ARM: mvebu: use new bindings for existing crypto devices
[linux/fpc-iii.git] / fs / ext4 / indirect.c
blob2468261748b2c53a7ee5ebafadc388a8bb2835ad
1 /*
2 * linux/fs/ext4/indirect.c
4 * from
6 * linux/fs/ext4/inode.c
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
13 * from
15 * linux/fs/minix/inode.c
17 * Copyright (C) 1991, 1992 Linus Torvalds
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 #include <linux/dax.h>
26 #include <linux/uio.h>
28 #include <trace/events/ext4.h>
30 typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34 } Indirect;
36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 p->key = *(p->p = v);
39 p->bh = bh;
42 /**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
73 static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
143 static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
150 int ret = -EIO;
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
161 goto failure;
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
181 return NULL;
183 failure:
184 *err = ret;
185 no_block:
186 return p;
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
207 * Caller must make sure that @ind is valid and will stay that way.
209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
229 return ext4_inode_to_goal_block(inode);
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
246 ext4_fsblk_t goal;
249 * XXX need to get goal block from mballoc's data structures
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
272 unsigned int count = 0;
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
292 return count;
296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
322 static int ext4_alloc_branch(handle_t *handle,
323 struct ext4_allocation_request *ar,
324 int indirect_blks, ext4_lblk_t *offsets,
325 Indirect *branch)
327 struct buffer_head * bh;
328 ext4_fsblk_t b, new_blocks[4];
329 __le32 *p;
330 int i, j, err, len = 1;
332 for (i = 0; i <= indirect_blks; i++) {
333 if (i == indirect_blks) {
334 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
335 } else
336 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
337 ar->inode, ar->goal,
338 ar->flags & EXT4_MB_DELALLOC_RESERVED,
339 NULL, &err);
340 if (err) {
341 i--;
342 goto failed;
344 branch[i].key = cpu_to_le32(new_blocks[i]);
345 if (i == 0)
346 continue;
348 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
349 if (unlikely(!bh)) {
350 err = -ENOMEM;
351 goto failed;
353 lock_buffer(bh);
354 BUFFER_TRACE(bh, "call get_create_access");
355 err = ext4_journal_get_create_access(handle, bh);
356 if (err) {
357 unlock_buffer(bh);
358 goto failed;
361 memset(bh->b_data, 0, bh->b_size);
362 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
363 b = new_blocks[i];
365 if (i == indirect_blks)
366 len = ar->len;
367 for (j = 0; j < len; j++)
368 *p++ = cpu_to_le32(b++);
370 BUFFER_TRACE(bh, "marking uptodate");
371 set_buffer_uptodate(bh);
372 unlock_buffer(bh);
374 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
375 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
376 if (err)
377 goto failed;
379 return 0;
380 failed:
381 for (; i >= 0; i--) {
383 * We want to ext4_forget() only freshly allocated indirect
384 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and
385 * buffer at branch[0].bh is indirect block / inode already
386 * existing before ext4_alloc_branch() was called.
388 if (i > 0 && i != indirect_blks && branch[i].bh)
389 ext4_forget(handle, 1, ar->inode, branch[i].bh,
390 branch[i].bh->b_blocknr);
391 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
392 (i == indirect_blks) ? ar->len : 1, 0);
394 return err;
398 * ext4_splice_branch - splice the allocated branch onto inode.
399 * @handle: handle for this transaction
400 * @inode: owner
401 * @block: (logical) number of block we are adding
402 * @chain: chain of indirect blocks (with a missing link - see
403 * ext4_alloc_branch)
404 * @where: location of missing link
405 * @num: number of indirect blocks we are adding
406 * @blks: number of direct blocks we are adding
408 * This function fills the missing link and does all housekeeping needed in
409 * inode (->i_blocks, etc.). In case of success we end up with the full
410 * chain to new block and return 0.
412 static int ext4_splice_branch(handle_t *handle,
413 struct ext4_allocation_request *ar,
414 Indirect *where, int num)
416 int i;
417 int err = 0;
418 ext4_fsblk_t current_block;
421 * If we're splicing into a [td]indirect block (as opposed to the
422 * inode) then we need to get write access to the [td]indirect block
423 * before the splice.
