2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item
)
28 static inline void count_compact_events(enum vm_event_item item
, long delta
)
30 count_vm_events(item
, delta
);
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string
[] = {
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 static unsigned long release_freepages(struct list_head
*freelist
)
55 struct page
*page
, *next
;
56 unsigned long high_pfn
= 0;
58 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
59 unsigned long pfn
= page_to_pfn(page
);
69 static void map_pages(struct list_head
*list
)
73 list_for_each_entry(page
, list
, lru
) {
74 arch_alloc_page(page
, 0);
75 kernel_map_pages(page
, 1, 1);
76 kasan_alloc_pages(page
, 0);
80 static inline bool migrate_async_suitable(int migratetype
)
82 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
102 static struct page
*pageblock_pfn_to_page(unsigned long start_pfn
,
103 unsigned long end_pfn
, struct zone
*zone
)
105 struct page
*start_page
;
106 struct page
*end_page
;
108 /* end_pfn is one past the range we are checking */
111 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
114 start_page
= pfn_to_page(start_pfn
);
116 if (page_zone(start_page
) != zone
)
119 end_page
= pfn_to_page(end_pfn
);
121 /* This gives a shorter code than deriving page_zone(end_page) */
122 if (page_zone_id(start_page
) != page_zone_id(end_page
))
128 #ifdef CONFIG_COMPACTION
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
138 void defer_compaction(struct zone
*zone
, int order
)
140 zone
->compact_considered
= 0;
141 zone
->compact_defer_shift
++;
143 if (order
< zone
->compact_order_failed
)
144 zone
->compact_order_failed
= order
;
146 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
147 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
149 trace_mm_compaction_defer_compaction(zone
, order
);
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone
*zone
, int order
)
155 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
157 if (order
< zone
->compact_order_failed
)
160 /* Avoid possible overflow */
161 if (++zone
->compact_considered
> defer_limit
)
162 zone
->compact_considered
= defer_limit
;
164 if (zone
->compact_considered
>= defer_limit
)
167 trace_mm_compaction_deferred(zone
, order
);
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
177 void compaction_defer_reset(struct zone
*zone
, int order
,
181 zone
->compact_considered
= 0;
182 zone
->compact_defer_shift
= 0;
184 if (order
>= zone
->compact_order_failed
)
185 zone
->compact_order_failed
= order
+ 1;
187 trace_mm_compaction_defer_reset(zone
, order
);
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone
*zone
, int order
)
193 if (order
< zone
->compact_order_failed
)
196 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
197 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control
*cc
,
204 if (cc
->ignore_skip_hint
)
207 return !get_pageblock_skip(page
);
211 * This function is called to clear all cached information on pageblocks that
212 * should be skipped for page isolation when the migrate and free page scanner
215 static void __reset_isolation_suitable(struct zone
*zone
)
217 unsigned long start_pfn
= zone
->zone_start_pfn
;
218 unsigned long end_pfn
= zone_end_pfn(zone
);
221 zone
->compact_cached_migrate_pfn
[0] = start_pfn
;
222 zone
->compact_cached_migrate_pfn
[1] = start_pfn
;
223 zone
->compact_cached_free_pfn
= end_pfn
;
224 zone
->compact_blockskip_flush
= false;
226 /* Walk the zone and mark every pageblock as suitable for isolation */
227 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
235 page
= pfn_to_page(pfn
);
236 if (zone
!= page_zone(page
))
239 clear_pageblock_skip(page
);
243 void reset_isolation_suitable(pg_data_t
*pgdat
)
247 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
248 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
249 if (!populated_zone(zone
))
252 /* Only flush if a full compaction finished recently */
253 if (zone
->compact_blockskip_flush
)
254 __reset_isolation_suitable(zone
);
259 * If no pages were isolated then mark this pageblock to be skipped in the
260 * future. The information is later cleared by __reset_isolation_suitable().
262 static void update_pageblock_skip(struct compact_control
*cc
,
263 struct page
*page
, unsigned long nr_isolated
,
264 bool migrate_scanner
)
266 struct zone
*zone
= cc
->zone
;
269 if (cc
->ignore_skip_hint
)
278 set_pageblock_skip(page
);
280 pfn
= page_to_pfn(page
);
282 /* Update where async and sync compaction should restart */
283 if (migrate_scanner
) {
284 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
285 zone
->compact_cached_migrate_pfn
[0] = pfn
;
286 if (cc
->mode
!= MIGRATE_ASYNC
&&
287 pfn
> zone
->compact_cached_migrate_pfn
[1])
288 zone
->compact_cached_migrate_pfn
[1] = pfn
;
290 if (pfn
< zone
->compact_cached_free_pfn
)
291 zone
->compact_cached_free_pfn
= pfn
;
295 static inline bool isolation_suitable(struct compact_control
*cc
,
301 static void update_pageblock_skip(struct compact_control
*cc
,
302 struct page
*page
, unsigned long nr_isolated
,
303 bool migrate_scanner
)
306 #endif /* CONFIG_COMPACTION */
309 * Compaction requires the taking of some coarse locks that are potentially
310 * very heavily contended. For async compaction, back out if the lock cannot
311 * be taken immediately. For sync compaction, spin on the lock if needed.
