selftests: do not require bash to run netsocktests testcase
[linux/fpc-iii.git] / mm / compaction.c
blobf93ada7403bf28c8ddd80c71d6128f61e5175d22
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
25 count_vm_event(item);
28 static inline void count_compact_events(enum vm_event_item item, long delta)
30 count_vm_events(item, delta);
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 "deferred",
41 "skipped",
42 "continue",
43 "partial",
44 "complete",
45 "no_suitable_page",
46 "not_suitable_zone",
48 #endif
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 static unsigned long release_freepages(struct list_head *freelist)
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
66 return high_pfn;
69 static void map_pages(struct list_head *list)
71 struct page *page;
73 list_for_each_entry(page, list, lru) {
74 arch_alloc_page(page, 0);
75 kernel_map_pages(page, 1, 1);
76 kasan_alloc_pages(page, 0);
80 static inline bool migrate_async_suitable(int migratetype)
82 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
90 * pageblocks.
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 unsigned long end_pfn, struct zone *zone)
105 struct page *start_page;
106 struct page *end_page;
108 /* end_pfn is one past the range we are checking */
109 end_pfn--;
111 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 return NULL;
114 start_page = pfn_to_page(start_pfn);
116 if (page_zone(start_page) != zone)
117 return NULL;
119 end_page = pfn_to_page(end_pfn);
121 /* This gives a shorter code than deriving page_zone(end_page) */
122 if (page_zone_id(start_page) != page_zone_id(end_page))
123 return NULL;
125 return start_page;
128 #ifdef CONFIG_COMPACTION
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
138 void defer_compaction(struct zone *zone, int order)
140 zone->compact_considered = 0;
141 zone->compact_defer_shift++;
143 if (order < zone->compact_order_failed)
144 zone->compact_order_failed = order;
146 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
149 trace_mm_compaction_defer_compaction(zone, order);
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
155 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
157 if (order < zone->compact_order_failed)
158 return false;
160 /* Avoid possible overflow */
161 if (++zone->compact_considered > defer_limit)
162 zone->compact_considered = defer_limit;
164 if (zone->compact_considered >= defer_limit)
165 return false;
167 trace_mm_compaction_deferred(zone, order);
169 return true;
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
177 void compaction_defer_reset(struct zone *zone, int order,
178 bool alloc_success)
180 if (alloc_success) {
181 zone->compact_considered = 0;
182 zone->compact_defer_shift = 0;
184 if (order >= zone->compact_order_failed)
185 zone->compact_order_failed = order + 1;
187 trace_mm_compaction_defer_reset(zone, order);
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
193 if (order < zone->compact_order_failed)
194 return false;
196 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 zone->compact_considered >= 1UL << zone->compact_defer_shift;
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202 struct page *page)
204 if (cc->ignore_skip_hint)
205 return true;
207 return !get_pageblock_skip(page);
211 * This function is called to clear all cached information on pageblocks that
212 * should be skipped for page isolation when the migrate and free page scanner
213 * meet.
215 static void __reset_isolation_suitable(struct zone *zone)
217 unsigned long start_pfn = zone->zone_start_pfn;
218 unsigned long end_pfn = zone_end_pfn(zone);
219 unsigned long pfn;
221 zone->compact_cached_migrate_pfn[0] = start_pfn;
222 zone->compact_cached_migrate_pfn[1] = start_pfn;
223 zone->compact_cached_free_pfn = end_pfn;
224 zone->compact_blockskip_flush = false;
226 /* Walk the zone and mark every pageblock as suitable for isolation */
227 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228 struct page *page;
230 cond_resched();
232 if (!pfn_valid(pfn))
233 continue;
235 page = pfn_to_page(pfn);
236 if (zone != page_zone(page))
237 continue;
239 clear_pageblock_skip(page);
243 void reset_isolation_suitable(pg_data_t *pgdat)
245 int zoneid;
247 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248 struct zone *zone = &pgdat->node_zones[zoneid];
249 if (!populated_zone(zone))
250 continue;
252 /* Only flush if a full compaction finished recently */
253 if (zone->compact_blockskip_flush)
254 __reset_isolation_suitable(zone);
259 * If no pages were isolated then mark this pageblock to be skipped in the
260 * future. The information is later cleared by __reset_isolation_suitable().
262 static void update_pageblock_skip(struct compact_control *cc,
263 struct page *page, unsigned long nr_isolated,
264 bool migrate_scanner)
266 struct zone *zone = cc->zone;
267 unsigned long pfn;
269 if (cc->ignore_skip_hint)
270 return;
272 if (!page)
273 return;
275 if (nr_isolated)
276 return;
278 set_pageblock_skip(page);
280 pfn = page_to_pfn(page);
282 /* Update where async and sync compaction should restart */
283 if (migrate_scanner) {
284 if (pfn > zone->compact_cached_migrate_pfn[0])
285 zone->compact_cached_migrate_pfn[0] = pfn;
286 if (cc->mode != MIGRATE_ASYNC &&
287 pfn > zone->compact_cached_migrate_pfn[1])
288 zone->compact_cached_migrate_pfn[1] = pfn;
289 } else {
290 if (pfn < zone->compact_cached_free_pfn)
291 zone->compact_cached_free_pfn = pfn;
294 #else
295 static inline bool isolation_suitable(struct compact_control *cc,
296 struct page *page)
298 return true;
301 static void update_pageblock_skip(struct compact_control *cc,
302 struct page *page, unsigned long nr_isolated,
303 bool migrate_scanner)
306 #endif /* CONFIG_COMPACTION */
309 * Compaction requires the taking of some coarse locks that are potentially
310 * very heavily contended. For async compaction, back out if the lock cannot
311 * be taken immediately. For sync compaction, spin on the lock if needed.