425 if (where->bh) {
426 BUFFER_TRACE(where->bh, "get_write_access");
427 err = ext4_journal_get_write_access(handle, where->bh);
428 if (err)
429 goto err_out;
431 /* That's it */
433 *where->p = where->key;
436 * Update the host buffer_head or inode to point to more just allocated
437 * direct blocks blocks
439 if (num == 0 && ar->len > 1) {
440 current_block = le32_to_cpu(where->key) + 1;
441 for (i = 1; i < ar->len; i++)
442 *(where->p + i) = cpu_to_le32(current_block++);
445 /* We are done with atomic stuff, now do the rest of housekeeping */
446 /* had we spliced it onto indirect block? */
447 if (where->bh) {
449 * If we spliced it onto an indirect block, we haven't
450 * altered the inode. Note however that if it is being spliced
451 * onto an indirect block at the very end of the file (the
452 * file is growing) then we *will* alter the inode to reflect
453 * the new i_size. But that is not done here - it is done in
454 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
456 jbd_debug(5, "splicing indirect only\n");
457 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
458 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
459 if (err)
460 goto err_out;
461 } else {
463 * OK, we spliced it into the inode itself on a direct block.
465 ext4_mark_inode_dirty(handle, ar->inode);
466 jbd_debug(5, "splicing direct\n");
468 return err;
470 err_out:
471 for (i = 1; i <= num; i++) {
473 * branch[i].bh is newly allocated, so there is no
474 * need to revoke the block, which is why we don't
475 * need to set EXT4_FREE_BLOCKS_METADATA.
477 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
478 EXT4_FREE_BLOCKS_FORGET);
480 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
481 ar->len, 0);
483 return err;
487 * The ext4_ind_map_blocks() function handles non-extents inodes
488 * (i.e., using the traditional indirect/double-indirect i_blocks
489 * scheme) for ext4_map_blocks().
491 * Allocation strategy is simple: if we have to allocate something, we will
492 * have to go the whole way to leaf. So let's do it before attaching anything
493 * to tree, set linkage between the newborn blocks, write them if sync is
494 * required, recheck the path, free and repeat if check fails, otherwise
495 * set the last missing link (that will protect us from any truncate-generated
496 * removals - all blocks on the path are immune now) and possibly force the
497 * write on the parent block.
498 * That has a nice additional property: no special recovery from the failed
499 * allocations is needed - we simply release blocks and do not touch anything
500 * reachable from inode.
502 * `handle' can be NULL if create == 0.
504 * return > 0, # of blocks mapped or allocated.
505 * return = 0, if plain lookup failed.
506 * return < 0, error case.
508 * The ext4_ind_get_blocks() function should be called with
509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
512 * blocks.
514 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
515 struct ext4_map_blocks *map,
516 int flags)
518 struct ext4_allocation_request ar;
519 int err = -EIO;
520 ext4_lblk_t offsets[4];
521 Indirect chain[4];
522 Indirect *partial;
523 int indirect_blks;
524 int blocks_to_boundary = 0;
525 int depth;
526 int count = 0;
527 ext4_fsblk_t first_block = 0;
529 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
530 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
531 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
532 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
533 &blocks_to_boundary);
535 if (depth == 0)
536 goto out;
538 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
540 /* Simplest case - block found, no allocation needed */
541 if (!partial) {
542 first_block = le32_to_cpu(chain[depth - 1].key);
543 count++;
544 /*map more blocks*/
545 while (count < map->m_len && count <= blocks_to_boundary) {
546 ext4_fsblk_t blk;
548 blk = le32_to_cpu(*(chain[depth-1].p + count));
550 if (blk == first_block + count)
551 count++;
552 else
553 break;
555 goto got_it;
558 /* Next simple case - plain lookup or failed read of indirect block */
559 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
560 goto cleanup;
563 * Okay, we need to do block allocation.
565 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
566 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
567 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
568 "non-extent mapped inodes with bigalloc");
569 return -EUCLEAN;
572 /* Set up for the direct block allocation */
573 memset(&ar, 0, sizeof(ar));
574 ar.inode = inode;
575 ar.logical = map->m_lblk;
576 if (S_ISREG(inode->i_mode))
577 ar.flags = EXT4_MB_HINT_DATA;
578 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
579 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
580 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
581 ar.flags |= EXT4_MB_USE_RESERVED;
583 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
585 /* the number of blocks need to allocate for [d,t]indirect blocks */
586 indirect_blks = (chain + depth) - partial - 1;
589 * Next look up the indirect map to count the totoal number of
590 * direct blocks to allocate for this branch.