313 * Returns true if the lock is held
314 * Returns false if the lock is not held and compaction should abort
316 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
317 struct compact_control
*cc
)
319 if (cc
->mode
== MIGRATE_ASYNC
) {
320 if (!spin_trylock_irqsave(lock
, *flags
)) {
321 cc
->contended
= COMPACT_CONTENDED_LOCK
;
325 spin_lock_irqsave(lock
, *flags
);
332 * Compaction requires the taking of some coarse locks that are potentially
333 * very heavily contended. The lock should be periodically unlocked to avoid
334 * having disabled IRQs for a long time, even when there is nobody waiting on
335 * the lock. It might also be that allowing the IRQs will result in
336 * need_resched() becoming true. If scheduling is needed, async compaction
337 * aborts. Sync compaction schedules.
338 * Either compaction type will also abort if a fatal signal is pending.
339 * In either case if the lock was locked, it is dropped and not regained.
341 * Returns true if compaction should abort due to fatal signal pending, or
342 * async compaction due to need_resched()
343 * Returns false when compaction can continue (sync compaction might have
346 static bool compact_unlock_should_abort(spinlock_t
*lock
,
347 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
350 spin_unlock_irqrestore(lock
, flags
);
354 if (fatal_signal_pending(current
)) {
355 cc
->contended
= COMPACT_CONTENDED_SCHED
;
359 if (need_resched()) {
360 if (cc
->mode
== MIGRATE_ASYNC
) {
361 cc
->contended
= COMPACT_CONTENDED_SCHED
;
371 * Aside from avoiding lock contention, compaction also periodically checks
372 * need_resched() and either schedules in sync compaction or aborts async
373 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 * is used where no lock is concerned.
376 * Returns false when no scheduling was needed, or sync compaction scheduled.
377 * Returns true when async compaction should abort.
379 static inline bool compact_should_abort(struct compact_control
*cc
)
381 /* async compaction aborts if contended */
382 if (need_resched()) {
383 if (cc
->mode
== MIGRATE_ASYNC
) {
384 cc
->contended
= COMPACT_CONTENDED_SCHED
;
395 * Isolate free pages onto a private freelist. If @strict is true, will abort
396 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
397 * (even though it may still end up isolating some pages).
399 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
400 unsigned long *start_pfn
,
401 unsigned long end_pfn
,
402 struct list_head
*freelist
,
405 int nr_scanned
= 0, total_isolated
= 0;
406 struct page
*cursor
, *valid_page
= NULL
;
407 unsigned long flags
= 0;
409 unsigned long blockpfn
= *start_pfn
;
411 cursor
= pfn_to_page(blockpfn
);
413 /* Isolate free pages. */
414 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
416 struct page
*page
= cursor
;
419 * Periodically drop the lock (if held) regardless of its
420 * contention, to give chance to IRQs. Abort if fatal signal
421 * pending or async compaction detects need_resched()
423 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
424 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
429 if (!pfn_valid_within(blockpfn
))
436 * For compound pages such as THP and hugetlbfs, we can save
437 * potentially a lot of iterations if we skip them at once.
438 * The check is racy, but we can consider only valid values
439 * and the only danger is skipping too much.
441 if (PageCompound(page
)) {
442 unsigned int comp_order
= compound_order(page
);
444 if (likely(comp_order
< MAX_ORDER
)) {
445 blockpfn
+= (1UL << comp_order
) - 1;
446 cursor
+= (1UL << comp_order
) - 1;
452 if (!PageBuddy(page
))
456 * If we already hold the lock, we can skip some rechecking.
457 * Note that if we hold the lock now, checked_pageblock was
458 * already set in some previous iteration (or strict is true),
459 * so it is correct to skip the suitable migration target
464 * The zone lock must be held to isolate freepages.
465 * Unfortunately this is a very coarse lock and can be
466 * heavily contended if there are parallel allocations
467 * or parallel compactions. For async compaction do not
468 * spin on the lock and we acquire the lock as late as
471 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
476 /* Recheck this is a buddy page under lock */
477 if (!PageBuddy(page
))
481 /* Found a free page, break it into order-0 pages */
482 isolated
= split_free_page(page
);
486 total_isolated
+= isolated
;
487 cc
->nr_freepages
+= isolated
;
488 for (i
= 0; i
< isolated
; i
++) {
489 list_add(&page
->lru
, freelist
);
492 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
493 blockpfn
+= isolated
;
496 /* Advance to the end of split page */
497 blockpfn
+= isolated
- 1;
498 cursor
+= isolated
- 1;
510 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
513 * There is a tiny chance that we have read bogus compound_order(),
514 * so be careful to not go outside of the pageblock.
516 if (unlikely(blockpfn
> end_pfn
))
519 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
520 nr_scanned
, total_isolated
);
522 /* Record how far we have got within the block */
523 *start_pfn
= blockpfn
;
526 * If strict isolation is requested by CMA then check that all the
527 * pages requested were isolated. If there were any failures, 0 is
528 * returned and CMA will fail.
