2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm-generic/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
34 struct memblock memblock __initdata_memblock
= {
35 .memory
.regions
= memblock_memory_init_regions
,
36 .memory
.cnt
= 1, /* empty dummy entry */
37 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
39 .reserved
.regions
= memblock_reserved_init_regions
,
40 .reserved
.cnt
= 1, /* empty dummy entry */
41 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem
.regions
= memblock_physmem_init_regions
,
45 .physmem
.cnt
= 1, /* empty dummy entry */
46 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
50 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
53 int memblock_debug __initdata_memblock
;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock
= false;
57 static int memblock_can_resize __initdata_memblock
;
58 static int memblock_memory_in_slab __initdata_memblock
= 0;
59 static int memblock_reserved_in_slab __initdata_memblock
= 0;
61 /* inline so we don't get a warning when pr_debug is compiled out */
62 static __init_memblock
const char *
63 memblock_type_name(struct memblock_type
*type
)
65 if (type
== &memblock
.memory
)
67 else if (type
== &memblock
.reserved
)
73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
74 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
76 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
80 * Address comparison utilities
82 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
83 phys_addr_t base2
, phys_addr_t size2
)
85 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
88 static long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
89 phys_addr_t base
, phys_addr_t size
)
93 for (i
= 0; i
< type
->cnt
; i
++) {
94 phys_addr_t rgnbase
= type
->regions
[i
].base
;
95 phys_addr_t rgnsize
= type
->regions
[i
].size
;
96 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
100 return (i
< type
->cnt
) ? i
: -1;
104 * __memblock_find_range_bottom_up - find free area utility in bottom-up
105 * @start: start of candidate range
106 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
107 * @size: size of free area to find
108 * @align: alignment of free area to find
109 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
111 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
114 * Found address on success, 0 on failure.
116 static phys_addr_t __init_memblock
117 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
118 phys_addr_t size
, phys_addr_t align
, int nid
)
120 phys_addr_t this_start
, this_end
, cand
;
123 for_each_free_mem_range(i
, nid
, &this_start
, &this_end
, NULL
) {
124 this_start
= clamp(this_start
, start
, end
);
125 this_end
= clamp(this_end
, start
, end
);
127 cand
= round_up(this_start
, align
);
128 if (cand
< this_end
&& this_end
- cand
>= size
)
136 * __memblock_find_range_top_down - find free area utility, in top-down
137 * @start: start of candidate range
138 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
139 * @size: size of free area to find
140 * @align: alignment of free area to find
141 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
143 * Utility called from memblock_find_in_range_node(), find free area top-down.
146 * Found address on success, 0 on failure.
148 static phys_addr_t __init_memblock
149 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
150 phys_addr_t size
, phys_addr_t align
, int nid
)
152 phys_addr_t this_start
, this_end
, cand
;
155 for_each_free_mem_range_reverse(i
, nid
, &this_start
, &this_end
, NULL
) {
156 this_start
= clamp(this_start
, start
, end
);
157 this_end
= clamp(this_end
, start
, end
);
162 cand
= round_down(this_end
- size
, align
);
163 if (cand
>= this_start
)
171 * memblock_find_in_range_node - find free area in given range and node
172 * @size: size of free area to find
173 * @align: alignment of free area to find
174 * @start: start of candidate range
175 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
176 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
178 * Find @size free area aligned to @align in the specified range and node.
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
186 * If bottom-up allocation failed, will try to allocate memory top-down.
189 * Found address on success, 0 on failure.
191 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
192 phys_addr_t align
, phys_addr_t start
,
193 phys_addr_t end
, int nid
)
195 phys_addr_t kernel_end
, ret
;
198 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
199 end
= memblock
.current_limit
;
201 /* avoid allocating the first page */
202 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
203 end
= max(start
, end
);
204 kernel_end
= __pa_symbol(_end
);
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
210 if (memblock_bottom_up() && end
> kernel_end
) {
211 phys_addr_t bottom_up_start
;
213 /* make sure we will allocate above the kernel */
214 bottom_up_start
= max(start
, kernel_end
);
216 /* ok, try bottom-up allocation first */
217 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
232 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
233 "memory hotunplug may be affected\n");
236 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
);
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
246 * Find @size free area aligned to @align in the specified range.
