful AIO DIO case, the io_end structure will
3221 * be destroyed and the reference to the inode will be dropped
3222 * after the end_io call back function is called.
3224 * In the case there is 0 byte write, or error case, since VFS
3225 * direct IO won't invoke the end_io call back function, we
3226 * need to free the end_io structure here.
3228 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3229 ext4_free_io_end(iocb
->private);
3230 iocb
->private = NULL
;
3231 } else if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3232 EXT4_STATE_DIO_UNWRITTEN
)) {
3235 * for non AIO case, since the IO is already
3236 * completed, we could do the conversion right here
3238 err
= ext4_convert_unwritten_extents(inode
,
3242 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3246 /* take i_mutex locking again if we do a ovewrite dio */
3248 inode_dio_done(inode
);
3249 up_read(&EXT4_I(inode
)->i_data_sem
);
3250 mutex_lock(&inode
->i_mutex
);
3256 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3257 const struct iovec
*iov
, loff_t offset
,
3258 unsigned long nr_segs
)
3260 struct file
*file
= iocb
->ki_filp
;
3261 struct inode
*inode
= file
->f_mapping
->host
;
3265 * If we are doing data journalling we don't support O_DIRECT
3267 if (ext4_should_journal_data(inode
))
3270 /* Let buffer I/O handle the inline data case. */
3271 if (ext4_has_inline_data(inode
))
3274 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3275 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3276 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3278 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3279 trace_ext4_direct_IO_exit(inode
, offset
,
3280 iov_length(iov
, nr_segs
), rw
, ret
);
3285 * Pages can be marked dirty completely asynchronously from ext4's journalling
3286 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3287 * much here because ->set_page_dirty is called under VFS locks. The page is
3288 * not necessarily locked.
3290 * We cannot just dirty the page and leave attached buffers clean, because the
3291 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3292 * or jbddirty because all the journalling code will explode.
3294 * So what we do is to mark the page "pending dirty" and next time writepage
3295 * is called, propagate that into the buffers appropriately.
3297 static int ext4_journalled_set_page_dirty(struct page
*page
)
3299 SetPageChecked(page
);
3300 return __set_page_dirty_nobuffers(page
);
3303 static const struct address_space_operations ext4_aops
= {
3304 .readpage
= ext4_readpage
,
3305 .readpages
= ext4_readpages
,
3306 .writepage
= ext4_writepage
,
3307 .write_begin
= ext4_write_begin
,
3308 .write_end
= ext4_write_end
,
3310 .invalidatepage
= ext4_invalidatepage
,
3311 .releasepage
= ext4_releasepage
,
3312 .direct_IO
= ext4_direct_IO
,
3313 .migratepage
= buffer_migrate_page
,
3314 .is_partially_uptodate
= block_is_partially_uptodate
,
3315 .error_remove_page
= generic_error_remove_page
,
3318 static const struct address_space_operations ext4_journalled_aops
= {
3319 .readpage
= ext4_readpage
,
3320 .readpages
= ext4_readpages
,
3321 .writepage
= ext4_writepage
,
3322 .write_begin
= ext4_write_begin
,
3323 .write_end
= ext4_journalled_write_end
,
3324 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3326 .invalidatepage
= ext4_journalled_invalidatepage
,
3327 .releasepage
= ext4_releasepage
,
3328 .direct_IO
= ext4_direct_IO
,
3329 .is_partially_uptodate
= block_is_partially_uptodate
,
3330 .error_remove_page
= generic_error_remove_page
,
3333 static const struct address_space_operations ext4_da_aops
= {
3334 .readpage
= ext4_readpage
,
3335 .readpages
= ext4_readpages
,
3336 .writepage
= ext4_writepage
,
3337 .writepages
= ext4_da_writepages
,
3338 .write_begin
= ext4_da_write_begin
,
3339 .write_end
= ext4_da_write_end
,
3341 .invalidatepage
= ext4_da_invalidatepage
,
3342 .releasepage
= ext4_releasepage
,
3343 .direct_IO
= ext4_direct_IO
,
3344 .migratepage
= buffer_migrate_page
,
3345 .is_partially_uptodate
= block_is_partially_uptodate
,
3346 .error_remove_page
= generic_error_remove_page
,
3349 void ext4_set_aops(struct inode
*inode
)
3351 switch (ext4_inode_journal_mode(inode
)) {
3352 case EXT4_INODE_ORDERED_DATA_MODE
:
3353 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3355 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3356 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3358 case EXT4_INODE_JOURNAL_DATA_MODE
:
3359 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3364 if (test_opt(inode
->i_sb
, DELALLOC
))
3365 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3367 inode
->i_mapping
->a_ops
= &ext4_aops
;
3372 * ext4_discard_partial_page_buffers()
3373 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3374 * This function finds and locks the page containing the offset
3375 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3376 * Calling functions that already have the page locked should call
3377 * ext4_discard_partial_page_buffers_no_lock directly.
3379 int ext4_discard_partial_page_buffers(handle_t
*handle
,
3380 struct address_space
*mapping
, loff_t from
,
3381 loff_t length
, int flags
)
3383 struct inode
*inode
= mapping
->host
;
3387 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3388 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3392 err
= ext4_discard_partial_page_buffers_no_lock(handle
, inode
, page
,
3393 from
, length
, flags
);
3396 page_cache_release(page
);
3401 * ext4_discard_partial_page_buffers_no_lock()
3402 * Zeros a page range of length 'length' starting from offset 'from'.
3403 * Buffer heads that correspond to the block aligned regions of the
3404 * zeroed range will be unmapped. Unblock aligned regions
3405 * will have the corresponding buffer head mapped if needed so that
3406 * that region of the page can be updated with the partial zero out.
3408 * This function assumes that the page has already been locked. The
3409 * The range to be discarded must be contained with in the given page.
3410 * If the specified range exceeds the end of the page it will be shortened
3411 * to the end of the page that corresponds to 'from'. This function is
3412 * appropriate for updating a page and it buffer heads to be unmapped and
3413 * zeroed for blocks that have been either released, or are going to be
3416 * handle: The journal handle
3417 * inode: The files inode
3418 * page: A locked page that contains the offset "from"
3419 * from: The starting byte offset (from the beginning of the file)
3420 * to begin discarding
3421 * len: The length of bytes to discard
3422 * flags: Optional flags that may be used:
3424 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3425 * Only zero the regions of the page whose buffer heads
3426 * have already been unmapped. This flag is appropriate
3427 * for updating the contents of a page whose blocks may
3428 * have already been released, and we only want to zero
3429 * out the regions that correspond to those released blocks.
3431 * Returns zero on success or negative on failure.
