1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
82 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
90 #define FLAG_ECE 0x40 /* ECE in this ACK */
91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 #define REXMIT_NONE 0 /* no loss recovery to do */
111 #define REXMIT_LOST 1 /* retransmit packets marked lost */
112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
117 static bool __once __read_mostly
;
120 struct net_device
*dev
;
125 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
126 if (!dev
|| len
>= dev
->mtu
)
127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
128 dev
? dev
->name
: "Unknown driver");
133 /* Adapt the MSS value used to make delayed ack decision to the
136 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
138 struct inet_connection_sock
*icsk
= inet_csk(sk
);
139 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
142 icsk
->icsk_ack
.last_seg_size
= 0;
144 /* skb->len may jitter because of SACKs, even if peer
145 * sends good full-sized frames.
147 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
148 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
149 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
151 /* Account for possibly-removed options */
152 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
153 MAX_TCP_OPTION_SPACE
))
154 tcp_gro_dev_warn(sk
, skb
, len
);
156 /* Otherwise, we make more careful check taking into account,
157 * that SACKs block is variable.
159 * "len" is invariant segment length, including TCP header.
161 len
+= skb
->data
- skb_transport_header(skb
);
162 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
163 /* If PSH is not set, packet should be
164 * full sized, provided peer TCP is not badly broken.
165 * This observation (if it is correct 8)) allows
166 * to handle super-low mtu links fairly.
168 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
169 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
170 /* Subtract also invariant (if peer is RFC compliant),
171 * tcp header plus fixed timestamp option length.
172 * Resulting "len" is MSS free of SACK jitter.
174 len
-= tcp_sk(sk
)->tcp_header_len
;
175 icsk
->icsk_ack
.last_seg_size
= len
;
177 icsk
->icsk_ack
.rcv_mss
= len
;
181 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
182 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
183 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
187 static void tcp_incr_quickack(struct sock
*sk
)
189 struct inet_connection_sock
*icsk
= inet_csk(sk
);
190 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
194 if (quickacks
> icsk
->icsk_ack
.quick
)
195 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
198 static void tcp_enter_quickack_mode(struct sock
*sk
)
200 struct inet_connection_sock
*icsk
= inet_csk(sk
);
201 tcp_incr_quickack(sk
);
202 icsk
->icsk_ack
.pingpong
= 0;
203 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
206 /* Send ACKs quickly, if "quick" count is not exhausted
207 * and the session is not interactive.
210 static bool tcp_in_quickack_mode(struct sock
*sk
)
212 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
213 const struct dst_entry
*dst
= __sk_dst_get(sk
);
215 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
216 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
219 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
221 if (tp
->ecn_flags
& TCP_ECN_OK
)
222 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
225 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
227 if (tcp_hdr(skb
)->cwr
)
228 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
231 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
233 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
236 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
238 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
239 case INET_ECN_NOT_ECT
:
240 /* Funny extension: if ECT is not set on a segment,
241 * and we already seen ECT on a previous segment,
242 * it is probably a retransmit.
244 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
245 tcp_enter_quickack_mode((struct sock
*)tp
);
248 if (tcp_ca_needs_ecn((struct sock
*)tp
))
249 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
251 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
252 /* Better not delay acks, sender can have a very low cwnd */
253 tcp_enter_quickack_mode((struct sock
*)tp
);
254 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
256 tp
->ecn_flags
|= TCP_ECN_SEEN
;
259 if (tcp_ca_needs_ecn((struct sock
*)tp
))
260 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
261 tp
->ecn_flags
|= TCP_ECN_SEEN
;
266 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
268 if (tp
->ecn_flags
& TCP_ECN_OK
)
269 __tcp_ecn_check_ce(tp
, skb
);
272 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
274 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
275 tp
->ecn_flags
&= ~TCP_ECN_OK
;
278 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
280 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
281 tp
->ecn_flags
&= ~TCP_ECN_OK
;
284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
286 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
291 /* Buffer size and advertised window tuning.
293 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
296 static void tcp_sndbuf_expand(struct sock
*sk
)
298 const struct tcp_sock
*tp
= tcp_sk(sk
);
299 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
303 /* Worst case is non GSO/TSO : each frame consumes one skb
304 * and skb->head is kmalloced using power of two area of memory
306 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
310 per_mss
= roundup_pow_of_two(per_mss
) +
311 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
313 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
314 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
316 /* Fast Recovery (RFC 5681 3.2) :
317 * Cubic needs 1.7 factor, rounded to 2 to include
318 * extra cushion (application might react slowly to POLLOUT)
320 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
321 sndmem
*= nr_segs
* per_mss
;
323 if (sk
->sk_sndbuf
< sndmem
)
324 sk
->sk_sndbuf
= min(sndmem
, sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[2]);
327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
329 * All tcp_full_space() is split to two parts: "network" buffer, allocated
330 * forward and advertised in receiver window (tp->rcv_wnd) and
331 * "application buffer", required to isolate scheduling/application
332 * latencies from network.
333 * window_clamp is maximal advertised window. It can be less than
334 * tcp_full_space(), in this case tcp_full_space() - window_clamp
335 * is reserved for "application" buffer. The less window_clamp is
336 * the smoother our behaviour from viewpoint of network, but the lower
337 * throughput and the higher sensitivity of the connection to losses. 8)
339 * rcv_ssthresh is more strict window_clamp used at "slow start"
340 * phase to predict further behaviour of this connection.
341 * It is used for two goals:
342 * - to enforce header prediction at sender, even when application
343 * requires some significant "application buffer". It is check #1.
344 * - to prevent pruning of receive queue because of misprediction
345 * of receiver window. Check #2.
347 * The scheme does not work when sender sends good segments opening
348 * window and then starts to feed us spaghetti. But it should work
349 * in common situations. Otherwise, we have to rely on queue collapsing.
352 /* Slow part of check#2. */
353 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
355 struct tcp_sock
*tp
= tcp_sk(sk
);
357 int truesize
= tcp_win_from_space(sk
, skb
->truesize
) >> 1;
358 int window
= tcp_win_from_space(sk
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]) >> 1;
360 while (tp
->rcv_ssthresh
<= window
) {
361 if (truesize
<= skb
->len
)
362 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
370 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
372 struct tcp_sock
*tp
= tcp_sk(sk
);
375 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
376 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
377 !tcp_under_memory_pressure(sk
)) {
380 /* Check #2. Increase window, if skb with such overhead
381 * will fit to rcvbuf in future.
383 if (tcp_win_from_space(sk
, skb
->truesize
) <= skb
->len
)
384 incr
= 2 * tp
->advmss
;
386 incr
= __tcp_grow_window(sk
, skb
);
389 incr
= max_t(int, incr
, 2 * skb
->len
);
390 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
392 inet_csk(sk
)->icsk_ack
.quick
|= 1;
397 /* 3. Tuning rcvbuf, when connection enters established state. */
398 static void tcp_fixup_rcvbuf(struct sock
*sk
)
400 u32 mss
= tcp_sk(sk
)->advmss
;
403 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
404 tcp_default_init_rwnd(mss
);
406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 * Allow enough cushion so that sender is not limited by our window
409 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
)
412 if (sk
->sk_rcvbuf
< rcvmem
)
413 sk
->sk_rcvbuf
= min(rcvmem
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
416 /* 4. Try to fixup all. It is made immediately after connection enters
419 void tcp_init_buffer_space(struct sock
*sk
)
421 int tcp_app_win
= sock_net(sk
)->ipv4
.sysctl_tcp_app_win
;
422 struct tcp_sock
*tp
= tcp_sk(sk
);
425 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
426 tcp_fixup_rcvbuf(sk
);
427 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
428 tcp_sndbuf_expand(sk
);
430 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
431 tcp_mstamp_refresh(tp
);
432 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
433 tp
->rcvq_space
.seq
= tp
->copied_seq
;
435 maxwin
= tcp_full_space(sk
);
437 if (tp
->window_clamp
>= maxwin
) {
438 tp
->window_clamp
= maxwin
;
440 if (tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
441 tp
->window_clamp
= max(maxwin
-
442 (maxwin
>> tcp_app_win
),
446 /* Force reservation of one segment. */
448 tp
->window_clamp
> 2 * tp
->advmss
&&
449 tp
->window_clamp
+ tp
->advmss
> maxwin
)
450 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
452 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
453 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
456 /* 5. Recalculate window clamp after socket hit its memory bounds. */
457 static void tcp_clamp_window(struct sock
*sk
)
459 struct tcp_sock
*tp
= tcp_sk(sk
);
460 struct inet_connection_sock
*icsk
= inet_csk(sk
);
461 struct net
*net
= sock_net(sk
);
463 icsk
->icsk_ack
.quick
= 0;
465 if (sk
->sk_rcvbuf
< net
->ipv4
.sysctl_tcp_rmem
[2] &&
466 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
467 !tcp_under_memory_pressure(sk
) &&
468 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
469 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
470 net
->ipv4
.sysctl_tcp_rmem
[2]);
472 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
473 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
476 /* Initialize RCV_MSS value.
477 * RCV_MSS is an our guess about MSS used by the peer.
478 * We haven't any direct information about the MSS.
479 * It's better to underestimate the RCV_MSS rather than overestimate.
480 * Overestimations make us ACKing less frequently than needed.
481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
483 void tcp_initialize_rcv_mss(struct sock
*sk
)
485 const struct tcp_sock
*tp
= tcp_sk(sk
);
486 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
488 hint
= min(hint
, tp
->rcv_wnd
/ 2);
489 hint
= min(hint
, TCP_MSS_DEFAULT
);
490 hint
= max(hint
, TCP_MIN_MSS
);
492 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
494 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
496 /* Receiver "autotuning" code.
498 * The algorithm for RTT estimation w/o timestamps is based on
499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
500 * <http://public.lanl.gov/radiant/pubs.html#DRS>
502 * More detail on this code can be found at
503 * <http://staff.psc.edu/jheffner/>,
504 * though this reference is out of date. A new paper
507 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
509 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
512 if (new_sample
!= 0) {
513 /* If we sample in larger samples in the non-timestamp
514 * case, we could grossly overestimate the RTT especially
515 * with chatty applications or bulk transfer apps which
516 * are stalled on filesystem I/O.
518 * Also, since we are only going for a minimum in the
519 * non-timestamp case, we do not smooth things out
520 * else with timestamps disabled convergence takes too
524 m
-= (new_sample
>> 3);
532 /* No previous measure. */
536 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
539 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
543 if (tp
->rcv_rtt_est
.time
== 0)
545 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
547 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
550 tcp_rcv_rtt_update(tp
, delta_us
, 1);
553 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
554 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
557 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
558 const struct sk_buff
*skb
)
560 struct tcp_sock
*tp
= tcp_sk(sk
);
562 if (tp
->rx_opt
.rcv_tsecr
&&
563 (TCP_SKB_CB(skb
)->end_seq
-
564 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
)) {
565 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
570 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
571 tcp_rcv_rtt_update(tp
, delta_us
, 0);
576 * This function should be called every time data is copied to user space.
577 * It calculates the appropriate TCP receive buffer space.
579 void tcp_rcv_space_adjust(struct sock
*sk
)
581 struct tcp_sock
*tp
= tcp_sk(sk
);
585 tcp_mstamp_refresh(tp
);
586 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
587 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
590 /* Number of bytes copied to user in last RTT */
591 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
592 if (copied
<= tp
->rcvq_space
.space
)
596 * copied = bytes received in previous RTT, our base window
597 * To cope with packet losses, we need a 2x factor
598 * To cope with slow start, and sender growing its cwin by 100 %
599 * every RTT, we need a 4x factor, because the ACK we are sending
600 * now is for the next RTT, not the current one :
601 * <prev RTT . ><current RTT .. ><next RTT .... >
604 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
&&
605 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
612 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
614 /* Accommodate for sender rate increase (eg. slow start) */
615 grow
= rcvwin
* (copied
- tp
->rcvq_space
.space
);
616 do_div(grow
, tp
->rcvq_space
.space
);
617 rcvwin
+= (grow
<< 1);
619 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
620 while (tcp_win_from_space(sk
, rcvmem
) < tp
->advmss
)
623 do_div(rcvwin
, tp
->advmss
);
624 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
,
625 sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
626 if (rcvbuf
> sk
->sk_rcvbuf
) {
627 sk
->sk_rcvbuf
= rcvbuf
;
629 /* Make the window clamp follow along. */
630 tp
->window_clamp
= tcp_win_from_space(sk
, rcvbuf
);
633 tp
->rcvq_space
.space
= copied
;
636 tp
->rcvq_space
.seq
= tp
->copied_seq
;
637 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
640 /* There is something which you must keep in mind when you analyze the
641 * behavior of the tp->ato delayed ack timeout interval. When a
642 * connection starts up, we want to ack as quickly as possible. The
643 * problem is that "good" TCP's do slow start at the beginning of data
644 * transmission. The means that until we send the first few ACK's the
645 * sender will sit on his end and only queue most of his data, because
646 * he can only send snd_cwnd unacked packets at any given time. For
647 * each ACK we send, he increments snd_cwnd and transmits more of his
650 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
652 struct tcp_sock
*tp
= tcp_sk(sk
);
653 struct inet_connection_sock
*icsk
= inet_csk(sk
);
656 inet_csk_schedule_ack(sk
);
658 tcp_measure_rcv_mss(sk
, skb
);
660 tcp_rcv_rtt_measure(tp
);
664 if (!icsk
->icsk_ack
.ato
) {
665 /* The _first_ data packet received, initialize
666 * delayed ACK engine.
668 tcp_incr_quickack(sk
);
669 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
671 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
673 if (m
<= TCP_ATO_MIN
/ 2) {
674 /* The fastest case is the first. */
675 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
676 } else if (m
< icsk
->icsk_ack
.ato
) {
677 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
678 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
679 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
680 } else if (m
> icsk
->icsk_rto
) {
681 /* Too long gap. Apparently sender failed to
682 * restart window, so that we send ACKs quickly.
684 tcp_incr_quickack(sk
);
688 icsk
->icsk_ack
.lrcvtime
= now
;
690 tcp_ecn_check_ce(tp
, skb
);
693 tcp_grow_window(sk
, skb
);
696 /* Called to compute a smoothed rtt estimate. The data fed to this
697 * routine either comes from timestamps, or from segments that were
698 * known _not_ to have been retransmitted [see Karn/Partridge
699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
700 * piece by Van Jacobson.
701 * NOTE: the next three routines used to be one big routine.
702 * To save cycles in the RFC 1323 implementation it was better to break
703 * it up into three procedures. -- erics
705 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
707 struct tcp_sock
*tp
= tcp_sk(sk
);
708 long m
= mrtt_us
; /* RTT */
709 u32 srtt
= tp
->srtt_us
;
711 /* The following amusing code comes from Jacobson's
712 * article in SIGCOMM '88. Note that rtt and mdev
713 * are scaled versions of rtt and mean deviation.
714 * This is designed to be as fast as possible
715 * m stands for "measurement".
717 * On a 1990 paper the rto value is changed to:
718 * RTO = rtt + 4 * mdev
720 * Funny. This algorithm seems to be very broken.
721 * These formulae increase RTO, when it should be decreased, increase
722 * too slowly, when it should be increased quickly, decrease too quickly
723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
724 * does not matter how to _calculate_ it. Seems, it was trap
725 * that VJ failed to avoid. 8)
728 m
-= (srtt
>> 3); /* m is now error in rtt est */
729 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
731 m
= -m
; /* m is now abs(error) */
732 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
733 /* This is similar to one of Eifel findings.
734 * Eifel blocks mdev updates when rtt decreases.
735 * This solution is a bit different: we use finer gain
736 * for mdev in this case (alpha*beta).
737 * Like Eifel it also prevents growth of rto,
738 * but also it limits too fast rto decreases,
739 * happening in pure Eifel.
744 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
746 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
747 if (tp
->mdev_us
> tp
->mdev_max_us
) {
748 tp
->mdev_max_us
= tp
->mdev_us
;
749 if (tp
->mdev_max_us
> tp
->rttvar_us
)
750 tp
->rttvar_us
= tp
->mdev_max_us
;
752 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
753 if (tp
->mdev_max_us
< tp
->rttvar_us
)
754 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
755 tp
->rtt_seq
= tp
->snd_nxt
;
756 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
759 /* no previous measure. */
760 srtt
= m
<< 3; /* take the measured time to be rtt */
761 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
762 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
763 tp
->mdev_max_us
= tp
->rttvar_us
;
764 tp
->rtt_seq
= tp
->snd_nxt
;
766 tp
->srtt_us
= max(1U, srtt
);
769 static void tcp_update_pacing_rate(struct sock
*sk
)
771 const struct tcp_sock
*tp
= tcp_sk(sk
);
774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
775 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
777 /* current rate is (cwnd * mss) / srtt
778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 * In Congestion Avoidance phase, set it to 120 % the current rate.
781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 * end of slow start and should slow down.
785 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
786 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ss_ratio
;
788 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ca_ratio
;
790 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
792 if (likely(tp
->srtt_us
))
793 do_div(rate
, tp
->srtt_us
);
795 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
796 * without any lock. We want to make sure compiler wont store
797 * intermediate values in this location.
799 WRITE_ONCE(sk
->sk_pacing_rate
, min_t(u64
, rate
,
800 sk
->sk_max_pacing_rate
));
803 /* Calculate rto without backoff. This is the second half of Van Jacobson's
804 * routine referred to above.
806 static void tcp_set_rto(struct sock
*sk
)
808 const struct tcp_sock
*tp
= tcp_sk(sk
);
809 /* Old crap is replaced with new one. 8)
812 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 * It cannot be less due to utterly erratic ACK generation made
814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 * to do with delayed acks, because at cwnd>2 true delack timeout
816 * is invisible. Actually, Linux-2.4 also generates erratic
817 * ACKs in some circumstances.
819 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
821 /* 2. Fixups made earlier cannot be right.
822 * If we do not estimate RTO correctly without them,
823 * all the algo is pure shit and should be replaced
824 * with correct one. It is exactly, which we pretend to do.
827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 * guarantees that rto is higher.
833 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
835 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
838 cwnd
= TCP_INIT_CWND
;
839 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
842 /* Take a notice that peer is sending D-SACKs */
843 static void tcp_dsack_seen(struct tcp_sock
*tp
)
845 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
846 tp
->rack
.dsack_seen
= 1;
849 /* It's reordering when higher sequence was delivered (i.e. sacked) before
850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
851 * distance is approximated in full-mss packet distance ("reordering").
