2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * Also, it seems fairer to not let one busy connection stall all the
50 * send_batch_count is the number of times we'll loop in send_xmit. Setting
51 * it to 0 will restore the old behavior (where we looped until we had
54 static int send_batch_count
= 64;
55 module_param(send_batch_count
, int, 0444);
56 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
58 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
);
61 * Reset the send state. Callers must ensure that this doesn't race with
64 void rds_send_reset(struct rds_connection
*conn
)
66 struct rds_message
*rm
, *tmp
;
69 if (conn
->c_xmit_rm
) {
71 conn
->c_xmit_rm
= NULL
;
72 /* Tell the user the RDMA op is no longer mapped by the
73 * transport. This isn't entirely true (it's flushed out
74 * independently) but as the connection is down, there's
75 * no ongoing RDMA to/from that memory */
76 rds_message_unmapped(rm
);
81 conn
->c_xmit_hdr_off
= 0;
82 conn
->c_xmit_data_off
= 0;
83 conn
->c_xmit_atomic_sent
= 0;
84 conn
->c_xmit_rdma_sent
= 0;
85 conn
->c_xmit_data_sent
= 0;
87 conn
->c_map_queued
= 0;
89 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
90 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
92 /* Mark messages as retransmissions, and move them to the send q */
93 spin_lock_irqsave(&conn
->c_lock
, flags
);
94 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
95 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
96 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
98 list_splice_init(&conn
->c_retrans
, &conn
->c_send_queue
);
99 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
102 static int acquire_in_xmit(struct rds_connection
*conn
)
104 return test_and_set_bit(RDS_IN_XMIT
, &conn
->c_flags
) == 0;
107 static void release_in_xmit(struct rds_connection
*conn
)
109 clear_bit(RDS_IN_XMIT
, &conn
->c_flags
);
110 smp_mb__after_atomic();
112 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 * hot path and finding waiters is very rare. We don't want to walk
114 * the system-wide hashed waitqueue buckets in the fast path only to
115 * almost never find waiters.
117 if (waitqueue_active(&conn
->c_waitq
))
118 wake_up_all(&conn
->c_waitq
);
122 * We're making the conscious trade-off here to only send one message
123 * down the connection at a time.
125 * - tx queueing is a simple fifo list
126 * - reassembly is optional and easily done by transports per conn
127 * - no per flow rx lookup at all, straight to the socket
128 * - less per-frag memory and wire overhead
130 * - queued acks can be delayed behind large messages
132 * - small message latency is higher behind queued large messages
133 * - large message latency isn't starved by intervening small sends
135 int rds_send_xmit(struct rds_connection
*conn
)
137 struct rds_message
*rm
;
140 struct scatterlist
*sg
;
142 LIST_HEAD(to_be_dropped
);
144 unsigned long send_gen
= 0;
150 * sendmsg calls here after having queued its message on the send
151 * queue. We only have one task feeding the connection at a time. If
152 * another thread is already feeding the queue then we back off. This
153 * avoids blocking the caller and trading per-connection data between
154 * caches per message.
156 if (!acquire_in_xmit(conn
)) {
157 rds_stats_inc(s_send_lock_contention
);
163 * we record the send generation after doing the xmit acquire.
164 * if someone else manages to jump in and do some work, we'll use
165 * this to avoid a goto restart farther down.
167 * The acquire_in_xmit() check above ensures that only one
168 * caller can increment c_send_gen at any time.
171 send_gen
= conn
->c_send_gen
;
174 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
175 * we do the opposite to avoid races.
177 if (!rds_conn_up(conn
)) {
178 release_in_xmit(conn
);
183 if (conn
->c_trans
->xmit_prepare
)
184 conn
->c_trans
->xmit_prepare(conn
);
187 * spin trying to push headers and data down the connection until
188 * the connection doesn't make forward progress.
192 rm
= conn
->c_xmit_rm
;
195 * If between sending messages, we can send a pending congestion
198 if (!rm
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
199 rm
= rds_cong_update_alloc(conn
);
204 rm
->data
.op_active
= 1;
206 conn
->c_xmit_rm
= rm
;
210 * If not already working on one, grab the next message.