249 * Found address on success, 0 on failure.
251 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
252 phys_addr_t end
, phys_addr_t size
,
255 return memblock_find_in_range_node(size
, align
, start
, end
,
259 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
261 type
->total_size
-= type
->regions
[r
].size
;
262 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
263 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
266 /* Special case for empty arrays */
267 if (type
->cnt
== 0) {
268 WARN_ON(type
->total_size
!= 0);
270 type
->regions
[0].base
= 0;
271 type
->regions
[0].size
= 0;
272 type
->regions
[0].flags
= 0;
273 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
277 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
279 phys_addr_t __init_memblock
get_allocated_memblock_reserved_regions_info(
282 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
285 *addr
= __pa(memblock
.reserved
.regions
);
287 return PAGE_ALIGN(sizeof(struct memblock_region
) *
288 memblock
.reserved
.max
);
291 phys_addr_t __init_memblock
get_allocated_memblock_memory_regions_info(
294 if (memblock
.memory
.regions
== memblock_memory_init_regions
)
297 *addr
= __pa(memblock
.memory
.regions
);
299 return PAGE_ALIGN(sizeof(struct memblock_region
) *
300 memblock
.memory
.max
);
306 * memblock_double_array - double the size of the memblock regions array
307 * @type: memblock type of the regions array being doubled
308 * @new_area_start: starting address of memory range to avoid overlap with
309 * @new_area_size: size of memory range to avoid overlap with
311 * Double the size of the @type regions array. If memblock is being used to
312 * allocate memory for a new reserved regions array and there is a previously
313 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
314 * waiting to be reserved, ensure the memory used by the new array does
318 * 0 on success, -1 on failure.
320 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
321 phys_addr_t new_area_start
,
322 phys_addr_t new_area_size
)
324 struct memblock_region
*new_array
, *old_array
;
325 phys_addr_t old_alloc_size
, new_alloc_size
;
326 phys_addr_t old_size
, new_size
, addr
;
327 int use_slab
= slab_is_available();
330 /* We don't allow resizing until we know about the reserved regions
331 * of memory that aren't suitable for allocation
333 if (!memblock_can_resize
)
336 /* Calculate new doubled size */
337 old_size
= type
->max
* sizeof(struct memblock_region
);
338 new_size
= old_size
<< 1;
340 * We need to allocated new one align to PAGE_SIZE,
341 * so we can free them completely later.
343 old_alloc_size
= PAGE_ALIGN(old_size
);
344 new_alloc_size
= PAGE_ALIGN(new_size
);
346 /* Retrieve the slab flag */
347 if (type
== &memblock
.memory
)
348 in_slab
= &memblock_memory_in_slab
;
350 in_slab
= &memblock_reserved_in_slab
;
352 /* Try to find some space for it.
354 * WARNING: We assume that either slab_is_available() and we use it or
355 * we use MEMBLOCK for allocations. That means that this is unsafe to
356 * use when bootmem is currently active (unless bootmem itself is
357 * implemented on top of MEMBLOCK which isn't the case yet)
359 * This should however not be an issue for now, as we currently only
360 * call into MEMBLOCK while it's still active, or much later when slab
361 * is active for memory hotplug operations
364 new_array
= kmalloc(new_size
, GFP_KERNEL
);
365 addr
= new_array
? __pa(new_array
) : 0;
367 /* only exclude range when trying to double reserved.regions */
368 if (type
!= &memblock
.reserved
)
369 new_area_start
= new_area_size
= 0;
371 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
372 memblock
.current_limit
,
373 new_alloc_size
, PAGE_SIZE
);
374 if (!addr
&& new_area_size
)
375 addr
= memblock_find_in_range(0,
376 min(new_area_start
, memblock
.current_limit
),
377 new_alloc_size
, PAGE_SIZE
);
379 new_array
= addr
? __va(addr
) : NULL
;
382 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
383 memblock_type_name(type
), type
->max
, type
->max
* 2);
387 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
388 memblock_type_name(type
), type
->max
* 2, (u64
)addr
,
389 (u64
)addr
+ new_size
- 1);
392 * Found space, we now need to move the array over before we add the
393 * reserved region since it may be our reserved array itself that is
396 memcpy(new_array
, type
->regions
, old_size
);
397 memset(new_array
+ type
->max
, 0, old_size
);
398 old_array
= type
->regions
;
399 type
->regions
= new_array
;
402 /* Free old array. We needn't free it if the array is the static one */
405 else if (old_array
!= memblock_memory_init_regions
&&
406 old_array
!= memblock_reserved_init_regions
)
407 memblock_free(__pa(old_array
), old_alloc_size
);
410 * Reserve the new array if that comes from the memblock. Otherwise, we
414 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
416 /* Update slab flag */
423 * memblock_merge_regions - merge neighboring compatible regions
424 * @type: memblock type to scan
426 * Scan @type and merge neighboring compatible regions.
