tcp: export data delivery rate
[linux/fpc-iii.git] / net / ipv4 / tcp.c
blobf253e5019d227461551b2dd3ba384e85a5e2a287
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 int sysctl_tcp_autocorking __read_mostly = 1;
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
304 * Current number of TCP sockets.
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
310 * TCP splice context
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
327 void tcp_enter_memory_pressure(struct sock *sk)
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 u8 res = 0;
341 if (seconds > 0) {
342 int period = timeout;
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
353 return res;
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 int period = 0;
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
370 return period;
373 /* Address-family independent initialization for a tcp_sock.
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
378 void tcp_init_sock(struct sock *sk)
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
383 tp->out_of_order_queue = RB_ROOT;
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
397 tp->snd_cwnd = TCP_INIT_CWND;
399 /* There's a bubble in the pipe until at least the first ACK. */
400 tp->app_limited = ~0U;
402 /* See draft-stevens-tcpca-spec-01 for discussion of the
403 * initialization of these values.
405 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
406 tp->snd_cwnd_clamp = ~0;
407 tp->mss_cache = TCP_MSS_DEFAULT;
408 u64_stats_init(&tp->syncp);
410 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
411 tcp_enable_early_retrans(tp);
412 tcp_assign_congestion_control(sk);
414 tp->tsoffset = 0;
416 sk->sk_state = TCP_CLOSE;
418 sk->sk_write_space = sk_stream_write_space;
419 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
421 icsk->icsk_sync_mss = tcp_sync_mss;
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
426 local_bh_disable();
427 if (mem_cgroup_sockets_enabled)
428 sock_update_memcg(sk);
429 sk_sockets_allocated_inc(sk);
430 local_bh_enable();
432 EXPORT_SYMBOL(tcp_init_sock);
434 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
436 if (tsflags) {
437 struct skb_shared_info *shinfo = skb_shinfo(skb);
438 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
440 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
441 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
442 tcb->txstamp_ack = 1;
443 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
444 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
449 * Wait for a TCP event.
451 * Note that we don't need to lock the socket, as the upper poll layers
452 * take care of normal races (between the test and the event) and we don't
453 * go look at any of the socket buffers directly.
455 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
457 unsigned int mask;
458 struct sock *sk = sock->sk;
459 const struct tcp_sock *tp = tcp_sk(sk);
460 int state;
462 sock_rps_record_flow(sk);
464 sock_poll_wait(file, sk_sleep(sk), wait);
466 state = sk_state_load(sk);
467 if (state == TCP_LISTEN)
468 return inet_csk_listen_poll(sk);
470 /* Socket is not locked. We are protected from async events
471 * by poll logic and correct handling of state changes
472 * made by other threads is impossible in any case.
475 mask = 0;
478 * POLLHUP is certainly not done right. But poll() doesn't
479 * have a notion of HUP in just one direction, and for a
480 * socket the read side is more interesting.
482 * Some poll() documentation says that POLLHUP is incompatible
483 * with the POLLOUT/POLLWR flags, so somebody should check this
484 * all. But careful, it tends to be safer to return too many
485 * bits than too few, and you can easily break real applications
486 * if you don't tell them that something has hung up!
488 * Check-me.
490 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
491 * our fs/select.c). It means that after we received EOF,
492 * poll always returns immediately, making impossible poll() on write()
493 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
494 * if and only if shutdown has been made in both directions.
495 * Actually, it is interesting to look how Solaris and DUX
496 * solve this dilemma. I would prefer, if POLLHUP were maskable,
497 * then we could set it on SND_SHUTDOWN. BTW examples given
498 * in Stevens' books assume exactly this behaviour, it explains
499 * why POLLHUP is incompatible with POLLOUT. --ANK
501 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
502 * blocking on fresh not-connected or disconnected socket. --ANK
504 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
505 mask |= POLLHUP;
506 if (sk->sk_shutdown & RCV_SHUTDOWN)
507 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
509 /* Connected or passive Fast Open socket? */
510 if (state != TCP_SYN_SENT &&
511 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
512 int target = sock_rcvlowat(sk, 0, INT_MAX);
514 if (tp->urg_seq == tp->copied_seq &&
515 !sock_flag(sk, SOCK_URGINLINE) &&
516 tp->urg_data)
517 target++;
519 if (tp->rcv_nxt - tp->copied_seq >= target)
520 mask |= POLLIN | POLLRDNORM;
522 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
523 if (sk_stream_is_writeable(sk)) {
524 mask |= POLLOUT | POLLWRNORM;
525 } else { /* send SIGIO later */
526 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
527 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
529 /* Race breaker. If space is freed after
530 * wspace test but before the flags are set,
531 * IO signal will be lost. Memory barrier
532 * pairs with the input side.