313 * Returns true if the lock is held
314 * Returns false if the lock is not held and compaction should abort
316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317 struct compact_control *cc)
319 if (cc->mode == MIGRATE_ASYNC) {
320 if (!spin_trylock_irqsave(lock, *flags)) {
321 cc->contended = COMPACT_CONTENDED_LOCK;
322 return false;
324 } else {
325 spin_lock_irqsave(lock, *flags);
328 return true;
332 * Compaction requires the taking of some coarse locks that are potentially
333 * very heavily contended. The lock should be periodically unlocked to avoid
334 * having disabled IRQs for a long time, even when there is nobody waiting on
335 * the lock. It might also be that allowing the IRQs will result in
336 * need_resched() becoming true. If scheduling is needed, async compaction
337 * aborts. Sync compaction schedules.
338 * Either compaction type will also abort if a fatal signal is pending.
339 * In either case if the lock was locked, it is dropped and not regained.
341 * Returns true if compaction should abort due to fatal signal pending, or
342 * async compaction due to need_resched()
343 * Returns false when compaction can continue (sync compaction might have
344 * scheduled)
346 static bool compact_unlock_should_abort(spinlock_t *lock,
347 unsigned long flags, bool *locked, struct compact_control *cc)
349 if (*locked) {
350 spin_unlock_irqrestore(lock, flags);
351 *locked = false;
354 if (fatal_signal_pending(current)) {
355 cc->contended = COMPACT_CONTENDED_SCHED;
356 return true;
359 if (need_resched()) {
360 if (cc->mode == MIGRATE_ASYNC) {
361 cc->contended = COMPACT_CONTENDED_SCHED;
362 return true;
364 cond_resched();
367 return false;
371 * Aside from avoiding lock contention, compaction also periodically checks
372 * need_resched() and either schedules in sync compaction or aborts async
373 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 * is used where no lock is concerned.
376 * Returns false when no scheduling was needed, or sync compaction scheduled.
377 * Returns true when async compaction should abort.
379 static inline bool compact_should_abort(struct compact_control *cc)
381 /* async compaction aborts if contended */
382 if (need_resched()) {
383 if (cc->mode == MIGRATE_ASYNC) {
384 cc->contended = COMPACT_CONTENDED_SCHED;
385 return true;
388 cond_resched();
391 return false;
395 * Isolate free pages onto a private freelist. If @strict is true, will abort
396 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
397 * (even though it may still end up isolating some pages).
399 static unsigned long isolate_freepages_block(struct compact_control *cc,
400 unsigned long *start_pfn,
401 unsigned long end_pfn,
402 struct list_head *freelist,
403 bool strict)
405 int nr_scanned = 0, total_isolated = 0;
406 struct page *cursor, *valid_page = NULL;
407 unsigned long flags = 0;
408 bool locked = false;
409 unsigned long blockpfn = *start_pfn;
411 cursor = pfn_to_page(blockpfn);
413 /* Isolate free pages. */
414 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
415 int isolated, i;
416 struct page *page = cursor;
419 * Periodically drop the lock (if held) regardless of its
420 * contention, to give chance to IRQs. Abort if fatal signal
421 * pending or async compaction detects need_resched()
423 if (!(blockpfn % SWAP_CLUSTER_MAX)
424 && compact_unlock_should_abort(&cc->zone->lock, flags,
425 &locked, cc))
426 break;
428 nr_scanned++;
429 if (!pfn_valid_within(blockpfn))
430 goto isolate_fail;
432 if (!valid_page)
433 valid_page = page;
436 * For compound pages such as THP and hugetlbfs, we can save
437 * potentially a lot of iterations if we skip them at once.
438 * The check is racy, but we can consider only valid values
439 * and the only danger is skipping too much.
441 if (PageCompound(page)) {
442 unsigned int comp_order = compound_order(page);
444 if (likely(comp_order < MAX_ORDER)) {
445 blockpfn += (1UL << comp_order) - 1;
446 cursor += (1UL << comp_order) - 1;
449 goto isolate_fail;
452 if (!PageBuddy(page))
453 goto isolate_fail;
456 * If we already hold the lock, we can skip some rechecking.
457 * Note that if we hold the lock now, checked_pageblock was
458 * already set in some previous iteration (or strict is true),
459 * so it is correct to skip the suitable migration target
460 * recheck as well.
462 if (!locked) {
464 * The zone lock must be held to isolate freepages.
465 * Unfortunately this is a very coarse lock and can be
466 * heavily contended if there are parallel allocations
467 * or parallel compactions. For async compaction do not
468 * spin on the lock and we acquire the lock as late as
469 * possible.
471 locked = compact_trylock_irqsave(&cc->zone->lock,
472 &flags, cc);
473 if (!locked)
474 break;
476 /* Recheck this is a buddy page under lock */
477 if (!PageBuddy(page))
478 goto isolate_fail;
481 /* Found a free page, break it into order-0 pages */
482 isolated = split_free_page(page);
483 if (!isolated)
484 break;
486 total_isolated += isolated;
487 cc->nr_freepages += isolated;
488 for (i = 0; i < isolated; i++) {
489 list_add(&page->lru, freelist);
490 page++;
492 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
493 blockpfn += isolated;
494 break;
496 /* Advance to the end of split page */
497 blockpfn += isolated - 1;
498 cursor += isolated - 1;
499 continue;
501 isolate_fail:
502 if (strict)
503 break;
504 else
505 continue;
509 if (locked)
510 spin_unlock_irqrestore(&cc->zone->lock, flags);
513 * There is a tiny chance that we have read bogus compound_order(),
514 * so be careful to not go outside of the pageblock.