3433 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
3434 struct inode
*inode
, struct page
*page
, loff_t from
,
3435 loff_t length
, int flags
)
3437 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3438 unsigned int offset
= from
& (PAGE_CACHE_SIZE
-1);
3439 unsigned int blocksize
, max
, pos
;
3441 struct buffer_head
*bh
;
3444 blocksize
= inode
->i_sb
->s_blocksize
;
3445 max
= PAGE_CACHE_SIZE
- offset
;
3447 if (index
!= page
->index
)
3451 * correct length if it does not fall between
3452 * 'from' and the end of the page
3454 if (length
> max
|| length
< 0)
3457 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3459 if (!page_has_buffers(page
))
3460 create_empty_buffers(page
, blocksize
, 0);
3462 /* Find the buffer that contains "offset" */
3463 bh
= page_buffers(page
);
3465 while (offset
>= pos
) {
3466 bh
= bh
->b_this_page
;
3472 while (pos
< offset
+ length
) {
3473 unsigned int end_of_block
, range_to_discard
;
3477 /* The length of space left to zero and unmap */
3478 range_to_discard
= offset
+ length
- pos
;
3480 /* The length of space until the end of the block */
3481 end_of_block
= blocksize
- (pos
& (blocksize
-1));
3484 * Do not unmap or zero past end of block
3485 * for this buffer head
3487 if (range_to_discard
> end_of_block
)
3488 range_to_discard
= end_of_block
;
3492 * Skip this buffer head if we are only zeroing unampped
3493 * regions of the page
3495 if (flags
& EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
&&
3499 /* If the range is block aligned, unmap */
3500 if (range_to_discard
== blocksize
) {
3501 clear_buffer_dirty(bh
);
3503 clear_buffer_mapped(bh
);
3504 clear_buffer_req(bh
);
3505 clear_buffer_new(bh
);
3506 clear_buffer_delay(bh
);
3507 clear_buffer_unwritten(bh
);
3508 clear_buffer_uptodate(bh
);
3509 zero_user(page
, pos
, range_to_discard
);
3510 BUFFER_TRACE(bh
, "Buffer discarded");
3515 * If this block is not completely contained in the range
3516 * to be discarded, then it is not going to be released. Because
3517 * we need to keep this block, we need to make sure this part
3518 * of the page is uptodate before we modify it by writeing
3519 * partial zeros on it.
3521 if (!buffer_mapped(bh
)) {
3523 * Buffer head must be mapped before we can read
3526 BUFFER_TRACE(bh
, "unmapped");
3527 ext4_get_block(inode
, iblock
, bh
, 0);
3528 /* unmapped? It's a hole - nothing to do */
3529 if (!buffer_mapped(bh
)) {
3530 BUFFER_TRACE(bh
, "still unmapped");
3535 /* Ok, it's mapped. Make sure it's up-to-date */
3536 if (PageUptodate(page
))
3537 set_buffer_uptodate(bh
);
3539 if (!buffer_uptodate(bh
)) {
3541 ll_rw_block(READ
, 1, &bh
);
3543 /* Uhhuh. Read error. Complain and punt.*/
3544 if (!buffer_uptodate(bh
))
3548 if (ext4_should_journal_data(inode
)) {
3549 BUFFER_TRACE(bh
, "get write access");
3550 err
= ext4_journal_get_write_access(handle
, bh
);
3555 zero_user(page
, pos
, range_to_discard
);
3558 if (ext4_should_journal_data(inode
)) {
3559 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3561 mark_buffer_dirty(bh
);
3563 BUFFER_TRACE(bh
, "Partial buffer zeroed");
3565 bh
= bh
->b_this_page
;
3567 pos
+= range_to_discard
;
3574 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3575 * up to the end of the block which corresponds to `from'.
3576 * This required during truncate. We need to physically zero the tail end
3577 * of that block so it doesn't yield old data if the file is later grown.
3579 int ext4_block_truncate_page(handle_t
*handle
,
3580 struct address_space
*mapping
, loff_t from
)
3582 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3585 struct inode
*inode
= mapping
->host
;
3587 blocksize
= inode
->i_sb
->s_blocksize
;
3588 length
= blocksize
- (offset
& (blocksize
- 1));
3590 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3594 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3595 * starting from file offset 'from'. The range to be zero'd must
3596 * be contained with in one block. If the specified range exceeds
3597 * the end of the block it will be shortened to end of the block
3598 * that cooresponds to 'from'
3600 int ext4_block_zero_page_range(handle_t
*handle
,
3601 struct address_space
*mapping
, loff_t from
, loff_t length
)
3603 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3604 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3605 unsigned blocksize
, max
, pos
;
3607 struct inode
*inode
= mapping
->host
;
3608 struct buffer_head
*bh
;
3612 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3613 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3617 blocksize
= inode
->i_sb
->s_blocksize
;
3618 max
= blocksize
- (offset
& (blocksize
- 1));
3621 * correct length if it does not fall between
3622 * 'from' and the end of the block
3624 if (length
> max
|| length
< 0)
3627 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3629 if (!page_has_buffers(page
))
3630 create_empty_buffers(page
, blocksize
, 0);
3632 /* Find the buffer that contains "offset" */
3633 bh
= page_buffers(page
);
3635 while (offset
>= pos
) {
3636 bh
= bh
->b_this_page
;
3642 if (buffer_freed(bh
)) {
3643 BUFFER_TRACE(bh
, "freed: skip");
3647 if (!buffer_mapped(bh
)) {
3648 BUFFER_TRACE(bh
, "unmapped");
3649 ext4_get_block(inode
, iblock
, bh
, 0);
3650 /* unmapped? It's a hole - nothing to do */
3651 if (!buffer_mapped(bh
)) {
3652 BUFFER_TRACE(bh
, "still unmapped");
3657 /* Ok, it's mapped. Make sure it's up-to-date */
3658 if (PageUptodate(page
))
3659 set_buffer_uptodate(bh
);
3661 if (!buffer_uptodate(bh
)) {
3663 ll_rw_block(READ
, 1, &bh
);
3665 /* Uhhuh. Read error. Complain and punt. */
3666 if (!buffer_uptodate(bh
))
3670 if (ext4_should_journal_data(inode
)) {
3671 BUFFER_TRACE(bh
, "get write access");
3672 err
= ext4_journal_get_write_access(handle
, bh
);
3677 zero_user(page
, offset
, length
);
3679 BUFFER_TRACE(bh
, "zeroed end of block");
3682 if (ext4_should_journal_data(inode
)) {
3683 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3685 mark_buffer_dirty(bh
);
3686 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3687 err
= ext4_jbd2_file_inode(handle
, inode
);
3692 page_cache_release(page
);
3696 int ext4_can_truncate(struct inode
*inode
)
3698 if (S_ISREG(inode
->i_mode
))
3700 if (S_ISDIR(inode
->i_mode
))
3702 if (S_ISLNK(inode
->i_mode
))
3703 return !ext4_inode_is_fast_symlink(inode
);
3708 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3709 * associated with the given offset and length
3711 * @inode: File inode
3712 * @offset: The offset where the hole will begin
3713 * @len: The length of the hole
3715 * Returns: 0 on success or negative on failure
3718 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3720 struct inode
*inode
= file_inode(file
);
3721 struct super_block
*sb
= inode
->i_sb
;
3722 ext4_lblk_t first_block
, stop_block
;
3723 struct address_space
*mapping
= inode
->i_mapping
;
3724 loff_t first_page
, last_page
, page_len
;
3725 loff_t first_page_offset
, last_page_offset
;
3727 unsigned int credits
;
3730 if (!S_ISREG(inode
->i_mode
))
3733 if (EXT4_SB(sb
)->s_cluster_ratio
> 1) {
3734 /* TODO: Add support for bigalloc file systems */
3738 trace_ext4_punch_hole(inode
, offset
, length
);
3741 * Write out all dirty pages to avoid race conditions
3742 * Then release them.