428 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
432 /* cnt never goes below 1 */
433 while (i
< type
->cnt
- 1) {
434 struct memblock_region
*this = &type
->regions
[i
];
435 struct memblock_region
*next
= &type
->regions
[i
+ 1];
437 if (this->base
+ this->size
!= next
->base
||
438 memblock_get_region_node(this) !=
439 memblock_get_region_node(next
) ||
440 this->flags
!= next
->flags
) {
441 BUG_ON(this->base
+ this->size
> next
->base
);
446 this->size
+= next
->size
;
447 /* move forward from next + 1, index of which is i + 2 */
448 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
454 * memblock_insert_region - insert new memblock region
455 * @type: memblock type to insert into
456 * @idx: index for the insertion point
457 * @base: base address of the new region
458 * @size: size of the new region
459 * @nid: node id of the new region
460 * @flags: flags of the new region
462 * Insert new memblock region [@base,@base+@size) into @type at @idx.
463 * @type must already have extra room to accomodate the new region.
465 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
466 int idx
, phys_addr_t base
,
468 int nid
, unsigned long flags
)
470 struct memblock_region
*rgn
= &type
->regions
[idx
];
472 BUG_ON(type
->cnt
>= type
->max
);
473 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
477 memblock_set_region_node(rgn
, nid
);
479 type
->total_size
+= size
;
483 * memblock_add_range - add new memblock region
484 * @type: memblock type to add new region into
485 * @base: base address of the new region
486 * @size: size of the new region
487 * @nid: nid of the new region
488 * @flags: flags of the new region
490 * Add new memblock region [@base,@base+@size) into @type. The new region
491 * is allowed to overlap with existing ones - overlaps don't affect already
492 * existing regions. @type is guaranteed to be minimal (all neighbouring
493 * compatible regions are merged) after the addition.
496 * 0 on success, -errno on failure.
498 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
499 phys_addr_t base
, phys_addr_t size
,
500 int nid
, unsigned long flags
)
503 phys_addr_t obase
= base
;
504 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
510 /* special case for empty array */
511 if (type
->regions
[0].size
== 0) {
512 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
513 type
->regions
[0].base
= base
;
514 type
->regions
[0].size
= size
;
515 type
->regions
[0].flags
= flags
;
516 memblock_set_region_node(&type
->regions
[0], nid
);
517 type
->total_size
= size
;
522 * The following is executed twice. Once with %false @insert and
523 * then with %true. The first counts the number of regions needed
524 * to accomodate the new area. The second actually inserts them.
529 for (i
= 0; i
< type
->cnt
; i
++) {
530 struct memblock_region
*rgn
= &type
->regions
[i
];
531 phys_addr_t rbase
= rgn
->base
;
532 phys_addr_t rend
= rbase
+ rgn
->size
;
539 * @rgn overlaps. If it separates the lower part of new
540 * area, insert that portion.
545 memblock_insert_region(type
, i
++, base
,
549 /* area below @rend is dealt with, forget about it */
550 base
= min(rend
, end
);
553 /* insert the remaining portion */
557 memblock_insert_region(type
, i
, base
, end
- base
,
562 * If this was the first round, resize array and repeat for actual
563 * insertions; otherwise, merge and return.