212 * c_xmit_rm holds a ref while we're sending this message down
213 * the connction. We can use this ref while holding the
214 * send_sem.. rds_send_reset() is serialized with it.
221 /* we want to process as big a batch as we can, but
222 * we also want to avoid softlockups. If we've been
223 * through a lot of messages, lets back off and see
224 * if anyone else jumps in
226 if (batch_count
>= 1024)
229 spin_lock_irqsave(&conn
->c_lock
, flags
);
231 if (!list_empty(&conn
->c_send_queue
)) {
232 rm
= list_entry(conn
->c_send_queue
.next
,
235 rds_message_addref(rm
);
238 * Move the message from the send queue to the retransmit
241 list_move_tail(&rm
->m_conn_item
, &conn
->c_retrans
);
244 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
249 /* Unfortunately, the way Infiniband deals with
250 * RDMA to a bad MR key is by moving the entire
251 * queue pair to error state. We cold possibly
252 * recover from that, but right now we drop the
254 * Therefore, we never retransmit messages with RDMA ops.
256 if (rm
->rdma
.op_active
&&
257 test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
)) {
258 spin_lock_irqsave(&conn
->c_lock
, flags
);
259 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
260 list_move(&rm
->m_conn_item
, &to_be_dropped
);
261 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
265 /* Require an ACK every once in a while */
266 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
267 if (conn
->c_unacked_packets
== 0 ||
268 conn
->c_unacked_bytes
< len
) {
269 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
271 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
272 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
273 rds_stats_inc(s_send_ack_required
);
275 conn
->c_unacked_bytes
-= len
;
276 conn
->c_unacked_packets
--;
279 conn
->c_xmit_rm
= rm
;
282 /* The transport either sends the whole rdma or none of it */
283 if (rm
->rdma
.op_active
&& !conn
->c_xmit_rdma_sent
) {
284 rm
->m_final_op
= &rm
->rdma
;
285 /* The transport owns the mapped memory for now.
286 * You can't unmap it while it's on the send queue
288 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
289 ret
= conn
->c_trans
->xmit_rdma(conn
, &rm
->rdma
);
291 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
292 wake_up_interruptible(&rm
->m_flush_wait
);
295 conn
->c_xmit_rdma_sent
= 1;
299 if (rm
->atomic
.op_active
&& !conn
->c_xmit_atomic_sent
) {
300 rm
->m_final_op
= &rm
->atomic
;
301 /* The transport owns the mapped memory for now.
302 * You can't unmap it while it's on the send queue
304 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
305 ret
= conn
->c_trans
->xmit_atomic(conn
, &rm
->atomic
);
307 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
308 wake_up_interruptible(&rm
->m_flush_wait
);
311 conn
->c_xmit_atomic_sent
= 1;
316 * A number of cases require an RDS header to be sent
317 * even if there is no data.
318 * We permit 0-byte sends; rds-ping depends on this.
319 * However, if there are exclusively attached silent ops,
320 * we skip the hdr/data send, to enable silent operation.