853 static void tcp_check_sack_reordering(struct sock
*sk
, const u32 low_seq
,
856 struct tcp_sock
*tp
= tcp_sk(sk
);
857 const u32 mss
= tp
->mss_cache
;
860 fack
= tcp_highest_sack_seq(tp
);
861 if (!before(low_seq
, fack
))
864 metric
= fack
- low_seq
;
865 if ((metric
> tp
->reordering
* mss
) && mss
) {
866 #if FASTRETRANS_DEBUG > 1
867 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
868 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
872 tp
->undo_marker
? tp
->undo_retrans
: 0);
874 tp
->reordering
= min_t(u32
, (metric
+ mss
- 1) / mss
,
875 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
879 /* This exciting event is worth to be remembered. 8) */
880 NET_INC_STATS(sock_net(sk
),
881 ts
? LINUX_MIB_TCPTSREORDER
: LINUX_MIB_TCPSACKREORDER
);
884 /* This must be called before lost_out is incremented */
885 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
887 if (!tp
->retransmit_skb_hint
||
888 before(TCP_SKB_CB(skb
)->seq
,
889 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
890 tp
->retransmit_skb_hint
= skb
;
893 /* Sum the number of packets on the wire we have marked as lost.
894 * There are two cases we care about here:
895 * a) Packet hasn't been marked lost (nor retransmitted),
896 * and this is the first loss.
897 * b) Packet has been marked both lost and retransmitted,
898 * and this means we think it was lost again.
900 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
902 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
904 if (!(sacked
& TCPCB_LOST
) ||
905 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
906 tp
->lost
+= tcp_skb_pcount(skb
);
909 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
911 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
912 tcp_verify_retransmit_hint(tp
, skb
);
914 tp
->lost_out
+= tcp_skb_pcount(skb
);
915 tcp_sum_lost(tp
, skb
);
916 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
922 tcp_verify_retransmit_hint(tp
, skb
);
924 tcp_sum_lost(tp
, skb
);
925 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
926 tp
->lost_out
+= tcp_skb_pcount(skb
);
927 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
931 /* This procedure tags the retransmission queue when SACKs arrive.
933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
934 * Packets in queue with these bits set are counted in variables
935 * sacked_out, retrans_out and lost_out, correspondingly.
937 * Valid combinations are:
938 * Tag InFlight Description
939 * 0 1 - orig segment is in flight.
940 * S 0 - nothing flies, orig reached receiver.
941 * L 0 - nothing flies, orig lost by net.
942 * R 2 - both orig and retransmit are in flight.
943 * L|R 1 - orig is lost, retransmit is in flight.
944 * S|R 1 - orig reached receiver, retrans is still in flight.
945 * (L|S|R is logically valid, it could occur when L|R is sacked,
946 * but it is equivalent to plain S and code short-curcuits it to S.
947 * L|S is logically invalid, it would mean -1 packet in flight 8))
949 * These 6 states form finite state machine, controlled by the following events:
950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
952 * 3. Loss detection event of two flavors:
953 * A. Scoreboard estimator decided the packet is lost.
954 * A'. Reno "three dupacks" marks head of queue lost.
955 * B. SACK arrives sacking SND.NXT at the moment, when the
956 * segment was retransmitted.
957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
959 * It is pleasant to note, that state diagram turns out to be commutative,
960 * so that we are allowed not to be bothered by order of our actions,
961 * when multiple events arrive simultaneously. (see the function below).
963 * Reordering detection.
964 * --------------------
965 * Reordering metric is maximal distance, which a packet can be displaced
966 * in packet stream. With SACKs we can estimate it:
968 * 1. SACK fills old hole and the corresponding segment was not
969 * ever retransmitted -> reordering. Alas, we cannot use it
970 * when segment was retransmitted.
971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
972 * for retransmitted and already SACKed segment -> reordering..
973 * Both of these heuristics are not used in Loss state, when we cannot
974 * account for retransmits accurately.
976 * SACK block validation.
977 * ----------------------
979 * SACK block range validation checks that the received SACK block fits to
980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981 * Note that SND.UNA is not included to the range though being valid because
982 * it means that the receiver is rather inconsistent with itself reporting
983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
984 * perfectly valid, however, in light of RFC2018 which explicitly states
985 * that "SACK block MUST reflect the newest segment. Even if the newest
986 * segment is going to be discarded ...", not that it looks very clever
987 * in case of head skb. Due to potentional receiver driven attacks, we
988 * choose to avoid immediate execution of a walk in write queue due to
989 * reneging and defer head skb's loss recovery to standard loss recovery
990 * procedure that will eventually trigger (nothing forbids us doing this).
992 * Implements also blockage to start_seq wrap-around. Problem lies in the
993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994 * there's no guarantee that it will be before snd_nxt (n). The problem
995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
998 * <- outs wnd -> <- wrapzone ->
999 * u e n u_w e_w s n_w
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->| |<--------...
1003 * ...---- >2^31 ------>| |<--------...
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013 * again, D-SACK block must not to go across snd_una (for the same reason as
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1024 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1025 u32 start_seq
, u32 end_seq
)
1027 /* Too far in future, or reversed (interpretation is ambiguous) */
1028 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1031 /* Nasty start_seq wrap-around check (see comments above) */
1032 if (!before(start_seq
, tp
->snd_nxt
))
1035 /* In outstanding window? ...This is valid exit for D-SACKs too.
1036 * start_seq == snd_una is non-sensical (see comments above)
1038 if (after(start_seq
, tp
->snd_una
))
1041 if (!is_dsack
|| !tp
->undo_marker
)
1044 /* ...Then it's D-SACK, and must reside below snd_una completely */
1045 if (after(end_seq
, tp
->snd_una
))
1048 if (!before(start_seq
, tp
->undo_marker
))
1052 if (!after(end_seq
, tp
->undo_marker
))
1055 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 * start_seq < undo_marker and end_seq >= undo_marker.
1058 return !before(start_seq
, end_seq
- tp
->max_window
);
1061 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1062 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1065 struct tcp_sock
*tp
= tcp_sk(sk
);
1066 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1067 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1068 bool dup_sack
= false;
1070 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1073 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1074 } else if (num_sacks
> 1) {
1075 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1076 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1078 if (!after(end_seq_0
, end_seq_1
) &&
1079 !before(start_seq_0
, start_seq_1
)) {
1082 NET_INC_STATS(sock_net(sk
),
1083 LINUX_MIB_TCPDSACKOFORECV
);
1087 /* D-SACK for already forgotten data... Do dumb counting. */
1088 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1089 !after(end_seq_0
, prior_snd_una
) &&
1090 after(end_seq_0
, tp
->undo_marker
))
1096 struct tcp_sacktag_state
{
1098 /* Timestamps for earliest and latest never-retransmitted segment
1099 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100 * but congestion control should still get an accurate delay signal.
1104 struct rate_sample
*rate
;
1106 unsigned int mss_now
;
1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110 * the incoming SACK may not exactly match but we can find smaller MSS
1111 * aligned portion of it that matches. Therefore we might need to fragment
1112 * which may fail and creates some hassle (caller must handle error case
1115 * FIXME: this could be merged to shift decision code
1117 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1118 u32 start_seq
, u32 end_seq
)
1122 unsigned int pkt_len
;
1125 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1126 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1128 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1129 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1130 mss
= tcp_skb_mss(skb
);
1131 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1134 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1138 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1143 /* Round if necessary so that SACKs cover only full MSSes
1144 * and/or the remaining small portion (if present)
1146 if (pkt_len
> mss
) {
1147 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1148 if (!in_sack
&& new_len
< pkt_len
)
1153 if (pkt_len
>= skb
->len
&& !in_sack
)
1156 err
= tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
1157 pkt_len
, mss
, GFP_ATOMIC
);
1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166 static u8
tcp_sacktag_one(struct sock
*sk
,
1167 struct tcp_sacktag_state
*state
, u8 sacked
,
1168 u32 start_seq
, u32 end_seq
,
1169 int dup_sack
, int pcount
,
1172 struct tcp_sock
*tp
= tcp_sk(sk
);
1174 /* Account D-SACK for retransmitted packet. */
1175 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1176 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1177 after(end_seq
, tp
->undo_marker
))
1179 if ((sacked
& TCPCB_SACKED_ACKED
) &&
1180 before(start_seq
, state
->reord
))
1181 state
->reord
= start_seq
;
1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1185 if (!after(end_seq
, tp
->snd_una
))
1188 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1189 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1191 if (sacked
& TCPCB_SACKED_RETRANS
) {
1192 /* If the segment is not tagged as lost,
1193 * we do not clear RETRANS, believing
1194 * that retransmission is still in flight.
1196 if (sacked
& TCPCB_LOST
) {
1197 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1198 tp
->lost_out
-= pcount
;
1199 tp
->retrans_out
-= pcount
;
1202 if (!(sacked
& TCPCB_RETRANS
)) {
1203 /* New sack for not retransmitted frame,
1204 * which was in hole. It is reordering.
1206 if (before(start_seq
,
1207 tcp_highest_sack_seq(tp
)) &&
1208 before(start_seq
, state
->reord
))
1209 state
->reord
= start_seq
;
1211 if (!after(end_seq
, tp
->high_seq
))
1212 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1213 if (state
->first_sackt
== 0)
1214 state
->first_sackt
= xmit_time
;
1215 state
->last_sackt
= xmit_time
;
1218 if (sacked
& TCPCB_LOST
) {
1219 sacked
&= ~TCPCB_LOST
;
1220 tp
->lost_out
-= pcount
;
1224 sacked
|= TCPCB_SACKED_ACKED
;
1225 state
->flag
|= FLAG_DATA_SACKED
;
1226 tp
->sacked_out
+= pcount
;
1227 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1230 if (tp
->lost_skb_hint
&&
1231 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1232 tp
->lost_cnt_hint
+= pcount
;
1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1236 * frames and clear it. undo_retrans is decreased above, L|R frames
1237 * are accounted above as well.
1239 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1240 sacked
&= ~TCPCB_SACKED_RETRANS
;
1241 tp
->retrans_out
-= pcount
;
1247 /* Shift newly-SACKed bytes from this skb to the immediately previous
1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1250 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*prev
,
1251 struct sk_buff
*skb
,
1252 struct tcp_sacktag_state
*state
,
1253 unsigned int pcount
, int shifted
, int mss
,
1256 struct tcp_sock
*tp
= tcp_sk(sk
);
1257 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1258 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1262 /* Adjust counters and hints for the newly sacked sequence
1263 * range but discard the return value since prev is already
1264 * marked. We must tag the range first because the seq
1265 * advancement below implicitly advances
1266 * tcp_highest_sack_seq() when skb is highest_sack.
1268 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1269 start_seq
, end_seq
, dup_sack
, pcount
,
1271 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1273 if (skb
== tp
->lost_skb_hint
)
1274 tp
->lost_cnt_hint
+= pcount
;
1276 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1277 TCP_SKB_CB(skb
)->seq
+= shifted
;
1279 tcp_skb_pcount_add(prev
, pcount
);
1280 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1281 tcp_skb_pcount_add(skb
, -pcount
);
1283 /* When we're adding to gso_segs == 1, gso_size will be zero,
1284 * in theory this shouldn't be necessary but as long as DSACK
1285 * code can come after this skb later on it's better to keep
1286 * setting gso_size to something.
1288 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1289 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292 if (tcp_skb_pcount(skb
) <= 1)
1293 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1299 BUG_ON(!tcp_skb_pcount(skb
));
1300 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1304 /* Whole SKB was eaten :-) */
1306 if (skb
== tp
->retransmit_skb_hint
)
1307 tp
->retransmit_skb_hint
= prev
;
1308 if (skb
== tp
->lost_skb_hint
) {
1309 tp
->lost_skb_hint
= prev
;
1310 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1313 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1314 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1315 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1316 TCP_SKB_CB(prev
)->end_seq
++;
1318 if (skb
== tcp_highest_sack(sk
))
1319 tcp_advance_highest_sack(sk
, skb
);
1321 tcp_skb_collapse_tstamp(prev
, skb
);
1322 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1323 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1325 tcp_rtx_queue_unlink_and_free(skb
, sk
);
1327 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1332 /* I wish gso_size would have a bit more sane initialization than
1333 * something-or-zero which complicates things
1335 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1337 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1340 /* Shifting pages past head area doesn't work */
1341 static int skb_can_shift(const struct sk_buff
*skb
)
1343 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1349 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1350 struct tcp_sacktag_state
*state
,
1351 u32 start_seq
, u32 end_seq
,
1354 struct tcp_sock
*tp
= tcp_sk(sk
);
1355 struct sk_buff
*prev
;
1361 if (!sk_can_gso(sk
))
1364 /* Normally R but no L won't result in plain S */
1366 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1368 if (!skb_can_shift(skb
))
1370 /* This frame is about to be dropped (was ACKed). */
1371 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1374 /* Can only happen with delayed DSACK + discard craziness */
1375 prev
= skb_rb_prev(skb
);
1379 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1382 if (!tcp_skb_can_collapse_to(prev
))
1385 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1386 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1390 pcount
= tcp_skb_pcount(skb
);
1391 mss
= tcp_skb_seglen(skb
);
1393 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1394 * drop this restriction as unnecessary
1396 if (mss
!= tcp_skb_seglen(prev
))
1399 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1401 /* CHECKME: This is non-MSS split case only?, this will
1402 * cause skipped skbs due to advancing loop btw, original
1403 * has that feature too
1405 if (tcp_skb_pcount(skb
) <= 1)
1408 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1410 /* TODO: head merge to next could be attempted here
1411 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1412 * though it might not be worth of the additional hassle
1414 * ...we can probably just fallback to what was done
1415 * previously. We could try merging non-SACKed ones
1416 * as well but it probably isn't going to buy off
1417 * because later SACKs might again split them, and
1418 * it would make skb timestamp tracking considerably
1424 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1426 BUG_ON(len
> skb
->len
);
1428 /* MSS boundaries should be honoured or else pcount will
1429 * severely break even though it makes things bit trickier.
1430 * Optimize common case to avoid most of the divides
1432 mss
= tcp_skb_mss(skb
);
1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1435 * drop this restriction as unnecessary
1437 if (mss
!= tcp_skb_seglen(prev
))
1442 } else if (len
< mss
) {
1450 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1451 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1454 if (!skb_shift(prev
, skb
, len
))
1456 if (!tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1459 /* Hole filled allows collapsing with the next as well, this is very
1460 * useful when hole on every nth skb pattern happens
1462 skb
= skb_rb_next(prev
);
1466 if (!skb_can_shift(skb
) ||
1467 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1468 (mss
!= tcp_skb_seglen(skb
)))
1472 if (skb_shift(prev
, skb
, len
)) {
1473 pcount
+= tcp_skb_pcount(skb
);
1474 tcp_shifted_skb(sk
, prev
, skb
, state
, tcp_skb_pcount(skb
),
1485 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1489 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1490 struct tcp_sack_block
*next_dup
,
1491 struct tcp_sacktag_state
*state
,
1492 u32 start_seq
, u32 end_seq
,
1495 struct tcp_sock
*tp
= tcp_sk(sk
);
1496 struct sk_buff
*tmp
;
1498 skb_rbtree_walk_from(skb
) {
1500 bool dup_sack
= dup_sack_in
;
1502 /* queue is in-order => we can short-circuit the walk early */
1503 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1507 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1508 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1509 next_dup
->start_seq
,
1515 /* skb reference here is a bit tricky to get right, since
1516 * shifting can eat and free both this skb and the next,
1517 * so not even _safe variant of the loop is enough.
1520 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1521 start_seq
, end_seq
, dup_sack
);
1530 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1536 if (unlikely(in_sack
< 0))
1540 TCP_SKB_CB(skb
)->sacked
=
1543 TCP_SKB_CB(skb
)->sacked
,
1544 TCP_SKB_CB(skb
)->seq
,
1545 TCP_SKB_CB(skb
)->end_seq
,
1547 tcp_skb_pcount(skb
),
1549 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1550 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1551 list_del_init(&skb
->tcp_tsorted_anchor
);
1553 if (!before(TCP_SKB_CB(skb
)->seq
,
1554 tcp_highest_sack_seq(tp
)))
1555 tcp_advance_highest_sack(sk
, skb
);
1561 static struct sk_buff
*tcp_sacktag_bsearch(struct sock
*sk
,
1562 struct tcp_sacktag_state
*state
,
1565 struct rb_node
*parent
, **p
= &sk
->tcp_rtx_queue
.rb_node
;
1566 struct sk_buff
*skb
;
1570 skb
= rb_to_skb(parent
);
1571 if (before(seq
, TCP_SKB_CB(skb
)->seq
)) {
1572 p
= &parent
->rb_left
;
1575 if (!before(seq
, TCP_SKB_CB(skb
)->end_seq
)) {
1576 p
= &parent
->rb_right
;
1584 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1585 struct tcp_sacktag_state
*state
,
1588 if (skb
&& after(TCP_SKB_CB(skb
)->seq
, skip_to_seq
))
1591 return tcp_sacktag_bsearch(sk
, state
, skip_to_seq
);
1594 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1596 struct tcp_sack_block
*next_dup
,
1597 struct tcp_sacktag_state
*state
,
1603 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1604 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1605 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1606 next_dup
->start_seq
, next_dup
->end_seq
,
1613 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1615 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1619 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1620 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1622 struct tcp_sock
*tp
= tcp_sk(sk
);
1623 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1624 TCP_SKB_CB(ack_skb
)->sacked
);
1625 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1626 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1627 struct tcp_sack_block
*cache
;
1628 struct sk_buff
*skb
;
1629 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1631 bool found_dup_sack
= false;
1633 int first_sack_index
;
1636 state
->reord
= tp
->snd_nxt
;
1638 if (!tp
->sacked_out
)
1639 tcp_highest_sack_reset(sk
);
1641 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1642 num_sacks
, prior_snd_una
);
1643 if (found_dup_sack
) {
1644 state
->flag
|= FLAG_DSACKING_ACK
;
1645 tp
->delivered
++; /* A spurious retransmission is delivered */
1648 /* Eliminate too old ACKs, but take into
1649 * account more or less fresh ones, they can
1650 * contain valid SACK info.