566 while (type
->cnt
+ nr_new
> type
->max
)
567 if (memblock_double_array(type
, obase
, size
) < 0)
572 memblock_merge_regions(type
);
577 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
580 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
583 static int __init_memblock
memblock_add_region(phys_addr_t base
,
588 struct memblock_type
*_rgn
= &memblock
.memory
;
590 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
591 (unsigned long long)base
,
592 (unsigned long long)base
+ size
- 1,
593 flags
, (void *)_RET_IP_
);
595 return memblock_add_range(_rgn
, base
, size
, nid
, flags
);
598 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
600 return memblock_add_region(base
, size
, MAX_NUMNODES
, 0);
604 * memblock_isolate_range - isolate given range into disjoint memblocks
605 * @type: memblock type to isolate range for
606 * @base: base of range to isolate
607 * @size: size of range to isolate
608 * @start_rgn: out parameter for the start of isolated region
609 * @end_rgn: out parameter for the end of isolated region
611 * Walk @type and ensure that regions don't cross the boundaries defined by
612 * [@base,@base+@size). Crossing regions are split at the boundaries,
613 * which may create at most two more regions. The index of the first
614 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
617 * 0 on success, -errno on failure.
619 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
620 phys_addr_t base
, phys_addr_t size
,
621 int *start_rgn
, int *end_rgn
)
623 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
626 *start_rgn
= *end_rgn
= 0;
631 /* we'll create at most two more regions */
632 while (type
->cnt
+ 2 > type
->max
)
633 if (memblock_double_array(type
, base
, size
) < 0)
636 for (i
= 0; i
< type
->cnt
; i
++) {
637 struct memblock_region
*rgn
= &type
->regions
[i
];
638 phys_addr_t rbase
= rgn
->base
;
639 phys_addr_t rend
= rbase
+ rgn
->size
;
648 * @rgn intersects from below. Split and continue
649 * to process the next region - the new top half.
652 rgn
->size
-= base
- rbase
;
653 type
->total_size
-= base
- rbase
;
654 memblock_insert_region(type
, i
, rbase
, base
- rbase
,
655 memblock_get_region_node(rgn
),
657 } else if (rend
> end
) {
659 * @rgn intersects from above. Split and redo the
660 * current region - the new bottom half.
663 rgn
->size
-= end
- rbase
;
664 type
->total_size
-= end
- rbase
;
665 memblock_insert_region(type
, i
--, rbase
, end
- rbase
,
666 memblock_get_region_node(rgn
),
669 /* @rgn is fully contained, record it */
679 int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
680 phys_addr_t base
, phys_addr_t size
)
682 int start_rgn
, end_rgn
;
685 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
689 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
690 memblock_remove_region(type
, i
);
694 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
696 return memblock_remove_range(&memblock
.memory
, base
, size
);
700 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
702 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
703 (unsigned long long)base
,
704 (unsigned long long)base
+ size
- 1,
707 kmemleak_free_part(__va(base
), size
);
708 return memblock_remove_range(&memblock
.reserved
, base
, size
);
711 static int __init_memblock
memblock_reserve_region(phys_addr_t base
,
716 struct memblock_type
*type
= &memblock
.reserved
;
718 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
719 (unsigned long long)base
,
720 (unsigned long long)base
+ size
- 1,
721 flags
, (void *)_RET_IP_
);
723 return memblock_add_range(type
, base
, size
, nid
, flags
);
726 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
728 return memblock_reserve_region(base
, size
, MAX_NUMNODES
, 0);
733 * This function isolates region [@base, @base + @size), and sets/clears flag
735 * Return 0 on succees, -errno on failure.
737 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
738 phys_addr_t size
, int set
, int flag
)
740 struct memblock_type
*type
= &memblock
.memory
;
741 int i
, ret
, start_rgn
, end_rgn
;
743 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
747 for (i
= start_rgn
; i
< end_rgn
; i
++)
749 memblock_set_region_flags(&type
->regions
[i
], flag
);
751 memblock_clear_region_flags(&type
->regions
[i
], flag
);
753 memblock_merge_regions(type
);
758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759 * @base: the base phys addr of the region
760 * @size: the size of the region
762 * Return 0 on succees, -errno on failure.
764 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
766 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
774 * Return 0 on succees, -errno on failure.
776 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
778 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
782 * __next__mem_range - next function for for_each_free_mem_range() etc.