322 if (rm
->data
.op_nents
== 0) {
324 int all_ops_are_silent
= 1;
326 ops_present
= (rm
->atomic
.op_active
|| rm
->rdma
.op_active
);
327 if (rm
->atomic
.op_active
&& !rm
->atomic
.op_silent
)
328 all_ops_are_silent
= 0;
329 if (rm
->rdma
.op_active
&& !rm
->rdma
.op_silent
)
330 all_ops_are_silent
= 0;
332 if (ops_present
&& all_ops_are_silent
333 && !rm
->m_rdma_cookie
)
334 rm
->data
.op_active
= 0;
337 if (rm
->data
.op_active
&& !conn
->c_xmit_data_sent
) {
338 rm
->m_final_op
= &rm
->data
;
339 ret
= conn
->c_trans
->xmit(conn
, rm
,
340 conn
->c_xmit_hdr_off
,
342 conn
->c_xmit_data_off
);
346 if (conn
->c_xmit_hdr_off
< sizeof(struct rds_header
)) {
347 tmp
= min_t(int, ret
,
348 sizeof(struct rds_header
) -
349 conn
->c_xmit_hdr_off
);
350 conn
->c_xmit_hdr_off
+= tmp
;
354 sg
= &rm
->data
.op_sg
[conn
->c_xmit_sg
];
356 tmp
= min_t(int, ret
, sg
->length
-
357 conn
->c_xmit_data_off
);
358 conn
->c_xmit_data_off
+= tmp
;
360 if (conn
->c_xmit_data_off
== sg
->length
) {
361 conn
->c_xmit_data_off
= 0;
365 conn
->c_xmit_sg
== rm
->data
.op_nents
);
369 if (conn
->c_xmit_hdr_off
== sizeof(struct rds_header
) &&
370 (conn
->c_xmit_sg
== rm
->data
.op_nents
))
371 conn
->c_xmit_data_sent
= 1;
375 * A rm will only take multiple times through this loop
376 * if there is a data op. Thus, if the data is sent (or there was
377 * none), then we're done with the rm.
379 if (!rm
->data
.op_active
|| conn
->c_xmit_data_sent
) {
380 conn
->c_xmit_rm
= NULL
;
382 conn
->c_xmit_hdr_off
= 0;
383 conn
->c_xmit_data_off
= 0;
384 conn
->c_xmit_rdma_sent
= 0;
385 conn
->c_xmit_atomic_sent
= 0;
386 conn
->c_xmit_data_sent
= 0;
393 if (conn
->c_trans
->xmit_complete
)
394 conn
->c_trans
->xmit_complete(conn
);
395 release_in_xmit(conn
);
397 /* Nuke any messages we decided not to retransmit. */
398 if (!list_empty(&to_be_dropped
)) {
399 /* irqs on here, so we can put(), unlike above */
400 list_for_each_entry(rm
, &to_be_dropped
, m_conn_item
)
402 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
406 * Other senders can queue a message after we last test the send queue
407 * but before we clear RDS_IN_XMIT. In that case they'd back off and
408 * not try and send their newly queued message. We need to check the
409 * send queue after having cleared RDS_IN_XMIT so that their message
410 * doesn't get stuck on the send queue.
412 * If the transport cannot continue (i.e ret != 0), then it must
413 * call us when more room is available, such as from the tx
414 * completion handler.
416 * We have an extra generation check here so that if someone manages
417 * to jump in after our release_in_xmit, we'll see that they have done
418 * some work and we will skip our goto
422 if ((test_bit(0, &conn
->c_map_queued
) ||
423 !list_empty(&conn
->c_send_queue
)) &&
424 send_gen
== conn
->c_send_gen
) {
425 rds_stats_inc(s_send_lock_queue_raced
);
433 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
435 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
437 assert_spin_locked(&rs
->rs_lock
);
439 BUG_ON(rs
->rs_snd_bytes
< len
);
440 rs
->rs_snd_bytes
-= len
;
442 if (rs
->rs_snd_bytes
== 0)
443 rds_stats_inc(s_send_queue_empty
);
446 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
447 is_acked_func is_acked
)
450 return is_acked(rm
, ack
);
451 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
455 * This is pretty similar to what happens below in the ACK
456 * handling code - except that we call here as soon as we get
457 * the IB send completion on the RDMA op and the accompanying
460 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
462 struct rds_sock
*rs
= NULL
;
463 struct rm_rdma_op
*ro
;
464 struct rds_notifier
*notifier
;
467 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
470 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
) &&
471 ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
472 notifier
= ro
->op_notifier
;
474 sock_hold(rds_rs_to_sk(rs
));
476 notifier
->n_status
= status
;
477 spin_lock(&rs
->rs_lock
);
478 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
479 spin_unlock(&rs
->rs_lock
);
481 ro
->op_notifier
= NULL
;
484 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
487 rds_wake_sk_sleep(rs
);
488 sock_put(rds_rs_to_sk(rs
));
491 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
494 * Just like above, except looks at atomic op
496 void rds_atomic_send_complete(struct rds_message
*rm
, int status
)
498 struct rds_sock
*rs
= NULL
;
499 struct rm_atomic_op
*ao
;
500 struct rds_notifier
*notifier
;
503 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
506 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
507 && ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
508 notifier
= ao
->op_notifier
;
510 sock_hold(rds_rs_to_sk(rs
));
512 notifier
->n_status
= status
;
513 spin_lock(&rs
->rs_lock
);
514 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
515 spin_unlock(&rs
->rs_lock
);
517 ao
->op_notifier
= NULL
;
520 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
523 rds_wake_sk_sleep(rs
);
524 sock_put(rds_rs_to_sk(rs
));
527 EXPORT_SYMBOL_GPL(rds_atomic_send_complete
);
530 * This is the same as rds_rdma_send_complete except we
531 * don't do any locking - we have all the ingredients (message,
532 * socket, socket lock) and can just move the notifier.