1652 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1655 if (!tp
->packets_out
)
1659 first_sack_index
= 0;
1660 for (i
= 0; i
< num_sacks
; i
++) {
1661 bool dup_sack
= !i
&& found_dup_sack
;
1663 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1664 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1666 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1667 sp
[used_sacks
].start_seq
,
1668 sp
[used_sacks
].end_seq
)) {
1672 if (!tp
->undo_marker
)
1673 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1675 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1677 /* Don't count olds caused by ACK reordering */
1678 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1679 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1681 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1684 NET_INC_STATS(sock_net(sk
), mib_idx
);
1686 first_sack_index
= -1;
1690 /* Ignore very old stuff early */
1691 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1697 /* order SACK blocks to allow in order walk of the retrans queue */
1698 for (i
= used_sacks
- 1; i
> 0; i
--) {
1699 for (j
= 0; j
< i
; j
++) {
1700 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1701 swap(sp
[j
], sp
[j
+ 1]);
1703 /* Track where the first SACK block goes to */
1704 if (j
== first_sack_index
)
1705 first_sack_index
= j
+ 1;
1710 state
->mss_now
= tcp_current_mss(sk
);
1714 if (!tp
->sacked_out
) {
1715 /* It's already past, so skip checking against it */
1716 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1718 cache
= tp
->recv_sack_cache
;
1719 /* Skip empty blocks in at head of the cache */
1720 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1725 while (i
< used_sacks
) {
1726 u32 start_seq
= sp
[i
].start_seq
;
1727 u32 end_seq
= sp
[i
].end_seq
;
1728 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1729 struct tcp_sack_block
*next_dup
= NULL
;
1731 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1732 next_dup
= &sp
[i
+ 1];
1734 /* Skip too early cached blocks */
1735 while (tcp_sack_cache_ok(tp
, cache
) &&
1736 !before(start_seq
, cache
->end_seq
))
1739 /* Can skip some work by looking recv_sack_cache? */
1740 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1741 after(end_seq
, cache
->start_seq
)) {
1744 if (before(start_seq
, cache
->start_seq
)) {
1745 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1747 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1754 /* Rest of the block already fully processed? */
1755 if (!after(end_seq
, cache
->end_seq
))
1758 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1762 /* ...tail remains todo... */
1763 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1764 /* ...but better entrypoint exists! */
1765 skb
= tcp_highest_sack(sk
);
1772 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1773 /* Check overlap against next cached too (past this one already) */
1778 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1779 skb
= tcp_highest_sack(sk
);
1783 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1786 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1787 start_seq
, end_seq
, dup_sack
);
1793 /* Clear the head of the cache sack blocks so we can skip it next time */
1794 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1795 tp
->recv_sack_cache
[i
].start_seq
= 0;
1796 tp
->recv_sack_cache
[i
].end_seq
= 0;
1798 for (j
= 0; j
< used_sacks
; j
++)
1799 tp
->recv_sack_cache
[i
++] = sp
[j
];
1801 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
|| tp
->undo_marker
)
1802 tcp_check_sack_reordering(sk
, state
->reord
, 0);
1804 tcp_verify_left_out(tp
);
1807 #if FASTRETRANS_DEBUG > 0
1808 WARN_ON((int)tp
->sacked_out
< 0);
1809 WARN_ON((int)tp
->lost_out
< 0);
1810 WARN_ON((int)tp
->retrans_out
< 0);
1811 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1816 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1817 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1819 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1823 holes
= max(tp
->lost_out
, 1U);
1824 holes
= min(holes
, tp
->packets_out
);
1826 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1827 tp
->sacked_out
= tp
->packets_out
- holes
;
1833 /* If we receive more dupacks than we expected counting segments
1834 * in assumption of absent reordering, interpret this as reordering.
1835 * The only another reason could be bug in receiver TCP.
1837 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1839 struct tcp_sock
*tp
= tcp_sk(sk
);
1841 if (!tcp_limit_reno_sacked(tp
))
1844 tp
->reordering
= min_t(u32
, tp
->packets_out
+ addend
,
1845 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
1846 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRENOREORDER
);
1849 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1851 static void tcp_add_reno_sack(struct sock
*sk
)
1853 struct tcp_sock
*tp
= tcp_sk(sk
);
1854 u32 prior_sacked
= tp
->sacked_out
;
1857 tcp_check_reno_reordering(sk
, 0);
1858 if (tp
->sacked_out
> prior_sacked
)
1859 tp
->delivered
++; /* Some out-of-order packet is delivered */
1860 tcp_verify_left_out(tp
);
1863 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1865 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1867 struct tcp_sock
*tp
= tcp_sk(sk
);
1870 /* One ACK acked hole. The rest eat duplicate ACKs. */
1871 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1872 if (acked
- 1 >= tp
->sacked_out
)
1875 tp
->sacked_out
-= acked
- 1;
1877 tcp_check_reno_reordering(sk
, acked
);
1878 tcp_verify_left_out(tp
);
1881 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1886 void tcp_clear_retrans(struct tcp_sock
*tp
)
1888 tp
->retrans_out
= 0;
1890 tp
->undo_marker
= 0;
1891 tp
->undo_retrans
= -1;
1895 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1897 tp
->undo_marker
= tp
->snd_una
;
1898 /* Retransmission still in flight may cause DSACKs later. */
1899 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1902 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1903 * and reset tags completely, otherwise preserve SACKs. If receiver
1904 * dropped its ofo queue, we will know this due to reneging detection.
1906 void tcp_enter_loss(struct sock
*sk
)
1908 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1909 struct tcp_sock
*tp
= tcp_sk(sk
);
1910 struct net
*net
= sock_net(sk
);
1911 struct sk_buff
*skb
;
1912 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1913 bool is_reneg
; /* is receiver reneging on SACKs? */
1916 /* Reduce ssthresh if it has not yet been made inside this window. */
1917 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1918 !after(tp
->high_seq
, tp
->snd_una
) ||
1919 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1920 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1921 tp
->prior_cwnd
= tp
->snd_cwnd
;
1922 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1923 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1927 tp
->snd_cwnd_cnt
= 0;
1928 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1930 tp
->retrans_out
= 0;
1933 if (tcp_is_reno(tp
))
1934 tcp_reset_reno_sack(tp
);
1936 skb
= tcp_rtx_queue_head(sk
);
1937 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1939 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1941 /* Mark SACK reneging until we recover from this loss event. */
1942 tp
->is_sack_reneg
= 1;
1944 tcp_clear_all_retrans_hints(tp
);
1946 skb_rbtree_walk_from(skb
) {
1947 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1950 tcp_sum_lost(tp
, skb
);
1951 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1953 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1954 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1955 tp
->lost_out
+= tcp_skb_pcount(skb
);
1958 tcp_verify_left_out(tp
);
1960 /* Timeout in disordered state after receiving substantial DUPACKs
1961 * suggests that the degree of reordering is over-estimated.
1963 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1964 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1965 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1966 net
->ipv4
.sysctl_tcp_reordering
);
1967 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1968 tp
->high_seq
= tp
->snd_nxt
;
1969 tcp_ecn_queue_cwr(tp
);
1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 * loss recovery is underway except recurring timeout(s) on
1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1975 * In theory F-RTO can be used repeatedly during loss recovery.
1976 * In practice this interacts badly with broken middle-boxes that
1977 * falsely raise the receive window, which results in repeated
1978 * timeouts and stop-and-go behavior.
1980 tp
->frto
= net
->ipv4
.sysctl_tcp_frto
&&
1981 (new_recovery
|| icsk
->icsk_retransmits
) &&
1982 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1985 /* If ACK arrived pointing to a remembered SACK, it means that our
1986 * remembered SACKs do not reflect real state of receiver i.e.
1987 * receiver _host_ is heavily congested (or buggy).
1989 * To avoid big spurious retransmission bursts due to transient SACK
1990 * scoreboard oddities that look like reneging, we give the receiver a
1991 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1992 * restore sanity to the SACK scoreboard. If the apparent reneging
1993 * persists until this RTO then we'll clear the SACK scoreboard.
1995 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1997 if (flag
& FLAG_SACK_RENEGING
) {
1998 struct tcp_sock
*tp
= tcp_sk(sk
);
1999 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2000 msecs_to_jiffies(10));
2002 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2003 delay
, TCP_RTO_MAX
);
2009 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2010 * counter when SACK is enabled (without SACK, sacked_out is used for
2013 * With reordering, holes may still be in flight, so RFC3517 recovery
2014 * uses pure sacked_out (total number of SACKed segments) even though
2015 * it violates the RFC that uses duplicate ACKs, often these are equal
2016 * but when e.g. out-of-window ACKs or packet duplication occurs,
2017 * they differ. Since neither occurs due to loss, TCP should really
2020 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2022 return tp
->sacked_out
+ 1;
2025 /* Linux NewReno/SACK/ECN state machine.
2026 * --------------------------------------
2028 * "Open" Normal state, no dubious events, fast path.
2029 * "Disorder" In all the respects it is "Open",
2030 * but requires a bit more attention. It is entered when
2031 * we see some SACKs or dupacks. It is split of "Open"
2032 * mainly to move some processing from fast path to slow one.
2033 * "CWR" CWND was reduced due to some Congestion Notification event.
2034 * It can be ECN, ICMP source quench, local device congestion.
2035 * "Recovery" CWND was reduced, we are fast-retransmitting.
2036 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2038 * tcp_fastretrans_alert() is entered:
2039 * - each incoming ACK, if state is not "Open"
2040 * - when arrived ACK is unusual, namely:
2045 * Counting packets in flight is pretty simple.
2047 * in_flight = packets_out - left_out + retrans_out
2049 * packets_out is SND.NXT-SND.UNA counted in packets.
2051 * retrans_out is number of retransmitted segments.
2053 * left_out is number of segments left network, but not ACKed yet.
2055 * left_out = sacked_out + lost_out
2057 * sacked_out: Packets, which arrived to receiver out of order
2058 * and hence not ACKed. With SACKs this number is simply
2059 * amount of SACKed data. Even without SACKs
2060 * it is easy to give pretty reliable estimate of this number,
2061 * counting duplicate ACKs.
2063 * lost_out: Packets lost by network. TCP has no explicit
2064 * "loss notification" feedback from network (for now).
2065 * It means that this number can be only _guessed_.
2066 * Actually, it is the heuristics to predict lossage that
2067 * distinguishes different algorithms.
2069 * F.e. after RTO, when all the queue is considered as lost,
2070 * lost_out = packets_out and in_flight = retrans_out.
2072 * Essentially, we have now a few algorithms detecting
2075 * If the receiver supports SACK:
2077 * RFC6675/3517: It is the conventional algorithm. A packet is
2078 * considered lost if the number of higher sequence packets
2079 * SACKed is greater than or equal the DUPACK thoreshold
2080 * (reordering). This is implemented in tcp_mark_head_lost and
2081 * tcp_update_scoreboard.
2083 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2084 * (2017-) that checks timing instead of counting DUPACKs.
2085 * Essentially a packet is considered lost if it's not S/ACKed
2086 * after RTT + reordering_window, where both metrics are
2087 * dynamically measured and adjusted. This is implemented in
2088 * tcp_rack_mark_lost.
2090 * If the receiver does not support SACK:
2092 * NewReno (RFC6582): in Recovery we assume that one segment
2093 * is lost (classic Reno). While we are in Recovery and
2094 * a partial ACK arrives, we assume that one more packet
2095 * is lost (NewReno). This heuristics are the same in NewReno
2098 * Really tricky (and requiring careful tuning) part of algorithm
2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100 * The first determines the moment _when_ we should reduce CWND and,
2101 * hence, slow down forward transmission. In fact, it determines the moment
2102 * when we decide that hole is caused by loss, rather than by a reorder.
2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105 * holes, caused by lost packets.
2107 * And the most logically complicated part of algorithm is undo
2108 * heuristics. We detect false retransmits due to both too early
2109 * fast retransmit (reordering) and underestimated RTO, analyzing
2110 * timestamps and D-SACKs. When we detect that some segments were
2111 * retransmitted by mistake and CWND reduction was wrong, we undo
2112 * window reduction and abort recovery phase. This logic is hidden
2113 * inside several functions named tcp_try_undo_<something>.
2116 /* This function decides, when we should leave Disordered state
2117 * and enter Recovery phase, reducing congestion window.
2119 * Main question: may we further continue forward transmission
2120 * with the same cwnd?
2122 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2124 struct tcp_sock
*tp
= tcp_sk(sk
);
2126 /* Trick#1: The loss is proven. */
2130 /* Not-A-Trick#2 : Classic rule... */
2131 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2137 /* Detect loss in event "A" above by marking head of queue up as lost.
2138 * For non-SACK(Reno) senders, the first "packets" number of segments
2139 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2140 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2141 * the maximum SACKed segments to pass before reaching this limit.
2143 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2145 struct tcp_sock
*tp
= tcp_sk(sk
);
2146 struct sk_buff
*skb
;
2147 int cnt
, oldcnt
, lost
;
2149 /* Use SACK to deduce losses of new sequences sent during recovery */
2150 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2152 WARN_ON(packets
> tp
->packets_out
);
2153 skb
= tp
->lost_skb_hint
;
2155 /* Head already handled? */
2156 if (mark_head
&& after(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
))
2158 cnt
= tp
->lost_cnt_hint
;
2160 skb
= tcp_rtx_queue_head(sk
);
2164 skb_rbtree_walk_from(skb
) {
2165 /* TODO: do this better */
2166 /* this is not the most efficient way to do this... */
2167 tp
->lost_skb_hint
= skb
;
2168 tp
->lost_cnt_hint
= cnt
;
2170 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2174 if (tcp_is_reno(tp
) ||
2175 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2176 cnt
+= tcp_skb_pcount(skb
);
2178 if (cnt
> packets
) {
2179 if (tcp_is_sack(tp
) ||
2180 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2181 (oldcnt
>= packets
))
2184 mss
= tcp_skb_mss(skb
);
2185 /* If needed, chop off the prefix to mark as lost. */
2186 lost
= (packets
- oldcnt
) * mss
;
2187 if (lost
< skb
->len
&&
2188 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2189 lost
, mss
, GFP_ATOMIC
) < 0)
2194 tcp_skb_mark_lost(tp
, skb
);
2199 tcp_verify_left_out(tp
);
2202 /* Account newly detected lost packet(s) */
2204 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2206 struct tcp_sock
*tp
= tcp_sk(sk
);
2208 if (tcp_is_reno(tp
)) {
2209 tcp_mark_head_lost(sk
, 1, 1);
2211 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2212 if (sacked_upto
>= 0)
2213 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2214 else if (fast_rexmit
)
2215 tcp_mark_head_lost(sk
, 1, 1);
2219 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2221 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2222 before(tp
->rx_opt
.rcv_tsecr
, when
);
2225 /* skb is spurious retransmitted if the returned timestamp echo
2226 * reply is prior to the skb transmission time
2228 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2229 const struct sk_buff
*skb
)
2231 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2232 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2235 /* Nothing was retransmitted or returned timestamp is less
2236 * than timestamp of the first retransmission.
2238 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2240 return !tp
->retrans_stamp
||
2241 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2244 /* Undo procedures. */
2246 /* We can clear retrans_stamp when there are no retransmissions in the
2247 * window. It would seem that it is trivially available for us in
2248 * tp->retrans_out, however, that kind of assumptions doesn't consider
2249 * what will happen if errors occur when sending retransmission for the
2250 * second time. ...It could the that such segment has only
2251 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2252 * the head skb is enough except for some reneging corner cases that
2253 * are not worth the effort.
2255 * Main reason for all this complexity is the fact that connection dying
2256 * time now depends on the validity of the retrans_stamp, in particular,
2257 * that successive retransmissions of a segment must not advance
2258 * retrans_stamp under any conditions.
2260 static bool tcp_any_retrans_done(const struct sock
*sk
)
2262 const struct tcp_sock
*tp
= tcp_sk(sk
);
2263 struct sk_buff
*skb
;
2265 if (tp
->retrans_out
)
2268 skb
= tcp_rtx_queue_head(sk
);
2269 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2275 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2277 #if FASTRETRANS_DEBUG > 1
2278 struct tcp_sock
*tp
= tcp_sk(sk
);
2279 struct inet_sock
*inet
= inet_sk(sk
);
2281 if (sk
->sk_family
== AF_INET
) {
2282 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2284 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2285 tp
->snd_cwnd
, tcp_left_out(tp
),
2286 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2289 #if IS_ENABLED(CONFIG_IPV6)
2290 else if (sk
->sk_family
== AF_INET6
) {
2291 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2293 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2294 tp
->snd_cwnd
, tcp_left_out(tp
),
2295 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2302 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2304 struct tcp_sock
*tp
= tcp_sk(sk
);
2307 struct sk_buff
*skb
;
2309 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2310 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2313 tcp_clear_all_retrans_hints(tp
);
2316 if (tp
->prior_ssthresh
) {
2317 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2319 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2321 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2322 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2323 tcp_ecn_withdraw_cwr(tp
);
2326 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2327 tp
->undo_marker
= 0;
2328 tp
->rack
.advanced
= 1; /* Force RACK to re-exam losses */
2331 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2333 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2336 /* People celebrate: "We love our President!" */
2337 static bool tcp_try_undo_recovery(struct sock
*sk
)
2339 struct tcp_sock
*tp
= tcp_sk(sk
);
2341 if (tcp_may_undo(tp
)) {
2344 /* Happy end! We did not retransmit anything
2345 * or our original transmission succeeded.