534 smp_mb__after_atomic();
535 if (sk_stream_is_writeable(sk))
536 mask |= POLLOUT | POLLWRNORM;
538 } else
539 mask |= POLLOUT | POLLWRNORM;
541 if (tp->urg_data & TCP_URG_VALID)
542 mask |= POLLPRI;
544 /* This barrier is coupled with smp_wmb() in tcp_reset() */
545 smp_rmb();
546 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
547 mask |= POLLERR;
549 return mask;
551 EXPORT_SYMBOL(tcp_poll);
553 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
555 struct tcp_sock *tp = tcp_sk(sk);
556 int answ;
557 bool slow;
559 switch (cmd) {
560 case SIOCINQ:
561 if (sk->sk_state == TCP_LISTEN)
562 return -EINVAL;
564 slow = lock_sock_fast(sk);
565 answ = tcp_inq(sk);
566 unlock_sock_fast(sk, slow);
567 break;
568 case SIOCATMARK:
569 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
570 break;
571 case SIOCOUTQ:
572 if (sk->sk_state == TCP_LISTEN)
573 return -EINVAL;
575 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
576 answ = 0;
577 else
578 answ = tp->write_seq - tp->snd_una;
579 break;
580 case SIOCOUTQNSD:
581 if (sk->sk_state == TCP_LISTEN)
582 return -EINVAL;
584 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
585 answ = 0;
586 else
587 answ = tp->write_seq - tp->snd_nxt;
588 break;
589 default:
590 return -ENOIOCTLCMD;
593 return put_user(answ, (int __user *)arg);
595 EXPORT_SYMBOL(tcp_ioctl);
597 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
599 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
600 tp->pushed_seq = tp->write_seq;
603 static inline bool forced_push(const struct tcp_sock *tp)
605 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
608 static void skb_entail(struct sock *sk, struct sk_buff *skb)
610 struct tcp_sock *tp = tcp_sk(sk);
611 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
613 skb->csum = 0;
614 tcb->seq = tcb->end_seq = tp->write_seq;
615 tcb->tcp_flags = TCPHDR_ACK;
616 tcb->sacked = 0;
617 __skb_header_release(skb);
618 tcp_add_write_queue_tail(sk, skb);
619 sk->sk_wmem_queued += skb->truesize;
620 sk_mem_charge(sk, skb->truesize);
621 if (tp->nonagle & TCP_NAGLE_PUSH)
622 tp->nonagle &= ~TCP_NAGLE_PUSH;
624 tcp_slow_start_after_idle_check(sk);
627 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
629 if (flags & MSG_OOB)
630 tp->snd_up = tp->write_seq;
633 /* If a not yet filled skb is pushed, do not send it if
634 * we have data packets in Qdisc or NIC queues :
635 * Because TX completion will happen shortly, it gives a chance
636 * to coalesce future sendmsg() payload into this skb, without
637 * need for a timer, and with no latency trade off.
638 * As packets containing data payload have a bigger truesize
639 * than pure acks (dataless) packets, the last checks prevent
640 * autocorking if we only have an ACK in Qdisc/NIC queues,
641 * or if TX completion was delayed after we processed ACK packet.
643 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
644 int size_goal)
646 return skb->len < size_goal &&
647 sysctl_tcp_autocorking &&
648 skb != tcp_write_queue_head(sk) &&
649 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
652 static void tcp_push(struct sock *sk, int flags, int mss_now,
653 int nonagle, int size_goal)
655 struct tcp_sock *tp = tcp_sk(sk);
656 struct sk_buff *skb;
658 if (!tcp_send_head(sk))
659 return;
661 skb = tcp_write_queue_tail(sk);
662 if (!(flags & MSG_MORE) || forced_push(tp))
663 tcp_mark_push(tp, skb);
665 tcp_mark_urg(tp, flags);
667 if (tcp_should_autocork(sk, skb, size_goal)) {
669 /* avoid atomic op if TSQ_THROTTLED bit is already set */
670 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
671 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
672 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
674 /* It is possible TX completion already happened
675 * before we set TSQ_THROTTLED.