516 if (unlikely(blockpfn > end_pfn))
517 blockpfn = end_pfn;
519 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
520 nr_scanned, total_isolated);
522 /* Record how far we have got within the block */
523 *start_pfn = blockpfn;
526 * If strict isolation is requested by CMA then check that all the
527 * pages requested were isolated. If there were any failures, 0 is
528 * returned and CMA will fail.
530 if (strict && blockpfn < end_pfn)
531 total_isolated = 0;
533 /* Update the pageblock-skip if the whole pageblock was scanned */
534 if (blockpfn == end_pfn)
535 update_pageblock_skip(cc, valid_page, total_isolated, false);
537 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
538 if (total_isolated)
539 count_compact_events(COMPACTISOLATED, total_isolated);
540 return total_isolated;
544 * isolate_freepages_range() - isolate free pages.
545 * @start_pfn: The first PFN to start isolating.
546 * @end_pfn: The one-past-last PFN.
548 * Non-free pages, invalid PFNs, or zone boundaries within the
549 * [start_pfn, end_pfn) range are considered errors, cause function to
550 * undo its actions and return zero.
552 * Otherwise, function returns one-past-the-last PFN of isolated page
553 * (which may be greater then end_pfn if end fell in a middle of
554 * a free page).
556 unsigned long
557 isolate_freepages_range(struct compact_control *cc,
558 unsigned long start_pfn, unsigned long end_pfn)
560 unsigned long isolated, pfn, block_end_pfn;
561 LIST_HEAD(freelist);
563 pfn = start_pfn;
564 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
566 for (; pfn < end_pfn; pfn += isolated,
567 block_end_pfn += pageblock_nr_pages) {
568 /* Protect pfn from changing by isolate_freepages_block */
569 unsigned long isolate_start_pfn = pfn;
571 block_end_pfn = min(block_end_pfn, end_pfn);
574 * pfn could pass the block_end_pfn if isolated freepage
575 * is more than pageblock order. In this case, we adjust
576 * scanning range to right one.
578 if (pfn >= block_end_pfn) {
579 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
580 block_end_pfn = min(block_end_pfn, end_pfn);
583 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
584 break;
586 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
587 block_end_pfn, &freelist, true);
590 * In strict mode, isolate_freepages_block() returns 0 if
591 * there are any holes in the block (ie. invalid PFNs or
592 * non-free pages).
594 if (!isolated)
595 break;
598 * If we managed to isolate pages, it is always (1 << n) *
599 * pageblock_nr_pages for some non-negative n. (Max order
600 * page may span two pageblocks).
604 /* split_free_page does not map the pages */
605 map_pages(&freelist);
607 if (pfn < end_pfn) {
608 /* Loop terminated early, cleanup. */
609 release_freepages(&freelist);
610 return 0;
613 /* We don't use freelists for anything. */
614 return pfn;
617 /* Update the number of anon and file isolated pages in the zone */
618 static void acct_isolated(struct zone *zone, struct compact_control *cc)
620 struct page *page;
621 unsigned int count[2] = { 0, };
623 if (list_empty(&cc->migratepages))
624 return;
626 list_for_each_entry(page, &cc->migratepages, lru)
627 count[!!page_is_file_cache(page)]++;
629 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
630 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
633 /* Similar to reclaim, but different enough that they don't share logic */
634 static bool too_many_isolated(struct zone *zone)
636 unsigned long active, inactive, isolated;
638 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
639 zone_page_state(zone, NR_INACTIVE_ANON);
640 active = zone_page_state(zone, NR_ACTIVE_FILE) +
641 zone_page_state(zone, NR_ACTIVE_ANON);
642 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
643 zone_page_state(zone, NR_ISOLATED_ANON);
645 return isolated > (inactive + active) / 2;
649 * isolate_migratepages_block() - isolate all migrate-able pages within
650 * a single pageblock
651 * @cc: Compaction control structure.
652 * @low_pfn: The first PFN to isolate
653 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
654 * @isolate_mode: Isolation mode to be used.
656 * Isolate all pages that can be migrated from the range specified by
657 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
658 * Returns zero if there is a fatal signal pending, otherwise PFN of the
659 * first page that was not scanned (which may be both less, equal to or more
660 * than end_pfn).
662 * The pages are isolated on cc->migratepages list (not required to be empty),
663 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
664 * is neither read nor updated.
666 static unsigned long
667 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
668 unsigned long end_pfn, isolate_mode_t isolate_mode)
670 struct zone *zone = cc->zone;
671 unsigned long nr_scanned = 0, nr_isolated = 0;
672 struct list_head *migratelist = &cc->migratepages;
673 struct lruvec *lruvec;
674 unsigned long flags = 0;
675 bool locked = false;
676 struct page *page = NULL, *valid_page = NULL;
677 unsigned long start_pfn = low_pfn;
680 * Ensure that there are not too many pages isolated from the LRU
681 * list by either parallel reclaimers or compaction. If there are,
682 * delay for some time until fewer pages are isolated
684 while (unlikely(too_many_isolated(zone))) {
685 /* async migration should just abort */
686 if (cc->mode == MIGRATE_ASYNC)
687 return 0;
689 congestion_wait(BLK_RW_ASYNC, HZ/10);
691 if (fatal_signal_pending(current))
692 return 0;
695 if (compact_should_abort(cc))
696 return 0;
698 /* Time to isolate some pages for migration */
699 for (; low_pfn < end_pfn; low_pfn++) {
701 * Periodically drop the lock (if held) regardless of its
702 * contention, to give chance to IRQs. Abort async compaction
703 * if contended.