530 if (strict
&& blockpfn
< end_pfn
)
533 /* Update the pageblock-skip if the whole pageblock was scanned */
534 if (blockpfn
== end_pfn
)
535 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
537 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
539 count_compact_events(COMPACTISOLATED
, total_isolated
);
540 return total_isolated
;
544 * isolate_freepages_range() - isolate free pages.
545 * @start_pfn: The first PFN to start isolating.
546 * @end_pfn: The one-past-last PFN.
548 * Non-free pages, invalid PFNs, or zone boundaries within the
549 * [start_pfn, end_pfn) range are considered errors, cause function to
550 * undo its actions and return zero.
552 * Otherwise, function returns one-past-the-last PFN of isolated page
553 * (which may be greater then end_pfn if end fell in a middle of
557 isolate_freepages_range(struct compact_control
*cc
,
558 unsigned long start_pfn
, unsigned long end_pfn
)
560 unsigned long isolated
, pfn
, block_end_pfn
;
564 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
566 for (; pfn
< end_pfn
; pfn
+= isolated
,
567 block_end_pfn
+= pageblock_nr_pages
) {
568 /* Protect pfn from changing by isolate_freepages_block */
569 unsigned long isolate_start_pfn
= pfn
;
571 block_end_pfn
= min(block_end_pfn
, end_pfn
);
574 * pfn could pass the block_end_pfn if isolated freepage
575 * is more than pageblock order. In this case, we adjust
576 * scanning range to right one.
578 if (pfn
>= block_end_pfn
) {
579 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
580 block_end_pfn
= min(block_end_pfn
, end_pfn
);
583 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
586 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
587 block_end_pfn
, &freelist
, true);
590 * In strict mode, isolate_freepages_block() returns 0 if
591 * there are any holes in the block (ie. invalid PFNs or
598 * If we managed to isolate pages, it is always (1 << n) *
599 * pageblock_nr_pages for some non-negative n. (Max order
600 * page may span two pageblocks).
604 /* split_free_page does not map the pages */
605 map_pages(&freelist
);
608 /* Loop terminated early, cleanup. */
609 release_freepages(&freelist
);
613 /* We don't use freelists for anything. */
617 /* Update the number of anon and file isolated pages in the zone */
618 static void acct_isolated(struct zone
*zone
, struct compact_control
*cc
)
621 unsigned int count
[2] = { 0, };
623 if (list_empty(&cc
->migratepages
))
626 list_for_each_entry(page
, &cc
->migratepages
, lru
)
627 count
[!!page_is_file_cache(page
)]++;
629 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
630 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
633 /* Similar to reclaim, but different enough that they don't share logic */
634 static bool too_many_isolated(struct zone
*zone
)
636 unsigned long active
, inactive
, isolated
;
638 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
639 zone_page_state(zone
, NR_INACTIVE_ANON
);
640 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
641 zone_page_state(zone
, NR_ACTIVE_ANON
);
642 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
643 zone_page_state(zone
, NR_ISOLATED_ANON
);
645 return isolated
> (inactive
+ active
) / 2;
649 * isolate_migratepages_block() - isolate all migrate-able pages within
651 * @cc: Compaction control structure.
652 * @low_pfn: The first PFN to isolate
653 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
654 * @isolate_mode: Isolation mode to be used.
656 * Isolate all pages that can be migrated from the range specified by
657 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
658 * Returns zero if there is a fatal signal pending, otherwise PFN of the
659 * first page that was not scanned (which may be both less, equal to or more
662 * The pages are isolated on cc->migratepages list (not required to be empty),
663 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
664 * is neither read nor updated.
667 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
668 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
670 struct zone
*zone
= cc
->zone
;
671 unsigned long nr_scanned
= 0, nr_isolated
= 0;
672 struct list_head
*migratelist
= &cc
->migratepages
;
673 struct lruvec
*lruvec
;
674 unsigned long flags
= 0;
676 struct page
*page
= NULL
, *valid_page
= NULL
;
677 unsigned long start_pfn
= low_pfn
;
680 * Ensure that there are not too many pages isolated from the LRU
681 * list by either parallel reclaimers or compaction. If there are,
682 * delay for some time until fewer pages are isolated
684 while (unlikely(too_many_isolated(zone
))) {
685 /* async migration should just abort */
686 if (cc
->mode
== MIGRATE_ASYNC
)
689 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
691 if (fatal_signal_pending(current
))
695 if (compact_should_abort(cc
))
698 /* Time to isolate some pages for migration */
699 for (; low_pfn
< end_pfn
; low_pfn
++) {
701 * Periodically drop the lock (if held) regardless of its
702 * contention, to give chance to IRQs. Abort async compaction
705 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
706 && compact_unlock_should_abort(&zone
->lru_lock
, flags
,
710 if (!pfn_valid_within(low_pfn
))
714 page
= pfn_to_page(low_pfn
);
720 * Skip if free. We read page order here without zone lock
721 * which is generally unsafe, but the race window is small and
722 * the worst thing that can happen is that we skip some
723 * potential isolation targets.