3744 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3745 ret
= filemap_write_and_wait_range(mapping
, offset
,
3746 offset
+ length
- 1);
3751 mutex_lock(&inode
->i_mutex
);
3752 /* It's not possible punch hole on append only file */
3753 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
3757 if (IS_SWAPFILE(inode
)) {
3762 /* No need to punch hole beyond i_size */
3763 if (offset
>= inode
->i_size
)
3767 * If the hole extends beyond i_size, set the hole
3768 * to end after the page that contains i_size
3770 if (offset
+ length
> inode
->i_size
) {
3771 length
= inode
->i_size
+
3772 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3776 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
3777 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
3779 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
3780 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
3782 /* Now release the pages */
3783 if (last_page_offset
> first_page_offset
) {
3784 truncate_pagecache_range(inode
, first_page_offset
,
3785 last_page_offset
- 1);
3788 /* Wait all existing dio workers, newcomers will block on i_mutex */
3789 ext4_inode_block_unlocked_dio(inode
);
3790 ret
= ext4_flush_unwritten_io(inode
);
3793 inode_dio_wait(inode
);
3795 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3796 credits
= ext4_writepage_trans_blocks(inode
);
3798 credits
= ext4_blocks_for_truncate(inode
);
3799 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3800 if (IS_ERR(handle
)) {
3801 ret
= PTR_ERR(handle
);
3802 ext4_std_error(sb
, ret
);
3807 * Now we need to zero out the non-page-aligned data in the
3808 * pages at the start and tail of the hole, and unmap the
3809 * buffer heads for the block aligned regions of the page that
3810 * were completely zeroed.
3812 if (first_page
> last_page
) {
3814 * If the file space being truncated is contained
3815 * within a page just zero out and unmap the middle of
3818 ret
= ext4_discard_partial_page_buffers(handle
,
3819 mapping
, offset
, length
, 0);
3825 * zero out and unmap the partial page that contains
3826 * the start of the hole
3828 page_len
= first_page_offset
- offset
;
3830 ret
= ext4_discard_partial_page_buffers(handle
, mapping
,
3831 offset
, page_len
, 0);
3837 * zero out and unmap the partial page that contains
3838 * the end of the hole
3840 page_len
= offset
+ length
- last_page_offset
;
3842 ret
= ext4_discard_partial_page_buffers(handle
, mapping
,
3843 last_page_offset
, page_len
, 0);
3850 * If i_size is contained in the last page, we need to
3851 * unmap and zero the partial page after i_size
3853 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
3854 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
3855 page_len
= PAGE_CACHE_SIZE
-
3856 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
3859 ret
= ext4_discard_partial_page_buffers(handle
,
3860 mapping
, inode
->i_size
, page_len
, 0);
3867 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3868 EXT4_BLOCK_SIZE_BITS(sb
);
3869 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3871 /* If there are no blocks to remove, return now */
3872 if (first_block
>= stop_block
)
3875 down_write(&EXT4_I(inode
)->i_data_sem
);
3876 ext4_discard_preallocations(inode
);
3878 ret
= ext4_es_remove_extent(inode
, first_block
,
3879 stop_block
- first_block
);
3881 up_write(&EXT4_I(inode
)->i_data_sem
);
3885 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3886 ret
= ext4_ext_remove_space(inode
, first_block
,
3889 ret
= ext4_free_hole_blocks(handle
, inode
, first_block
,
3892 ext4_discard_preallocations(inode
);
3893 up_write(&EXT4_I(inode
)->i_data_sem
);
3895 ext4_handle_sync(handle
);
3896 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3897 ext4_mark_inode_dirty(handle
, inode
);
3899 ext4_journal_stop(handle
);
3901 ext4_inode_resume_unlocked_dio(inode
);
3903 mutex_unlock(&inode
->i_mutex
);
3910 * We block out ext4_get_block() block instantiations across the entire
3911 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3912 * simultaneously on behalf of the same inode.
3914 * As we work through the truncate and commit bits of it to the journal there
3915 * is one core, guiding principle: the file's tree must always be consistent on
3916 * disk. We must be able to restart the truncate after a crash.
3918 * The file's tree may be transiently inconsistent in memory (although it
3919 * probably isn't), but whenever we close off and commit a journal transaction,
3920 * the contents of (the filesystem + the journal) must be consistent and
3921 * restartable. It's pretty simple, really: bottom up, right to left (although
3922 * left-to-right works OK too).
3924 * Note that at recovery time, journal replay occurs *before* the restart of
3925 * truncate against the orphan inode list.
3927 * The committed inode has the new, desired i_size (which is the same as
3928 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3929 * that this inode's truncate did not complete and it will again call
3930 * ext4_truncate() to have another go. So there will be instantiated blocks
3931 * to the right of the truncation point in a crashed ext4 filesystem. But
3932 * that's fine - as long as they are linked from the inode, the post-crash
3933 * ext4_truncate() run will find them and release them.
3935 void ext4_truncate(struct inode
*inode
)
3937 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3938 unsigned int credits
;
3940 struct address_space
*mapping
= inode
->i_mapping
;
3943 * There is a possibility that we're either freeing the inode
3944 * or it completely new indode. In those cases we might not
3945 * have i_mutex locked because it's not necessary.
3947 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3948 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3949 trace_ext4_truncate_enter(inode
);
3951 if (!ext4_can_truncate(inode
))
3954 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3956 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3957 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3959 if (ext4_has_inline_data(inode
)) {
3962 ext4_inline_data_truncate(inode
, &has_inline
);
3968 * finish any pending end_io work so we won't run the risk of
3969 * converting any truncated blocks to initialized later
3971 ext4_flush_unwritten_io(inode
);
3973 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3974 credits
= ext4_writepage_trans_blocks(inode
);
3976 credits
= ext4_blocks_for_truncate(inode
);
3978 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3979 if (IS_ERR(handle
)) {
3980 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3984 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3985 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3988 * We add the inode to the orphan list, so that if this
3989 * truncate spans multiple transactions, and we crash, we will
3990 * resume the truncate when the filesystem recovers. It also
3991 * marks the inode dirty, to catch the new size.