705 if (!(low_pfn % SWAP_CLUSTER_MAX)
706 && compact_unlock_should_abort(&zone->lru_lock, flags,
707 &locked, cc))
708 break;
710 if (!pfn_valid_within(low_pfn))
711 continue;
712 nr_scanned++;
714 page = pfn_to_page(low_pfn);
716 if (!valid_page)
717 valid_page = page;
720 * Skip if free. We read page order here without zone lock
721 * which is generally unsafe, but the race window is small and
722 * the worst thing that can happen is that we skip some
723 * potential isolation targets.
725 if (PageBuddy(page)) {
726 unsigned long freepage_order = page_order_unsafe(page);
729 * Without lock, we cannot be sure that what we got is
730 * a valid page order. Consider only values in the
731 * valid order range to prevent low_pfn overflow.
733 if (freepage_order > 0 && freepage_order < MAX_ORDER)
734 low_pfn += (1UL << freepage_order) - 1;
735 continue;
739 * Check may be lockless but that's ok as we recheck later.
740 * It's possible to migrate LRU pages and balloon pages
741 * Skip any other type of page
743 if (!PageLRU(page)) {
744 if (unlikely(balloon_page_movable(page))) {
745 if (balloon_page_isolate(page)) {
746 /* Successfully isolated */
747 goto isolate_success;
750 continue;
754 * PageLRU is set. lru_lock normally excludes isolation
755 * splitting and collapsing (collapsing has already happened
756 * if PageLRU is set) but the lock is not necessarily taken
757 * here and it is wasteful to take it just to check transhuge.
758 * Check TransHuge without lock and skip the whole pageblock if
759 * it's either a transhuge or hugetlbfs page, as calling
760 * compound_order() without preventing THP from splitting the
761 * page underneath us may return surprising results.
763 if (PageTransHuge(page)) {
764 if (!locked)
765 low_pfn = ALIGN(low_pfn + 1,
766 pageblock_nr_pages) - 1;
767 else
768 low_pfn += (1 << compound_order(page)) - 1;
770 continue;
774 * Migration will fail if an anonymous page is pinned in memory,
775 * so avoid taking lru_lock and isolating it unnecessarily in an
776 * admittedly racy check.
778 if (!page_mapping(page) &&
779 page_count(page) > page_mapcount(page))
780 continue;
782 /* If we already hold the lock, we can skip some rechecking */
783 if (!locked) {
784 locked = compact_trylock_irqsave(&zone->lru_lock,
785 &flags, cc);
786 if (!locked)
787 break;
789 /* Recheck PageLRU and PageTransHuge under lock */
790 if (!PageLRU(page))
791 continue;
792 if (PageTransHuge(page)) {
793 low_pfn += (1 << compound_order(page)) - 1;
794 continue;
798 lruvec = mem_cgroup_page_lruvec(page, zone);
800 /* Try isolate the page */
801 if (__isolate_lru_page(page, isolate_mode) != 0)
802 continue;
804 VM_BUG_ON_PAGE(PageTransCompound(page), page);
806 /* Successfully isolated */
807 del_page_from_lru_list(page, lruvec, page_lru(page));
809 isolate_success:
810 list_add(&page->lru, migratelist);
811 cc->nr_migratepages++;
812 nr_isolated++;
814 /* Avoid isolating too much */
815 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
816 ++low_pfn;
817 break;
822 * The PageBuddy() check could have potentially brought us outside
823 * the range to be scanned.
825 if (unlikely(low_pfn > end_pfn))
826 low_pfn = end_pfn;
828 if (locked)
829 spin_unlock_irqrestore(&zone->lru_lock, flags);
832 * Update the pageblock-skip information and cached scanner pfn,
833 * if the whole pageblock was scanned without isolating any page.
835 if (low_pfn == end_pfn)
836 update_pageblock_skip(cc, valid_page, nr_isolated, true);
838 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
839 nr_scanned, nr_isolated);
841 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
842 if (nr_isolated)
843 count_compact_events(COMPACTISOLATED, nr_isolated);
845 return low_pfn;
849 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
850 * @cc: Compaction control structure.
851 * @start_pfn: The first PFN to start isolating.
852 * @end_pfn: The one-past-last PFN.
854 * Returns zero if isolation fails fatally due to e.g. pending signal.
855 * Otherwise, function returns one-past-the-last PFN of isolated page
856 * (which may be greater than end_pfn if end fell in a middle of a THP page).
858 unsigned long
859 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
860 unsigned long end_pfn)
862 unsigned long pfn, block_end_pfn;
864 /* Scan block by block. First and last block may be incomplete */
865 pfn = start_pfn;
866 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
868 for (; pfn < end_pfn; pfn = block_end_pfn,
869 block_end_pfn += pageblock_nr_pages) {
871 block_end_pfn = min(block_end_pfn, end_pfn);
873 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
874 continue;
876 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
877 ISOLATE_UNEVICTABLE);
879 if (!pfn)
880 break;
882 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
883 break;
885 acct_isolated(cc->zone, cc);
887 return pfn;
890 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
891 #ifdef CONFIG_COMPACTION
893 /* Returns true if the page is within a block suitable for migration to */
894 static bool suitable_migration_target(struct page *page)
896 /* If the page is a large free page, then disallow migration */
897 if (PageBuddy(page)) {
899 * We are checking page_order without zone->lock taken. But
900 * the only small danger is that we skip a potentially suitable
901 * pageblock, so it's not worth to check order for valid range.
903 if (page_order_unsafe(page) >= pageblock_order)
904 return false;
907 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
908 if (migrate_async_suitable(get_pageblock_migratetype(page)))
909 return true;
911 /* Otherwise skip the block */
912 return false;
916 * Based on information in the current compact_control, find blocks
917 * suitable for isolating free pages from and then isolate them.