725 if (PageBuddy(page
)) {
726 unsigned long freepage_order
= page_order_unsafe(page
);
729 * Without lock, we cannot be sure that what we got is
730 * a valid page order. Consider only values in the
731 * valid order range to prevent low_pfn overflow.
733 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
734 low_pfn
+= (1UL << freepage_order
) - 1;
739 * Check may be lockless but that's ok as we recheck later.
740 * It's possible to migrate LRU pages and balloon pages
741 * Skip any other type of page
743 if (!PageLRU(page
)) {
744 if (unlikely(balloon_page_movable(page
))) {
745 if (balloon_page_isolate(page
)) {
746 /* Successfully isolated */
747 goto isolate_success
;
754 * PageLRU is set. lru_lock normally excludes isolation
755 * splitting and collapsing (collapsing has already happened
756 * if PageLRU is set) but the lock is not necessarily taken
757 * here and it is wasteful to take it just to check transhuge.
758 * Check TransHuge without lock and skip the whole pageblock if
759 * it's either a transhuge or hugetlbfs page, as calling
760 * compound_order() without preventing THP from splitting the
761 * page underneath us may return surprising results.
763 if (PageTransHuge(page
)) {
765 low_pfn
= ALIGN(low_pfn
+ 1,
766 pageblock_nr_pages
) - 1;
768 low_pfn
+= (1 << compound_order(page
)) - 1;
774 * Migration will fail if an anonymous page is pinned in memory,
775 * so avoid taking lru_lock and isolating it unnecessarily in an
776 * admittedly racy check.
778 if (!page_mapping(page
) &&
779 page_count(page
) > page_mapcount(page
))
782 /* If we already hold the lock, we can skip some rechecking */
784 locked
= compact_trylock_irqsave(&zone
->lru_lock
,
789 /* Recheck PageLRU and PageTransHuge under lock */
792 if (PageTransHuge(page
)) {
793 low_pfn
+= (1 << compound_order(page
)) - 1;
798 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
800 /* Try isolate the page */
801 if (__isolate_lru_page(page
, isolate_mode
) != 0)
804 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
806 /* Successfully isolated */
807 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
810 list_add(&page
->lru
, migratelist
);
811 cc
->nr_migratepages
++;
814 /* Avoid isolating too much */
815 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
822 * The PageBuddy() check could have potentially brought us outside
823 * the range to be scanned.
825 if (unlikely(low_pfn
> end_pfn
))
829 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
832 * Update the pageblock-skip information and cached scanner pfn,
833 * if the whole pageblock was scanned without isolating any page.
835 if (low_pfn
== end_pfn
)
836 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
838 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
839 nr_scanned
, nr_isolated
);
841 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
843 count_compact_events(COMPACTISOLATED
, nr_isolated
);
849 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
850 * @cc: Compaction control structure.
851 * @start_pfn: The first PFN to start isolating.
852 * @end_pfn: The one-past-last PFN.
854 * Returns zero if isolation fails fatally due to e.g. pending signal.
855 * Otherwise, function returns one-past-the-last PFN of isolated page
856 * (which may be greater than end_pfn if end fell in a middle of a THP page).
859 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
860 unsigned long end_pfn
)
862 unsigned long pfn
, block_end_pfn
;
864 /* Scan block by block. First and last block may be incomplete */
866 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
868 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
869 block_end_pfn
+= pageblock_nr_pages
) {
871 block_end_pfn
= min(block_end_pfn
, end_pfn
);
873 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
876 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
877 ISOLATE_UNEVICTABLE
);
882 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
885 acct_isolated(cc
->zone
, cc
);
890 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
891 #ifdef CONFIG_COMPACTION
893 /* Returns true if the page is within a block suitable for migration to */
894 static bool suitable_migration_target(struct page
*page
)
896 /* If the page is a large free page, then disallow migration */
897 if (PageBuddy(page
)) {
899 * We are checking page_order without zone->lock taken. But
900 * the only small danger is that we skip a potentially suitable
901 * pageblock, so it's not worth to check order for valid range.
903 if (page_order_unsafe(page
) >= pageblock_order
)
907 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
908 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
911 /* Otherwise skip the block */
916 * Based on information in the current compact_control, find blocks
917 * suitable for isolating free pages from and then isolate them.
919 static void isolate_freepages(struct compact_control
*cc
)
921 struct zone
*zone
= cc
->zone
;
923 unsigned long block_start_pfn
; /* start of current pageblock */
924 unsigned long isolate_start_pfn
; /* exact pfn we start at */
925 unsigned long block_end_pfn
; /* end of current pageblock */
926 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
927 struct list_head
*freelist
= &cc
->freepages
;
930 * Initialise the free scanner. The starting point is where we last
931 * successfully isolated from, zone-cached value, or the end of the
932 * zone when isolating for the first time. For looping we also need
933 * this pfn aligned down to the pageblock boundary, because we do
934 * block_start_pfn -= pageblock_nr_pages in the for loop.
935 * For ending point, take care when isolating in last pageblock of a
936 * a zone which ends in the middle of a pageblock.