592 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
593 map->m_len, blocks_to_boundary);
596 * Block out ext4_truncate while we alter the tree
598 err = ext4_alloc_branch(handle, &ar, indirect_blks,
599 offsets + (partial - chain), partial);
602 * The ext4_splice_branch call will free and forget any buffers
603 * on the new chain if there is a failure, but that risks using
604 * up transaction credits, especially for bitmaps where the
605 * credits cannot be returned. Can we handle this somehow? We
606 * may need to return -EAGAIN upwards in the worst case. --sct
608 if (!err)
609 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
610 if (err)
611 goto cleanup;
613 map->m_flags |= EXT4_MAP_NEW;
615 ext4_update_inode_fsync_trans(handle, inode, 1);
616 count = ar.len;
617 got_it:
618 map->m_flags |= EXT4_MAP_MAPPED;
619 map->m_pblk = le32_to_cpu(chain[depth-1].key);
620 map->m_len = count;
621 if (count > blocks_to_boundary)
622 map->m_flags |= EXT4_MAP_BOUNDARY;
623 err = count;
624 /* Clean up and exit */
625 partial = chain + depth - 1; /* the whole chain */
626 cleanup:
627 while (partial > chain) {
628 BUFFER_TRACE(partial->bh, "call brelse");
629 brelse(partial->bh);
630 partial--;
632 out:
633 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
634 return err;
638 * O_DIRECT for ext3 (or indirect map) based files
640 * If the O_DIRECT write will extend the file then add this inode to the
641 * orphan list. So recovery will truncate it back to the original size
642 * if the machine crashes during the write.
644 * If the O_DIRECT write is intantiating holes inside i_size and the machine
645 * crashes then stale disk data _may_ be exposed inside the file. But current
646 * VFS code falls back into buffered path in that case so we are safe.
648 ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
649 loff_t offset)
651 struct file *file = iocb->ki_filp;
652 struct inode *inode = file->f_mapping->host;
653 struct ext4_inode_info *ei = EXT4_I(inode);
654 handle_t *handle;
655 ssize_t ret;
656 int orphan = 0;
657 size_t count = iov_iter_count(iter);
658 int retries = 0;
660 if (iov_iter_rw(iter) == WRITE) {
661 loff_t final_size = offset + count;
663 if (final_size > inode->i_size) {
664 /* Credits for sb + inode write */
665 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
666 if (IS_ERR(handle)) {
667 ret = PTR_ERR(handle);
668 goto out;
670 ret = ext4_orphan_add(handle, inode);
671 if (ret) {
672 ext4_journal_stop(handle);
673 goto out;
675 orphan = 1;
676 ei->i_disksize = inode->i_size;
677 ext4_journal_stop(handle);
681 retry:
682 if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) {
684 * Nolock dioread optimization may be dynamically disabled
685 * via ext4_inode_block_unlocked_dio(). Check inode's state
686 * while holding extra i_dio_count ref.
688 inode_dio_begin(inode);
689 smp_mb();
690 if (unlikely(ext4_test_inode_state(inode,
691 EXT4_STATE_DIOREAD_LOCK))) {
692 inode_dio_end(inode);
693 goto locked;
695 if (IS_DAX(inode))
696 ret = dax_do_io(iocb, inode, iter, offset,
697 ext4_get_block, NULL, 0);
698 else
699 ret = __blockdev_direct_IO(iocb, inode,
700 inode->i_sb->s_bdev, iter,
701 offset, ext4_get_block, NULL,
702 NULL, 0);
703 inode_dio_end(inode);
704 } else {
705 locked:
706 if (IS_DAX(inode))
707 ret = dax_do_io(iocb, inode, iter, offset,
708 ext4_get_block, NULL, DIO_LOCKING);
709 else
710 ret = blockdev_direct_IO(iocb, inode, iter, offset,
711 ext4_get_block);
713 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
714 loff_t isize = i_size_read(inode);
715 loff_t end = offset + count;
717 if (end > isize)
718 ext4_truncate_failed_write(inode);
721 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
722 goto retry;
724 if (orphan) {
725 int err;
727 /* Credits for sb + inode write */
728 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
729 if (IS_ERR(handle)) {
730 /* This is really bad luck. We've written the data
731 * but cannot extend i_size. Bail out and pretend
732 * the write failed... */
733 ret = PTR_ERR(handle);
734 if (inode->i_nlink)
735 ext4_orphan_del(NULL, inode);
737 goto out;
739 if (inode->i_nlink)
740 ext4_orphan_del(handle, inode);
741 if (ret > 0) {
742 loff_t end = offset + ret;
743 if (end > inode->i_size) {
744 ei->i_disksize = end;
745 i_size_write(inode, end);
747 * We're going to return a positive `ret'
748 * here due to non-zero-length I/O, so there's
749 * no way of reporting error returns from
750 * ext4_mark_inode_dirty() to userspace. So
751 * ignore it.