2347 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2348 tcp_undo_cwnd_reduction(sk
, false);
2349 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2350 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2352 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2354 NET_INC_STATS(sock_net(sk
), mib_idx
);
2355 } else if (tp
->rack
.reo_wnd_persist
) {
2356 tp
->rack
.reo_wnd_persist
--;
2358 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2359 /* Hold old state until something *above* high_seq
2360 * is ACKed. For Reno it is MUST to prevent false
2361 * fast retransmits (RFC2582). SACK TCP is safe. */
2362 if (!tcp_any_retrans_done(sk
))
2363 tp
->retrans_stamp
= 0;
2366 tcp_set_ca_state(sk
, TCP_CA_Open
);
2367 tp
->is_sack_reneg
= 0;
2371 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2372 static bool tcp_try_undo_dsack(struct sock
*sk
)
2374 struct tcp_sock
*tp
= tcp_sk(sk
);
2376 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2377 tp
->rack
.reo_wnd_persist
= min(TCP_RACK_RECOVERY_THRESH
,
2378 tp
->rack
.reo_wnd_persist
+ 1);
2379 DBGUNDO(sk
, "D-SACK");
2380 tcp_undo_cwnd_reduction(sk
, false);
2381 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2387 /* Undo during loss recovery after partial ACK or using F-RTO. */
2388 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2390 struct tcp_sock
*tp
= tcp_sk(sk
);
2392 if (frto_undo
|| tcp_may_undo(tp
)) {
2393 tcp_undo_cwnd_reduction(sk
, true);
2395 DBGUNDO(sk
, "partial loss");
2396 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2398 NET_INC_STATS(sock_net(sk
),
2399 LINUX_MIB_TCPSPURIOUSRTOS
);
2400 inet_csk(sk
)->icsk_retransmits
= 0;
2401 if (frto_undo
|| tcp_is_sack(tp
)) {
2402 tcp_set_ca_state(sk
, TCP_CA_Open
);
2403 tp
->is_sack_reneg
= 0;
2410 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2411 * It computes the number of packets to send (sndcnt) based on packets newly
2413 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2414 * cwnd reductions across a full RTT.
2415 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2416 * But when the retransmits are acked without further losses, PRR
2417 * slow starts cwnd up to ssthresh to speed up the recovery.
2419 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2421 struct tcp_sock
*tp
= tcp_sk(sk
);
2423 tp
->high_seq
= tp
->snd_nxt
;
2424 tp
->tlp_high_seq
= 0;
2425 tp
->snd_cwnd_cnt
= 0;
2426 tp
->prior_cwnd
= tp
->snd_cwnd
;
2427 tp
->prr_delivered
= 0;
2429 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2430 tcp_ecn_queue_cwr(tp
);
2433 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2435 struct tcp_sock
*tp
= tcp_sk(sk
);
2437 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2439 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2442 tp
->prr_delivered
+= newly_acked_sacked
;
2444 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2446 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2447 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2448 !(flag
& FLAG_LOST_RETRANS
)) {
2449 sndcnt
= min_t(int, delta
,
2450 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2451 newly_acked_sacked
) + 1);
2453 sndcnt
= min(delta
, newly_acked_sacked
);
2455 /* Force a fast retransmit upon entering fast recovery */
2456 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2457 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2460 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2462 struct tcp_sock
*tp
= tcp_sk(sk
);
2464 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2467 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2468 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2469 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2470 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2471 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2473 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2476 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2477 void tcp_enter_cwr(struct sock
*sk
)
2479 struct tcp_sock
*tp
= tcp_sk(sk
);
2481 tp
->prior_ssthresh
= 0;
2482 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2483 tp
->undo_marker
= 0;
2484 tcp_init_cwnd_reduction(sk
);
2485 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2488 EXPORT_SYMBOL(tcp_enter_cwr
);
2490 static void tcp_try_keep_open(struct sock
*sk
)
2492 struct tcp_sock
*tp
= tcp_sk(sk
);
2493 int state
= TCP_CA_Open
;
2495 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2496 state
= TCP_CA_Disorder
;
2498 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2499 tcp_set_ca_state(sk
, state
);
2500 tp
->high_seq
= tp
->snd_nxt
;
2504 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2506 struct tcp_sock
*tp
= tcp_sk(sk
);
2508 tcp_verify_left_out(tp
);
2510 if (!tcp_any_retrans_done(sk
))
2511 tp
->retrans_stamp
= 0;
2513 if (flag
& FLAG_ECE
)
2516 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2517 tcp_try_keep_open(sk
);
2521 static void tcp_mtup_probe_failed(struct sock
*sk
)
2523 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2525 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2526 icsk
->icsk_mtup
.probe_size
= 0;
2527 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2530 static void tcp_mtup_probe_success(struct sock
*sk
)
2532 struct tcp_sock
*tp
= tcp_sk(sk
);
2533 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2535 /* FIXME: breaks with very large cwnd */
2536 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2537 tp
->snd_cwnd
= tp
->snd_cwnd
*
2538 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2539 icsk
->icsk_mtup
.probe_size
;
2540 tp
->snd_cwnd_cnt
= 0;
2541 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2542 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2544 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2545 icsk
->icsk_mtup
.probe_size
= 0;
2546 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2547 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2550 /* Do a simple retransmit without using the backoff mechanisms in
2551 * tcp_timer. This is used for path mtu discovery.
2552 * The socket is already locked here.
2554 void tcp_simple_retransmit(struct sock
*sk
)
2556 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2557 struct tcp_sock
*tp
= tcp_sk(sk
);
2558 struct sk_buff
*skb
;
2559 unsigned int mss
= tcp_current_mss(sk
);
2561 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2562 if (tcp_skb_seglen(skb
) > mss
&&
2563 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2564 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2565 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2566 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2568 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2572 tcp_clear_retrans_hints_partial(tp
);
2577 if (tcp_is_reno(tp
))
2578 tcp_limit_reno_sacked(tp
);
2580 tcp_verify_left_out(tp
);
2582 /* Don't muck with the congestion window here.
2583 * Reason is that we do not increase amount of _data_
2584 * in network, but units changed and effective
2585 * cwnd/ssthresh really reduced now.
2587 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2588 tp
->high_seq
= tp
->snd_nxt
;
2589 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2590 tp
->prior_ssthresh
= 0;
2591 tp
->undo_marker
= 0;
2592 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2594 tcp_xmit_retransmit_queue(sk
);
2596 EXPORT_SYMBOL(tcp_simple_retransmit
);
2598 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2600 struct tcp_sock
*tp
= tcp_sk(sk
);
2603 if (tcp_is_reno(tp
))
2604 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2606 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2608 NET_INC_STATS(sock_net(sk
), mib_idx
);
2610 tp
->prior_ssthresh
= 0;
2613 if (!tcp_in_cwnd_reduction(sk
)) {
2615 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2616 tcp_init_cwnd_reduction(sk
);
2618 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2621 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2622 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2624 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2627 struct tcp_sock
*tp
= tcp_sk(sk
);
2628 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2630 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2631 tcp_try_undo_loss(sk
, false))
2634 /* The ACK (s)acks some never-retransmitted data meaning not all
2635 * the data packets before the timeout were lost. Therefore we
2636 * undo the congestion window and state. This is essentially
2637 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2638 * a retransmitted skb is permantly marked, we can apply such an
2639 * operation even if F-RTO was not used.
2641 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2642 tcp_try_undo_loss(sk
, tp
->undo_marker
))
2645 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2646 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2647 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2648 tp
->frto
= 0; /* Step 3.a. loss was real */
2649 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2650 tp
->high_seq
= tp
->snd_nxt
;
2651 /* Step 2.b. Try send new data (but deferred until cwnd
2652 * is updated in tcp_ack()). Otherwise fall back to
2653 * the conventional recovery.
2655 if (!tcp_write_queue_empty(sk
) &&
2656 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2657 *rexmit
= REXMIT_NEW
;
2665 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2666 tcp_try_undo_recovery(sk
);
2669 if (tcp_is_reno(tp
)) {
2670 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2671 * delivered. Lower inflight to clock out (re)tranmissions.
2673 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2674 tcp_add_reno_sack(sk
);
2675 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2676 tcp_reset_reno_sack(tp
);
2678 *rexmit
= REXMIT_LOST
;
2681 /* Undo during fast recovery after partial ACK. */
2682 static bool tcp_try_undo_partial(struct sock
*sk
, u32 prior_snd_una
)
2684 struct tcp_sock
*tp
= tcp_sk(sk
);
2686 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2687 /* Plain luck! Hole if filled with delayed
2688 * packet, rather than with a retransmit. Check reordering.
2690 tcp_check_sack_reordering(sk
, prior_snd_una
, 1);
2692 /* We are getting evidence that the reordering degree is higher
2693 * than we realized. If there are no retransmits out then we
2694 * can undo. Otherwise we clock out new packets but do not
2695 * mark more packets lost or retransmit more.
2697 if (tp
->retrans_out
)
2700 if (!tcp_any_retrans_done(sk
))
2701 tp
->retrans_stamp
= 0;
2703 DBGUNDO(sk
, "partial recovery");
2704 tcp_undo_cwnd_reduction(sk
, true);
2705 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2706 tcp_try_keep_open(sk
);
2712 static void tcp_rack_identify_loss(struct sock
*sk
, int *ack_flag
)
2714 struct tcp_sock
*tp
= tcp_sk(sk
);
2716 /* Use RACK to detect loss */
2717 if (sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
) {
2718 u32 prior_retrans
= tp
->retrans_out
;
2720 tcp_rack_mark_lost(sk
);
2721 if (prior_retrans
> tp
->retrans_out
)
2722 *ack_flag
|= FLAG_LOST_RETRANS
;
2726 static bool tcp_force_fast_retransmit(struct sock
*sk
)
2728 struct tcp_sock
*tp
= tcp_sk(sk
);
2730 return after(tcp_highest_sack_seq(tp
),
2731 tp
->snd_una
+ tp
->reordering
* tp
->mss_cache
);
2734 /* Process an event, which can update packets-in-flight not trivially.
2735 * Main goal of this function is to calculate new estimate for left_out,
2736 * taking into account both packets sitting in receiver's buffer and
2737 * packets lost by network.
2739 * Besides that it updates the congestion state when packet loss or ECN
2740 * is detected. But it does not reduce the cwnd, it is done by the
2741 * congestion control later.
2743 * It does _not_ decide what to send, it is made in function
2744 * tcp_xmit_retransmit_queue().
2746 static void tcp_fastretrans_alert(struct sock
*sk
, const u32 prior_snd_una
,
2747 bool is_dupack
, int *ack_flag
, int *rexmit
)
2749 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2750 struct tcp_sock
*tp
= tcp_sk(sk
);
2751 int fast_rexmit
= 0, flag
= *ack_flag
;
2752 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2753 tcp_force_fast_retransmit(sk
));
2755 if (!tp
->packets_out
&& tp
->sacked_out
)
2758 /* Now state machine starts.
2759 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2760 if (flag
& FLAG_ECE
)
2761 tp
->prior_ssthresh
= 0;
2763 /* B. In all the states check for reneging SACKs. */
2764 if (tcp_check_sack_reneging(sk
, flag
))
2767 /* C. Check consistency of the current state. */
2768 tcp_verify_left_out(tp
);
2770 /* D. Check state exit conditions. State can be terminated
2771 * when high_seq is ACKed. */
2772 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2773 WARN_ON(tp
->retrans_out
!= 0);
2774 tp
->retrans_stamp
= 0;
2775 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2776 switch (icsk
->icsk_ca_state
) {
2778 /* CWR is to be held something *above* high_seq
2779 * is ACKed for CWR bit to reach receiver. */
2780 if (tp
->snd_una
!= tp
->high_seq
) {
2781 tcp_end_cwnd_reduction(sk
);
2782 tcp_set_ca_state(sk
, TCP_CA_Open
);
2786 case TCP_CA_Recovery
:
2787 if (tcp_is_reno(tp
))
2788 tcp_reset_reno_sack(tp
);
2789 if (tcp_try_undo_recovery(sk
))
2791 tcp_end_cwnd_reduction(sk
);
2796 /* E. Process state. */
2797 switch (icsk
->icsk_ca_state
) {
2798 case TCP_CA_Recovery
:
2799 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2800 if (tcp_is_reno(tp
) && is_dupack
)
2801 tcp_add_reno_sack(sk
);
2803 if (tcp_try_undo_partial(sk
, prior_snd_una
))
2805 /* Partial ACK arrived. Force fast retransmit. */
2806 do_lost
= tcp_is_reno(tp
) ||
2807 tcp_force_fast_retransmit(sk
);
2809 if (tcp_try_undo_dsack(sk
)) {
2810 tcp_try_keep_open(sk
);
2813 tcp_rack_identify_loss(sk
, ack_flag
);
2816 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2817 tcp_rack_identify_loss(sk
, ack_flag
);
2818 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2819 (*ack_flag
& FLAG_LOST_RETRANS
)))
2821 /* Change state if cwnd is undone or retransmits are lost */
2824 if (tcp_is_reno(tp
)) {
2825 if (flag
& FLAG_SND_UNA_ADVANCED
)
2826 tcp_reset_reno_sack(tp
);
2828 tcp_add_reno_sack(sk
);
2831 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2832 tcp_try_undo_dsack(sk
);
2834 tcp_rack_identify_loss(sk
, ack_flag
);
2835 if (!tcp_time_to_recover(sk
, flag
)) {
2836 tcp_try_to_open(sk
, flag
);
2840 /* MTU probe failure: don't reduce cwnd */
2841 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2842 icsk
->icsk_mtup
.probe_size
&&
2843 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2844 tcp_mtup_probe_failed(sk
);
2845 /* Restores the reduction we did in tcp_mtup_probe() */
2847 tcp_simple_retransmit(sk
);
2851 /* Otherwise enter Recovery state */
2852 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2857 tcp_update_scoreboard(sk
, fast_rexmit
);
2858 *rexmit
= REXMIT_LOST
;
2861 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
, const int flag
)
2863 u32 wlen
= sock_net(sk
)->ipv4
.sysctl_tcp_min_rtt_wlen
* HZ
;
2864 struct tcp_sock
*tp
= tcp_sk(sk
);
2866 if ((flag
& FLAG_ACK_MAYBE_DELAYED
) && rtt_us
> tcp_min_rtt(tp
)) {
2867 /* If the remote keeps returning delayed ACKs, eventually
2868 * the min filter would pick it up and overestimate the
2869 * prop. delay when it expires. Skip suspected delayed ACKs.
2873 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
2874 rtt_us
? : jiffies_to_usecs(1));
2877 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2878 long seq_rtt_us
, long sack_rtt_us
,
2879 long ca_rtt_us
, struct rate_sample
*rs
)
2881 const struct tcp_sock
*tp
= tcp_sk(sk
);
2883 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2884 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2885 * Karn's algorithm forbids taking RTT if some retransmitted data
2886 * is acked (RFC6298).
2889 seq_rtt_us
= sack_rtt_us
;
2891 /* RTTM Rule: A TSecr value received in a segment is used to
2892 * update the averaged RTT measurement only if the segment
2893 * acknowledges some new data, i.e., only if it advances the
2894 * left edge of the send window.
2895 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2897 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2898 flag
& FLAG_ACKED
) {
2899 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
2900 u32 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
2902 seq_rtt_us
= ca_rtt_us
= delta_us
;
2904 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
2908 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2909 * always taken together with ACK, SACK, or TS-opts. Any negative
2910 * values will be skipped with the seq_rtt_us < 0 check above.
2912 tcp_update_rtt_min(sk
, ca_rtt_us
, flag
);
2913 tcp_rtt_estimator(sk
, seq_rtt_us
);
2916 /* RFC6298: only reset backoff on valid RTT measurement. */
2917 inet_csk(sk
)->icsk_backoff
= 0;
2921 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2922 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2924 struct rate_sample rs
;
2927 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
2928 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
2930 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
2934 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2936 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2938 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2939 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
2942 /* Restart timer after forward progress on connection.
2943 * RFC2988 recommends to restart timer to now+rto.
2945 void tcp_rearm_rto(struct sock
*sk
)
2947 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2948 struct tcp_sock
*tp
= tcp_sk(sk
);
2950 /* If the retrans timer is currently being used by Fast Open
2951 * for SYN-ACK retrans purpose, stay put.
2953 if (tp
->fastopen_rsk
)
2956 if (!tp
->packets_out
) {
2957 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2959 u32 rto
= inet_csk(sk
)->icsk_rto
;
2960 /* Offset the time elapsed after installing regular RTO */
2961 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
2962 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
2963 s64 delta_us
= tcp_rto_delta_us(sk
);
2964 /* delta_us may not be positive if the socket is locked
2965 * when the retrans timer fires and is rescheduled.
2967 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
2969 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
2974 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2975 static void tcp_set_xmit_timer(struct sock
*sk
)
2977 if (!tcp_schedule_loss_probe(sk
, true))
2981 /* If we get here, the whole TSO packet has not been acked. */
2982 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
2984 struct tcp_sock
*tp
= tcp_sk(sk
);
2987 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
2989 packets_acked
= tcp_skb_pcount(skb
);
2990 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2992 packets_acked
-= tcp_skb_pcount(skb
);
2994 if (packets_acked
) {
2995 BUG_ON(tcp_skb_pcount(skb
) == 0);
2996 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
2999 return packets_acked
;
3002 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3005 const struct skb_shared_info
*shinfo
;
3007 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3008 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3011 shinfo
= skb_shinfo(skb
);
3012 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3013 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
)) {
3014 tcp_skb_tsorted_save(skb
) {
3015 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3016 } tcp_skb_tsorted_restore(skb
);
3020 /* Remove acknowledged frames from the retransmission queue. If our packet
3021 * is before the ack sequence we can discard it as it's confirmed to have
3022 * arrived at the other end.
3024 static int tcp_clean_rtx_queue(struct sock
*sk
, u32 prior_fack
,
3026 struct tcp_sacktag_state
*sack
)
3028 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3029 u64 first_ackt
, last_ackt
;
3030 struct tcp_sock
*tp
= tcp_sk(sk
);
3031 u32 prior_sacked
= tp
->sacked_out
;
3032 u32 reord
= tp
->snd_nxt
; /* lowest acked un-retx un-sacked seq */
3033 struct sk_buff
*skb
, *next
;
3034 bool fully_acked
= true;
3035 long sack_rtt_us
= -1L;
3036 long seq_rtt_us
= -1L;
3037 long ca_rtt_us
= -1L;
3039 u32 last_in_flight
= 0;
3045 for (skb
= skb_rb_first(&sk
->tcp_rtx_queue
); skb
; skb
= next
) {
3046 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3047 const u32 start_seq
= scb
->seq
;
3048 u8 sacked
= scb
->sacked
;
3051 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3053 /* Determine how many packets and what bytes were acked, tso and else */
3054 if (after(scb
->end_seq
, tp
->snd_una
)) {
3055 if (tcp_skb_pcount(skb
) == 1 ||
3056 !after(tp
->snd_una
, scb
->seq
))
3059 acked_pcount
= tcp_tso_acked(sk
, skb
);
3062 fully_acked
= false;
3064 acked_pcount
= tcp_skb_pcount(skb
);
3067 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3068 if (sacked
& TCPCB_SACKED_RETRANS
)
3069 tp
->retrans_out
-= acked_pcount
;
3070 flag
|= FLAG_RETRANS_DATA_ACKED
;
3071 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3072 last_ackt
= skb
->skb_mstamp
;
3073 WARN_ON_ONCE(last_ackt
== 0);
3075 first_ackt
= last_ackt
;
3077 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3078 if (before(start_seq
, reord
))
3080 if (!after(scb
->end_seq
, tp
->high_seq
))
3081 flag
|= FLAG_ORIG_SACK_ACKED
;
3084 if (sacked
& TCPCB_SACKED_ACKED
) {
3085 tp
->sacked_out
-= acked_pcount
;
3086 } else if (tcp_is_sack(tp
)) {
3087 tp
->delivered
+= acked_pcount
;
3088 if (!tcp_skb_spurious_retrans(tp
, skb
))
3089 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3092 if (sacked
& TCPCB_LOST
)
3093 tp
->lost_out
-= acked_pcount
;
3095 tp
->packets_out
-= acked_pcount
;
3096 pkts_acked
+= acked_pcount
;
3097 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3099 /* Initial outgoing SYN's get put onto the write_queue
3100 * just like anything else we transmit. It is not
3101 * true data, and if we misinform our callers that
3102 * this ACK acks real data, we will erroneously exit
3103 * connection startup slow start one packet too
3104 * quickly. This is severely frowned upon behavior.