783 * @idx: pointer to u64 loop variable
784 * @nid: node selector, %NUMA_NO_NODE for all nodes
785 * @type_a: pointer to memblock_type from where the range is taken
786 * @type_b: pointer to memblock_type which excludes memory from being taken
787 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
788 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
789 * @out_nid: ptr to int for nid of the range, can be %NULL
791 * Find the first area from *@idx which matches @nid, fill the out
792 * parameters, and update *@idx for the next iteration. The lower 32bit of
793 * *@idx contains index into type_a and the upper 32bit indexes the
794 * areas before each region in type_b. For example, if type_b regions
795 * look like the following,
797 * 0:[0-16), 1:[32-48), 2:[128-130)
799 * The upper 32bit indexes the following regions.
801 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
803 * As both region arrays are sorted, the function advances the two indices
804 * in lockstep and returns each intersection.
806 void __init_memblock
__next_mem_range(u64
*idx
, int nid
,
807 struct memblock_type
*type_a
,
808 struct memblock_type
*type_b
,
809 phys_addr_t
*out_start
,
810 phys_addr_t
*out_end
, int *out_nid
)
812 int idx_a
= *idx
& 0xffffffff;
813 int idx_b
= *idx
>> 32;
815 if (WARN_ONCE(nid
== MAX_NUMNODES
,
816 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
819 for (; idx_a
< type_a
->cnt
; idx_a
++) {
820 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
822 phys_addr_t m_start
= m
->base
;
823 phys_addr_t m_end
= m
->base
+ m
->size
;
824 int m_nid
= memblock_get_region_node(m
);
826 /* only memory regions are associated with nodes, check it */
827 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
830 /* skip hotpluggable memory regions if needed */
831 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
836 *out_start
= m_start
;
842 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
846 /* scan areas before each reservation */
847 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
848 struct memblock_region
*r
;
852 r
= &type_b
->regions
[idx_b
];
853 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
854 r_end
= idx_b
< type_b
->cnt
?
855 r
->base
: ULLONG_MAX
;
858 * if idx_b advanced past idx_a,
859 * break out to advance idx_a
861 if (r_start
>= m_end
)
863 /* if the two regions intersect, we're done */
864 if (m_start
< r_end
) {
867 max(m_start
, r_start
);
869 *out_end
= min(m_end
, r_end
);
873 * The region which ends first is
874 * advanced for the next iteration.
880 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
886 /* signal end of iteration */
891 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
893 * Finds the next range from type_a which is not marked as unsuitable
896 * @idx: pointer to u64 loop variable
897 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
898 * @type_a: pointer to memblock_type from where the range is taken
899 * @type_b: pointer to memblock_type which excludes memory from being taken
900 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
901 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
902 * @out_nid: ptr to int for nid of the range, can be %NULL
904 * Reverse of __next_mem_range().
906 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
,
907 struct memblock_type
*type_a
,
908 struct memblock_type
*type_b
,
909 phys_addr_t
*out_start
,
910 phys_addr_t
*out_end
, int *out_nid
)
912 int idx_a
= *idx
& 0xffffffff;
913 int idx_b
= *idx
>> 32;
915 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
918 if (*idx
== (u64
)ULLONG_MAX
) {
919 idx_a
= type_a
->cnt
- 1;
923 for (; idx_a
>= 0; idx_a
--) {
924 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
926 phys_addr_t m_start
= m
->base
;
927 phys_addr_t m_end
= m
->base
+ m
->size
;
928 int m_nid
= memblock_get_region_node(m
);
930 /* only memory regions are associated with nodes, check it */
931 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
934 /* skip hotpluggable memory regions if needed */
935 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
940 *out_start
= m_start
;
946 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
950 /* scan areas before each reservation */
951 for (; idx_b
>= 0; idx_b
--) {
952 struct memblock_region
*r
;
956 r
= &type_b
->regions
[idx_b
];
957 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
958 r_end
= idx_b
< type_b
->cnt
?
959 r
->base
: ULLONG_MAX
;
961 * if idx_b advanced past idx_a,
962 * break out to advance idx_a
965 if (r_end
<= m_start
)
967 /* if the two regions intersect, we're done */
968 if (m_end
> r_start
) {
970 *out_start
= max(m_start
, r_start
);
972 *out_end
= min(m_end
, r_end
);
975 if (m_start
>= r_start
)
979 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
984 /* signal end of iteration */
988 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
990 * Common iterator interface used to define for_each_mem_range().