753 ext4_mark_inode_dirty(handle, inode);
756 err = ext4_journal_stop(handle);
757 if (ret == 0)
758 ret = err;
760 out:
761 return ret;
765 * Calculate the number of metadata blocks need to reserve
766 * to allocate a new block at @lblocks for non extent file based file
768 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
770 struct ext4_inode_info *ei = EXT4_I(inode);
771 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
772 int blk_bits;
774 if (lblock < EXT4_NDIR_BLOCKS)
775 return 0;
777 lblock -= EXT4_NDIR_BLOCKS;
779 if (ei->i_da_metadata_calc_len &&
780 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
781 ei->i_da_metadata_calc_len++;
782 return 0;
784 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
785 ei->i_da_metadata_calc_len = 1;
786 blk_bits = order_base_2(lblock);
787 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
791 * Calculate number of indirect blocks touched by mapping @nrblocks logically
792 * contiguous blocks
794 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
797 * With N contiguous data blocks, we need at most
798 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
799 * 2 dindirect blocks, and 1 tindirect block
801 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
805 * Truncate transactions can be complex and absolutely huge. So we need to
806 * be able to restart the transaction at a conventient checkpoint to make
807 * sure we don't overflow the journal.
809 * Try to extend this transaction for the purposes of truncation. If
810 * extend fails, we need to propagate the failure up and restart the
811 * transaction in the top-level truncate loop. --sct
813 * Returns 0 if we managed to create more room. If we can't create more
814 * room, and the transaction must be restarted we return 1.
816 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
818 if (!ext4_handle_valid(handle))
819 return 0;
820 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
821 return 0;
822 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
823 return 0;
824 return 1;
828 * Probably it should be a library function... search for first non-zero word
829 * or memcmp with zero_page, whatever is better for particular architecture.
830 * Linus?
832 static inline int all_zeroes(__le32 *p, __le32 *q)
834 while (p < q)
835 if (*p++)
836 return 0;
837 return 1;
841 * ext4_find_shared - find the indirect blocks for partial truncation.
842 * @inode: inode in question
843 * @depth: depth of the affected branch
844 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
845 * @chain: place to store the pointers to partial indirect blocks
846 * @top: place to the (detached) top of branch
848 * This is a helper function used by ext4_truncate().
850 * When we do truncate() we may have to clean the ends of several
851 * indirect blocks but leave the blocks themselves alive. Block is
852 * partially truncated if some data below the new i_size is referred
853 * from it (and it is on the path to the first completely truncated
854 * data block, indeed). We have to free the top of that path along
855 * with everything to the right of the path. Since no allocation
856 * past the truncation point is possible until ext4_truncate()
857 * finishes, we may safely do the latter, but top of branch may
858 * require special attention - pageout below the truncation point
859 * might try to populate it.
861 * We atomically detach the top of branch from the tree, store the
862 * block number of its root in *@top, pointers to buffer_heads of
863 * partially truncated blocks - in @chain[].bh and pointers to
864 * their last elements that should not be removed - in
865 * @chain[].p. Return value is the pointer to last filled element
866 * of @chain.
868 * The work left to caller to do the actual freeing of subtrees:
869 * a) free the subtree starting from *@top
870 * b) free the subtrees whose roots are stored in
871 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
872 * c) free the subtrees growing from the inode past the @chain[0].
873 * (no partially truncated stuff there). */
875 static Indirect *ext4_find_shared(struct inode *inode, int depth,
876 ext4_lblk_t offsets[4], Indirect chain[4],
877 __le32 *top)
879 Indirect *partial, *p;
880 int k, err;
882 *top = 0;
883 /* Make k index the deepest non-null offset + 1 */
884 for (k = depth; k > 1 && !offsets[k-1]; k--)
886 partial = ext4_get_branch(inode, k, offsets, chain, &err);
887 /* Writer: pointers */
888 if (!partial)
889 partial = chain + k-1;
891 * If the branch acquired continuation since we've looked at it -
892 * fine, it should all survive and (new) top doesn't belong to us.
894 if (!partial->key && *partial->p)
895 /* Writer: end */
896 goto no_top;
897 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
900 * OK, we've found the last block that must survive. The rest of our
901 * branch should be detached before unlocking. However, if that rest
902 * of branch is all ours and does not grow immediately from the inode
903 * it's easier to cheat and just decrement partial->p.
905 if (p == chain + k - 1 && p > chain) {
906 p->p--;
907 } else {
908 *top = *p->p;
909 /* Nope, don't do this in ext4. Must leave the tree intact */
910 #if 0
911 *p->p = 0;
912 #endif
914 /* Writer: end */
916 while (partial > p) {
917 brelse(partial->bh);
918 partial--;
920 no_top:
921 return partial;
925 * Zero a number of block pointers in either an inode or an indirect block.
926 * If we restart the transaction we must again get write access to the
927 * indirect block for further modification.
929 * We release `count' blocks on disk, but (last - first) may be greater
930 * than `count' because there can be holes in there.
932 * Return 0 on success, 1 on invalid block range
933 * and < 0 on fatal error.