919 static void isolate_freepages(struct compact_control *cc)
921 struct zone *zone = cc->zone;
922 struct page *page;
923 unsigned long block_start_pfn; /* start of current pageblock */
924 unsigned long isolate_start_pfn; /* exact pfn we start at */
925 unsigned long block_end_pfn; /* end of current pageblock */
926 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
927 struct list_head *freelist = &cc->freepages;
930 * Initialise the free scanner. The starting point is where we last
931 * successfully isolated from, zone-cached value, or the end of the
932 * zone when isolating for the first time. For looping we also need
933 * this pfn aligned down to the pageblock boundary, because we do
934 * block_start_pfn -= pageblock_nr_pages in the for loop.
935 * For ending point, take care when isolating in last pageblock of a
936 * a zone which ends in the middle of a pageblock.
937 * The low boundary is the end of the pageblock the migration scanner
938 * is using.
940 isolate_start_pfn = cc->free_pfn;
941 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
942 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
943 zone_end_pfn(zone));
944 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
947 * Isolate free pages until enough are available to migrate the
948 * pages on cc->migratepages. We stop searching if the migrate
949 * and free page scanners meet or enough free pages are isolated.
951 for (; block_start_pfn >= low_pfn;
952 block_end_pfn = block_start_pfn,
953 block_start_pfn -= pageblock_nr_pages,
954 isolate_start_pfn = block_start_pfn) {
956 * This can iterate a massively long zone without finding any
957 * suitable migration targets, so periodically check if we need
958 * to schedule, or even abort async compaction.
960 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
961 && compact_should_abort(cc))
962 break;
964 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
965 zone);
966 if (!page)
967 continue;
969 /* Check the block is suitable for migration */
970 if (!suitable_migration_target(page))
971 continue;
973 /* If isolation recently failed, do not retry */
974 if (!isolation_suitable(cc, page))
975 continue;
977 /* Found a block suitable for isolating free pages from. */
978 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
979 freelist, false);
982 * If we isolated enough freepages, or aborted due to lock
983 * contention, terminate.
985 if ((cc->nr_freepages >= cc->nr_migratepages)
986 || cc->contended) {
987 if (isolate_start_pfn >= block_end_pfn) {
989 * Restart at previous pageblock if more
990 * freepages can be isolated next time.
992 isolate_start_pfn =
993 block_start_pfn - pageblock_nr_pages;
995 break;
996 } else if (isolate_start_pfn < block_end_pfn) {
998 * If isolation failed early, do not continue
999 * needlessly.
1001 break;
1005 /* split_free_page does not map the pages */
1006 map_pages(freelist);
1009 * Record where the free scanner will restart next time. Either we
1010 * broke from the loop and set isolate_start_pfn based on the last
1011 * call to isolate_freepages_block(), or we met the migration scanner
1012 * and the loop terminated due to isolate_start_pfn < low_pfn
1014 cc->free_pfn = isolate_start_pfn;
1018 * This is a migrate-callback that "allocates" freepages by taking pages
1019 * from the isolated freelists in the block we are migrating to.
1021 static struct page *compaction_alloc(struct page *migratepage,
1022 unsigned long data,
1023 int **result)
1025 struct compact_control *cc = (struct compact_control *)data;
1026 struct page *freepage;
1029 * Isolate free pages if necessary, and if we are not aborting due to
1030 * contention.
1032 if (list_empty(&cc->freepages)) {
1033 if (!cc->contended)
1034 isolate_freepages(cc);
1036 if (list_empty(&cc->freepages))
1037 return NULL;
1040 freepage = list_entry(cc->freepages.next, struct page, lru);
1041 list_del(&freepage->lru);
1042 cc->nr_freepages--;
1044 return freepage;
1048 * This is a migrate-callback that "frees" freepages back to the isolated
1049 * freelist. All pages on the freelist are from the same zone, so there is no
1050 * special handling needed for NUMA.
1052 static void compaction_free(struct page *page, unsigned long data)
1054 struct compact_control *cc = (struct compact_control *)data;
1056 list_add(&page->lru, &cc->freepages);
1057 cc->nr_freepages++;
1060 /* possible outcome of isolate_migratepages */
1061 typedef enum {
1062 ISOLATE_ABORT, /* Abort compaction now */
1063 ISOLATE_NONE, /* No pages isolated, continue scanning */
1064 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1065 } isolate_migrate_t;
1068 * Allow userspace to control policy on scanning the unevictable LRU for
1069 * compactable pages.
1071 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1074 * Isolate all pages that can be migrated from the first suitable block,
1075 * starting at the block pointed to by the migrate scanner pfn within
1076 * compact_control.
1078 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1079 struct compact_control *cc)
1081 unsigned long low_pfn, end_pfn;
1082 struct page *page;
1083 const isolate_mode_t isolate_mode =
1084 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1085 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1088 * Start at where we last stopped, or beginning of the zone as
1089 * initialized by compact_zone()
1091 low_pfn = cc->migrate_pfn;
1093 /* Only scan within a pageblock boundary */
1094 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1097 * Iterate over whole pageblocks until we find the first suitable.
1098 * Do not cross the free scanner.
1100 for (; end_pfn <= cc->free_pfn;
1101 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1104 * This can potentially iterate a massively long zone with
1105 * many pageblocks unsuitable, so periodically check if we
1106 * need to schedule, or even abort async compaction.
1108 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1109 && compact_should_abort(cc))
1110 break;
1112 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1113 if (!page)
1114 continue;
1116 /* If isolation recently failed, do not retry */
1117 if (!isolation_suitable(cc, page))
1118 continue;
1121 * For async compaction, also only scan in MOVABLE blocks.
1122 * Async compaction is optimistic to see if the minimum amount
1123 * of work satisfies the allocation.