992 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
993 unsigned long *out_start_pfn
,
994 unsigned long *out_end_pfn
, int *out_nid
)
996 struct memblock_type
*type
= &memblock
.memory
;
997 struct memblock_region
*r
;
999 while (++*idx
< type
->cnt
) {
1000 r
= &type
->regions
[*idx
];
1002 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1004 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1007 if (*idx
>= type
->cnt
) {
1013 *out_start_pfn
= PFN_UP(r
->base
);
1015 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1021 * memblock_set_node - set node ID on memblock regions
1022 * @base: base of area to set node ID for
1023 * @size: size of area to set node ID for
1024 * @type: memblock type to set node ID for
1025 * @nid: node ID to set
1027 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1028 * Regions which cross the area boundaries are split as necessary.
1031 * 0 on success, -errno on failure.
1033 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1034 struct memblock_type
*type
, int nid
)
1036 int start_rgn
, end_rgn
;
1039 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1043 for (i
= start_rgn
; i
< end_rgn
; i
++)
1044 memblock_set_region_node(&type
->regions
[i
], nid
);
1046 memblock_merge_regions(type
);
1049 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1051 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1052 phys_addr_t align
, phys_addr_t start
,
1053 phys_addr_t end
, int nid
)
1058 align
= SMP_CACHE_BYTES
;
1060 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
);
1061 if (found
&& !memblock_reserve(found
, size
)) {
1063 * The min_count is set to 0 so that memblock allocations are
1064 * never reported as leaks.
1066 kmemleak_alloc(__va(found
), size
, 0, 0);
1072 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1073 phys_addr_t start
, phys_addr_t end
)
1075 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
);
1078 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1079 phys_addr_t align
, phys_addr_t max_addr
,
1082 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
);
1085 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1087 return memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
1090 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1092 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
);
1095 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1099 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1102 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1103 (unsigned long long) size
, (unsigned long long) max_addr
);
1108 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1110 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1113 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1115 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1119 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1123 * memblock_virt_alloc_internal - allocate boot memory block
1124 * @size: size of memory block to be allocated in bytes
1125 * @align: alignment of the region and block's size
1126 * @min_addr: the lower bound of the memory region to allocate (phys address)
1127 * @max_addr: the upper bound of the memory region to allocate (phys address)
1128 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1130 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1131 * will fall back to memory below @min_addr. Also, allocation may fall back
1132 * to any node in the system if the specified node can not
1133 * hold the requested memory.
1135 * The allocation is performed from memory region limited by
1136 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1138 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1140 * The phys address of allocated boot memory block is converted to virtual and
1141 * allocated memory is reset to 0.
1143 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1144 * allocated boot memory block, so that it is never reported as leaks.
1147 * Virtual address of allocated memory block on success, NULL on failure.
1149 static void * __init
memblock_virt_alloc_internal(
1150 phys_addr_t size
, phys_addr_t align
,
1151 phys_addr_t min_addr
, phys_addr_t max_addr
,
1157 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1161 * Detect any accidental use of these APIs after slab is ready, as at
1162 * this moment memblock may be deinitialized already and its
1163 * internal data may be destroyed (after execution of free_all_bootmem)
1165 if (WARN_ON_ONCE(slab_is_available()))
1166 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1169 align
= SMP_CACHE_BYTES
;
1171 if (max_addr
> memblock
.current_limit
)
1172 max_addr
= memblock
.current_limit
;
1175 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1180 if (nid
!= NUMA_NO_NODE
) {
1181 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1182 max_addr
, NUMA_NO_NODE
);
1195 memblock_reserve(alloc
, size
);
1196 ptr
= phys_to_virt(alloc
);
1197 memset(ptr
, 0, size
);
1200 * The min_count is set to 0 so that bootmem allocated blocks
1201 * are never reported as leaks. This is because many of these blocks
1202 * are only referred via the physical address which is not
1203 * looked up by kmemleak.
1205 kmemleak_alloc(ptr
, size
, 0, 0);
1214 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1215 * @size: size of memory block to be allocated in bytes
1216 * @align: alignment of the region and block's size
1217 * @min_addr: the lower bound of the memory region from where the allocation
1218 * is preferred (phys address)
1219 * @max_addr: the upper bound of the memory region from where the allocation
1220 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1221 * allocate only from memory limited by memblock.current_limit value
1222 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1224 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1225 * additional debug information (including caller info), if enabled.