3106 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3107 flag
|= FLAG_DATA_ACKED
;
3109 flag
|= FLAG_SYN_ACKED
;
3110 tp
->retrans_stamp
= 0;
3116 next
= skb_rb_next(skb
);
3117 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3118 tp
->retransmit_skb_hint
= NULL
;
3119 if (unlikely(skb
== tp
->lost_skb_hint
))
3120 tp
->lost_skb_hint
= NULL
;
3121 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3125 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3127 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3128 tp
->snd_up
= tp
->snd_una
;
3130 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3131 flag
|= FLAG_SACK_RENEGING
;
3133 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3134 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3135 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3137 if (pkts_acked
== 1 && last_in_flight
< tp
->mss_cache
&&
3138 last_in_flight
&& !prior_sacked
&& fully_acked
&&
3139 sack
->rate
->prior_delivered
+ 1 == tp
->delivered
&&
3140 !(flag
& (FLAG_CA_ALERT
| FLAG_SYN_ACKED
))) {
3141 /* Conservatively mark a delayed ACK. It's typically
3142 * from a lone runt packet over the round trip to
3143 * a receiver w/o out-of-order or CE events.
3145 flag
|= FLAG_ACK_MAYBE_DELAYED
;
3148 if (sack
->first_sackt
) {
3149 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3150 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3152 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3153 ca_rtt_us
, sack
->rate
);
3155 if (flag
& FLAG_ACKED
) {
3156 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3157 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3158 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3159 tcp_mtup_probe_success(sk
);
3162 if (tcp_is_reno(tp
)) {
3163 tcp_remove_reno_sacks(sk
, pkts_acked
);
3167 /* Non-retransmitted hole got filled? That's reordering */
3168 if (before(reord
, prior_fack
))
3169 tcp_check_sack_reordering(sk
, reord
, 0);
3171 delta
= prior_sacked
- tp
->sacked_out
;
3172 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3174 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3175 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
, skb
->skb_mstamp
)) {
3176 /* Do not re-arm RTO if the sack RTT is measured from data sent
3177 * after when the head was last (re)transmitted. Otherwise the
3178 * timeout may continue to extend in loss recovery.
3180 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3183 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3184 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3185 .rtt_us
= sack
->rate
->rtt_us
,
3186 .in_flight
= last_in_flight
};
3188 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3191 #if FASTRETRANS_DEBUG > 0
3192 WARN_ON((int)tp
->sacked_out
< 0);
3193 WARN_ON((int)tp
->lost_out
< 0);
3194 WARN_ON((int)tp
->retrans_out
< 0);
3195 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3196 icsk
= inet_csk(sk
);
3198 pr_debug("Leak l=%u %d\n",
3199 tp
->lost_out
, icsk
->icsk_ca_state
);
3202 if (tp
->sacked_out
) {
3203 pr_debug("Leak s=%u %d\n",
3204 tp
->sacked_out
, icsk
->icsk_ca_state
);
3207 if (tp
->retrans_out
) {
3208 pr_debug("Leak r=%u %d\n",
3209 tp
->retrans_out
, icsk
->icsk_ca_state
);
3210 tp
->retrans_out
= 0;
3217 static void tcp_ack_probe(struct sock
*sk
)
3219 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3220 struct sk_buff
*head
= tcp_send_head(sk
);
3221 const struct tcp_sock
*tp
= tcp_sk(sk
);
3223 /* Was it a usable window open? */
3226 if (!after(TCP_SKB_CB(head
)->end_seq
, tcp_wnd_end(tp
))) {
3227 icsk
->icsk_backoff
= 0;
3228 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3229 /* Socket must be waked up by subsequent tcp_data_snd_check().
3230 * This function is not for random using!
3233 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3235 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3240 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3242 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3243 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3246 /* Decide wheather to run the increase function of congestion control. */
3247 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3249 /* If reordering is high then always grow cwnd whenever data is
3250 * delivered regardless of its ordering. Otherwise stay conservative
3251 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3252 * new SACK or ECE mark may first advance cwnd here and later reduce
3253 * cwnd in tcp_fastretrans_alert() based on more states.
3255 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3256 return flag
& FLAG_FORWARD_PROGRESS
;
3258 return flag
& FLAG_DATA_ACKED
;
3261 /* The "ultimate" congestion control function that aims to replace the rigid
3262 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3263 * It's called toward the end of processing an ACK with precise rate
3264 * information. All transmission or retransmission are delayed afterwards.
3266 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3267 int flag
, const struct rate_sample
*rs
)
3269 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3271 if (icsk
->icsk_ca_ops
->cong_control
) {
3272 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3276 if (tcp_in_cwnd_reduction(sk
)) {
3277 /* Reduce cwnd if state mandates */
3278 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3279 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3280 /* Advance cwnd if state allows */
3281 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3283 tcp_update_pacing_rate(sk
);
3286 /* Check that window update is acceptable.
3287 * The function assumes that snd_una<=ack<=snd_next.
3289 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3290 const u32 ack
, const u32 ack_seq
,
3293 return after(ack
, tp
->snd_una
) ||
3294 after(ack_seq
, tp
->snd_wl1
) ||
3295 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3298 /* If we update tp->snd_una, also update tp->bytes_acked */
3299 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3301 u32 delta
= ack
- tp
->snd_una
;
3303 sock_owned_by_me((struct sock
*)tp
);
3304 tp
->bytes_acked
+= delta
;
3308 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3309 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3311 u32 delta
= seq
- tp
->rcv_nxt
;
3313 sock_owned_by_me((struct sock
*)tp
);
3314 tp
->bytes_received
+= delta
;
3318 /* Update our send window.
3320 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3321 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3323 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3326 struct tcp_sock
*tp
= tcp_sk(sk
);
3328 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3330 if (likely(!tcp_hdr(skb
)->syn
))
3331 nwin
<<= tp
->rx_opt
.snd_wscale
;
3333 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3334 flag
|= FLAG_WIN_UPDATE
;
3335 tcp_update_wl(tp
, ack_seq
);
3337 if (tp
->snd_wnd
!= nwin
) {
3340 /* Note, it is the only place, where
3341 * fast path is recovered for sending TCP.
3344 tcp_fast_path_check(sk
);
3346 if (!tcp_write_queue_empty(sk
))
3347 tcp_slow_start_after_idle_check(sk
);
3349 if (nwin
> tp
->max_window
) {
3350 tp
->max_window
= nwin
;
3351 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3356 tcp_snd_una_update(tp
, ack
);
3361 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3362 u32
*last_oow_ack_time
)
3364 if (*last_oow_ack_time
) {
3365 s32 elapsed
= (s32
)(tcp_jiffies32
- *last_oow_ack_time
);
3367 if (0 <= elapsed
&& elapsed
< net
->ipv4
.sysctl_tcp_invalid_ratelimit
) {
3368 NET_INC_STATS(net
, mib_idx
);
3369 return true; /* rate-limited: don't send yet! */
3373 *last_oow_ack_time
= tcp_jiffies32
;
3375 return false; /* not rate-limited: go ahead, send dupack now! */
3378 /* Return true if we're currently rate-limiting out-of-window ACKs and
3379 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3380 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3381 * attacks that send repeated SYNs or ACKs for the same connection. To
3382 * do this, we do not send a duplicate SYNACK or ACK if the remote
3383 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3385 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3386 int mib_idx
, u32
*last_oow_ack_time
)
3388 /* Data packets without SYNs are not likely part of an ACK loop. */
3389 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3393 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3396 /* RFC 5961 7 [ACK Throttling] */
3397 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3399 /* unprotected vars, we dont care of overwrites */
3400 static u32 challenge_timestamp
;
3401 static unsigned int challenge_count
;
3402 struct tcp_sock
*tp
= tcp_sk(sk
);
3403 struct net
*net
= sock_net(sk
);
3406 /* First check our per-socket dupack rate limit. */
3407 if (__tcp_oow_rate_limited(net
,
3408 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3409 &tp
->last_oow_ack_time
))
3412 /* Then check host-wide RFC 5961 rate limit. */
3414 if (now
!= challenge_timestamp
) {
3415 u32 ack_limit
= net
->ipv4
.sysctl_tcp_challenge_ack_limit
;
3416 u32 half
= (ack_limit
+ 1) >> 1;
3418 challenge_timestamp
= now
;
3419 WRITE_ONCE(challenge_count
, half
+ prandom_u32_max(ack_limit
));
3421 count
= READ_ONCE(challenge_count
);
3423 WRITE_ONCE(challenge_count
, count
- 1);
3424 NET_INC_STATS(net
, LINUX_MIB_TCPCHALLENGEACK
);
3429 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3431 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3432 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3435 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3437 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3438 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3439 * extra check below makes sure this can only happen
3440 * for pure ACK frames. -DaveM
3442 * Not only, also it occurs for expired timestamps.
3445 if (tcp_paws_check(&tp
->rx_opt
, 0))
3446 tcp_store_ts_recent(tp
);
3450 /* This routine deals with acks during a TLP episode.
3451 * We mark the end of a TLP episode on receiving TLP dupack or when
3452 * ack is after tlp_high_seq.
3453 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3455 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3457 struct tcp_sock
*tp
= tcp_sk(sk
);
3459 if (before(ack
, tp
->tlp_high_seq
))
3462 if (flag
& FLAG_DSACKING_ACK
) {
3463 /* This DSACK means original and TLP probe arrived; no loss */
3464 tp
->tlp_high_seq
= 0;
3465 } else if (after(ack
, tp
->tlp_high_seq
)) {
3466 /* ACK advances: there was a loss, so reduce cwnd. Reset
3467 * tlp_high_seq in tcp_init_cwnd_reduction()
3469 tcp_init_cwnd_reduction(sk
);
3470 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3471 tcp_end_cwnd_reduction(sk
);
3472 tcp_try_keep_open(sk
);
3473 NET_INC_STATS(sock_net(sk
),
3474 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3475 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3476 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3477 /* Pure dupack: original and TLP probe arrived; no loss */
3478 tp
->tlp_high_seq
= 0;
3482 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3484 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3486 if (icsk
->icsk_ca_ops
->in_ack_event
)
3487 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3490 /* Congestion control has updated the cwnd already. So if we're in
3491 * loss recovery then now we do any new sends (for FRTO) or
3492 * retransmits (for CA_Loss or CA_recovery) that make sense.
3494 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3496 struct tcp_sock
*tp
= tcp_sk(sk
);
3498 if (rexmit
== REXMIT_NONE
)
3501 if (unlikely(rexmit
== 2)) {
3502 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3504 if (after(tp
->snd_nxt
, tp
->high_seq
))
3508 tcp_xmit_retransmit_queue(sk
);
3511 /* This routine deals with incoming acks, but not outgoing ones. */
3512 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3514 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3515 struct tcp_sock
*tp
= tcp_sk(sk
);
3516 struct tcp_sacktag_state sack_state
;
3517 struct rate_sample rs
= { .prior_delivered
= 0 };
3518 u32 prior_snd_una
= tp
->snd_una
;
3519 bool is_sack_reneg
= tp
->is_sack_reneg
;
3520 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3521 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3522 bool is_dupack
= false;
3523 int prior_packets
= tp
->packets_out
;
3524 u32 delivered
= tp
->delivered
;
3525 u32 lost
= tp
->lost
;
3526 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3529 sack_state
.first_sackt
= 0;
3530 sack_state
.rate
= &rs
;
3532 /* We very likely will need to access rtx queue. */
3533 prefetch(sk
->tcp_rtx_queue
.rb_node
);
3535 /* If the ack is older than previous acks
3536 * then we can probably ignore it.
3538 if (before(ack
, prior_snd_una
)) {
3539 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3540 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3541 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3542 tcp_send_challenge_ack(sk
, skb
);
3548 /* If the ack includes data we haven't sent yet, discard
3549 * this segment (RFC793 Section 3.9).
3551 if (after(ack
, tp
->snd_nxt
))
3554 if (after(ack
, prior_snd_una
)) {
3555 flag
|= FLAG_SND_UNA_ADVANCED
;
3556 icsk
->icsk_retransmits
= 0;
3559 prior_fack
= tcp_is_sack(tp
) ? tcp_highest_sack_seq(tp
) : tp
->snd_una
;
3560 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3562 /* ts_recent update must be made after we are sure that the packet
3565 if (flag
& FLAG_UPDATE_TS_RECENT
)
3566 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3568 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3569 /* Window is constant, pure forward advance.
3570 * No more checks are required.
3571 * Note, we use the fact that SND.UNA>=SND.WL2.
3573 tcp_update_wl(tp
, ack_seq
);
3574 tcp_snd_una_update(tp
, ack
);
3575 flag
|= FLAG_WIN_UPDATE
;
3577 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3579 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3581 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3583 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3586 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3588 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3590 if (TCP_SKB_CB(skb
)->sacked
)
3591 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3594 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3596 ack_ev_flags
|= CA_ACK_ECE
;
3599 if (flag
& FLAG_WIN_UPDATE
)
3600 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3602 tcp_in_ack_event(sk
, ack_ev_flags
);
3605 /* We passed data and got it acked, remove any soft error
3606 * log. Something worked...
3608 sk
->sk_err_soft
= 0;
3609 icsk
->icsk_probes_out
= 0;
3610 tp
->rcv_tstamp
= tcp_jiffies32
;
3614 /* See if we can take anything off of the retransmit queue. */
3615 flag
|= tcp_clean_rtx_queue(sk
, prior_fack
, prior_snd_una
, &sack_state
);
3617 tcp_rack_update_reo_wnd(sk
, &rs
);
3619 if (tp
->tlp_high_seq
)
3620 tcp_process_tlp_ack(sk
, ack
, flag
);
3621 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3622 if (flag
& FLAG_SET_XMIT_TIMER
)
3623 tcp_set_xmit_timer(sk
);
3625 if (tcp_ack_is_dubious(sk
, flag
)) {
3626 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3627 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3631 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3634 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3635 lost
= tp
->lost
- lost
; /* freshly marked lost */
3636 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
3637 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3638 tcp_xmit_recovery(sk
, rexmit
);
3642 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3643 if (flag
& FLAG_DSACKING_ACK
)
3644 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3646 /* If this ack opens up a zero window, clear backoff. It was
3647 * being used to time the probes, and is probably far higher than
3648 * it needs to be for normal retransmission.
3652 if (tp
->tlp_high_seq
)
3653 tcp_process_tlp_ack(sk
, ack
, flag
);
3657 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3661 /* If data was SACKed, tag it and see if we should send more data.
3662 * If data was DSACKed, see if we can undo a cwnd reduction.
3664 if (TCP_SKB_CB(skb
)->sacked
) {
3665 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3667 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3669 tcp_xmit_recovery(sk
, rexmit
);
3672 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3676 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3677 bool syn
, struct tcp_fastopen_cookie
*foc
,
3680 /* Valid only in SYN or SYN-ACK with an even length. */
3681 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3684 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3685 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3686 memcpy(foc
->val
, cookie
, len
);
3693 static void smc_parse_options(const struct tcphdr
*th
,
3694 struct tcp_options_received
*opt_rx
,
3695 const unsigned char *ptr
,
3698 #if IS_ENABLED(CONFIG_SMC)
3699 if (static_branch_unlikely(&tcp_have_smc
)) {
3700 if (th
->syn
&& !(opsize
& 1) &&
3701 opsize
>= TCPOLEN_EXP_SMC_BASE
&&
3702 get_unaligned_be32(ptr
) == TCPOPT_SMC_MAGIC
)
3708 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3709 * But, this can also be called on packets in the established flow when
3710 * the fast version below fails.
3712 void tcp_parse_options(const struct net
*net
,
3713 const struct sk_buff
*skb
,
3714 struct tcp_options_received
*opt_rx
, int estab
,
3715 struct tcp_fastopen_cookie
*foc
)
3717 const unsigned char *ptr
;
3718 const struct tcphdr
*th
= tcp_hdr(skb
);
3719 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3721 ptr
= (const unsigned char *)(th
+ 1);
3722 opt_rx
->saw_tstamp
= 0;
3724 while (length
> 0) {
3725 int opcode
= *ptr
++;
3731 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3736 if (opsize
< 2) /* "silly options" */
3738 if (opsize
> length
)
3739 return; /* don't parse partial options */
3742 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3743 u16 in_mss
= get_unaligned_be16(ptr
);
3745 if (opt_rx
->user_mss
&&
3746 opt_rx
->user_mss
< in_mss
)
3747 in_mss
= opt_rx
->user_mss
;
3748 opt_rx
->mss_clamp
= in_mss
;
3753 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3754 !estab
&& net
->ipv4
.sysctl_tcp_window_scaling
) {
3755 __u8 snd_wscale
= *(__u8
*)ptr
;
3756 opt_rx
->wscale_ok
= 1;
3757 if (snd_wscale
> TCP_MAX_WSCALE
) {
3758 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3762 snd_wscale
= TCP_MAX_WSCALE
;
3764 opt_rx
->snd_wscale
= snd_wscale
;
3767 case TCPOPT_TIMESTAMP
:
3768 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3769 ((estab
&& opt_rx
->tstamp_ok
) ||
3770 (!estab
&& net
->ipv4
.sysctl_tcp_timestamps
))) {
3771 opt_rx
->saw_tstamp
= 1;
3772 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3773 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3776 case TCPOPT_SACK_PERM
:
3777 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3778 !estab
&& net
->ipv4
.sysctl_tcp_sack
) {
3779 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3780 tcp_sack_reset(opt_rx
);
3785 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3786 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3788 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3791 #ifdef CONFIG_TCP_MD5SIG
3794 * The MD5 Hash has already been
3795 * checked (see tcp_v{4,6}_do_rcv()).