1125 if (cc->mode == MIGRATE_ASYNC &&
1126 !migrate_async_suitable(get_pageblock_migratetype(page)))
1127 continue;
1129 /* Perform the isolation */
1130 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1131 isolate_mode);
1133 if (!low_pfn || cc->contended) {
1134 acct_isolated(zone, cc);
1135 return ISOLATE_ABORT;
1139 * Either we isolated something and proceed with migration. Or
1140 * we failed and compact_zone should decide if we should
1141 * continue or not.
1143 break;
1146 acct_isolated(zone, cc);
1148 * Record where migration scanner will be restarted. If we end up in
1149 * the same pageblock as the free scanner, make the scanners fully
1150 * meet so that compact_finished() terminates compaction.
1152 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1154 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1157 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1158 const int migratetype)
1160 unsigned int order;
1161 unsigned long watermark;
1163 if (cc->contended || fatal_signal_pending(current))
1164 return COMPACT_PARTIAL;
1166 /* Compaction run completes if the migrate and free scanner meet */
1167 if (cc->free_pfn <= cc->migrate_pfn) {
1168 /* Let the next compaction start anew. */
1169 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1170 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1171 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1174 * Mark that the PG_migrate_skip information should be cleared
1175 * by kswapd when it goes to sleep. kswapd does not set the
1176 * flag itself as the decision to be clear should be directly
1177 * based on an allocation request.
1179 if (!current_is_kswapd())
1180 zone->compact_blockskip_flush = true;
1182 return COMPACT_COMPLETE;
1186 * order == -1 is expected when compacting via
1187 * /proc/sys/vm/compact_memory
1189 if (cc->order == -1)
1190 return COMPACT_CONTINUE;
1192 /* Compaction run is not finished if the watermark is not met */
1193 watermark = low_wmark_pages(zone);
1195 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1196 cc->alloc_flags))
1197 return COMPACT_CONTINUE;
1199 /* Direct compactor: Is a suitable page free? */
1200 for (order = cc->order; order < MAX_ORDER; order++) {
1201 struct free_area *area = &zone->free_area[order];
1202 bool can_steal;
1204 /* Job done if page is free of the right migratetype */
1205 if (!list_empty(&area->free_list[migratetype]))
1206 return COMPACT_PARTIAL;
1208 #ifdef CONFIG_CMA
1209 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1210 if (migratetype == MIGRATE_MOVABLE &&
1211 !list_empty(&area->free_list[MIGRATE_CMA]))
1212 return COMPACT_PARTIAL;
1213 #endif
1215 * Job done if allocation would steal freepages from
1216 * other migratetype buddy lists.
1218 if (find_suitable_fallback(area, order, migratetype,
1219 true, &can_steal) != -1)
1220 return COMPACT_PARTIAL;
1223 return COMPACT_NO_SUITABLE_PAGE;
1226 static int compact_finished(struct zone *zone, struct compact_control *cc,
1227 const int migratetype)
1229 int ret;
1231 ret = __compact_finished(zone, cc, migratetype);
1232 trace_mm_compaction_finished(zone, cc->order, ret);
1233 if (ret == COMPACT_NO_SUITABLE_PAGE)
1234 ret = COMPACT_CONTINUE;
1236 return ret;
1240 * compaction_suitable: Is this suitable to run compaction on this zone now?
1241 * Returns
1242 * COMPACT_SKIPPED - If there are too few free pages for compaction
1243 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1244 * COMPACT_CONTINUE - If compaction should run now
1246 static unsigned long __compaction_suitable(struct zone *zone, int order,
1247 int alloc_flags, int classzone_idx)
1249 int fragindex;
1250 unsigned long watermark;
1253 * order == -1 is expected when compacting via
1254 * /proc/sys/vm/compact_memory
1256 if (order == -1)
1257 return COMPACT_CONTINUE;
1259 watermark = low_wmark_pages(zone);
1261 * If watermarks for high-order allocation are already met, there
1262 * should be no need for compaction at all.
1264 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1265 alloc_flags))
1266 return COMPACT_PARTIAL;
1269 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1270 * This is because during migration, copies of pages need to be
1271 * allocated and for a short time, the footprint is higher
1273 watermark += (2UL << order);
1274 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1275 return COMPACT_SKIPPED;
1278 * fragmentation index determines if allocation failures are due to
1279 * low memory or external fragmentation
1281 * index of -1000 would imply allocations might succeed depending on
1282 * watermarks, but we already failed the high-order watermark check
1283 * index towards 0 implies failure is due to lack of memory
1284 * index towards 1000 implies failure is due to fragmentation
1286 * Only compact if a failure would be due to fragmentation.
1288 fragindex = fragmentation_index(zone, order);
1289 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1290 return COMPACT_NOT_SUITABLE_ZONE;
1292 return COMPACT_CONTINUE;
1295 unsigned long compaction_suitable(struct zone *zone, int order,
1296 int alloc_flags, int classzone_idx)
1298 unsigned long ret;
1300 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1301 trace_mm_compaction_suitable(zone, order, ret);
1302 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1303 ret = COMPACT_SKIPPED;
1305 return ret;
1308 static int compact_zone(struct zone *zone, struct compact_control *cc)
1310 int ret;
1311 unsigned long start_pfn = zone->zone_start_pfn;
1312 unsigned long end_pfn = zone_end_pfn(zone);
1313 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1314 const bool sync = cc->mode != MIGRATE_ASYNC;
1315 unsigned long last_migrated_pfn = 0;
1317 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1318 cc->classzone_idx);
1319 switch (ret) {
1320 case COMPACT_PARTIAL:
1321 case COMPACT_SKIPPED:
1322 /* Compaction is likely to fail */
1323 return ret;
1324 case COMPACT_CONTINUE:
1325 /* Fall through to compaction */
1330 * Clear pageblock skip if there were failures recently and compaction
1331 * is about to be retried after being deferred. kswapd does not do
1332 * this reset as it'll reset the cached information when going to sleep.