937 * The low boundary is the end of the pageblock the migration scanner
940 isolate_start_pfn
= cc
->free_pfn
;
941 block_start_pfn
= cc
->free_pfn
& ~(pageblock_nr_pages
-1);
942 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
944 low_pfn
= ALIGN(cc
->migrate_pfn
+ 1, pageblock_nr_pages
);
947 * Isolate free pages until enough are available to migrate the
948 * pages on cc->migratepages. We stop searching if the migrate
949 * and free page scanners meet or enough free pages are isolated.
951 for (; block_start_pfn
>= low_pfn
;
952 block_end_pfn
= block_start_pfn
,
953 block_start_pfn
-= pageblock_nr_pages
,
954 isolate_start_pfn
= block_start_pfn
) {
956 * This can iterate a massively long zone without finding any
957 * suitable migration targets, so periodically check if we need
958 * to schedule, or even abort async compaction.
960 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
961 && compact_should_abort(cc
))
964 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
969 /* Check the block is suitable for migration */
970 if (!suitable_migration_target(page
))
973 /* If isolation recently failed, do not retry */
974 if (!isolation_suitable(cc
, page
))
977 /* Found a block suitable for isolating free pages from. */
978 isolate_freepages_block(cc
, &isolate_start_pfn
, block_end_pfn
,
982 * If we isolated enough freepages, or aborted due to lock
983 * contention, terminate.
985 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
987 if (isolate_start_pfn
>= block_end_pfn
) {
989 * Restart at previous pageblock if more
990 * freepages can be isolated next time.
993 block_start_pfn
- pageblock_nr_pages
;
996 } else if (isolate_start_pfn
< block_end_pfn
) {
998 * If isolation failed early, do not continue
1005 /* split_free_page does not map the pages */
1006 map_pages(freelist
);
1009 * Record where the free scanner will restart next time. Either we
1010 * broke from the loop and set isolate_start_pfn based on the last
1011 * call to isolate_freepages_block(), or we met the migration scanner
1012 * and the loop terminated due to isolate_start_pfn < low_pfn
1014 cc
->free_pfn
= isolate_start_pfn
;
1018 * This is a migrate-callback that "allocates" freepages by taking pages
1019 * from the isolated freelists in the block we are migrating to.
1021 static struct page
*compaction_alloc(struct page
*migratepage
,
1025 struct compact_control
*cc
= (struct compact_control
*)data
;
1026 struct page
*freepage
;
1029 * Isolate free pages if necessary, and if we are not aborting due to
1032 if (list_empty(&cc
->freepages
)) {
1034 isolate_freepages(cc
);
1036 if (list_empty(&cc
->freepages
))
1040 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1041 list_del(&freepage
->lru
);
1048 * This is a migrate-callback that "frees" freepages back to the isolated
1049 * freelist. All pages on the freelist are from the same zone, so there is no
1050 * special handling needed for NUMA.
1052 static void compaction_free(struct page
*page
, unsigned long data
)
1054 struct compact_control
*cc
= (struct compact_control
*)data
;
1056 list_add(&page
->lru
, &cc
->freepages
);
1060 /* possible outcome of isolate_migratepages */
1062 ISOLATE_ABORT
, /* Abort compaction now */
1063 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1064 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1065 } isolate_migrate_t
;
1068 * Allow userspace to control policy on scanning the unevictable LRU for
1069 * compactable pages.
1071 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1074 * Isolate all pages that can be migrated from the first suitable block,
1075 * starting at the block pointed to by the migrate scanner pfn within
1078 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1079 struct compact_control
*cc
)
1081 unsigned long low_pfn
, end_pfn
;
1083 const isolate_mode_t isolate_mode
=
1084 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1085 (cc
->mode
== MIGRATE_ASYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1088 * Start at where we last stopped, or beginning of the zone as
1089 * initialized by compact_zone()
1091 low_pfn
= cc
->migrate_pfn
;
1093 /* Only scan within a pageblock boundary */
1094 end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
1097 * Iterate over whole pageblocks until we find the first suitable.
1098 * Do not cross the free scanner.
1100 for (; end_pfn
<= cc
->free_pfn
;
1101 low_pfn
= end_pfn
, end_pfn
+= pageblock_nr_pages
) {
1104 * This can potentially iterate a massively long zone with
1105 * many pageblocks unsuitable, so periodically check if we
1106 * need to schedule, or even abort async compaction.
1108 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1109 && compact_should_abort(cc
))
1112 page
= pageblock_pfn_to_page(low_pfn
, end_pfn
, zone
);
1116 /* If isolation recently failed, do not retry */
1117 if (!isolation_suitable(cc
, page
))
1121 * For async compaction, also only scan in MOVABLE blocks.
1122 * Async compaction is optimistic to see if the minimum amount
1123 * of work satisfies the allocation.
1125 if (cc
->mode
== MIGRATE_ASYNC
&&
1126 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1129 /* Perform the isolation */
1130 low_pfn
= isolate_migratepages_block(cc
, low_pfn
, end_pfn
,
1133 if (!low_pfn
|| cc
->contended
) {
1134 acct_isolated(zone
, cc
);
1135 return ISOLATE_ABORT
;
1139 * Either we isolated something and proceed with migration. Or
1140 * we failed and compact_zone should decide if we should
1146 acct_isolated(zone
, cc
);
1148 * Record where migration scanner will be restarted. If we end up in
1149 * the same pageblock as the free scanner, make the scanners fully
1150 * meet so that compact_finished() terminates compaction.