3799 case TCPOPT_FASTOPEN
:
3800 tcp_parse_fastopen_option(
3801 opsize
- TCPOLEN_FASTOPEN_BASE
,
3802 ptr
, th
->syn
, foc
, false);
3806 /* Fast Open option shares code 254 using a
3807 * 16 bits magic number.
3809 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3810 get_unaligned_be16(ptr
) ==
3811 TCPOPT_FASTOPEN_MAGIC
)
3812 tcp_parse_fastopen_option(opsize
-
3813 TCPOLEN_EXP_FASTOPEN_BASE
,
3814 ptr
+ 2, th
->syn
, foc
, true);
3816 smc_parse_options(th
, opt_rx
, ptr
,
3826 EXPORT_SYMBOL(tcp_parse_options
);
3828 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3830 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3832 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3833 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3834 tp
->rx_opt
.saw_tstamp
= 1;
3836 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3839 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3841 tp
->rx_opt
.rcv_tsecr
= 0;
3847 /* Fast parse options. This hopes to only see timestamps.
3848 * If it is wrong it falls back on tcp_parse_options().
3850 static bool tcp_fast_parse_options(const struct net
*net
,
3851 const struct sk_buff
*skb
,
3852 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3854 /* In the spirit of fast parsing, compare doff directly to constant
3855 * values. Because equality is used, short doff can be ignored here.
3857 if (th
->doff
== (sizeof(*th
) / 4)) {
3858 tp
->rx_opt
.saw_tstamp
= 0;
3860 } else if (tp
->rx_opt
.tstamp_ok
&&
3861 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3862 if (tcp_parse_aligned_timestamp(tp
, th
))
3866 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
3867 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3868 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3873 #ifdef CONFIG_TCP_MD5SIG
3875 * Parse MD5 Signature option
3877 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3879 int length
= (th
->doff
<< 2) - sizeof(*th
);
3880 const u8
*ptr
= (const u8
*)(th
+ 1);
3882 /* If the TCP option is too short, we can short cut */
3883 if (length
< TCPOLEN_MD5SIG
)
3886 while (length
> 0) {
3887 int opcode
= *ptr
++;
3898 if (opsize
< 2 || opsize
> length
)
3900 if (opcode
== TCPOPT_MD5SIG
)
3901 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3908 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3911 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3913 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3914 * it can pass through stack. So, the following predicate verifies that
3915 * this segment is not used for anything but congestion avoidance or
3916 * fast retransmit. Moreover, we even are able to eliminate most of such
3917 * second order effects, if we apply some small "replay" window (~RTO)
3918 * to timestamp space.
3920 * All these measures still do not guarantee that we reject wrapped ACKs
3921 * on networks with high bandwidth, when sequence space is recycled fastly,
3922 * but it guarantees that such events will be very rare and do not affect
3923 * connection seriously. This doesn't look nice, but alas, PAWS is really
3926 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3927 * states that events when retransmit arrives after original data are rare.
3928 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3929 * the biggest problem on large power networks even with minor reordering.
3930 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3931 * up to bandwidth of 18Gigabit/sec. 8) ]
3934 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3936 const struct tcp_sock
*tp
= tcp_sk(sk
);
3937 const struct tcphdr
*th
= tcp_hdr(skb
);
3938 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3939 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3941 return (/* 1. Pure ACK with correct sequence number. */
3942 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3944 /* 2. ... and duplicate ACK. */
3945 ack
== tp
->snd_una
&&
3947 /* 3. ... and does not update window. */
3948 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3950 /* 4. ... and sits in replay window. */
3951 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3954 static inline bool tcp_paws_discard(const struct sock
*sk
,
3955 const struct sk_buff
*skb
)
3957 const struct tcp_sock
*tp
= tcp_sk(sk
);
3959 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3960 !tcp_disordered_ack(sk
, skb
);
3963 /* Check segment sequence number for validity.
3965 * Segment controls are considered valid, if the segment
3966 * fits to the window after truncation to the window. Acceptability
3967 * of data (and SYN, FIN, of course) is checked separately.
3968 * See tcp_data_queue(), for example.
3970 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3971 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3972 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3973 * (borrowed from freebsd)
3976 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3978 return !before(end_seq
, tp
->rcv_wup
) &&
3979 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3982 /* When we get a reset we do this. */
3983 void tcp_reset(struct sock
*sk
)
3985 trace_tcp_receive_reset(sk
);
3987 /* We want the right error as BSD sees it (and indeed as we do). */
3988 switch (sk
->sk_state
) {
3990 sk
->sk_err
= ECONNREFUSED
;
3992 case TCP_CLOSE_WAIT
:
3998 sk
->sk_err
= ECONNRESET
;
4000 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4005 if (!sock_flag(sk
, SOCK_DEAD
))
4006 sk
->sk_error_report(sk
);
4010 * Process the FIN bit. This now behaves as it is supposed to work
4011 * and the FIN takes effect when it is validly part of sequence
4012 * space. Not before when we get holes.
4014 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4015 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4018 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4019 * close and we go into CLOSING (and later onto TIME-WAIT)
4021 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4023 void tcp_fin(struct sock
*sk
)
4025 struct tcp_sock
*tp
= tcp_sk(sk
);
4027 inet_csk_schedule_ack(sk
);
4029 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4030 sock_set_flag(sk
, SOCK_DONE
);
4032 switch (sk
->sk_state
) {
4034 case TCP_ESTABLISHED
:
4035 /* Move to CLOSE_WAIT */
4036 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4037 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4040 case TCP_CLOSE_WAIT
:
4042 /* Received a retransmission of the FIN, do
4047 /* RFC793: Remain in the LAST-ACK state. */
4051 /* This case occurs when a simultaneous close
4052 * happens, we must ack the received FIN and
4053 * enter the CLOSING state.
4056 tcp_set_state(sk
, TCP_CLOSING
);
4059 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4061 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4064 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4065 * cases we should never reach this piece of code.
4067 pr_err("%s: Impossible, sk->sk_state=%d\n",
4068 __func__
, sk
->sk_state
);
4072 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4073 * Probably, we should reset in this case. For now drop them.
4075 skb_rbtree_purge(&tp
->out_of_order_queue
);
4076 if (tcp_is_sack(tp
))
4077 tcp_sack_reset(&tp
->rx_opt
);
4080 if (!sock_flag(sk
, SOCK_DEAD
)) {
4081 sk
->sk_state_change(sk
);
4083 /* Do not send POLL_HUP for half duplex close. */
4084 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4085 sk
->sk_state
== TCP_CLOSE
)
4086 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4088 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4092 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4095 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4096 if (before(seq
, sp
->start_seq
))
4097 sp
->start_seq
= seq
;
4098 if (after(end_seq
, sp
->end_seq
))
4099 sp
->end_seq
= end_seq
;
4105 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4107 struct tcp_sock
*tp
= tcp_sk(sk
);
4109 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4112 if (before(seq
, tp
->rcv_nxt
))
4113 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4115 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4117 NET_INC_STATS(sock_net(sk
), mib_idx
);
4119 tp
->rx_opt
.dsack
= 1;
4120 tp
->duplicate_sack
[0].start_seq
= seq
;
4121 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4125 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4127 struct tcp_sock
*tp
= tcp_sk(sk
);
4129 if (!tp
->rx_opt
.dsack
)
4130 tcp_dsack_set(sk
, seq
, end_seq
);
4132 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4135 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4137 struct tcp_sock
*tp
= tcp_sk(sk
);
4139 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4140 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4141 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4142 tcp_enter_quickack_mode(sk
);
4144 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4145 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4147 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4148 end_seq
= tp
->rcv_nxt
;
4149 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4156 /* These routines update the SACK block as out-of-order packets arrive or
4157 * in-order packets close up the sequence space.
4159 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4162 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4163 struct tcp_sack_block
*swalk
= sp
+ 1;
4165 /* See if the recent change to the first SACK eats into
4166 * or hits the sequence space of other SACK blocks, if so coalesce.
4168 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4169 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4172 /* Zap SWALK, by moving every further SACK up by one slot.
4173 * Decrease num_sacks.
4175 tp
->rx_opt
.num_sacks
--;
4176 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4180 this_sack
++, swalk
++;
4184 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4186 struct tcp_sock
*tp
= tcp_sk(sk
);
4187 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4188 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4194 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4195 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4196 /* Rotate this_sack to the first one. */
4197 for (; this_sack
> 0; this_sack
--, sp
--)
4198 swap(*sp
, *(sp
- 1));
4200 tcp_sack_maybe_coalesce(tp
);
4205 /* Could not find an adjacent existing SACK, build a new one,
4206 * put it at the front, and shift everyone else down. We
4207 * always know there is at least one SACK present already here.
4209 * If the sack array is full, forget about the last one.
4211 if (this_sack
>= TCP_NUM_SACKS
) {
4213 tp
->rx_opt
.num_sacks
--;
4216 for (; this_sack
> 0; this_sack
--, sp
--)
4220 /* Build the new head SACK, and we're done. */
4221 sp
->start_seq
= seq
;
4222 sp
->end_seq
= end_seq
;
4223 tp
->rx_opt
.num_sacks
++;
4226 /* RCV.NXT advances, some SACKs should be eaten. */
4228 static void tcp_sack_remove(struct tcp_sock
*tp
)
4230 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4231 int num_sacks
= tp
->rx_opt
.num_sacks
;
4234 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4235 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4236 tp
->rx_opt
.num_sacks
= 0;
4240 for (this_sack
= 0; this_sack
< num_sacks
;) {
4241 /* Check if the start of the sack is covered by RCV.NXT. */
4242 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4245 /* RCV.NXT must cover all the block! */
4246 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4248 /* Zap this SACK, by moving forward any other SACKS. */
4249 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4250 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4257 tp
->rx_opt
.num_sacks
= num_sacks
;
4261 * tcp_try_coalesce - try to merge skb to prior one
4263 * @dest: destination queue
4265 * @from: buffer to add in queue
4266 * @fragstolen: pointer to boolean
4268 * Before queueing skb @from after @to, try to merge them
4269 * to reduce overall memory use and queue lengths, if cost is small.
4270 * Packets in ofo or receive queues can stay a long time.
4271 * Better try to coalesce them right now to avoid future collapses.
4272 * Returns true if caller should free @from instead of queueing it
4274 static bool tcp_try_coalesce(struct sock
*sk
,
4276 struct sk_buff
*from
,
4281 *fragstolen
= false;
4283 /* Its possible this segment overlaps with prior segment in queue */
4284 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4287 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4290 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4291 sk_mem_charge(sk
, delta
);
4292 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4293 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4294 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4295 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4297 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4298 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4299 to
->tstamp
= from
->tstamp
;
4305 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4307 sk_drops_add(sk
, skb
);
4311 /* This one checks to see if we can put data from the
4312 * out_of_order queue into the receive_queue.
4314 static void tcp_ofo_queue(struct sock
*sk
)
4316 struct tcp_sock
*tp
= tcp_sk(sk
);
4317 __u32 dsack_high
= tp
->rcv_nxt
;
4318 bool fin
, fragstolen
, eaten
;
4319 struct sk_buff
*skb
, *tail
;
4322 p
= rb_first(&tp
->out_of_order_queue
);
4325 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4328 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4329 __u32 dsack
= dsack_high
;
4330 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4331 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4332 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4335 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4337 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4338 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4342 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4343 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4344 TCP_SKB_CB(skb
)->end_seq
);
4346 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4347 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4348 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4349 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4351 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4353 kfree_skb_partial(skb
, fragstolen
);
4355 if (unlikely(fin
)) {
4357 /* tcp_fin() purges tp->out_of_order_queue,
4358 * so we must end this loop right now.
4365 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4366 static int tcp_prune_queue(struct sock
*sk
);
4368 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4371 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4372 !sk_rmem_schedule(sk
, skb
, size
)) {
4374 if (tcp_prune_queue(sk
) < 0)
4377 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4378 if (!tcp_prune_ofo_queue(sk
))
4385 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4387 struct tcp_sock
*tp
= tcp_sk(sk
);
4388 struct rb_node
**p
, *parent
;
4389 struct sk_buff
*skb1
;
4393 tcp_ecn_check_ce(tp
, skb
);
4395 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4396 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4401 /* Disable header prediction. */
4403 inet_csk_schedule_ack(sk
);
4405 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4406 seq
= TCP_SKB_CB(skb
)->seq
;
4407 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4408 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4409 tp
->rcv_nxt
, seq
, end_seq
);
4411 p
= &tp
->out_of_order_queue
.rb_node
;
4412 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4413 /* Initial out of order segment, build 1 SACK. */
4414 if (tcp_is_sack(tp
)) {
4415 tp
->rx_opt
.num_sacks
= 1;
4416 tp
->selective_acks
[0].start_seq
= seq
;
4417 tp
->selective_acks
[0].end_seq
= end_seq
;
4419 rb_link_node(&skb
->rbnode
, NULL
, p
);
4420 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4421 tp
->ooo_last_skb
= skb
;
4425 /* In the typical case, we are adding an skb to the end of the list.
4426 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4428 if (tcp_try_coalesce(sk
, tp
->ooo_last_skb
,
4429 skb
, &fragstolen
)) {
4431 tcp_grow_window(sk
, skb
);
4432 kfree_skb_partial(skb
, fragstolen
);
4436 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4437 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4438 parent
= &tp
->ooo_last_skb
->rbnode
;
4439 p
= &parent
->rb_right
;
4443 /* Find place to insert this segment. Handle overlaps on the way. */
4447 skb1
= rb_to_skb(parent
);
4448 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4449 p
= &parent
->rb_left
;
4452 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4453 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4454 /* All the bits are present. Drop. */
4455 NET_INC_STATS(sock_net(sk
),
4456 LINUX_MIB_TCPOFOMERGE
);
4459 tcp_dsack_set(sk
, seq
, end_seq
);
4462 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4463 /* Partial overlap. */
4464 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4466 /* skb's seq == skb1's seq and skb covers skb1.
4467 * Replace skb1 with skb.
4469 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4470 &tp
->out_of_order_queue
);
4471 tcp_dsack_extend(sk
,
4472 TCP_SKB_CB(skb1
)->seq
,
4473 TCP_SKB_CB(skb1
)->end_seq
);
4474 NET_INC_STATS(sock_net(sk
),
4475 LINUX_MIB_TCPOFOMERGE
);
4479 } else if (tcp_try_coalesce(sk
, skb1
,
4480 skb
, &fragstolen
)) {
4483 p
= &parent
->rb_right
;
4486 /* Insert segment into RB tree. */
4487 rb_link_node(&skb
->rbnode
, parent
, p
);
4488 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4491 /* Remove other segments covered by skb. */
4492 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
4493 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4495 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4496 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4500 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4501 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4502 TCP_SKB_CB(skb1
)->end_seq
);
4503 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4506 /* If there is no skb after us, we are the last_skb ! */
4508 tp
->ooo_last_skb
= skb
;
4511 if (tcp_is_sack(tp
))
4512 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4515 tcp_grow_window(sk
, skb
);
4517 skb_set_owner_r(skb
, sk
);
4521 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4525 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4527 __skb_pull(skb
, hdrlen
);
4529 tcp_try_coalesce(sk
, tail
,
4530 skb
, fragstolen
)) ? 1 : 0;
4531 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4533 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4534 skb_set_owner_r(skb
, sk
);
4539 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4541 struct sk_buff
*skb
;
4549 if (size
> PAGE_SIZE
) {
4550 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4552 data_len
= npages
<< PAGE_SHIFT
;
4553 size
= data_len
+ (size
& ~PAGE_MASK
);
4555 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4556 PAGE_ALLOC_COSTLY_ORDER
,
4557 &err
, sk
->sk_allocation
);
4561 skb_put(skb
, size
- data_len
);
4562 skb
->data_len
= data_len
;
4565 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4568 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4572 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4573 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4574 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4576 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4577 WARN_ON_ONCE(fragstolen
); /* should not happen */
4589 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4591 struct tcp_sock
*tp
= tcp_sk(sk
);
4595 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4600 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4602 tcp_ecn_accept_cwr(tp
, skb
);
4604 tp
->rx_opt
.dsack
= 0;
4606 /* Queue data for delivery to the user.
4607 * Packets in sequence go to the receive queue.
4608 * Out of sequence packets to the out_of_order_queue.
4610 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4611 if (tcp_receive_window(tp
) == 0)
4614 /* Ok. In sequence. In window. */
4616 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4617 sk_forced_mem_schedule(sk
, skb
->truesize
);
4618 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4621 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4622 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4624 tcp_event_data_recv(sk
, skb
);
4625 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4628 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4631 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4632 * gap in queue is filled.
4634 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4635 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4638 if (tp
->rx_opt
.num_sacks
)
4639 tcp_sack_remove(tp
);
4641 tcp_fast_path_check(sk
);
4644 kfree_skb_partial(skb
, fragstolen
);
4645 if (!sock_flag(sk
, SOCK_DEAD
))
4646 sk
->sk_data_ready(sk
);
4650 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4651 /* A retransmit, 2nd most common case. Force an immediate ack. */
4652 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4653 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4656 tcp_enter_quickack_mode(sk
);
4657 inet_csk_schedule_ack(sk
);
4663 /* Out of window. F.e. zero window probe. */
4664 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4667 tcp_enter_quickack_mode(sk
);
4669 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4670 /* Partial packet, seq < rcv_next < end_seq */
4671 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4672 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4673 TCP_SKB_CB(skb
)->end_seq
);
4675 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4677 /* If window is closed, drop tail of packet. But after
4678 * remembering D-SACK for its head made in previous line.