1228 * Virtual address of allocated memory block on success, NULL on failure.
1230 void * __init
memblock_virt_alloc_try_nid_nopanic(
1231 phys_addr_t size
, phys_addr_t align
,
1232 phys_addr_t min_addr
, phys_addr_t max_addr
,
1235 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1236 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1237 (u64
)max_addr
, (void *)_RET_IP_
);
1238 return memblock_virt_alloc_internal(size
, align
, min_addr
,
1243 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1244 * @size: size of memory block to be allocated in bytes
1245 * @align: alignment of the region and block's size
1246 * @min_addr: the lower bound of the memory region from where the allocation
1247 * is preferred (phys address)
1248 * @max_addr: the upper bound of the memory region from where the allocation
1249 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1250 * allocate only from memory limited by memblock.current_limit value
1251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1253 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1254 * which provides debug information (including caller info), if enabled,
1255 * and panics if the request can not be satisfied.
1258 * Virtual address of allocated memory block on success, NULL on failure.
1260 void * __init
memblock_virt_alloc_try_nid(
1261 phys_addr_t size
, phys_addr_t align
,
1262 phys_addr_t min_addr
, phys_addr_t max_addr
,
1267 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1268 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1269 (u64
)max_addr
, (void *)_RET_IP_
);
1270 ptr
= memblock_virt_alloc_internal(size
, align
,
1271 min_addr
, max_addr
, nid
);
1275 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1276 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1282 * __memblock_free_early - free boot memory block
1283 * @base: phys starting address of the boot memory block
1284 * @size: size of the boot memory block in bytes
1286 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1287 * The freeing memory will not be released to the buddy allocator.
1289 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1291 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1292 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1294 kmemleak_free_part(__va(base
), size
);
1295 memblock_remove_range(&memblock
.reserved
, base
, size
);
1299 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1300 * @addr: phys starting address of the boot memory block
1301 * @size: size of the boot memory block in bytes
1303 * This is only useful when the bootmem allocator has already been torn
1304 * down, but we are still initializing the system. Pages are released directly
1305 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1307 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1311 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1312 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1314 kmemleak_free_part(__va(base
), size
);
1315 cursor
= PFN_UP(base
);
1316 end
= PFN_DOWN(base
+ size
);
1318 for (; cursor
< end
; cursor
++) {
1319 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1325 * Remaining API functions
1328 phys_addr_t __init
memblock_phys_mem_size(void)
1330 return memblock
.memory
.total_size
;
1333 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1335 unsigned long pages
= 0;
1336 struct memblock_region
*r
;
1337 unsigned long start_pfn
, end_pfn
;
1339 for_each_memblock(memory
, r
) {
1340 start_pfn
= memblock_region_memory_base_pfn(r
);
1341 end_pfn
= memblock_region_memory_end_pfn(r
);
1342 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1343 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1344 pages
+= end_pfn
- start_pfn
;
1347 return PFN_PHYS(pages
);
1350 /* lowest address */
1351 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1353 return memblock
.memory
.regions
[0].base
;
1356 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1358 int idx
= memblock
.memory
.cnt
- 1;
1360 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1363 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1365 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1366 struct memblock_region
*r
;
1371 /* find out max address */
1372 for_each_memblock(memory
, r
) {
1373 if (limit
<= r
->size
) {
1374 max_addr
= r
->base
+ limit
;
1380 /* truncate both memory and reserved regions */
1381 memblock_remove_range(&memblock
.memory
, max_addr
,
1382 (phys_addr_t
)ULLONG_MAX
);
1383 memblock_remove_range(&memblock
.reserved
, max_addr
,
1384 (phys_addr_t
)ULLONG_MAX
);
1387 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1389 unsigned int left
= 0, right
= type
->cnt
;
1392 unsigned int mid
= (right
+ left
) / 2;
1394 if (addr
< type
->regions
[mid
].base
)
1396 else if (addr
>= (type
->regions
[mid
].base
+
1397 type
->regions
[mid
].size
))
1401 } while (left
< right
);
1405 int __init
memblock_is_reserved(phys_addr_t addr
)
1407 return memblock_search(&memblock
.reserved
, addr
) != -1;
1410 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
1412 return memblock_search(&memblock
.memory
, addr
) != -1;
1415 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1416 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1417 unsigned long *start_pfn
, unsigned long *end_pfn
)
1419 struct memblock_type
*type
= &memblock
.memory
;
1420 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1425 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1426 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1428 return type
->regions
[mid
].nid
;
1433 * memblock_is_region_memory - check if a region is a subset of memory
1434 * @base: base of region to check
1435 * @size: size of region to check
1437 * Check if the region [@base, @base+@size) is a subset of a memory block.