1334 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1335 __reset_isolation_suitable(zone);
1338 * Setup to move all movable pages to the end of the zone. Used cached
1339 * information on where the scanners should start but check that it
1340 * is initialised by ensuring the values are within zone boundaries.
1342 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1343 cc->free_pfn = zone->compact_cached_free_pfn;
1344 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1345 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1346 zone->compact_cached_free_pfn = cc->free_pfn;
1348 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1349 cc->migrate_pfn = start_pfn;
1350 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1351 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1354 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1355 cc->free_pfn, end_pfn, sync);
1357 migrate_prep_local();
1359 while ((ret = compact_finished(zone, cc, migratetype)) ==
1360 COMPACT_CONTINUE) {
1361 int err;
1362 unsigned long isolate_start_pfn = cc->migrate_pfn;
1364 switch (isolate_migratepages(zone, cc)) {
1365 case ISOLATE_ABORT:
1366 ret = COMPACT_PARTIAL;
1367 putback_movable_pages(&cc->migratepages);
1368 cc->nr_migratepages = 0;
1369 goto out;
1370 case ISOLATE_NONE:
1372 * We haven't isolated and migrated anything, but
1373 * there might still be unflushed migrations from
1374 * previous cc->order aligned block.
1376 goto check_drain;
1377 case ISOLATE_SUCCESS:
1381 err = migrate_pages(&cc->migratepages, compaction_alloc,
1382 compaction_free, (unsigned long)cc, cc->mode,
1383 MR_COMPACTION);
1385 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1386 &cc->migratepages);
1388 /* All pages were either migrated or will be released */
1389 cc->nr_migratepages = 0;
1390 if (err) {
1391 putback_movable_pages(&cc->migratepages);
1393 * migrate_pages() may return -ENOMEM when scanners meet
1394 * and we want compact_finished() to detect it
1396 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1397 ret = COMPACT_PARTIAL;
1398 goto out;
1403 * Record where we could have freed pages by migration and not
1404 * yet flushed them to buddy allocator. We use the pfn that
1405 * isolate_migratepages() started from in this loop iteration
1406 * - this is the lowest page that could have been isolated and
1407 * then freed by migration.
1409 if (!last_migrated_pfn)
1410 last_migrated_pfn = isolate_start_pfn;
1412 check_drain:
1414 * Has the migration scanner moved away from the previous
1415 * cc->order aligned block where we migrated from? If yes,
1416 * flush the pages that were freed, so that they can merge and
1417 * compact_finished() can detect immediately if allocation
1418 * would succeed.
1420 if (cc->order > 0 && last_migrated_pfn) {
1421 int cpu;
1422 unsigned long current_block_start =
1423 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1425 if (last_migrated_pfn < current_block_start) {
1426 cpu = get_cpu();
1427 lru_add_drain_cpu(cpu);
1428 drain_local_pages(zone);
1429 put_cpu();
1430 /* No more flushing until we migrate again */
1431 last_migrated_pfn = 0;
1437 out:
1439 * Release free pages and update where the free scanner should restart,
1440 * so we don't leave any returned pages behind in the next attempt.
1442 if (cc->nr_freepages > 0) {
1443 unsigned long free_pfn = release_freepages(&cc->freepages);
1445 cc->nr_freepages = 0;
1446 VM_BUG_ON(free_pfn == 0);
1447 /* The cached pfn is always the first in a pageblock */
1448 free_pfn &= ~(pageblock_nr_pages-1);
1450 * Only go back, not forward. The cached pfn might have been
1451 * already reset to zone end in compact_finished()
1453 if (free_pfn > zone->compact_cached_free_pfn)
1454 zone->compact_cached_free_pfn = free_pfn;
1457 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1458 cc->free_pfn, end_pfn, sync, ret);
1460 return ret;
1463 static unsigned long compact_zone_order(struct zone *zone, int order,
1464 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1465 int alloc_flags, int classzone_idx)
1467 unsigned long ret;
1468 struct compact_control cc = {
1469 .nr_freepages = 0,
1470 .nr_migratepages = 0,
1471 .order = order,
1472 .gfp_mask = gfp_mask,
1473 .zone = zone,
1474 .mode = mode,
1475 .alloc_flags = alloc_flags,
1476 .classzone_idx = classzone_idx,
1478 INIT_LIST_HEAD(&cc.freepages);
1479 INIT_LIST_HEAD(&cc.migratepages);
1481 ret = compact_zone(zone, &cc);
1483 VM_BUG_ON(!list_empty(&cc.freepages));
1484 VM_BUG_ON(!list_empty(&cc.migratepages));
1486 *contended = cc.contended;
1487 return ret;
1490 int sysctl_extfrag_threshold = 500;
1493 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1494 * @gfp_mask: The GFP mask of the current allocation
1495 * @order: The order of the current allocation
1496 * @alloc_flags: The allocation flags of the current allocation
1497 * @ac: The context of current allocation
1498 * @mode: The migration mode for async, sync light, or sync migration
1499 * @contended: Return value that determines if compaction was aborted due to
1500 * need_resched() or lock contention
1502 * This is the main entry point for direct page compaction.