3993 * Implication: the file must always be in a sane, consistent
3994 * truncatable state while each transaction commits.
3996 if (ext4_orphan_add(handle
, inode
))
3999 down_write(&EXT4_I(inode
)->i_data_sem
);
4001 ext4_discard_preallocations(inode
);
4003 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4004 ext4_ext_truncate(handle
, inode
);
4006 ext4_ind_truncate(handle
, inode
);
4008 up_write(&ei
->i_data_sem
);
4011 ext4_handle_sync(handle
);
4015 * If this was a simple ftruncate() and the file will remain alive,
4016 * then we need to clear up the orphan record which we created above.
4017 * However, if this was a real unlink then we were called by
4018 * ext4_delete_inode(), and we allow that function to clean up the
4019 * orphan info for us.
4022 ext4_orphan_del(handle
, inode
);
4024 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4025 ext4_mark_inode_dirty(handle
, inode
);
4026 ext4_journal_stop(handle
);
4028 trace_ext4_truncate_exit(inode
);
4032 * ext4_get_inode_loc returns with an extra refcount against the inode's
4033 * underlying buffer_head on success. If 'in_mem' is true, we have all
4034 * data in memory that is needed to recreate the on-disk version of this
4037 static int __ext4_get_inode_loc(struct inode
*inode
,
4038 struct ext4_iloc
*iloc
, int in_mem
)
4040 struct ext4_group_desc
*gdp
;
4041 struct buffer_head
*bh
;
4042 struct super_block
*sb
= inode
->i_sb
;
4044 int inodes_per_block
, inode_offset
;
4047 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4050 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4051 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4056 * Figure out the offset within the block group inode table
4058 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4059 inode_offset
= ((inode
->i_ino
- 1) %
4060 EXT4_INODES_PER_GROUP(sb
));
4061 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4062 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4064 bh
= sb_getblk(sb
, block
);
4067 if (!buffer_uptodate(bh
)) {
4071 * If the buffer has the write error flag, we have failed
4072 * to write out another inode in the same block. In this
4073 * case, we don't have to read the block because we may
4074 * read the old inode data successfully.
4076 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4077 set_buffer_uptodate(bh
);
4079 if (buffer_uptodate(bh
)) {
4080 /* someone brought it uptodate while we waited */
4086 * If we have all information of the inode in memory and this
4087 * is the only valid inode in the block, we need not read the
4091 struct buffer_head
*bitmap_bh
;
4094 start
= inode_offset
& ~(inodes_per_block
- 1);
4096 /* Is the inode bitmap in cache? */
4097 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4098 if (unlikely(!bitmap_bh
))
4102 * If the inode bitmap isn't in cache then the
4103 * optimisation may end up performing two reads instead
4104 * of one, so skip it.
4106 if (!buffer_uptodate(bitmap_bh
)) {
4110 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4111 if (i
== inode_offset
)
4113 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4117 if (i
== start
+ inodes_per_block
) {
4118 /* all other inodes are free, so skip I/O */
4119 memset(bh
->b_data
, 0, bh
->b_size
);
4120 set_buffer_uptodate(bh
);
4128 * If we need to do any I/O, try to pre-readahead extra
4129 * blocks from the inode table.
4131 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4132 ext4_fsblk_t b
, end
, table
;
4134 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
4136 table
= ext4_inode_table(sb
, gdp
);
4137 /* s_inode_readahead_blks is always a power of 2 */
4138 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4142 num
= EXT4_INODES_PER_GROUP(sb
);
4143 if (ext4_has_group_desc_csum(sb
))
4144 num
-= ext4_itable_unused_count(sb
, gdp
);
4145 table
+= num
/ inodes_per_block
;
4149 sb_breadahead(sb
, b
++);
4153 * There are other valid inodes in the buffer, this inode
4154 * has in-inode xattrs, or we don't have this inode in memory.
4155 * Read the block from disk.
4157 trace_ext4_load_inode(inode
);
4159 bh
->b_end_io
= end_buffer_read_sync
;
4160 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
4162 if (!buffer_uptodate(bh
)) {
4163 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4164 "unable to read itable block");
4174 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4176 /* We have all inode data except xattrs in memory here. */
4177 return __ext4_get_inode_loc(inode
, iloc
,
4178 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4181 void ext4_set_inode_flags(struct inode
*inode
)
4183 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4185 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4186 if (flags
& EXT4_SYNC_FL
)
4187 inode
->i_flags
|= S_SYNC
;
4188 if (flags
& EXT4_APPEND_FL
)
4189 inode
->i_flags
|= S_APPEND
;
4190 if (flags
& EXT4_IMMUTABLE_FL
)
4191 inode
->i_flags
|= S_IMMUTABLE
;
4192 if (flags
& EXT4_NOATIME_FL
)
4193 inode
->i_flags
|= S_NOATIME
;
4194 if (flags
& EXT4_DIRSYNC_FL
)
4195 inode
->i_flags
|= S_DIRSYNC
;
4198 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4199 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4201 unsigned int vfs_fl
;
4202 unsigned long old_fl
, new_fl
;
4205 vfs_fl
= ei
->vfs_inode
.i_flags
;
4206 old_fl
= ei
->i_flags
;
4207 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4208 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4210 if (vfs_fl
& S_SYNC
)
4211 new_fl
|= EXT4_SYNC_FL
;
4212 if (vfs_fl
& S_APPEND
)
4213 new_fl
|= EXT4_APPEND_FL
;
4214 if (vfs_fl
& S_IMMUTABLE
)
4215 new_fl
|= EXT4_IMMUTABLE_FL
;
4216 if (vfs_fl
& S_NOATIME
)
4217 new_fl
|= EXT4_NOATIME_FL
;
4218 if (vfs_fl
& S_DIRSYNC
)
4219 new_fl
|= EXT4_DIRSYNC_FL
;
4220 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4223 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4224 struct ext4_inode_info
*ei
)
4227 struct inode
*inode
= &(ei
->vfs_inode
);
4228 struct super_block
*sb
= inode
->i_sb
;
4230 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4231 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4232 /* we are using combined 48 bit field */
4233 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4234 le32_to_cpu(raw_inode
->i_blocks_lo
);
4235 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4236 /* i_blocks represent file system block size */
4237 return i_blocks
<< (inode
->i_blkbits
- 9);
4242 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4246 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4247 struct ext4_inode
*raw_inode
,
4248 struct ext4_inode_info
*ei
)
4250 __le32
*magic
= (void *)raw_inode
+
4251 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4252 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4253 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4254 ext4_find_inline_data_nolock(inode
);
4256 EXT4_I(inode
)->i_inline_off
= 0;
4259 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4261 struct ext4_iloc iloc
;
4262 struct ext4_inode
*raw_inode
;
4263 struct ext4_inode_info
*ei
;
4264 struct inode
*inode
;
4265 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4271 inode
= iget_locked(sb
, ino
);
4273 return ERR_PTR(-ENOMEM
);
4274 if (!(inode
->i_state
& I_NEW
))
4280 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4283 raw_inode
= ext4_raw_inode(&iloc
);
4285 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4286 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4287 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4288 EXT4_INODE_SIZE(inode
->i_sb
)) {
4289 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4290 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4291 EXT4_INODE_SIZE(inode
->i_sb
));
4296 ei
->i_extra_isize
= 0;
4298 /* Precompute checksum seed for inode metadata */
4299 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4300 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
4301 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4303 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4304 __le32 gen
= raw_inode
->i_generation
;
4305 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4307 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4311 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4312 EXT4_ERROR_INODE(inode
, "checksum invalid");
4317 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4318 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4319 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4320 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4321 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4322 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4324 i_uid_write(inode
, i_uid
);
4325 i_gid_write(inode
, i_gid
);
4326 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4328 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4329 ei
->i_inline_off
= 0;
4330 ei
->i_dir_start_lookup
= 0;
4331 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4332 /* We now have enough fields to check if the inode was active or not.