4680 if (!tcp_receive_window(tp
))
4685 tcp_data_queue_ofo(sk
, skb
);
4688 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4691 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4693 return skb_rb_next(skb
);
4696 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4697 struct sk_buff_head
*list
,
4698 struct rb_root
*root
)
4700 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4703 __skb_unlink(skb
, list
);
4705 rb_erase(&skb
->rbnode
, root
);
4708 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4713 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4714 void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4716 struct rb_node
**p
= &root
->rb_node
;
4717 struct rb_node
*parent
= NULL
;
4718 struct sk_buff
*skb1
;
4722 skb1
= rb_to_skb(parent
);
4723 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4724 p
= &parent
->rb_left
;
4726 p
= &parent
->rb_right
;
4728 rb_link_node(&skb
->rbnode
, parent
, p
);
4729 rb_insert_color(&skb
->rbnode
, root
);
4732 /* Collapse contiguous sequence of skbs head..tail with
4733 * sequence numbers start..end.
4735 * If tail is NULL, this means until the end of the queue.
4737 * Segments with FIN/SYN are not collapsed (only because this
4741 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4742 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4744 struct sk_buff
*skb
= head
, *n
;
4745 struct sk_buff_head tmp
;
4748 /* First, check that queue is collapsible and find
4749 * the point where collapsing can be useful.
4752 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4753 n
= tcp_skb_next(skb
, list
);
4755 /* No new bits? It is possible on ofo queue. */
4756 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4757 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4763 /* The first skb to collapse is:
4765 * - bloated or contains data before "start" or
4766 * overlaps to the next one.
4768 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4769 (tcp_win_from_space(sk
, skb
->truesize
) > skb
->len
||
4770 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4771 end_of_skbs
= false;
4775 if (n
&& n
!= tail
&&
4776 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4777 end_of_skbs
= false;
4781 /* Decided to skip this, advance start seq. */
4782 start
= TCP_SKB_CB(skb
)->end_seq
;
4785 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4788 __skb_queue_head_init(&tmp
);
4790 while (before(start
, end
)) {
4791 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4792 struct sk_buff
*nskb
;
4794 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4798 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4799 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4801 __skb_queue_before(list
, skb
, nskb
);
4803 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4804 skb_set_owner_r(nskb
, sk
);
4806 /* Copy data, releasing collapsed skbs. */
4808 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4809 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4813 size
= min(copy
, size
);
4814 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4816 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4820 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4821 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4824 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4830 skb_queue_walk_safe(&tmp
, skb
, n
)
4831 tcp_rbtree_insert(root
, skb
);
4834 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4835 * and tcp_collapse() them until all the queue is collapsed.
4837 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4839 struct tcp_sock
*tp
= tcp_sk(sk
);
4840 struct sk_buff
*skb
, *head
;
4843 skb
= skb_rb_first(&tp
->out_of_order_queue
);
4846 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
4849 start
= TCP_SKB_CB(skb
)->seq
;
4850 end
= TCP_SKB_CB(skb
)->end_seq
;
4852 for (head
= skb
;;) {
4853 skb
= skb_rb_next(skb
);
4855 /* Range is terminated when we see a gap or when
4856 * we are at the queue end.
4859 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4860 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4861 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4862 head
, skb
, start
, end
);
4866 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4867 start
= TCP_SKB_CB(skb
)->seq
;
4868 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4869 end
= TCP_SKB_CB(skb
)->end_seq
;
4874 * Clean the out-of-order queue to make room.
4875 * We drop high sequences packets to :
4876 * 1) Let a chance for holes to be filled.
4877 * 2) not add too big latencies if thousands of packets sit there.
4878 * (But if application shrinks SO_RCVBUF, we could still end up
4879 * freeing whole queue here)
4881 * Return true if queue has shrunk.
4883 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4885 struct tcp_sock
*tp
= tcp_sk(sk
);
4886 struct rb_node
*node
, *prev
;
4888 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4891 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4892 node
= &tp
->ooo_last_skb
->rbnode
;
4894 prev
= rb_prev(node
);
4895 rb_erase(node
, &tp
->out_of_order_queue
);
4896 tcp_drop(sk
, rb_to_skb(node
));
4898 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4899 !tcp_under_memory_pressure(sk
))
4903 tp
->ooo_last_skb
= rb_to_skb(prev
);
4905 /* Reset SACK state. A conforming SACK implementation will
4906 * do the same at a timeout based retransmit. When a connection
4907 * is in a sad state like this, we care only about integrity
4908 * of the connection not performance.
4910 if (tp
->rx_opt
.sack_ok
)
4911 tcp_sack_reset(&tp
->rx_opt
);
4915 /* Reduce allocated memory if we can, trying to get
4916 * the socket within its memory limits again.
4918 * Return less than zero if we should start dropping frames
4919 * until the socket owning process reads some of the data
4920 * to stabilize the situation.
4922 static int tcp_prune_queue(struct sock
*sk
)
4924 struct tcp_sock
*tp
= tcp_sk(sk
);
4926 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4928 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4930 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4931 tcp_clamp_window(sk
);
4932 else if (tcp_under_memory_pressure(sk
))
4933 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4935 tcp_collapse_ofo_queue(sk
);
4936 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4937 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
4938 skb_peek(&sk
->sk_receive_queue
),
4940 tp
->copied_seq
, tp
->rcv_nxt
);
4943 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4946 /* Collapsing did not help, destructive actions follow.
4947 * This must not ever occur. */
4949 tcp_prune_ofo_queue(sk
);
4951 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4954 /* If we are really being abused, tell the caller to silently
4955 * drop receive data on the floor. It will get retransmitted
4956 * and hopefully then we'll have sufficient space.
4958 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4960 /* Massive buffer overcommit. */
4965 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4967 const struct tcp_sock
*tp
= tcp_sk(sk
);
4969 /* If the user specified a specific send buffer setting, do
4972 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4975 /* If we are under global TCP memory pressure, do not expand. */
4976 if (tcp_under_memory_pressure(sk
))
4979 /* If we are under soft global TCP memory pressure, do not expand. */
4980 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4983 /* If we filled the congestion window, do not expand. */
4984 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
4990 /* When incoming ACK allowed to free some skb from write_queue,
4991 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4992 * on the exit from tcp input handler.
4994 * PROBLEM: sndbuf expansion does not work well with largesend.
4996 static void tcp_new_space(struct sock
*sk
)
4998 struct tcp_sock
*tp
= tcp_sk(sk
);
5000 if (tcp_should_expand_sndbuf(sk
)) {
5001 tcp_sndbuf_expand(sk
);
5002 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5005 sk
->sk_write_space(sk
);
5008 static void tcp_check_space(struct sock
*sk
)
5010 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5011 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5012 /* pairs with tcp_poll() */
5014 if (sk
->sk_socket
&&
5015 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5017 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5018 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5023 static inline void tcp_data_snd_check(struct sock
*sk
)
5025 tcp_push_pending_frames(sk
);
5026 tcp_check_space(sk
);
5030 * Check if sending an ack is needed.
5032 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5034 struct tcp_sock
*tp
= tcp_sk(sk
);
5036 /* More than one full frame received... */
5037 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5038 /* ... and right edge of window advances far enough.
5039 * (tcp_recvmsg() will send ACK otherwise). Or...
5041 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5042 /* We ACK each frame or... */
5043 tcp_in_quickack_mode(sk
) ||
5044 /* We have out of order data. */
5045 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5046 /* Then ack it now */
5049 /* Else, send delayed ack. */
5050 tcp_send_delayed_ack(sk
);
5054 static inline void tcp_ack_snd_check(struct sock
*sk
)
5056 if (!inet_csk_ack_scheduled(sk
)) {
5057 /* We sent a data segment already. */
5060 __tcp_ack_snd_check(sk
, 1);
5064 * This routine is only called when we have urgent data
5065 * signaled. Its the 'slow' part of tcp_urg. It could be
5066 * moved inline now as tcp_urg is only called from one
5067 * place. We handle URGent data wrong. We have to - as
5068 * BSD still doesn't use the correction from RFC961.
5069 * For 1003.1g we should support a new option TCP_STDURG to permit
5070 * either form (or just set the sysctl tcp_stdurg).
5073 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5075 struct tcp_sock
*tp
= tcp_sk(sk
);
5076 u32 ptr
= ntohs(th
->urg_ptr
);
5078 if (ptr
&& !sock_net(sk
)->ipv4
.sysctl_tcp_stdurg
)
5080 ptr
+= ntohl(th
->seq
);
5082 /* Ignore urgent data that we've already seen and read. */
5083 if (after(tp
->copied_seq
, ptr
))
5086 /* Do not replay urg ptr.
5088 * NOTE: interesting situation not covered by specs.
5089 * Misbehaving sender may send urg ptr, pointing to segment,
5090 * which we already have in ofo queue. We are not able to fetch
5091 * such data and will stay in TCP_URG_NOTYET until will be eaten
5092 * by recvmsg(). Seems, we are not obliged to handle such wicked
5093 * situations. But it is worth to think about possibility of some
5094 * DoSes using some hypothetical application level deadlock.
5096 if (before(ptr
, tp
->rcv_nxt
))
5099 /* Do we already have a newer (or duplicate) urgent pointer? */
5100 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5103 /* Tell the world about our new urgent pointer. */
5106 /* We may be adding urgent data when the last byte read was
5107 * urgent. To do this requires some care. We cannot just ignore
5108 * tp->copied_seq since we would read the last urgent byte again
5109 * as data, nor can we alter copied_seq until this data arrives
5110 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5112 * NOTE. Double Dutch. Rendering to plain English: author of comment
5113 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5114 * and expect that both A and B disappear from stream. This is _wrong_.
5115 * Though this happens in BSD with high probability, this is occasional.
5116 * Any application relying on this is buggy. Note also, that fix "works"
5117 * only in this artificial test. Insert some normal data between A and B and we will
5118 * decline of BSD again. Verdict: it is better to remove to trap
5121 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5122 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5123 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5125 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5126 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5131 tp
->urg_data
= TCP_URG_NOTYET
;
5134 /* Disable header prediction. */
5138 /* This is the 'fast' part of urgent handling. */
5139 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5141 struct tcp_sock
*tp
= tcp_sk(sk
);
5143 /* Check if we get a new urgent pointer - normally not. */
5145 tcp_check_urg(sk
, th
);
5147 /* Do we wait for any urgent data? - normally not... */
5148 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5149 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5152 /* Is the urgent pointer pointing into this packet? */
5153 if (ptr
< skb
->len
) {
5155 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5157 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5158 if (!sock_flag(sk
, SOCK_DEAD
))
5159 sk
->sk_data_ready(sk
);
5164 /* Accept RST for rcv_nxt - 1 after a FIN.
5165 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5166 * FIN is sent followed by a RST packet. The RST is sent with the same
5167 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5168 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5169 * ACKs on the closed socket. In addition middleboxes can drop either the
5170 * challenge ACK or a subsequent RST.
5172 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5174 struct tcp_sock
*tp
= tcp_sk(sk
);
5176 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5177 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5181 /* Does PAWS and seqno based validation of an incoming segment, flags will
5182 * play significant role here.
5184 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5185 const struct tcphdr
*th
, int syn_inerr
)
5187 struct tcp_sock
*tp
= tcp_sk(sk
);
5188 bool rst_seq_match
= false;
5190 /* RFC1323: H1. Apply PAWS check first. */
5191 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5192 tp
->rx_opt
.saw_tstamp
&&
5193 tcp_paws_discard(sk
, skb
)) {
5195 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5196 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5197 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5198 &tp
->last_oow_ack_time
))
5199 tcp_send_dupack(sk
, skb
);
5202 /* Reset is accepted even if it did not pass PAWS. */
5205 /* Step 1: check sequence number */
5206 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5207 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5208 * (RST) segments are validated by checking their SEQ-fields."
5209 * And page 69: "If an incoming segment is not acceptable,
5210 * an acknowledgment should be sent in reply (unless the RST
5211 * bit is set, if so drop the segment and return)".
5216 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5217 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5218 &tp
->last_oow_ack_time
))
5219 tcp_send_dupack(sk
, skb
);
5220 } else if (tcp_reset_check(sk
, skb
)) {
5226 /* Step 2: check RST bit */
5228 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5229 * FIN and SACK too if available):
5230 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5231 * the right-most SACK block,
5233 * RESET the connection
5235 * Send a challenge ACK
5237 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5238 tcp_reset_check(sk
, skb
)) {
5239 rst_seq_match
= true;
5240 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5241 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5242 int max_sack
= sp
[0].end_seq
;
5245 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5247 max_sack
= after(sp
[this_sack
].end_seq
,
5249 sp
[this_sack
].end_seq
: max_sack
;
5252 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5253 rst_seq_match
= true;
5259 /* Disable TFO if RST is out-of-order
5260 * and no data has been received
5261 * for current active TFO socket
5263 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5264 sk
->sk_state
== TCP_ESTABLISHED
)
5265 tcp_fastopen_active_disable(sk
);
5266 tcp_send_challenge_ack(sk
, skb
);
5271 /* step 3: check security and precedence [ignored] */
5273 /* step 4: Check for a SYN
5274 * RFC 5961 4.2 : Send a challenge ack
5279 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5280 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5281 tcp_send_challenge_ack(sk
, skb
);
5293 * TCP receive function for the ESTABLISHED state.
5295 * It is split into a fast path and a slow path. The fast path is
5297 * - A zero window was announced from us - zero window probing
5298 * is only handled properly in the slow path.
5299 * - Out of order segments arrived.
5300 * - Urgent data is expected.
5301 * - There is no buffer space left
5302 * - Unexpected TCP flags/window values/header lengths are received
5303 * (detected by checking the TCP header against pred_flags)
5304 * - Data is sent in both directions. Fast path only supports pure senders
5305 * or pure receivers (this means either the sequence number or the ack
5306 * value must stay constant)
5307 * - Unexpected TCP option.
5309 * When these conditions are not satisfied it drops into a standard
5310 * receive procedure patterned after RFC793 to handle all cases.
5311 * The first three cases are guaranteed by proper pred_flags setting,
5312 * the rest is checked inline. Fast processing is turned on in
5313 * tcp_data_queue when everything is OK.
5315 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5316 const struct tcphdr
*th
)
5318 unsigned int len
= skb
->len
;
5319 struct tcp_sock
*tp
= tcp_sk(sk
);
5321 /* TCP congestion window tracking */
5322 trace_tcp_probe(sk
, skb
);
5324 tcp_mstamp_refresh(tp
);
5325 if (unlikely(!sk
->sk_rx_dst
))
5326 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5328 * Header prediction.
5329 * The code loosely follows the one in the famous
5330 * "30 instruction TCP receive" Van Jacobson mail.
5332 * Van's trick is to deposit buffers into socket queue
5333 * on a device interrupt, to call tcp_recv function
5334 * on the receive process context and checksum and copy
5335 * the buffer to user space. smart...
5337 * Our current scheme is not silly either but we take the
5338 * extra cost of the net_bh soft interrupt processing...
5339 * We do checksum and copy also but from device to kernel.
5342 tp
->rx_opt
.saw_tstamp
= 0;
5344 /* pred_flags is 0xS?10 << 16 + snd_wnd
5345 * if header_prediction is to be made
5346 * 'S' will always be tp->tcp_header_len >> 2
5347 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5348 * turn it off (when there are holes in the receive
5349 * space for instance)
5350 * PSH flag is ignored.
5353 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5354 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5355 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5356 int tcp_header_len
= tp
->tcp_header_len
;
5358 /* Timestamp header prediction: tcp_header_len
5359 * is automatically equal to th->doff*4 due to pred_flags
5363 /* Check timestamp */
5364 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5365 /* No? Slow path! */
5366 if (!tcp_parse_aligned_timestamp(tp
, th
))
5369 /* If PAWS failed, check it more carefully in slow path */
5370 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5373 /* DO NOT update ts_recent here, if checksum fails
5374 * and timestamp was corrupted part, it will result
5375 * in a hung connection since we will drop all
5376 * future packets due to the PAWS test.
5380 if (len
<= tcp_header_len
) {
5381 /* Bulk data transfer: sender */
5382 if (len
== tcp_header_len
) {
5383 /* Predicted packet is in window by definition.
5384 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5385 * Hence, check seq<=rcv_wup reduces to:
5387 if (tcp_header_len
==
5388 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5389 tp
->rcv_nxt
== tp
->rcv_wup
)
5390 tcp_store_ts_recent(tp
);
5392 /* We know that such packets are checksummed
5395 tcp_ack(sk
, skb
, 0);
5397 tcp_data_snd_check(sk
);
5399 } else { /* Header too small */
5400 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5405 bool fragstolen
= false;
5407 if (tcp_checksum_complete(skb
))
5410 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5413 /* Predicted packet is in window by definition.
5414 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5415 * Hence, check seq<=rcv_wup reduces to:
5417 if (tcp_header_len
==
5418 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5419 tp
->rcv_nxt
== tp
->rcv_wup
)
5420 tcp_store_ts_recent(tp
);
5422 tcp_rcv_rtt_measure_ts(sk
, skb
);
5424 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5426 /* Bulk data transfer: receiver */
5427 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5430 tcp_event_data_recv(sk
, skb
);
5432 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5433 /* Well, only one small jumplet in fast path... */
5434 tcp_ack(sk
, skb
, FLAG_DATA
);
5435 tcp_data_snd_check(sk
);
5436 if (!inet_csk_ack_scheduled(sk
))
5440 __tcp_ack_snd_check(sk
, 0);
5443 kfree_skb_partial(skb
, fragstolen
);
5444 sk
->sk_data_ready(sk
);
5450 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5453 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5457 * Standard slow path.