1504 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1505 int alloc_flags, const struct alloc_context *ac,
1506 enum migrate_mode mode, int *contended)
1508 int may_enter_fs = gfp_mask & __GFP_FS;
1509 int may_perform_io = gfp_mask & __GFP_IO;
1510 struct zoneref *z;
1511 struct zone *zone;
1512 int rc = COMPACT_DEFERRED;
1513 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1515 *contended = COMPACT_CONTENDED_NONE;
1517 /* Check if the GFP flags allow compaction */
1518 if (!order || !may_enter_fs || !may_perform_io)
1519 return COMPACT_SKIPPED;
1521 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1523 /* Compact each zone in the list */
1524 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1525 ac->nodemask) {
1526 int status;
1527 int zone_contended;
1529 if (compaction_deferred(zone, order))
1530 continue;
1532 status = compact_zone_order(zone, order, gfp_mask, mode,
1533 &zone_contended, alloc_flags,
1534 ac->classzone_idx);
1535 rc = max(status, rc);
1537 * It takes at least one zone that wasn't lock contended
1538 * to clear all_zones_contended.
1540 all_zones_contended &= zone_contended;
1542 /* If a normal allocation would succeed, stop compacting */
1543 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1544 ac->classzone_idx, alloc_flags)) {
1546 * We think the allocation will succeed in this zone,
1547 * but it is not certain, hence the false. The caller
1548 * will repeat this with true if allocation indeed
1549 * succeeds in this zone.
1551 compaction_defer_reset(zone, order, false);
1553 * It is possible that async compaction aborted due to
1554 * need_resched() and the watermarks were ok thanks to
1555 * somebody else freeing memory. The allocation can
1556 * however still fail so we better signal the
1557 * need_resched() contention anyway (this will not
1558 * prevent the allocation attempt).
1560 if (zone_contended == COMPACT_CONTENDED_SCHED)
1561 *contended = COMPACT_CONTENDED_SCHED;
1563 goto break_loop;
1566 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1568 * We think that allocation won't succeed in this zone
1569 * so we defer compaction there. If it ends up
1570 * succeeding after all, it will be reset.
1572 defer_compaction(zone, order);
1576 * We might have stopped compacting due to need_resched() in
1577 * async compaction, or due to a fatal signal detected. In that
1578 * case do not try further zones and signal need_resched()
1579 * contention.
1581 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1582 || fatal_signal_pending(current)) {
1583 *contended = COMPACT_CONTENDED_SCHED;
1584 goto break_loop;
1587 continue;
1588 break_loop:
1590 * We might not have tried all the zones, so be conservative
1591 * and assume they are not all lock contended.
1593 all_zones_contended = 0;
1594 break;
1598 * If at least one zone wasn't deferred or skipped, we report if all
1599 * zones that were tried were lock contended.
1601 if (rc > COMPACT_SKIPPED && all_zones_contended)
1602 *contended = COMPACT_CONTENDED_LOCK;
1604 return rc;
1608 /* Compact all zones within a node */
1609 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1611 int zoneid;
1612 struct zone *zone;
1614 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1616 zone = &pgdat->node_zones[zoneid];
1617 if (!populated_zone(zone))
1618 continue;
1620 cc->nr_freepages = 0;
1621 cc->nr_migratepages = 0;
1622 cc->zone = zone;
1623 INIT_LIST_HEAD(&cc->freepages);
1624 INIT_LIST_HEAD(&cc->migratepages);
1627 * When called via /proc/sys/vm/compact_memory
1628 * this makes sure we compact the whole zone regardless of
1629 * cached scanner positions.
1631 if (cc->order == -1)
1632 __reset_isolation_suitable(zone);
1634 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1635 compact_zone(zone, cc);
1637 if (cc->order > 0) {
1638 if (zone_watermark_ok(zone, cc->order,
1639 low_wmark_pages(zone), 0, 0))
1640 compaction_defer_reset(zone, cc->order, false);
1643 VM_BUG_ON(!list_empty(&cc->freepages));
1644 VM_BUG_ON(!list_empty(&cc->migratepages));
1648 void compact_pgdat(pg_data_t *pgdat, int order)
1650 struct compact_control cc = {
1651 .order = order,
1652 .mode = MIGRATE_ASYNC,
1655 if (!order)
1656 return;
1658 __compact_pgdat(pgdat, &cc);
1661 static void compact_node(int nid)
1663 struct compact_control cc = {
1664 .order = -1,
1665 .mode = MIGRATE_SYNC,
1666 .ignore_skip_hint = true,
1669 __compact_pgdat(NODE_DATA(nid), &cc);
1672 /* Compact all nodes in the system */
1673 static void compact_nodes(void)
1675 int nid;
1677 /* Flush pending updates to the LRU lists */
1678 lru_add_drain_all();
1680 for_each_online_node(nid)
1681 compact_node(nid);
1684 /* The written value is actually unused, all memory is compacted */
1685 int sysctl_compact_memory;
1687 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1688 int sysctl_compaction_handler(struct ctl_table *table, int write,
1689 void __user *buffer, size_t *length, loff_t *ppos)
1691 if (write)
1692 compact_nodes();
1694 return 0;
1697 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1698 void __user *buffer, size_t *length, loff_t *ppos)
1700 proc_dointvec_minmax(table, write, buffer, length, ppos);
1702 return 0;
1705 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1706 static ssize_t sysfs_compact_node(struct device *dev,
1707 struct device_attribute *attr,
1708 const char *buf, size_t count)
1710 int nid = dev->id;
1712 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1713 /* Flush pending updates to the LRU lists */
1714 lru_add_drain_all();
1716 compact_node(nid);
1719 return count;
1721 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1723 int compaction_register_node(struct node *node)
1725 return device_create_file(&node->dev, &dev_attr_compact);
1728 void compaction_unregister_node(struct node *node)
1730 return device_remove_file(&node->dev, &dev_attr_compact);
1732 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1734 #endif /* CONFIG_COMPACTION */