4333 * This is needed because nfsd might try to access dead inodes
4334 * the test is that same one that e2fsck uses
4335 * NeilBrown 1999oct15
4337 if (inode
->i_nlink
== 0) {
4338 if ((inode
->i_mode
== 0 ||
4339 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4340 ino
!= EXT4_BOOT_LOADER_INO
) {
4341 /* this inode is deleted */
4345 /* The only unlinked inodes we let through here have
4346 * valid i_mode and are being read by the orphan
4347 * recovery code: that's fine, we're about to complete
4348 * the process of deleting those.
4349 * OR it is the EXT4_BOOT_LOADER_INO which is
4350 * not initialized on a new filesystem. */
4352 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4353 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4354 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4355 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4357 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4358 inode
->i_size
= ext4_isize(raw_inode
);
4359 ei
->i_disksize
= inode
->i_size
;
4361 ei
->i_reserved_quota
= 0;
4363 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4364 ei
->i_block_group
= iloc
.block_group
;
4365 ei
->i_last_alloc_group
= ~0;
4367 * NOTE! The in-memory inode i_data array is in little-endian order
4368 * even on big-endian machines: we do NOT byteswap the block numbers!
4370 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4371 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4372 INIT_LIST_HEAD(&ei
->i_orphan
);
4375 * Set transaction id's of transactions that have to be committed
4376 * to finish f[data]sync. We set them to currently running transaction
4377 * as we cannot be sure that the inode or some of its metadata isn't
4378 * part of the transaction - the inode could have been reclaimed and
4379 * now it is reread from disk.
4382 transaction_t
*transaction
;
4385 read_lock(&journal
->j_state_lock
);
4386 if (journal
->j_running_transaction
)
4387 transaction
= journal
->j_running_transaction
;
4389 transaction
= journal
->j_committing_transaction
;
4391 tid
= transaction
->t_tid
;
4393 tid
= journal
->j_commit_sequence
;
4394 read_unlock(&journal
->j_state_lock
);
4395 ei
->i_sync_tid
= tid
;
4396 ei
->i_datasync_tid
= tid
;
4399 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4400 if (ei
->i_extra_isize
== 0) {
4401 /* The extra space is currently unused. Use it. */
4402 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4403 EXT4_GOOD_OLD_INODE_SIZE
;
4405 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4409 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4410 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4411 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4412 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4414 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4415 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4416 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4418 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4422 if (ei
->i_file_acl
&&
4423 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4424 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4428 } else if (!ext4_has_inline_data(inode
)) {
4429 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4430 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4431 (S_ISLNK(inode
->i_mode
) &&
4432 !ext4_inode_is_fast_symlink(inode
))))
4433 /* Validate extent which is part of inode */
4434 ret
= ext4_ext_check_inode(inode
);
4435 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4436 (S_ISLNK(inode
->i_mode
) &&
4437 !ext4_inode_is_fast_symlink(inode
))) {
4438 /* Validate block references which are part of inode */
4439 ret
= ext4_ind_check_inode(inode
);
4445 if (S_ISREG(inode
->i_mode
)) {
4446 inode
->i_op
= &ext4_file_inode_operations
;
4447 inode
->i_fop
= &ext4_file_operations
;
4448 ext4_set_aops(inode
);
4449 } else if (S_ISDIR(inode
->i_mode
)) {
4450 inode
->i_op
= &ext4_dir_inode_operations
;
4451 inode
->i_fop
= &ext4_dir_operations
;
4452 } else if (S_ISLNK(inode
->i_mode
)) {
4453 if (ext4_inode_is_fast_symlink(inode
)) {
4454 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4455 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4456 sizeof(ei
->i_data
) - 1);
4458 inode
->i_op
= &ext4_symlink_inode_operations
;
4459 ext4_set_aops(inode
);
4461 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4462 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4463 inode
->i_op
= &ext4_special_inode_operations
;
4464 if (raw_inode
->i_block
[0])
4465 init_special_inode(inode
, inode
->i_mode
,
4466 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4468 init_special_inode(inode
, inode
->i_mode
,
4469 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4470 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4471 make_bad_inode(inode
);
4474 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4478 ext4_set_inode_flags(inode
);
4479 unlock_new_inode(inode
);
4485 return ERR_PTR(ret
);
4488 static int ext4_inode_blocks_set(handle_t
*handle
,
4489 struct ext4_inode
*raw_inode
,
4490 struct ext4_inode_info
*ei
)
4492 struct inode
*inode
= &(ei
->vfs_inode
);
4493 u64 i_blocks
= inode
->i_blocks
;
4494 struct super_block
*sb
= inode
->i_sb
;
4496 if (i_blocks
<= ~0U) {
4498 * i_blocks can be represented in a 32 bit variable
4499 * as multiple of 512 bytes
4501 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4502 raw_inode
->i_blocks_high
= 0;
4503 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4506 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4509 if (i_blocks
<= 0xffffffffffffULL
) {
4511 * i_blocks can be represented in a 48 bit variable
4512 * as multiple of 512 bytes
4514 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4515 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4516 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4518 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4519 /* i_block is stored in file system block size */
4520 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4521 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4522 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4528 * Post the struct inode info into an on-disk inode location in the
4529 * buffer-cache. This gobbles the caller's reference to the
4530 * buffer_head in the inode location struct.
4532 * The caller must have write access to iloc->bh.