535 __rds_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
537 struct rm_rdma_op
*ro
;
538 struct rm_atomic_op
*ao
;
541 if (ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
542 ro
->op_notifier
->n_status
= status
;
543 list_add_tail(&ro
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
544 ro
->op_notifier
= NULL
;
548 if (ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
549 ao
->op_notifier
->n_status
= status
;
550 list_add_tail(&ao
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
551 ao
->op_notifier
= NULL
;
554 /* No need to wake the app - caller does this */
558 * This is called from the IB send completion when we detect
559 * a RDMA operation that failed with remote access error.
560 * So speed is not an issue here.
562 struct rds_message
*rds_send_get_message(struct rds_connection
*conn
,
563 struct rm_rdma_op
*op
)
565 struct rds_message
*rm
, *tmp
, *found
= NULL
;
568 spin_lock_irqsave(&conn
->c_lock
, flags
);
570 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
571 if (&rm
->rdma
== op
) {
572 atomic_inc(&rm
->m_refcount
);
578 list_for_each_entry_safe(rm
, tmp
, &conn
->c_send_queue
, m_conn_item
) {
579 if (&rm
->rdma
== op
) {
580 atomic_inc(&rm
->m_refcount
);
587 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
591 EXPORT_SYMBOL_GPL(rds_send_get_message
);
594 * This removes messages from the socket's list if they're on it. The list
595 * argument must be private to the caller, we must be able to modify it
596 * without locks. The messages must have a reference held for their
597 * position on the list. This function will drop that reference after
598 * removing the messages from the 'messages' list regardless of if it found
599 * the messages on the socket list or not.
601 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
604 struct rds_sock
*rs
= NULL
;
605 struct rds_message
*rm
;
607 while (!list_empty(messages
)) {
610 rm
= list_entry(messages
->next
, struct rds_message
,
612 list_del_init(&rm
->m_conn_item
);
615 * If we see this flag cleared then we're *sure* that someone
616 * else beat us to removing it from the sock. If we race
617 * with their flag update we'll get the lock and then really
618 * see that the flag has been cleared.
620 * The message spinlock makes sure nobody clears rm->m_rs
621 * while we're messing with it. It does not prevent the
622 * message from being removed from the socket, though.