1440 * 0 if false, non-zero if true
1442 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1444 int idx
= memblock_search(&memblock
.memory
, base
);
1445 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1449 return memblock
.memory
.regions
[idx
].base
<= base
&&
1450 (memblock
.memory
.regions
[idx
].base
+
1451 memblock
.memory
.regions
[idx
].size
) >= end
;
1455 * memblock_is_region_reserved - check if a region intersects reserved memory
1456 * @base: base of region to check
1457 * @size: size of region to check
1459 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1462 * 0 if false, non-zero if true
1464 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1466 memblock_cap_size(base
, &size
);
1467 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
1470 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1472 phys_addr_t start
, end
, orig_start
, orig_end
;
1473 struct memblock_region
*r
;
1475 for_each_memblock(memory
, r
) {
1476 orig_start
= r
->base
;
1477 orig_end
= r
->base
+ r
->size
;
1478 start
= round_up(orig_start
, align
);
1479 end
= round_down(orig_end
, align
);
1481 if (start
== orig_start
&& end
== orig_end
)
1486 r
->size
= end
- start
;
1488 memblock_remove_region(&memblock
.memory
,
1489 r
- memblock
.memory
.regions
);
1495 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1497 memblock
.current_limit
= limit
;
1500 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1502 return memblock
.current_limit
;
1505 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
1507 unsigned long long base
, size
;
1508 unsigned long flags
;
1511 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
1513 for (i
= 0; i
< type
->cnt
; i
++) {
1514 struct memblock_region
*rgn
= &type
->regions
[i
];
1515 char nid_buf
[32] = "";
1520 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1521 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1522 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1523 memblock_get_region_node(rgn
));
1525 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1526 name
, i
, base
, base
+ size
- 1, size
, nid_buf
, flags
);
1530 void __init_memblock
__memblock_dump_all(void)
1532 pr_info("MEMBLOCK configuration:\n");
1533 pr_info(" memory size = %#llx reserved size = %#llx\n",
1534 (unsigned long long)memblock
.memory
.total_size
,
1535 (unsigned long long)memblock
.reserved
.total_size
);
1537 memblock_dump(&memblock
.memory
, "memory");
1538 memblock_dump(&memblock
.reserved
, "reserved");
1541 void __init
memblock_allow_resize(void)
1543 memblock_can_resize
= 1;
1546 static int __init
early_memblock(char *p
)
1548 if (p
&& strstr(p
, "debug"))
1552 early_param("memblock", early_memblock
);
1554 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1556 static int memblock_debug_show(struct seq_file
*m
, void *private)
1558 struct memblock_type
*type
= m
->private;
1559 struct memblock_region
*reg
;
1562 for (i
= 0; i
< type
->cnt
; i
++) {
1563 reg
= &type
->regions
[i
];
1564 seq_printf(m
, "%4d: ", i
);
1565 if (sizeof(phys_addr_t
) == 4)
1566 seq_printf(m
, "0x%08lx..0x%08lx\n",
1567 (unsigned long)reg
->base
,
1568 (unsigned long)(reg
->base
+ reg
->size
- 1));
1570 seq_printf(m
, "0x%016llx..0x%016llx\n",
1571 (unsigned long long)reg
->base
,
1572 (unsigned long long)(reg
->base
+ reg
->size
- 1));
1578 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1580 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1583 static const struct file_operations memblock_debug_fops
= {
1584 .open
= memblock_debug_open
,
1586 .llseek
= seq_lseek
,
1587 .release
= single_release
,
1590 static int __init
memblock_init_debugfs(void)
1592 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1595 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1596 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1597 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1598 debugfs_create_file("physmem", S_IRUGO
, root
, &memblock
.physmem
, &memblock_debug_fops
);
1603 __initcall(memblock_init_debugfs
);
1605 #endif /* CONFIG_DEBUG_FS */