4534 static int ext4_do_update_inode(handle_t
*handle
,
4535 struct inode
*inode
,
4536 struct ext4_iloc
*iloc
)
4538 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4539 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4540 struct buffer_head
*bh
= iloc
->bh
;
4541 int err
= 0, rc
, block
;
4542 int need_datasync
= 0;
4546 /* For fields not not tracking in the in-memory inode,
4547 * initialise them to zero for new inodes. */
4548 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4549 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4551 ext4_get_inode_flags(ei
);
4552 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4553 i_uid
= i_uid_read(inode
);
4554 i_gid
= i_gid_read(inode
);
4555 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4556 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4557 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4559 * Fix up interoperability with old kernels. Otherwise, old inodes get
4560 * re-used with the upper 16 bits of the uid/gid intact
4563 raw_inode
->i_uid_high
=
4564 cpu_to_le16(high_16_bits(i_uid
));
4565 raw_inode
->i_gid_high
=
4566 cpu_to_le16(high_16_bits(i_gid
));
4568 raw_inode
->i_uid_high
= 0;
4569 raw_inode
->i_gid_high
= 0;
4572 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4573 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4574 raw_inode
->i_uid_high
= 0;
4575 raw_inode
->i_gid_high
= 0;
4577 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4579 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4580 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4581 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4582 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4584 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4586 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4587 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4588 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4589 cpu_to_le32(EXT4_OS_HURD
))
4590 raw_inode
->i_file_acl_high
=
4591 cpu_to_le16(ei
->i_file_acl
>> 32);
4592 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4593 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4594 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4597 if (ei
->i_disksize
> 0x7fffffffULL
) {
4598 struct super_block
*sb
= inode
->i_sb
;
4599 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4600 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4601 EXT4_SB(sb
)->s_es
->s_rev_level
==
4602 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4603 /* If this is the first large file
4604 * created, add a flag to the superblock.
4606 err
= ext4_journal_get_write_access(handle
,
4607 EXT4_SB(sb
)->s_sbh
);
4610 ext4_update_dynamic_rev(sb
);
4611 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4612 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4613 ext4_handle_sync(handle
);
4614 err
= ext4_handle_dirty_super(handle
, sb
);
4617 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4618 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4619 if (old_valid_dev(inode
->i_rdev
)) {
4620 raw_inode
->i_block
[0] =
4621 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4622 raw_inode
->i_block
[1] = 0;
4624 raw_inode
->i_block
[0] = 0;
4625 raw_inode
->i_block
[1] =
4626 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4627 raw_inode
->i_block
[2] = 0;
4629 } else if (!ext4_has_inline_data(inode
)) {
4630 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4631 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4634 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4635 if (ei
->i_extra_isize
) {
4636 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4637 raw_inode
->i_version_hi
=
4638 cpu_to_le32(inode
->i_version
>> 32);
4639 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4642 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4644 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4645 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4648 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4650 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4653 ext4_std_error(inode
->i_sb
, err
);
4658 * ext4_write_inode()
4660 * We are called from a few places:
4662 * - Within generic_file_write() for O_SYNC files.
4663 * Here, there will be no transaction running. We wait for any running
4664 * transaction to commit.
4666 * - Within sys_sync(), kupdate and such.
4667 * We wait on commit, if tol to.
4669 * - Within prune_icache() (PF_MEMALLOC == true)
4670 * Here we simply return. We can't afford to block kswapd on the
4673 * In all cases it is actually safe for us to return without doing anything,
4674 * because the inode has been copied into a raw inode buffer in
4675 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4678 * Note that we are absolutely dependent upon all inode dirtiers doing the
4679 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4680 * which we are interested.
4682 * It would be a bug for them to not do this. The code:
4684 * mark_inode_dirty(inode)
4686 * inode->i_size = expr;
4688 * is in error because a kswapd-driven write_inode() could occur while
4689 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4690 * will no longer be on the superblock's dirty inode list.
4692 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4696 if (current
->flags
& PF_MEMALLOC
)
4699 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4700 if (ext4_journal_current_handle()) {
4701 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4706 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4709 err
= ext4_force_commit(inode
->i_sb
);
4711 struct ext4_iloc iloc
;
4713 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4716 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4717 sync_dirty_buffer(iloc
.bh
);
4718 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4719 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4720 "IO error syncing inode");
4729 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4730 * buffers that are attached to a page stradding i_size and are undergoing
4731 * commit. In that case we have to wait for commit to finish and try again.
4733 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4737 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4738 tid_t commit_tid
= 0;
4741 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4743 * All buffers in the last page remain valid? Then there's nothing to
4744 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4747 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4750 page
= find_lock_page(inode
->i_mapping
,
4751 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4754 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4755 PAGE_CACHE_SIZE
- offset
);
4757 page_cache_release(page
);
4761 read_lock(&journal
->j_state_lock
);
4762 if (journal
->j_committing_transaction
)
4763 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4764 read_unlock(&journal
->j_state_lock
);
4766 jbd2_log_wait_commit(journal
, commit_tid
);
4773 * Called from notify_change.
4775 * We want to trap VFS attempts to truncate the file as soon as
4776 * possible. In particular, we want to make sure that when the VFS
4777 * shrinks i_size, we put the inode on the orphan list and modify
4778 * i_disksize immediately, so that during the subsequent flushing of
4779 * dirty pages and freeing of disk blocks, we can guarantee that any
4780 * commit will leave the blocks being flushed in an unused state on
4781 * disk. (On recovery, the inode will get truncated and the blocks will
4782 * be freed, so we have a strong guarantee that no future commit will
4783 * leave these blocks visible to the user.)
4785 * Another thing we have to assure is that if we are in ordered mode
4786 * and inode is still attached to the committing transaction, we must
4787 * we start writeout of all the dirty pages which are being truncated.
4788 * This way we are sure that all the data written in the previous
4789 * transaction are already on disk (truncate waits for pages under
4792 * Called with inode->i_mutex down.