935 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
936 struct buffer_head *bh,
937 ext4_fsblk_t block_to_free,
938 unsigned long count, __le32 *first,
939 __le32 *last)
941 __le32 *p;
942 int flags = EXT4_FREE_BLOCKS_VALIDATED;
943 int err;
945 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
946 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
947 else if (ext4_should_journal_data(inode))
948 flags |= EXT4_FREE_BLOCKS_FORGET;
950 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
951 count)) {
952 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
953 "blocks %llu len %lu",
954 (unsigned long long) block_to_free, count);
955 return 1;
958 if (try_to_extend_transaction(handle, inode)) {
959 if (bh) {
960 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
961 err = ext4_handle_dirty_metadata(handle, inode, bh);
962 if (unlikely(err))
963 goto out_err;
965 err = ext4_mark_inode_dirty(handle, inode);
966 if (unlikely(err))
967 goto out_err;
968 err = ext4_truncate_restart_trans(handle, inode,
969 ext4_blocks_for_truncate(inode));
970 if (unlikely(err))
971 goto out_err;
972 if (bh) {
973 BUFFER_TRACE(bh, "retaking write access");
974 err = ext4_journal_get_write_access(handle, bh);
975 if (unlikely(err))
976 goto out_err;
980 for (p = first; p < last; p++)
981 *p = 0;
983 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
984 return 0;
985 out_err:
986 ext4_std_error(inode->i_sb, err);
987 return err;
991 * ext4_free_data - free a list of data blocks
992 * @handle: handle for this transaction
993 * @inode: inode we are dealing with
994 * @this_bh: indirect buffer_head which contains *@first and *@last
995 * @first: array of block numbers
996 * @last: points immediately past the end of array
998 * We are freeing all blocks referred from that array (numbers are stored as
999 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1001 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1002 * blocks are contiguous then releasing them at one time will only affect one
1003 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1004 * actually use a lot of journal space.
1006 * @this_bh will be %NULL if @first and @last point into the inode's direct
1007 * block pointers.
1009 static void ext4_free_data(handle_t *handle, struct inode *inode,
1010 struct buffer_head *this_bh,
1011 __le32 *first, __le32 *last)
1013 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1014 unsigned long count = 0; /* Number of blocks in the run */
1015 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1016 corresponding to
1017 block_to_free */
1018 ext4_fsblk_t nr; /* Current block # */
1019 __le32 *p; /* Pointer into inode/ind
1020 for current block */
1021 int err = 0;
1023 if (this_bh) { /* For indirect block */
1024 BUFFER_TRACE(this_bh, "get_write_access");
1025 err = ext4_journal_get_write_access(handle, this_bh);
1026 /* Important: if we can't update the indirect pointers
1027 * to the blocks, we can't free them. */
1028 if (err)
1029 return;
1032 for (p = first; p < last; p++) {
1033 nr = le32_to_cpu(*p);
1034 if (nr) {
1035 /* accumulate blocks to free if they're contiguous */
1036 if (count == 0) {
1037 block_to_free = nr;
1038 block_to_free_p = p;
1039 count = 1;
1040 } else if (nr == block_to_free + count) {
1041 count++;
1042 } else {
1043 err = ext4_clear_blocks(handle, inode, this_bh,
1044 block_to_free, count,
1045 block_to_free_p, p);
1046 if (err)
1047 break;
1048 block_to_free = nr;
1049 block_to_free_p = p;
1050 count = 1;
1055 if (!err && count > 0)
1056 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1057 count, block_to_free_p, p);
1058 if (err < 0)
1059 /* fatal error */
1060 return;
1062 if (this_bh) {
1063 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1066 * The buffer head should have an attached journal head at this
1067 * point. However, if the data is corrupted and an indirect
1068 * block pointed to itself, it would have been detached when
1069 * the block was cleared. Check for this instead of OOPSing.
1071 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1072 ext4_handle_dirty_metadata(handle, inode, this_bh);
1073 else
1074 EXT4_ERROR_INODE(inode,
1075 "circular indirect block detected at "
1076 "block %llu",
1077 (unsigned long long) this_bh->b_blocknr);
1082 * ext4_free_branches - free an array of branches
1083 * @handle: JBD handle for this transaction
1084 * @inode: inode we are dealing with
1085 * @parent_bh: the buffer_head which contains *@first and *@last
1086 * @first: array of block numbers
1087 * @last: pointer immediately past the end of array
1088 * @depth: depth of the branches to free
1090 * We are freeing all blocks referred from these branches (numbers are
1091 * stored as little-endian 32-bit) and updating @inode->i_blocks
1092 * appropriately.