624 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
625 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
626 goto unlock_and_drop
;
628 if (rs
!= rm
->m_rs
) {
630 rds_wake_sk_sleep(rs
);
631 sock_put(rds_rs_to_sk(rs
));
635 sock_hold(rds_rs_to_sk(rs
));
638 goto unlock_and_drop
;
639 spin_lock(&rs
->rs_lock
);
641 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
642 struct rm_rdma_op
*ro
= &rm
->rdma
;
643 struct rds_notifier
*notifier
;
645 list_del_init(&rm
->m_sock_item
);
646 rds_send_sndbuf_remove(rs
, rm
);
648 if (ro
->op_active
&& ro
->op_notifier
&&
649 (ro
->op_notify
|| (ro
->op_recverr
&& status
))) {
650 notifier
= ro
->op_notifier
;
651 list_add_tail(¬ifier
->n_list
,
652 &rs
->rs_notify_queue
);
653 if (!notifier
->n_status
)
654 notifier
->n_status
= status
;
655 rm
->rdma
.op_notifier
= NULL
;
660 spin_unlock(&rs
->rs_lock
);
663 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
670 rds_wake_sk_sleep(rs
);
671 sock_put(rds_rs_to_sk(rs
));
676 * Transports call here when they've determined that the receiver queued
677 * messages up to, and including, the given sequence number. Messages are
678 * moved to the retrans queue when rds_send_xmit picks them off the send
679 * queue. This means that in the TCP case, the message may not have been
680 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
681 * checks the RDS_MSG_HAS_ACK_SEQ bit.
683 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
684 is_acked_func is_acked
)
686 struct rds_message
*rm
, *tmp
;
690 spin_lock_irqsave(&conn
->c_lock
, flags
);
692 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
693 if (!rds_send_is_acked(rm
, ack
, is_acked
))
696 list_move(&rm
->m_conn_item
, &list
);
697 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
700 /* order flag updates with spin locks */
701 if (!list_empty(&list
))
702 smp_mb__after_atomic();
704 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
706 /* now remove the messages from the sock list as needed */
707 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
709 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
711 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in
*dest
)
713 struct rds_message
*rm
, *tmp
;
714 struct rds_connection
*conn
;
718 /* get all the messages we're dropping under the rs lock */
719 spin_lock_irqsave(&rs
->rs_lock
, flags
);
721 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
722 if (dest
&& (dest
->sin_addr
.s_addr
!= rm
->m_daddr
||
723 dest
->sin_port
!= rm
->m_inc
.i_hdr
.h_dport
))
726 list_move(&rm
->m_sock_item
, &list
);
727 rds_send_sndbuf_remove(rs
, rm
);
728 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
731 /* order flag updates with the rs lock */
732 smp_mb__after_atomic();
734 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
736 if (list_empty(&list
))
739 /* Remove the messages from the conn */
740 list_for_each_entry(rm
, &list
, m_sock_item
) {
742 conn
= rm
->m_inc
.i_conn
;
744 spin_lock_irqsave(&conn
->c_lock
, flags
);
746 * Maybe someone else beat us to removing rm from the conn.
747 * If we race with their flag update we'll get the lock and
748 * then really see that the flag has been cleared.
750 if (!test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
751 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
752 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
754 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
757 list_del_init(&rm
->m_conn_item
);
758 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
761 * Couldn't grab m_rs_lock in top loop (lock ordering),
764 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
766 spin_lock(&rs
->rs_lock
);
767 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
768 spin_unlock(&rs
->rs_lock
);
771 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
776 rds_wake_sk_sleep(rs
);
778 while (!list_empty(&list
)) {
779 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
780 list_del_init(&rm
->m_sock_item
);
781 rds_message_wait(rm
);
783 /* just in case the code above skipped this message
784 * because RDS_MSG_ON_CONN wasn't set, run it again here
785 * taking m_rs_lock is the only thing that keeps us
786 * from racing with ack processing.
788 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
790 spin_lock(&rs
->rs_lock
);
791 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
792 spin_unlock(&rs
->rs_lock
);
795 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
802 * we only want this to fire once so we use the callers 'queued'. It's
803 * possible that another thread can race with us and remove the
804 * message from the flow with RDS_CANCEL_SENT_TO.
806 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
807 struct rds_message
*rm
, __be16 sport
,
808 __be16 dport
, int *queued
)
816 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
818 /* this is the only place which holds both the socket's rs_lock
819 * and the connection's c_lock */
820 spin_lock_irqsave(&rs
->rs_lock
, flags
);
823 * If there is a little space in sndbuf, we don't queue anything,
824 * and userspace gets -EAGAIN. But poll() indicates there's send
825 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
826 * freed up by incoming acks. So we check the *old* value of
827 * rs_snd_bytes here to allow the last msg to exceed the buffer,
828 * and poll() now knows no more data can be sent.