4794 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4796 struct inode
*inode
= dentry
->d_inode
;
4799 const unsigned int ia_valid
= attr
->ia_valid
;
4801 error
= inode_change_ok(inode
, attr
);
4805 if (is_quota_modification(inode
, attr
))
4806 dquot_initialize(inode
);
4807 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4808 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4811 /* (user+group)*(old+new) structure, inode write (sb,
4812 * inode block, ? - but truncate inode update has it) */
4813 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4814 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4815 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4816 if (IS_ERR(handle
)) {
4817 error
= PTR_ERR(handle
);
4820 error
= dquot_transfer(inode
, attr
);
4822 ext4_journal_stop(handle
);
4825 /* Update corresponding info in inode so that everything is in
4826 * one transaction */
4827 if (attr
->ia_valid
& ATTR_UID
)
4828 inode
->i_uid
= attr
->ia_uid
;
4829 if (attr
->ia_valid
& ATTR_GID
)
4830 inode
->i_gid
= attr
->ia_gid
;
4831 error
= ext4_mark_inode_dirty(handle
, inode
);
4832 ext4_journal_stop(handle
);
4835 if (attr
->ia_valid
& ATTR_SIZE
) {
4837 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4838 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4840 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4845 if (S_ISREG(inode
->i_mode
) &&
4846 attr
->ia_valid
& ATTR_SIZE
&&
4847 (attr
->ia_size
< inode
->i_size
)) {
4850 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4851 if (IS_ERR(handle
)) {
4852 error
= PTR_ERR(handle
);
4855 if (ext4_handle_valid(handle
)) {
4856 error
= ext4_orphan_add(handle
, inode
);
4859 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4860 rc
= ext4_mark_inode_dirty(handle
, inode
);
4863 ext4_journal_stop(handle
);
4865 if (ext4_should_order_data(inode
)) {
4866 error
= ext4_begin_ordered_truncate(inode
,
4869 /* Do as much error cleanup as possible */
4870 handle
= ext4_journal_start(inode
,
4872 if (IS_ERR(handle
)) {
4873 ext4_orphan_del(NULL
, inode
);
4876 ext4_orphan_del(handle
, inode
);
4878 ext4_journal_stop(handle
);
4884 if (attr
->ia_valid
& ATTR_SIZE
) {
4885 if (attr
->ia_size
!= inode
->i_size
) {
4886 loff_t oldsize
= inode
->i_size
;
4888 i_size_write(inode
, attr
->ia_size
);
4890 * Blocks are going to be removed from the inode. Wait
4891 * for dio in flight. Temporarily disable
4892 * dioread_nolock to prevent livelock.
4895 if (!ext4_should_journal_data(inode
)) {
4896 ext4_inode_block_unlocked_dio(inode
);
4897 inode_dio_wait(inode
);
4898 ext4_inode_resume_unlocked_dio(inode
);
4900 ext4_wait_for_tail_page_commit(inode
);
4903 * Truncate pagecache after we've waited for commit
4904 * in data=journal mode to make pages freeable.
4906 truncate_pagecache(inode
, oldsize
, inode
->i_size
);
4908 ext4_truncate(inode
);
4912 setattr_copy(inode
, attr
);
4913 mark_inode_dirty(inode
);
4917 * If the call to ext4_truncate failed to get a transaction handle at
4918 * all, we need to clean up the in-core orphan list manually.
4920 if (orphan
&& inode
->i_nlink
)
4921 ext4_orphan_del(NULL
, inode
);
4923 if (!rc
&& (ia_valid
& ATTR_MODE
))
4924 rc
= ext4_acl_chmod(inode
);
4927 ext4_std_error(inode
->i_sb
, error
);
4933 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4936 struct inode
*inode
;
4937 unsigned long delalloc_blocks
;
4939 inode
= dentry
->d_inode
;
4940 generic_fillattr(inode
, stat
);
4943 * We can't update i_blocks if the block allocation is delayed
4944 * otherwise in the case of system crash before the real block
4945 * allocation is done, we will have i_blocks inconsistent with
4946 * on-disk file blocks.
4947 * We always keep i_blocks updated together with real
4948 * allocation. But to not confuse with user, stat
4949 * will return the blocks that include the delayed allocation
4950 * blocks for this file.
4952 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4953 EXT4_I(inode
)->i_reserved_data_blocks
);
4955 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4959 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4961 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4962 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
4963 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4967 * Account for index blocks, block groups bitmaps and block group
4968 * descriptor blocks if modify datablocks and index blocks
4969 * worse case, the indexs blocks spread over different block groups
4971 * If datablocks are discontiguous, they are possible to spread over
4972 * different block groups too. If they are contiguous, with flexbg,
4973 * they could still across block group boundary.
4975 * Also account for superblock, inode, quota and xattr blocks
4977 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4979 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4985 * How many index blocks need to touch to modify nrblocks?
4986 * The "Chunk" flag indicating whether the nrblocks is
4987 * physically contiguous on disk
4989 * For Direct IO and fallocate, they calls get_block to allocate
4990 * one single extent at a time, so they could set the "Chunk" flag
4992 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4997 * Now let's see how many group bitmaps and group descriptors need
5007 if (groups
> ngroups
)
5009 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5010 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5012 /* bitmaps and block group descriptor blocks */
5013 ret
+= groups
+ gdpblocks
;
5015 /* Blocks for super block, inode, quota and xattr blocks */
5016 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5022 * Calculate the total number of credits to reserve to fit
5023 * the modification of a single pages into a single transaction,
5024 * which may include multiple chunks of block allocations.
5026 * This could be called via ext4_write_begin()
5028 * We need to consider the worse case, when
5029 * one new block per extent.
5031 int ext4_writepage_trans_blocks(struct inode
*inode
)
5033 int bpp
= ext4_journal_blocks_per_page(inode
);
5036 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5038 /* Account for data blocks for journalled mode */
5039 if (ext4_should_journal_data(inode
))
5045 * Calculate the journal credits for a chunk of data modification.
5047 * This is called from DIO, fallocate or whoever calling
5048 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5050 * journal buffers for data blocks are not included here, as DIO
5051 * and fallocate do no need to journal data buffers.
5053 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5055 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5059 * The caller must have previously called ext4_reserve_inode_write().
5060 * Give this, we know that the caller already has write access to iloc->bh.
5062 int ext4_mark_iloc_dirty(handle_t
*handle
,
5063 struct inode
*inode
, struct ext4_iloc
*iloc
)
5067 if (IS_I_VERSION(inode
))
5068 inode_inc_iversion(inode
);
5070 /* the do_update_inode consumes one bh->b_count */
5073 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5074 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5080 * On success, We end up with an outstanding reference count against
5081 * iloc->bh. This _must_ be cleaned up later.
5085 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5086 struct ext4_iloc
*iloc
)
5090 err
= ext4_get_inode_loc(inode
, iloc
);
5092 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5093 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5099 ext4_std_error(inode
->i_sb
, err
);
5104 * Expand an inode by new_extra_isize bytes.
5105 * Returns 0 on success or negative error number on failure.
5107 static int ext4_expand_extra_isize(struct inode
*inode
,
5108 unsigned int new_extra_isize
,
5109 struct ext4_iloc iloc
,
5112 struct ext4_inode
*raw_inode
;
5113 struct ext4_xattr_ibody_header
*header
;
5115 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5118 raw_inode
= ext4_raw_inode(&iloc
);
5120 header
= IHDR(inode
, raw_inode
);
5122 /* No extended attributes present */
5123 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5124 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5125 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5127 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5131 /* try to expand with EAs present */
5132 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5137 * What we do here is to mark the in-core inode as clean with respect to inode
5138 * dirtiness (it may still be data-dirty).