5460 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5464 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5467 tcp_rcv_rtt_measure_ts(sk
, skb
);
5469 /* Process urgent data. */
5470 tcp_urg(sk
, skb
, th
);
5472 /* step 7: process the segment text */
5473 tcp_data_queue(sk
, skb
);
5475 tcp_data_snd_check(sk
);
5476 tcp_ack_snd_check(sk
);
5480 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5481 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5486 EXPORT_SYMBOL(tcp_rcv_established
);
5488 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5490 struct tcp_sock
*tp
= tcp_sk(sk
);
5491 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5493 tcp_set_state(sk
, TCP_ESTABLISHED
);
5494 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
5497 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5498 security_inet_conn_established(sk
, skb
);
5501 tcp_init_transfer(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
);
5503 /* Prevent spurious tcp_cwnd_restart() on first data
5506 tp
->lsndtime
= tcp_jiffies32
;
5508 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5509 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5511 if (!tp
->rx_opt
.snd_wscale
)
5512 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5517 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5518 struct tcp_fastopen_cookie
*cookie
)
5520 struct tcp_sock
*tp
= tcp_sk(sk
);
5521 struct sk_buff
*data
= tp
->syn_data
? tcp_rtx_queue_head(sk
) : NULL
;
5522 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5523 bool syn_drop
= false;
5525 if (mss
== tp
->rx_opt
.user_mss
) {
5526 struct tcp_options_received opt
;
5528 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5529 tcp_clear_options(&opt
);
5530 opt
.user_mss
= opt
.mss_clamp
= 0;
5531 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
5532 mss
= opt
.mss_clamp
;
5535 if (!tp
->syn_fastopen
) {
5536 /* Ignore an unsolicited cookie */
5538 } else if (tp
->total_retrans
) {
5539 /* SYN timed out and the SYN-ACK neither has a cookie nor
5540 * acknowledges data. Presumably the remote received only
5541 * the retransmitted (regular) SYNs: either the original
5542 * SYN-data or the corresponding SYN-ACK was dropped.
5544 syn_drop
= (cookie
->len
< 0 && data
);
5545 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5546 /* We requested a cookie but didn't get it. If we did not use
5547 * the (old) exp opt format then try so next time (try_exp=1).
5548 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5550 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5553 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5555 if (data
) { /* Retransmit unacked data in SYN */
5556 skb_rbtree_walk_from(data
) {
5557 if (__tcp_retransmit_skb(sk
, data
, 1))
5561 NET_INC_STATS(sock_net(sk
),
5562 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5565 tp
->syn_data_acked
= tp
->syn_data
;
5566 if (tp
->syn_data_acked
)
5567 NET_INC_STATS(sock_net(sk
),
5568 LINUX_MIB_TCPFASTOPENACTIVE
);
5570 tcp_fastopen_add_skb(sk
, synack
);
5575 static void smc_check_reset_syn(struct tcp_sock
*tp
)
5577 #if IS_ENABLED(CONFIG_SMC)
5578 if (static_branch_unlikely(&tcp_have_smc
)) {
5579 if (tp
->syn_smc
&& !tp
->rx_opt
.smc_ok
)
5585 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5586 const struct tcphdr
*th
)
5588 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5589 struct tcp_sock
*tp
= tcp_sk(sk
);
5590 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5591 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5594 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
5595 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5596 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5600 * "If the state is SYN-SENT then
5601 * first check the ACK bit
5602 * If the ACK bit is set
5603 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5604 * a reset (unless the RST bit is set, if so drop
5605 * the segment and return)"
5607 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5608 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5609 goto reset_and_undo
;
5611 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5612 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5613 tcp_time_stamp(tp
))) {
5614 NET_INC_STATS(sock_net(sk
),
5615 LINUX_MIB_PAWSACTIVEREJECTED
);
5616 goto reset_and_undo
;
5619 /* Now ACK is acceptable.
5621 * "If the RST bit is set
5622 * If the ACK was acceptable then signal the user "error:
5623 * connection reset", drop the segment, enter CLOSED state,
5624 * delete TCB, and return."
5633 * "fifth, if neither of the SYN or RST bits is set then
5634 * drop the segment and return."
5640 goto discard_and_undo
;
5643 * "If the SYN bit is on ...
5644 * are acceptable then ...
5645 * (our SYN has been ACKed), change the connection
5646 * state to ESTABLISHED..."
5649 tcp_ecn_rcv_synack(tp
, th
);
5651 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5652 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5654 /* Ok.. it's good. Set up sequence numbers and
5655 * move to established.
5657 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5658 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5660 /* RFC1323: The window in SYN & SYN/ACK segments is
5663 tp
->snd_wnd
= ntohs(th
->window
);
5665 if (!tp
->rx_opt
.wscale_ok
) {
5666 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5667 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5670 if (tp
->rx_opt
.saw_tstamp
) {
5671 tp
->rx_opt
.tstamp_ok
= 1;
5672 tp
->tcp_header_len
=
5673 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5674 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5675 tcp_store_ts_recent(tp
);
5677 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5680 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5681 tcp_initialize_rcv_mss(sk
);
5683 /* Remember, tcp_poll() does not lock socket!
5684 * Change state from SYN-SENT only after copied_seq
5685 * is initialized. */
5686 tp
->copied_seq
= tp
->rcv_nxt
;
5688 smc_check_reset_syn(tp
);
5692 tcp_finish_connect(sk
, skb
);
5694 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
5695 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
5697 if (!sock_flag(sk
, SOCK_DEAD
)) {
5698 sk
->sk_state_change(sk
);
5699 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5703 if (sk
->sk_write_pending
||
5704 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5705 icsk
->icsk_ack
.pingpong
) {
5706 /* Save one ACK. Data will be ready after
5707 * several ticks, if write_pending is set.
5709 * It may be deleted, but with this feature tcpdumps
5710 * look so _wonderfully_ clever, that I was not able
5711 * to stand against the temptation 8) --ANK
5713 inet_csk_schedule_ack(sk
);
5714 tcp_enter_quickack_mode(sk
);
5715 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5716 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5727 /* No ACK in the segment */
5731 * "If the RST bit is set
5733 * Otherwise (no ACK) drop the segment and return."
5736 goto discard_and_undo
;
5740 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5741 tcp_paws_reject(&tp
->rx_opt
, 0))
5742 goto discard_and_undo
;
5745 /* We see SYN without ACK. It is attempt of
5746 * simultaneous connect with crossed SYNs.
5747 * Particularly, it can be connect to self.
5749 tcp_set_state(sk
, TCP_SYN_RECV
);
5751 if (tp
->rx_opt
.saw_tstamp
) {
5752 tp
->rx_opt
.tstamp_ok
= 1;
5753 tcp_store_ts_recent(tp
);
5754 tp
->tcp_header_len
=
5755 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5757 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5760 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5761 tp
->copied_seq
= tp
->rcv_nxt
;
5762 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5764 /* RFC1323: The window in SYN & SYN/ACK segments is
5767 tp
->snd_wnd
= ntohs(th
->window
);
5768 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5769 tp
->max_window
= tp
->snd_wnd
;
5771 tcp_ecn_rcv_syn(tp
, th
);
5774 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5775 tcp_initialize_rcv_mss(sk
);
5777 tcp_send_synack(sk
);
5779 /* Note, we could accept data and URG from this segment.
5780 * There are no obstacles to make this (except that we must
5781 * either change tcp_recvmsg() to prevent it from returning data
5782 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5784 * However, if we ignore data in ACKless segments sometimes,
5785 * we have no reasons to accept it sometimes.
5786 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5787 * is not flawless. So, discard packet for sanity.
5788 * Uncomment this return to process the data.
5795 /* "fifth, if neither of the SYN or RST bits is set then
5796 * drop the segment and return."
5800 tcp_clear_options(&tp
->rx_opt
);
5801 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5805 tcp_clear_options(&tp
->rx_opt
);
5806 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5811 * This function implements the receiving procedure of RFC 793 for
5812 * all states except ESTABLISHED and TIME_WAIT.
5813 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5814 * address independent.
5817 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5819 struct tcp_sock
*tp
= tcp_sk(sk
);
5820 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5821 const struct tcphdr
*th
= tcp_hdr(skb
);
5822 struct request_sock
*req
;
5826 switch (sk
->sk_state
) {
5840 /* It is possible that we process SYN packets from backlog,
5841 * so we need to make sure to disable BH right there.
5844 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
5855 tp
->rx_opt
.saw_tstamp
= 0;
5856 tcp_mstamp_refresh(tp
);
5857 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5861 /* Do step6 onward by hand. */
5862 tcp_urg(sk
, skb
, th
);
5864 tcp_data_snd_check(sk
);
5868 tcp_mstamp_refresh(tp
);
5869 tp
->rx_opt
.saw_tstamp
= 0;
5870 req
= tp
->fastopen_rsk
;
5872 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5873 sk
->sk_state
!= TCP_FIN_WAIT1
);
5875 if (!tcp_check_req(sk
, skb
, req
, true))
5879 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5882 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5885 /* step 5: check the ACK field */
5886 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5887 FLAG_UPDATE_TS_RECENT
|
5888 FLAG_NO_CHALLENGE_ACK
) > 0;
5891 if (sk
->sk_state
== TCP_SYN_RECV
)
5892 return 1; /* send one RST */
5893 tcp_send_challenge_ack(sk
, skb
);
5896 switch (sk
->sk_state
) {
5899 tcp_synack_rtt_meas(sk
, req
);
5901 /* Once we leave TCP_SYN_RECV, we no longer need req
5905 inet_csk(sk
)->icsk_retransmits
= 0;
5906 reqsk_fastopen_remove(sk
, req
, false);
5907 /* Re-arm the timer because data may have been sent out.
5908 * This is similar to the regular data transmission case
5909 * when new data has just been ack'ed.
5911 * (TFO) - we could try to be more aggressive and
5912 * retransmitting any data sooner based on when they
5917 tcp_init_transfer(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
);
5918 tp
->copied_seq
= tp
->rcv_nxt
;
5921 tcp_set_state(sk
, TCP_ESTABLISHED
);
5922 sk
->sk_state_change(sk
);
5924 /* Note, that this wakeup is only for marginal crossed SYN case.
5925 * Passively open sockets are not waked up, because
5926 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5929 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5931 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5932 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5933 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5935 if (tp
->rx_opt
.tstamp_ok
)
5936 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5938 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
5939 tcp_update_pacing_rate(sk
);
5941 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5942 tp
->lsndtime
= tcp_jiffies32
;
5944 tcp_initialize_rcv_mss(sk
);
5945 tcp_fast_path_on(tp
);
5948 case TCP_FIN_WAIT1
: {
5951 /* If we enter the TCP_FIN_WAIT1 state and we are a
5952 * Fast Open socket and this is the first acceptable
5953 * ACK we have received, this would have acknowledged
5954 * our SYNACK so stop the SYNACK timer.
5957 /* We no longer need the request sock. */
5958 reqsk_fastopen_remove(sk
, req
, false);
5961 if (tp
->snd_una
!= tp
->write_seq
)
5964 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5965 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5969 if (!sock_flag(sk
, SOCK_DEAD
)) {
5970 /* Wake up lingering close() */
5971 sk
->sk_state_change(sk
);
5975 if (tp
->linger2
< 0) {
5977 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5980 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5981 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5982 /* Receive out of order FIN after close() */
5983 if (tp
->syn_fastopen
&& th
->fin
)
5984 tcp_fastopen_active_disable(sk
);
5986 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5990 tmo
= tcp_fin_time(sk
);
5991 if (tmo
> TCP_TIMEWAIT_LEN
) {
5992 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5993 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5994 /* Bad case. We could lose such FIN otherwise.
5995 * It is not a big problem, but it looks confusing
5996 * and not so rare event. We still can lose it now,
5997 * if it spins in bh_lock_sock(), but it is really
6000 inet_csk_reset_keepalive_timer(sk
, tmo
);
6002 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6009 if (tp
->snd_una
== tp
->write_seq
) {
6010 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6016 if (tp
->snd_una
== tp
->write_seq
) {
6017 tcp_update_metrics(sk
);
6024 /* step 6: check the URG bit */
6025 tcp_urg(sk
, skb
, th
);
6027 /* step 7: process the segment text */
6028 switch (sk
->sk_state
) {
6029 case TCP_CLOSE_WAIT
:
6032 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6037 /* RFC 793 says to queue data in these states,
6038 * RFC 1122 says we MUST send a reset.
6039 * BSD 4.4 also does reset.
6041 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6042 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6043 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6044 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6050 case TCP_ESTABLISHED
:
6051 tcp_data_queue(sk
, skb
);
6056 /* tcp_data could move socket to TIME-WAIT */
6057 if (sk
->sk_state
!= TCP_CLOSE
) {
6058 tcp_data_snd_check(sk
);
6059 tcp_ack_snd_check(sk
);
6068 EXPORT_SYMBOL(tcp_rcv_state_process
);
6070 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6072 struct inet_request_sock
*ireq
= inet_rsk(req
);
6074 if (family
== AF_INET
)
6075 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6076 &ireq
->ir_rmt_addr
, port
);
6077 #if IS_ENABLED(CONFIG_IPV6)
6078 else if (family
== AF_INET6
)
6079 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6080 &ireq
->ir_v6_rmt_addr
, port
);
6084 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6086 * If we receive a SYN packet with these bits set, it means a
6087 * network is playing bad games with TOS bits. In order to
6088 * avoid possible false congestion notifications, we disable
6089 * TCP ECN negotiation.
6091 * Exception: tcp_ca wants ECN. This is required for DCTCP
6092 * congestion control: Linux DCTCP asserts ECT on all packets,
6093 * including SYN, which is most optimal solution; however,
6094 * others, such as FreeBSD do not.
6096 static void tcp_ecn_create_request(struct request_sock
*req
,
6097 const struct sk_buff
*skb
,
6098 const struct sock
*listen_sk
,
6099 const struct dst_entry
*dst
)
6101 const struct tcphdr
*th
= tcp_hdr(skb
);
6102 const struct net
*net
= sock_net(listen_sk
);
6103 bool th_ecn
= th
->ece
&& th
->cwr
;
6110 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6111 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6112 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6114 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6115 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
6116 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
6117 inet_rsk(req
)->ecn_ok
= 1;
6120 static void tcp_openreq_init(struct request_sock
*req
,
6121 const struct tcp_options_received
*rx_opt
,
6122 struct sk_buff
*skb
, const struct sock
*sk
)
6124 struct inet_request_sock
*ireq
= inet_rsk(req
);
6126 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6128 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6129 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6130 tcp_rsk(req
)->snt_synack
= tcp_clock_us();
6131 tcp_rsk(req
)->last_oow_ack_time
= 0;
6132 req
->mss
= rx_opt
->mss_clamp
;
6133 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6134 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6135 ireq
->sack_ok
= rx_opt
->sack_ok
;
6136 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6137 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6140 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6141 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6142 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6143 #if IS_ENABLED(CONFIG_SMC)
6144 ireq
->smc_ok
= rx_opt
->smc_ok
;
6148 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6149 struct sock
*sk_listener
,
6150 bool attach_listener
)
6152 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6156 struct inet_request_sock
*ireq
= inet_rsk(req
);
6158 ireq
->ireq_opt
= NULL
;
6159 #if IS_ENABLED(CONFIG_IPV6)
6160 ireq
->pktopts
= NULL
;
6162 atomic64_set(&ireq
->ir_cookie
, 0);
6163 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6164 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6165 ireq
->ireq_family
= sk_listener
->sk_family
;
6170 EXPORT_SYMBOL(inet_reqsk_alloc
);
6173 * Return true if a syncookie should be sent
6175 static bool tcp_syn_flood_action(const struct sock
*sk
,
6176 const struct sk_buff
*skb
,
6179 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6180 const char *msg
= "Dropping request";
6181 bool want_cookie
= false;
6182 struct net
*net
= sock_net(sk
);
6184 #ifdef CONFIG_SYN_COOKIES
6185 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6186 msg
= "Sending cookies";
6188 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6191 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6193 if (!queue
->synflood_warned
&&
6194 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6195 xchg(&queue
->synflood_warned
, 1) == 0)
6196 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6197 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6202 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6203 struct request_sock
*req
,
6204 const struct sk_buff
*skb
)
6206 if (tcp_sk(sk
)->save_syn
) {
6207 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6210 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6213 memcpy(©
[1], skb_network_header(skb
), len
);
6214 req
->saved_syn
= copy
;
6219 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6220 const struct tcp_request_sock_ops
*af_ops
,
6221 struct sock
*sk
, struct sk_buff
*skb
)
6223 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6224 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6225 struct tcp_options_received tmp_opt
;
6226 struct tcp_sock
*tp
= tcp_sk(sk
);
6227 struct net
*net
= sock_net(sk
);
6228 struct sock
*fastopen_sk
= NULL
;
6229 struct request_sock
*req
;
6230 bool want_cookie
= false;
6231 struct dst_entry
*dst
;
6234 /* TW buckets are converted to open requests without
6235 * limitations, they conserve resources and peer is
6236 * evidently real one.
6238 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6239 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6240 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6245 if (sk_acceptq_is_full(sk
)) {
6246 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6250 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6254 tcp_rsk(req
)->af_specific
= af_ops
;
6255 tcp_rsk(req
)->ts_off
= 0;
6257 tcp_clear_options(&tmp_opt
);
6258 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6259 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6260 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
6261 want_cookie
? NULL
: &foc
);
6263 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6264 tcp_clear_options(&tmp_opt
);
6266 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6267 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6268 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6270 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6271 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6273 af_ops
->init_req(req
, sk
, skb
);
6275 if (security_inet_conn_request(sk
, skb
, req
))
6278 if (tmp_opt
.tstamp_ok
)
6279 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
6281 dst
= af_ops
->route_req(sk
, &fl
, req
);
6285 if (!want_cookie
&& !isn
) {
6286 /* Kill the following clause, if you dislike this way. */
6287 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6288 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6289 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6290 !tcp_peer_is_proven(req
, dst
)) {
6291 /* Without syncookies last quarter of
6292 * backlog is filled with destinations,
6293 * proven to be alive.
6294 * It means that we continue to communicate
6295 * to destinations, already remembered
6296 * to the moment of synflood.
6298 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6300 goto drop_and_release
;
6303 isn
= af_ops
->init_seq(skb
);
6306 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6309 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6310 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6311 if (!tmp_opt
.tstamp_ok
)
6312 inet_rsk(req
)->ecn_ok
= 0;
6315 tcp_rsk(req
)->snt_isn
= isn
;
6316 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6317 tcp_openreq_init_rwin(req
, sk
, dst
);
6319 tcp_reqsk_record_syn(sk
, req
, skb
);
6320 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6323 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6324 &foc
, TCP_SYNACK_FASTOPEN
);
6325 /* Add the child socket directly into the accept queue */
6326 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6327 sk
->sk_data_ready(sk
);
6328 bh_unlock_sock(fastopen_sk
);
6329 sock_put(fastopen_sk
);
6331 tcp_rsk(req
)->tfo_listener
= false;
6333 inet_csk_reqsk_queue_hash_add(sk
, req
,
6334 tcp_timeout_init((struct sock
*)req
));
6335 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6336 !want_cookie
? TCP_SYNACK_NORMAL
:
6354 EXPORT_SYMBOL(tcp_conn_request
);