830 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
831 rs
->rs_snd_bytes
+= len
;
833 /* let recv side know we are close to send space exhaustion.
834 * This is probably not the optimal way to do it, as this
835 * means we set the flag on *all* messages as soon as our
836 * throughput hits a certain threshold.
838 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
839 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
841 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
842 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
843 rds_message_addref(rm
);
846 /* The code ordering is a little weird, but we're
847 trying to minimize the time we hold c_lock */
848 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
849 rm
->m_inc
.i_conn
= conn
;
850 rds_message_addref(rm
);
852 spin_lock(&conn
->c_lock
);
853 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(conn
->c_next_tx_seq
++);
854 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
855 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
856 spin_unlock(&conn
->c_lock
);
858 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
859 rm
, len
, rs
, rs
->rs_snd_bytes
,
860 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
865 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
871 * rds_message is getting to be quite complicated, and we'd like to allocate
872 * it all in one go. This figures out how big it needs to be up front.
874 static int rds_rm_size(struct msghdr
*msg
, int data_len
)
876 struct cmsghdr
*cmsg
;
881 for_each_cmsghdr(cmsg
, msg
) {
882 if (!CMSG_OK(msg
, cmsg
))
885 if (cmsg
->cmsg_level
!= SOL_RDS
)
888 switch (cmsg
->cmsg_type
) {
889 case RDS_CMSG_RDMA_ARGS
:
891 retval
= rds_rdma_extra_size(CMSG_DATA(cmsg
));
898 case RDS_CMSG_RDMA_DEST
:
899 case RDS_CMSG_RDMA_MAP
:
901 /* these are valid but do no add any size */
904 case RDS_CMSG_ATOMIC_CSWP
:
905 case RDS_CMSG_ATOMIC_FADD
:
906 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
907 case RDS_CMSG_MASKED_ATOMIC_FADD
:
909 size
+= sizeof(struct scatterlist
);
918 size
+= ceil(data_len
, PAGE_SIZE
) * sizeof(struct scatterlist
);
920 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
921 if (cmsg_groups
== 3)
927 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
928 struct msghdr
*msg
, int *allocated_mr
)
930 struct cmsghdr
*cmsg
;
933 for_each_cmsghdr(cmsg
, msg
) {
934 if (!CMSG_OK(msg
, cmsg
))
937 if (cmsg
->cmsg_level
!= SOL_RDS
)
940 /* As a side effect, RDMA_DEST and RDMA_MAP will set
941 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
943 switch (cmsg
->cmsg_type
) {
944 case RDS_CMSG_RDMA_ARGS
:
945 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
);
948 case RDS_CMSG_RDMA_DEST
:
949 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
952 case RDS_CMSG_RDMA_MAP
:
953 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
957 case RDS_CMSG_ATOMIC_CSWP
:
958 case RDS_CMSG_ATOMIC_FADD
:
959 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
960 case RDS_CMSG_MASKED_ATOMIC_FADD
:
961 ret
= rds_cmsg_atomic(rs
, rm
, cmsg
);
975 int rds_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t payload_len
)
977 struct sock
*sk
= sock
->sk
;
978 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
979 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
982 struct rds_message
*rm
= NULL
;
983 struct rds_connection
*conn
;
985 int queued
= 0, allocated_mr
= 0;
986 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
987 long timeo
= sock_sndtimeo(sk
, nonblock
);
989 /* Mirror Linux UDP mirror of BSD error message compatibility */
990 /* XXX: Perhaps MSG_MORE someday */
991 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
)) {
996 if (msg
->msg_namelen
) {
997 /* XXX fail non-unicast destination IPs? */
998 if (msg
->msg_namelen
< sizeof(*usin
) || usin
->sin_family
!= AF_INET
) {
1002 daddr
= usin
->sin_addr
.s_addr
;
1003 dport
= usin
->sin_port
;
1005 /* We only care about consistency with ->connect() */
1007 daddr
= rs
->rs_conn_addr
;
1008 dport
= rs
->rs_conn_port
;
1012 /* racing with another thread binding seems ok here */
1013 if (daddr
== 0 || rs
->rs_bound_addr
== 0) {
1014 ret
= -ENOTCONN
; /* XXX not a great errno */
1018 if (payload_len
> rds_sk_sndbuf(rs
)) {
1023 /* size of rm including all sgs */
1024 ret
= rds_rm_size(msg
, payload_len
);
1028 rm
= rds_message_alloc(ret
, GFP_KERNEL
);
1034 /* Attach data to the rm */
1036 rm
->data
.op_sg
= rds_message_alloc_sgs(rm
, ceil(payload_len
, PAGE_SIZE
));
1037 if (!rm
->data
.op_sg
) {
1041 ret
= rds_message_copy_from_user(rm
, &msg
->msg_iter
);
1045 rm
->data
.op_active
= 1;
1047 rm
->m_daddr
= daddr
;
1049 /* rds_conn_create has a spinlock that runs with IRQ off.