1094 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1095 struct buffer_head *parent_bh,
1096 __le32 *first, __le32 *last, int depth)
1098 ext4_fsblk_t nr;
1099 __le32 *p;
1101 if (ext4_handle_is_aborted(handle))
1102 return;
1104 if (depth--) {
1105 struct buffer_head *bh;
1106 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1107 p = last;
1108 while (--p >= first) {
1109 nr = le32_to_cpu(*p);
1110 if (!nr)
1111 continue; /* A hole */
1113 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1114 nr, 1)) {
1115 EXT4_ERROR_INODE(inode,
1116 "invalid indirect mapped "
1117 "block %lu (level %d)",
1118 (unsigned long) nr, depth);
1119 break;
1122 /* Go read the buffer for the next level down */
1123 bh = sb_bread(inode->i_sb, nr);
1126 * A read failure? Report error and clear slot
1127 * (should be rare).
1129 if (!bh) {
1130 EXT4_ERROR_INODE_BLOCK(inode, nr,
1131 "Read failure");
1132 continue;
1135 /* This zaps the entire block. Bottom up. */
1136 BUFFER_TRACE(bh, "free child branches");
1137 ext4_free_branches(handle, inode, bh,
1138 (__le32 *) bh->b_data,
1139 (__le32 *) bh->b_data + addr_per_block,
1140 depth);
1141 brelse(bh);
1144 * Everything below this this pointer has been
1145 * released. Now let this top-of-subtree go.
1147 * We want the freeing of this indirect block to be
1148 * atomic in the journal with the updating of the
1149 * bitmap block which owns it. So make some room in
1150 * the journal.
1152 * We zero the parent pointer *after* freeing its
1153 * pointee in the bitmaps, so if extend_transaction()
1154 * for some reason fails to put the bitmap changes and
1155 * the release into the same transaction, recovery
1156 * will merely complain about releasing a free block,
1157 * rather than leaking blocks.
1159 if (ext4_handle_is_aborted(handle))
1160 return;
1161 if (try_to_extend_transaction(handle, inode)) {
1162 ext4_mark_inode_dirty(handle, inode);
1163 ext4_truncate_restart_trans(handle, inode,
1164 ext4_blocks_for_truncate(inode));
1168 * The forget flag here is critical because if
1169 * we are journaling (and not doing data
1170 * journaling), we have to make sure a revoke
1171 * record is written to prevent the journal
1172 * replay from overwriting the (former)
1173 * indirect block if it gets reallocated as a
1174 * data block. This must happen in the same
1175 * transaction where the data blocks are
1176 * actually freed.
1178 ext4_free_blocks(handle, inode, NULL, nr, 1,
1179 EXT4_FREE_BLOCKS_METADATA|
1180 EXT4_FREE_BLOCKS_FORGET);
1182 if (parent_bh) {
1184 * The block which we have just freed is
1185 * pointed to by an indirect block: journal it
1187 BUFFER_TRACE(parent_bh, "get_write_access");
1188 if (!ext4_journal_get_write_access(handle,
1189 parent_bh)){
1190 *p = 0;
1191 BUFFER_TRACE(parent_bh,
1192 "call ext4_handle_dirty_metadata");
1193 ext4_handle_dirty_metadata(handle,
1194 inode,
1195 parent_bh);
1199 } else {
1200 /* We have reached the bottom of the tree. */
1201 BUFFER_TRACE(parent_bh, "free data blocks");
1202 ext4_free_data(handle, inode, parent_bh, first, last);
1206 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1208 struct ext4_inode_info *ei = EXT4_I(inode);
1209 __le32 *i_data = ei->i_data;
1210 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1211 ext4_lblk_t offsets[4];
1212 Indirect chain[4];
1213 Indirect *partial;
1214 __le32 nr = 0;
1215 int n = 0;
1216 ext4_lblk_t last_block, max_block;
1217 unsigned blocksize = inode->i_sb->s_blocksize;
1219 last_block = (inode->i_size + blocksize-1)
1220 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1221 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1222 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1224 if (last_block != max_block) {
1225 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1226 if (n == 0)
1227 return;
1230 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1233 * The orphan list entry will now protect us from any crash which
1234 * occurs before the truncate completes, so it is now safe to propagate
1235 * the new, shorter inode size (held for now in i_size) into the
1236 * on-disk inode. We do this via i_disksize, which is the value which
1237 * ext4 *really* writes onto the disk inode.
1239 ei->i_disksize = inode->i_size;
1241 if (last_block == max_block) {
1243 * It is unnecessary to free any data blocks if last_block is
1244 * equal to the indirect block limit.