1152 cc
->migrate_pfn
= (end_pfn
<= cc
->free_pfn
) ? low_pfn
: cc
->free_pfn
;
1154 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1157 static int __compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1158 const int migratetype
)
1161 unsigned long watermark
;
1163 if (cc
->contended
|| fatal_signal_pending(current
))
1164 return COMPACT_PARTIAL
;
1166 /* Compaction run completes if the migrate and free scanner meet */
1167 if (cc
->free_pfn
<= cc
->migrate_pfn
) {
1168 /* Let the next compaction start anew. */
1169 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
1170 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
1171 zone
->compact_cached_free_pfn
= zone_end_pfn(zone
);
1174 * Mark that the PG_migrate_skip information should be cleared
1175 * by kswapd when it goes to sleep. kswapd does not set the
1176 * flag itself as the decision to be clear should be directly
1177 * based on an allocation request.
1179 if (!current_is_kswapd())
1180 zone
->compact_blockskip_flush
= true;
1182 return COMPACT_COMPLETE
;
1186 * order == -1 is expected when compacting via
1187 * /proc/sys/vm/compact_memory
1189 if (cc
->order
== -1)
1190 return COMPACT_CONTINUE
;
1192 /* Compaction run is not finished if the watermark is not met */
1193 watermark
= low_wmark_pages(zone
);
1195 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, cc
->classzone_idx
,
1197 return COMPACT_CONTINUE
;
1199 /* Direct compactor: Is a suitable page free? */
1200 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1201 struct free_area
*area
= &zone
->free_area
[order
];
1204 /* Job done if page is free of the right migratetype */
1205 if (!list_empty(&area
->free_list
[migratetype
]))
1206 return COMPACT_PARTIAL
;
1209 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1210 if (migratetype
== MIGRATE_MOVABLE
&&
1211 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1212 return COMPACT_PARTIAL
;
1215 * Job done if allocation would steal freepages from
1216 * other migratetype buddy lists.
1218 if (find_suitable_fallback(area
, order
, migratetype
,
1219 true, &can_steal
) != -1)
1220 return COMPACT_PARTIAL
;
1223 return COMPACT_NO_SUITABLE_PAGE
;
1226 static int compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1227 const int migratetype
)
1231 ret
= __compact_finished(zone
, cc
, migratetype
);
1232 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1233 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1234 ret
= COMPACT_CONTINUE
;
1240 * compaction_suitable: Is this suitable to run compaction on this zone now?
1242 * COMPACT_SKIPPED - If there are too few free pages for compaction
1243 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1244 * COMPACT_CONTINUE - If compaction should run now
1246 static unsigned long __compaction_suitable(struct zone
*zone
, int order
,
1247 int alloc_flags
, int classzone_idx
)
1250 unsigned long watermark
;
1253 * order == -1 is expected when compacting via
1254 * /proc/sys/vm/compact_memory
1257 return COMPACT_CONTINUE
;
1259 watermark
= low_wmark_pages(zone
);
1261 * If watermarks for high-order allocation are already met, there
1262 * should be no need for compaction at all.
1264 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1266 return COMPACT_PARTIAL
;
1269 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1270 * This is because during migration, copies of pages need to be
1271 * allocated and for a short time, the footprint is higher
1273 watermark
+= (2UL << order
);
1274 if (!zone_watermark_ok(zone
, 0, watermark
, classzone_idx
, alloc_flags
))
1275 return COMPACT_SKIPPED
;
1278 * fragmentation index determines if allocation failures are due to
1279 * low memory or external fragmentation
1281 * index of -1000 would imply allocations might succeed depending on
1282 * watermarks, but we already failed the high-order watermark check
1283 * index towards 0 implies failure is due to lack of memory
1284 * index towards 1000 implies failure is due to fragmentation
1286 * Only compact if a failure would be due to fragmentation.
1288 fragindex
= fragmentation_index(zone
, order
);
1289 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1290 return COMPACT_NOT_SUITABLE_ZONE
;
1292 return COMPACT_CONTINUE
;
1295 unsigned long compaction_suitable(struct zone
*zone
, int order
,
1296 int alloc_flags
, int classzone_idx
)
1300 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
);
1301 trace_mm_compaction_suitable(zone
, order
, ret
);
1302 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1303 ret
= COMPACT_SKIPPED
;
1308 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1311 unsigned long start_pfn
= zone
->zone_start_pfn
;
1312 unsigned long end_pfn
= zone_end_pfn(zone
);
1313 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1314 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1315 unsigned long last_migrated_pfn
= 0;
1317 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1320 case COMPACT_PARTIAL
:
1321 case COMPACT_SKIPPED
:
1322 /* Compaction is likely to fail */
1324 case COMPACT_CONTINUE
:
1325 /* Fall through to compaction */
1330 * Clear pageblock skip if there were failures recently and compaction
1331 * is about to be retried after being deferred. kswapd does not do
1332 * this reset as it'll reset the cached information when going to sleep.