1050 * Caching the conn in the socket helps a lot. */
1051 if (rs
->rs_conn
&& rs
->rs_conn
->c_faddr
== daddr
)
1054 conn
= rds_conn_create_outgoing(sock_net(sock
->sk
),
1055 rs
->rs_bound_addr
, daddr
,
1057 sock
->sk
->sk_allocation
);
1059 ret
= PTR_ERR(conn
);
1065 /* Parse any control messages the user may have included. */
1066 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
);
1070 if (rm
->rdma
.op_active
&& !conn
->c_trans
->xmit_rdma
) {
1071 printk_ratelimited(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
1072 &rm
->rdma
, conn
->c_trans
->xmit_rdma
);
1077 if (rm
->atomic
.op_active
&& !conn
->c_trans
->xmit_atomic
) {
1078 printk_ratelimited(KERN_NOTICE
"atomic_op %p conn xmit_atomic %p\n",
1079 &rm
->atomic
, conn
->c_trans
->xmit_atomic
);
1084 rds_conn_connect_if_down(conn
);
1086 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
1088 rs
->rs_seen_congestion
= 1;
1092 while (!rds_send_queue_rm(rs
, conn
, rm
, rs
->rs_bound_port
,
1094 rds_stats_inc(s_send_queue_full
);
1101 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
1102 rds_send_queue_rm(rs
, conn
, rm
,
1107 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
1108 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
1118 * By now we've committed to the send. We reuse rds_send_worker()
1119 * to retry sends in the rds thread if the transport asks us to.
1121 rds_stats_inc(s_send_queued
);
1123 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1124 rds_send_xmit(conn
);
1126 rds_message_put(rm
);
1130 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1131 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1132 * or in any other way, we need to destroy the MR again */
1134 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
1137 rds_message_put(rm
);
1142 * Reply to a ping packet.
1145 rds_send_pong(struct rds_connection
*conn
, __be16 dport
)
1147 struct rds_message
*rm
;
1148 unsigned long flags
;
1151 rm
= rds_message_alloc(0, GFP_ATOMIC
);
1157 rm
->m_daddr
= conn
->c_faddr
;
1158 rm
->data
.op_active
= 1;
1160 rds_conn_connect_if_down(conn
);
1162 ret
= rds_cong_wait(conn
->c_fcong
, dport
, 1, NULL
);
1166 spin_lock_irqsave(&conn
->c_lock
, flags
);
1167 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
1168 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
1169 rds_message_addref(rm
);
1170 rm
->m_inc
.i_conn
= conn
;
1172 rds_message_populate_header(&rm
->m_inc
.i_hdr
, 0, dport
,
1173 conn
->c_next_tx_seq
);
1174 conn
->c_next_tx_seq
++;
1175 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
1177 rds_stats_inc(s_send_queued
);
1178 rds_stats_inc(s_send_pong
);
1180 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1181 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
1183 rds_message_put(rm
);
1188 rds_message_put(rm
);