1246 return;
1247 } else if (n == 1) { /* direct blocks */
1248 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1249 i_data + EXT4_NDIR_BLOCKS);
1250 goto do_indirects;
1253 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1254 /* Kill the top of shared branch (not detached) */
1255 if (nr) {
1256 if (partial == chain) {
1257 /* Shared branch grows from the inode */
1258 ext4_free_branches(handle, inode, NULL,
1259 &nr, &nr+1, (chain+n-1) - partial);
1260 *partial->p = 0;
1262 * We mark the inode dirty prior to restart,
1263 * and prior to stop. No need for it here.
1265 } else {
1266 /* Shared branch grows from an indirect block */
1267 BUFFER_TRACE(partial->bh, "get_write_access");
1268 ext4_free_branches(handle, inode, partial->bh,
1269 partial->p,
1270 partial->p+1, (chain+n-1) - partial);
1273 /* Clear the ends of indirect blocks on the shared branch */
1274 while (partial > chain) {
1275 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1276 (__le32*)partial->bh->b_data+addr_per_block,
1277 (chain+n-1) - partial);
1278 BUFFER_TRACE(partial->bh, "call brelse");
1279 brelse(partial->bh);
1280 partial--;
1282 do_indirects:
1283 /* Kill the remaining (whole) subtrees */
1284 switch (offsets[0]) {
1285 default:
1286 nr = i_data[EXT4_IND_BLOCK];
1287 if (nr) {
1288 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1289 i_data[EXT4_IND_BLOCK] = 0;
1291 case EXT4_IND_BLOCK:
1292 nr = i_data[EXT4_DIND_BLOCK];
1293 if (nr) {
1294 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1295 i_data[EXT4_DIND_BLOCK] = 0;
1297 case EXT4_DIND_BLOCK:
1298 nr = i_data[EXT4_TIND_BLOCK];
1299 if (nr) {
1300 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1301 i_data[EXT4_TIND_BLOCK] = 0;
1303 case EXT4_TIND_BLOCK:
1309 * ext4_ind_remove_space - remove space from the range
1310 * @handle: JBD handle for this transaction
1311 * @inode: inode we are dealing with
1312 * @start: First block to remove
1313 * @end: One block after the last block to remove (exclusive)
1315 * Free the blocks in the defined range (end is exclusive endpoint of
1316 * range). This is used by ext4_punch_hole().
1318 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1319 ext4_lblk_t start, ext4_lblk_t end)
1321 struct ext4_inode_info *ei = EXT4_I(inode);
1322 __le32 *i_data = ei->i_data;
1323 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1324 ext4_lblk_t offsets[4], offsets2[4];
1325 Indirect chain[4], chain2[4];
1326 Indirect *partial, *partial2;
1327 ext4_lblk_t max_block;
1328 __le32 nr = 0, nr2 = 0;
1329 int n = 0, n2 = 0;
1330 unsigned blocksize = inode->i_sb->s_blocksize;
1332 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1333 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1334 if (end >= max_block)
1335 end = max_block;
1336 if ((start >= end) || (start > max_block))
1337 return 0;
1339 n = ext4_block_to_path(inode, start, offsets, NULL);
1340 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1342 BUG_ON(n > n2);
1344 if ((n == 1) && (n == n2)) {
1345 /* We're punching only within direct block range */
1346 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1347 i_data + offsets2[0]);
1348 return 0;
1349 } else if (n2 > n) {
1351 * Start and end are on a different levels so we're going to
1352 * free partial block at start, and partial block at end of
1353 * the range. If there are some levels in between then
1354 * do_indirects label will take care of that.
1357 if (n == 1) {
1359 * Start is at the direct block level, free
1360 * everything to the end of the level.
1362 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1363 i_data + EXT4_NDIR_BLOCKS);
1364 goto end_range;
1368 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1369 if (nr) {
1370 if (partial == chain) {
1371 /* Shared branch grows from the inode */
1372 ext4_free_branches(handle, inode, NULL,
1373 &nr, &nr+1, (chain+n-1) - partial);
1374 *partial->p = 0;
1375 } else {
1376 /* Shared branch grows from an indirect block */
1377 BUFFER_TRACE(partial->bh, "get_write_access");
1378 ext4_free_branches(handle, inode, partial->bh,
1379 partial->p,
1380 partial->p+1, (chain+n-1) - partial);
1385 * Clear the ends of indirect blocks on the shared branch
1386 * at the start of the range
1388 while (partial > chain) {
1389 ext4_free_branches(handle, inode, partial->bh,
1390 partial->p + 1,
1391 (__le32 *)partial->bh->b_data+addr_per_block,
1392 (chain+n-1) - partial);
1393 BUFFER_TRACE(partial->bh, "call brelse");
1394 brelse(partial->bh);
1395 partial--;
1398 end_range:
1399 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1400 if (nr2) {
1401 if (partial2 == chain2) {
1403 * Remember, end is exclusive so here we're at
1404 * the start of the next level we're not going
1405 * to free. Everything was covered by the start
1406 * of the range.