1334 if (compaction_restarting(zone
, cc
->order
) && !current_is_kswapd())
1335 __reset_isolation_suitable(zone
);
1338 * Setup to move all movable pages to the end of the zone. Used cached
1339 * information on where the scanners should start but check that it
1340 * is initialised by ensuring the values are within zone boundaries.
1342 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1343 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1344 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
> end_pfn
) {
1345 cc
->free_pfn
= end_pfn
& ~(pageblock_nr_pages
-1);
1346 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1348 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
> end_pfn
) {
1349 cc
->migrate_pfn
= start_pfn
;
1350 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1351 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1354 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1355 cc
->free_pfn
, end_pfn
, sync
);
1357 migrate_prep_local();
1359 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1362 unsigned long isolate_start_pfn
= cc
->migrate_pfn
;
1364 switch (isolate_migratepages(zone
, cc
)) {
1366 ret
= COMPACT_PARTIAL
;
1367 putback_movable_pages(&cc
->migratepages
);
1368 cc
->nr_migratepages
= 0;
1372 * We haven't isolated and migrated anything, but
1373 * there might still be unflushed migrations from
1374 * previous cc->order aligned block.
1377 case ISOLATE_SUCCESS
:
1381 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1382 compaction_free
, (unsigned long)cc
, cc
->mode
,
1385 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1388 /* All pages were either migrated or will be released */
1389 cc
->nr_migratepages
= 0;
1391 putback_movable_pages(&cc
->migratepages
);
1393 * migrate_pages() may return -ENOMEM when scanners meet
1394 * and we want compact_finished() to detect it
1396 if (err
== -ENOMEM
&& cc
->free_pfn
> cc
->migrate_pfn
) {
1397 ret
= COMPACT_PARTIAL
;
1403 * Record where we could have freed pages by migration and not
1404 * yet flushed them to buddy allocator. We use the pfn that
1405 * isolate_migratepages() started from in this loop iteration
1406 * - this is the lowest page that could have been isolated and
1407 * then freed by migration.
1409 if (!last_migrated_pfn
)
1410 last_migrated_pfn
= isolate_start_pfn
;
1414 * Has the migration scanner moved away from the previous
1415 * cc->order aligned block where we migrated from? If yes,
1416 * flush the pages that were freed, so that they can merge and
1417 * compact_finished() can detect immediately if allocation
1420 if (cc
->order
> 0 && last_migrated_pfn
) {
1422 unsigned long current_block_start
=
1423 cc
->migrate_pfn
& ~((1UL << cc
->order
) - 1);
1425 if (last_migrated_pfn
< current_block_start
) {
1427 lru_add_drain_cpu(cpu
);
1428 drain_local_pages(zone
);
1430 /* No more flushing until we migrate again */
1431 last_migrated_pfn
= 0;
1439 * Release free pages and update where the free scanner should restart,
1440 * so we don't leave any returned pages behind in the next attempt.
1442 if (cc
->nr_freepages
> 0) {
1443 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1445 cc
->nr_freepages
= 0;
1446 VM_BUG_ON(free_pfn
== 0);
1447 /* The cached pfn is always the first in a pageblock */
1448 free_pfn
&= ~(pageblock_nr_pages
-1);
1450 * Only go back, not forward. The cached pfn might have been
1451 * already reset to zone end in compact_finished()
1453 if (free_pfn
> zone
->compact_cached_free_pfn
)
1454 zone
->compact_cached_free_pfn
= free_pfn
;
1457 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1458 cc
->free_pfn
, end_pfn
, sync
, ret
);
1463 static unsigned long compact_zone_order(struct zone
*zone
, int order
,
1464 gfp_t gfp_mask
, enum migrate_mode mode
, int *contended
,
1465 int alloc_flags
, int classzone_idx
)
1468 struct compact_control cc
= {
1470 .nr_migratepages
= 0,
1472 .gfp_mask
= gfp_mask
,
1475 .alloc_flags
= alloc_flags
,
1476 .classzone_idx
= classzone_idx
,
1478 INIT_LIST_HEAD(&cc
.freepages
);
1479 INIT_LIST_HEAD(&cc
.migratepages
);
1481 ret
= compact_zone(zone
, &cc
);
1483 VM_BUG_ON(!list_empty(&cc
.freepages
));
1484 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1486 *contended
= cc
.contended
;
1490 int sysctl_extfrag_threshold
= 500;
1493 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1494 * @gfp_mask: The GFP mask of the current allocation
1495 * @order: The order of the current allocation
1496 * @alloc_flags: The allocation flags of the current allocation
1497 * @ac: The context of current allocation
1498 * @mode: The migration mode for async, sync light, or sync migration
1499 * @contended: Return value that determines if compaction was aborted due to
1500 * need_resched() or lock contention
1502 * This is the main entry point for direct page compaction.