5139 * This means that the in-core inode may be reaped by prune_icache
5140 * without having to perform any I/O. This is a very good thing,
5141 * because *any* task may call prune_icache - even ones which
5142 * have a transaction open against a different journal.
5144 * Is this cheating? Not really. Sure, we haven't written the
5145 * inode out, but prune_icache isn't a user-visible syncing function.
5146 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5147 * we start and wait on commits.
5149 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5151 struct ext4_iloc iloc
;
5152 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5153 static unsigned int mnt_count
;
5157 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5158 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5159 if (ext4_handle_valid(handle
) &&
5160 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5161 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5163 * We need extra buffer credits since we may write into EA block
5164 * with this same handle. If journal_extend fails, then it will
5165 * only result in a minor loss of functionality for that inode.
5166 * If this is felt to be critical, then e2fsck should be run to
5167 * force a large enough s_min_extra_isize.
5169 if ((jbd2_journal_extend(handle
,
5170 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5171 ret
= ext4_expand_extra_isize(inode
,
5172 sbi
->s_want_extra_isize
,
5175 ext4_set_inode_state(inode
,
5176 EXT4_STATE_NO_EXPAND
);
5178 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5179 ext4_warning(inode
->i_sb
,
5180 "Unable to expand inode %lu. Delete"
5181 " some EAs or run e2fsck.",
5184 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5190 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5195 * ext4_dirty_inode() is called from __mark_inode_dirty()
5197 * We're really interested in the case where a file is being extended.
5198 * i_size has been changed by generic_commit_write() and we thus need
5199 * to include the updated inode in the current transaction.
5201 * Also, dquot_alloc_block() will always dirty the inode when blocks
5202 * are allocated to the file.
5204 * If the inode is marked synchronous, we don't honour that here - doing
5205 * so would cause a commit on atime updates, which we don't bother doing.
5206 * We handle synchronous inodes at the highest possible level.
5208 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5212 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5216 ext4_mark_inode_dirty(handle
, inode
);
5218 ext4_journal_stop(handle
);
5225 * Bind an inode's backing buffer_head into this transaction, to prevent
5226 * it from being flushed to disk early. Unlike
5227 * ext4_reserve_inode_write, this leaves behind no bh reference and
5228 * returns no iloc structure, so the caller needs to repeat the iloc
5229 * lookup to mark the inode dirty later.
5231 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5233 struct ext4_iloc iloc
;
5237 err
= ext4_get_inode_loc(inode
, &iloc
);
5239 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5240 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5242 err
= ext4_handle_dirty_metadata(handle
,
5248 ext4_std_error(inode
->i_sb
, err
);
5253 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5260 * We have to be very careful here: changing a data block's
5261 * journaling status dynamically is dangerous. If we write a
5262 * data block to the journal, change the status and then delete
5263 * that block, we risk forgetting to revoke the old log record
5264 * from the journal and so a subsequent replay can corrupt data.
5265 * So, first we make sure that the journal is empty and that
5266 * nobody is changing anything.
5269 journal
= EXT4_JOURNAL(inode
);
5272 if (is_journal_aborted(journal
))
5274 /* We have to allocate physical blocks for delalloc blocks
5275 * before flushing journal. otherwise delalloc blocks can not
5276 * be allocated any more. even more truncate on delalloc blocks
5277 * could trigger BUG by flushing delalloc blocks in journal.
5278 * There is no delalloc block in non-journal data mode.
5280 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5281 err
= ext4_alloc_da_blocks(inode
);
5286 /* Wait for all existing dio workers */
5287 ext4_inode_block_unlocked_dio(inode
);
5288 inode_dio_wait(inode
);
5290 jbd2_journal_lock_updates(journal
);
5293 * OK, there are no updates running now, and all cached data is
5294 * synced to disk. We are now in a completely consistent state
5295 * which doesn't have anything in the journal, and we know that
5296 * no filesystem updates are running, so it is safe to modify
5297 * the inode's in-core data-journaling state flag now.
5301 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5303 jbd2_journal_flush(journal
);
5304 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5306 ext4_set_aops(inode
);
5308 jbd2_journal_unlock_updates(journal
);
5309 ext4_inode_resume_unlocked_dio(inode
);
5311 /* Finally we can mark the inode as dirty. */
5313 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5315 return PTR_ERR(handle
);
5317 err
= ext4_mark_inode_dirty(handle
, inode
);
5318 ext4_handle_sync(handle
);
5319 ext4_journal_stop(handle
);
5320 ext4_std_error(inode
->i_sb
, err
);
5325 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5327 return !buffer_mapped(bh
);
5330 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5332 struct page
*page
= vmf
->page
;
5336 struct file
*file
= vma
->vm_file
;
5337 struct inode
*inode
= file_inode(file
);
5338 struct address_space
*mapping
= inode
->i_mapping
;
5340 get_block_t
*get_block
;
5343 sb_start_pagefault(inode
->i_sb
);
5344 file_update_time(vma
->vm_file
);
5345 /* Delalloc case is easy... */
5346 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5347 !ext4_should_journal_data(inode
) &&
5348 !ext4_nonda_switch(inode
->i_sb
)) {
5350 ret
= __block_page_mkwrite(vma
, vmf
,
5351 ext4_da_get_block_prep
);
5352 } while (ret
== -ENOSPC
&&
5353 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5358 size
= i_size_read(inode
);
5359 /* Page got truncated from under us? */
5360 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5362 ret
= VM_FAULT_NOPAGE
;
5366 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5367 len
= size
& ~PAGE_CACHE_MASK
;
5369 len
= PAGE_CACHE_SIZE
;
5371 * Return if we have all the buffers mapped. This avoids the need to do
5372 * journal_start/journal_stop which can block and take a long time
5374 if (page_has_buffers(page
)) {
5375 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5377 ext4_bh_unmapped
)) {
5378 /* Wait so that we don't change page under IO */
5379 wait_for_stable_page(page
);
5380 ret
= VM_FAULT_LOCKED
;
5385 /* OK, we need to fill the hole... */
5386 if (ext4_should_dioread_nolock(inode
))
5387 get_block
= ext4_get_block_write
;
5389 get_block
= ext4_get_block
;
5391 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5392 ext4_writepage_trans_blocks(inode
));
5393 if (IS_ERR(handle
)) {
5394 ret
= VM_FAULT_SIGBUS
;
5397 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5398 if (!ret
&& ext4_should_journal_data(inode
)) {
5399 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5400 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5402 ret
= VM_FAULT_SIGBUS
;
5403 ext4_journal_stop(handle
);
5406 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5408 ext4_journal_stop(handle
);
5409 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5412 ret
= block_page_mkwrite_return(ret
);
5414 sb_end_pagefault(inode
->i_sb
);