1408 goto do_indirects;
1410 } else {
1412 * ext4_find_shared returns Indirect structure which
1413 * points to the last element which should not be
1414 * removed by truncate. But this is end of the range
1415 * in punch_hole so we need to point to the next element
1417 partial2->p++;
1421 * Clear the ends of indirect blocks on the shared branch
1422 * at the end of the range
1424 while (partial2 > chain2) {
1425 ext4_free_branches(handle, inode, partial2->bh,
1426 (__le32 *)partial2->bh->b_data,
1427 partial2->p,
1428 (chain2+n2-1) - partial2);
1429 BUFFER_TRACE(partial2->bh, "call brelse");
1430 brelse(partial2->bh);
1431 partial2--;
1433 goto do_indirects;
1436 /* Punch happened within the same level (n == n2) */
1437 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1438 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1440 /* Free top, but only if partial2 isn't its subtree. */
1441 if (nr) {
1442 int level = min(partial - chain, partial2 - chain2);
1443 int i;
1444 int subtree = 1;
1446 for (i = 0; i <= level; i++) {
1447 if (offsets[i] != offsets2[i]) {
1448 subtree = 0;
1449 break;
1453 if (!subtree) {
1454 if (partial == chain) {
1455 /* Shared branch grows from the inode */
1456 ext4_free_branches(handle, inode, NULL,
1457 &nr, &nr+1,
1458 (chain+n-1) - partial);
1459 *partial->p = 0;
1460 } else {
1461 /* Shared branch grows from an indirect block */
1462 BUFFER_TRACE(partial->bh, "get_write_access");
1463 ext4_free_branches(handle, inode, partial->bh,
1464 partial->p,
1465 partial->p+1,
1466 (chain+n-1) - partial);
1471 if (!nr2) {
1473 * ext4_find_shared returns Indirect structure which
1474 * points to the last element which should not be
1475 * removed by truncate. But this is end of the range
1476 * in punch_hole so we need to point to the next element
1478 partial2->p++;
1481 while (partial > chain || partial2 > chain2) {
1482 int depth = (chain+n-1) - partial;
1483 int depth2 = (chain2+n2-1) - partial2;
1485 if (partial > chain && partial2 > chain2 &&
1486 partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1488 * We've converged on the same block. Clear the range,
1489 * then we're done.
1491 ext4_free_branches(handle, inode, partial->bh,
1492 partial->p + 1,
1493 partial2->p,
1494 (chain+n-1) - partial);
1495 BUFFER_TRACE(partial->bh, "call brelse");
1496 brelse(partial->bh);
1497 BUFFER_TRACE(partial2->bh, "call brelse");
1498 brelse(partial2->bh);
1499 return 0;
1503 * The start and end partial branches may not be at the same
1504 * level even though the punch happened within one level. So, we
1505 * give them a chance to arrive at the same level, then walk
1506 * them in step with each other until we converge on the same
1507 * block.
1509 if (partial > chain && depth <= depth2) {
1510 ext4_free_branches(handle, inode, partial->bh,
1511 partial->p + 1,
1512 (__le32 *)partial->bh->b_data+addr_per_block,
1513 (chain+n-1) - partial);
1514 BUFFER_TRACE(partial->bh, "call brelse");
1515 brelse(partial->bh);
1516 partial--;
1518 if (partial2 > chain2 && depth2 <= depth) {
1519 ext4_free_branches(handle, inode, partial2->bh,
1520 (__le32 *)partial2->bh->b_data,
1521 partial2->p,
1522 (chain2+n2-1) - partial2);
1523 BUFFER_TRACE(partial2->bh, "call brelse");
1524 brelse(partial2->bh);
1525 partial2--;
1528 return 0;
1530 do_indirects:
1531 /* Kill the remaining (whole) subtrees */
1532 switch (offsets[0]) {
1533 default:
1534 if (++n >= n2)
1535 return 0;
1536 nr = i_data[EXT4_IND_BLOCK];
1537 if (nr) {
1538 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1539 i_data[EXT4_IND_BLOCK] = 0;
1541 case EXT4_IND_BLOCK:
1542 if (++n >= n2)
1543 return 0;
1544 nr = i_data[EXT4_DIND_BLOCK];
1545 if (nr) {
1546 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1547 i_data[EXT4_DIND_BLOCK] = 0;
1549 case EXT4_DIND_BLOCK:
1550 if (++n >= n2)
1551 return 0;
1552 nr = i_data[EXT4_TIND_BLOCK];
1553 if (nr) {
1554 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1555 i_data[EXT4_TIND_BLOCK] = 0;
1557 case EXT4_TIND_BLOCK:
1560 return 0;