1504 unsigned long try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1505 int alloc_flags
, const struct alloc_context
*ac
,
1506 enum migrate_mode mode
, int *contended
)
1508 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1509 int may_perform_io
= gfp_mask
& __GFP_IO
;
1512 int rc
= COMPACT_DEFERRED
;
1513 int all_zones_contended
= COMPACT_CONTENDED_LOCK
; /* init for &= op */
1515 *contended
= COMPACT_CONTENDED_NONE
;
1517 /* Check if the GFP flags allow compaction */
1518 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1519 return COMPACT_SKIPPED
;
1521 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, mode
);
1523 /* Compact each zone in the list */
1524 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1529 if (compaction_deferred(zone
, order
))
1532 status
= compact_zone_order(zone
, order
, gfp_mask
, mode
,
1533 &zone_contended
, alloc_flags
,
1535 rc
= max(status
, rc
);
1537 * It takes at least one zone that wasn't lock contended
1538 * to clear all_zones_contended.
1540 all_zones_contended
&= zone_contended
;
1542 /* If a normal allocation would succeed, stop compacting */
1543 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
),
1544 ac
->classzone_idx
, alloc_flags
)) {
1546 * We think the allocation will succeed in this zone,
1547 * but it is not certain, hence the false. The caller
1548 * will repeat this with true if allocation indeed
1549 * succeeds in this zone.
1551 compaction_defer_reset(zone
, order
, false);
1553 * It is possible that async compaction aborted due to
1554 * need_resched() and the watermarks were ok thanks to
1555 * somebody else freeing memory. The allocation can
1556 * however still fail so we better signal the
1557 * need_resched() contention anyway (this will not
1558 * prevent the allocation attempt).
1560 if (zone_contended
== COMPACT_CONTENDED_SCHED
)
1561 *contended
= COMPACT_CONTENDED_SCHED
;
1566 if (mode
!= MIGRATE_ASYNC
&& status
== COMPACT_COMPLETE
) {
1568 * We think that allocation won't succeed in this zone
1569 * so we defer compaction there. If it ends up
1570 * succeeding after all, it will be reset.
1572 defer_compaction(zone
, order
);
1576 * We might have stopped compacting due to need_resched() in
1577 * async compaction, or due to a fatal signal detected. In that
1578 * case do not try further zones and signal need_resched()
1581 if ((zone_contended
== COMPACT_CONTENDED_SCHED
)
1582 || fatal_signal_pending(current
)) {
1583 *contended
= COMPACT_CONTENDED_SCHED
;
1590 * We might not have tried all the zones, so be conservative
1591 * and assume they are not all lock contended.
1593 all_zones_contended
= 0;
1598 * If at least one zone wasn't deferred or skipped, we report if all
1599 * zones that were tried were lock contended.
1601 if (rc
> COMPACT_SKIPPED
&& all_zones_contended
)
1602 *contended
= COMPACT_CONTENDED_LOCK
;
1608 /* Compact all zones within a node */
1609 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1614 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1616 zone
= &pgdat
->node_zones
[zoneid
];
1617 if (!populated_zone(zone
))
1620 cc
->nr_freepages
= 0;
1621 cc
->nr_migratepages
= 0;
1623 INIT_LIST_HEAD(&cc
->freepages
);
1624 INIT_LIST_HEAD(&cc
->migratepages
);
1627 * When called via /proc/sys/vm/compact_memory
1628 * this makes sure we compact the whole zone regardless of
1629 * cached scanner positions.
1631 if (cc
->order
== -1)
1632 __reset_isolation_suitable(zone
);
1634 if (cc
->order
== -1 || !compaction_deferred(zone
, cc
->order
))
1635 compact_zone(zone
, cc
);
1637 if (cc
->order
> 0) {
1638 if (zone_watermark_ok(zone
, cc
->order
,
1639 low_wmark_pages(zone
), 0, 0))
1640 compaction_defer_reset(zone
, cc
->order
, false);
1643 VM_BUG_ON(!list_empty(&cc
->freepages
));
1644 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1648 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1650 struct compact_control cc
= {
1652 .mode
= MIGRATE_ASYNC
,
1658 __compact_pgdat(pgdat
, &cc
);
1661 static void compact_node(int nid
)
1663 struct compact_control cc
= {
1665 .mode
= MIGRATE_SYNC
,
1666 .ignore_skip_hint
= true,
1669 __compact_pgdat(NODE_DATA(nid
), &cc
);
1672 /* Compact all nodes in the system */
1673 static void compact_nodes(void)
1677 /* Flush pending updates to the LRU lists */
1678 lru_add_drain_all();
1680 for_each_online_node(nid
)
1684 /* The written value is actually unused, all memory is compacted */
1685 int sysctl_compact_memory
;
1687 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1688 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1689 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1697 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1698 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1700 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1705 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1706 static ssize_t
sysfs_compact_node(struct device
*dev
,
1707 struct device_attribute
*attr
,
1708 const char *buf
, size_t count
)
1712 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1713 /* Flush pending updates to the LRU lists */
1714 lru_add_drain_all();
1721 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1723 int compaction_register_node(struct node
*node
)
1725 return device_create_file(&node
->dev
, &dev_attr_compact
);
1728 void compaction_unregister_node(struct node
*node
)
1730 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1732 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1734 #endif /* CONFIG_COMPACTION */