677 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
678 return;
681 if (flags & MSG_MORE)
682 nonagle = TCP_NAGLE_CORK;
684 __tcp_push_pending_frames(sk, mss_now, nonagle);
687 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
688 unsigned int offset, size_t len)
690 struct tcp_splice_state *tss = rd_desc->arg.data;
691 int ret;
693 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
694 min(rd_desc->count, len), tss->flags,
695 skb_socket_splice);
696 if (ret > 0)
697 rd_desc->count -= ret;
698 return ret;
701 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
703 /* Store TCP splice context information in read_descriptor_t. */
704 read_descriptor_t rd_desc = {
705 .arg.data = tss,
706 .count = tss->len,
709 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
713 * tcp_splice_read - splice data from TCP socket to a pipe
714 * @sock: socket to splice from
715 * @ppos: position (not valid)
716 * @pipe: pipe to splice to
717 * @len: number of bytes to splice
718 * @flags: splice modifier flags
720 * Description:
721 * Will read pages from given socket and fill them into a pipe.
724 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
725 struct pipe_inode_info *pipe, size_t len,
726 unsigned int flags)
728 struct sock *sk = sock->sk;
729 struct tcp_splice_state tss = {
730 .pipe = pipe,
731 .len = len,
732 .flags = flags,
734 long timeo;
735 ssize_t spliced;
736 int ret;
738 sock_rps_record_flow(sk);
740 * We can't seek on a socket input
742 if (unlikely(*ppos))
743 return -ESPIPE;
745 ret = spliced = 0;
747 lock_sock(sk);
749 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
750 while (tss.len) {
751 ret = __tcp_splice_read(sk, &tss);
752 if (ret < 0)
753 break;
754 else if (!ret) {
755 if (spliced)
756 break;
757 if (sock_flag(sk, SOCK_DONE))
758 break;
759 if (sk->sk_err) {
760 ret = sock_error(sk);
761 break;
763 if (sk->sk_shutdown & RCV_SHUTDOWN)
764 break;
765 if (sk->sk_state == TCP_CLOSE) {
767 * This occurs when user tries to read
768 * from never connected socket.
770 if (!sock_flag(sk, SOCK_DONE))
771 ret = -ENOTCONN;
772 break;
774 if (!timeo) {
775 ret = -EAGAIN;
776 break;
778 sk_wait_data(sk, &timeo, NULL);
779 if (signal_pending(current)) {
780 ret = sock_intr_errno(timeo);
781 break;
783 continue;
785 tss.len -= ret;
786 spliced += ret;
788 if (!timeo)
789 break;
790 release_sock(sk);
791 lock_sock(sk);
793 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
794 (sk->sk_shutdown & RCV_SHUTDOWN) ||
795 signal_pending(current))
796 break;
799 release_sock(sk);
801 if (spliced)
802 return spliced;
804 return ret;
806 EXPORT_SYMBOL(tcp_splice_read);
808 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
809 bool force_schedule)
811 struct sk_buff *skb;
813 /* The TCP header must be at least 32-bit aligned. */
814 size = ALIGN(size, 4);
816 if (unlikely(tcp_under_memory_pressure(sk)))
817 sk_mem_reclaim_partial(sk);
819 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
820 if (likely(skb)) {
821 bool mem_scheduled;
823 if (force_schedule) {
824 mem_scheduled = true;
825 sk_forced_mem_schedule(sk, skb->truesize);
826 } else {
827 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
829 if (likely(mem_scheduled)) {
830 skb_reserve(skb, sk->sk_prot->max_header);
832 * Make sure that we have exactly size bytes
833 * available to the caller, no more, no less.
835 skb->reserved_tailroom = skb->end - skb->tail - size;
836 return skb;
838 __kfree_skb(skb);
839 } else {
840 sk->sk_prot->enter_memory_pressure(sk);
841 sk_stream_moderate_sndbuf(sk);
843 return NULL;
846 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
847 int large_allowed)
849 struct tcp_sock *tp = tcp_sk(sk);
850 u32 new_size_goal, size_goal;
852 if (!large_allowed || !sk_can_gso(sk))
853 return mss_now;
855 /* Note : tcp_tso_autosize() will eventually split this later */
856 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
857 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
859 /* We try hard to avoid divides here */
860 size_goal = tp->gso_segs * mss_now;
861 if (unlikely(new_size_goal < size_goal ||
862 new_size_goal >= size_goal + mss_now)) {
863 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
864 sk->sk_gso_max_segs);
865 size_goal = tp->gso_segs * mss_now;
868 return max(size_goal, mss_now);
871 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
873 int mss_now;
875 mss_now = tcp_current_mss(sk);
876 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
878 return mss_now;
881 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
882 size_t size, int flags)
884 struct tcp_sock *tp = tcp_sk(sk);
885 int mss_now, size_goal;
886 int err;
887 ssize_t copied;
888 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
890 /* Wait for a connection to finish. One exception is TCP Fast Open
891 * (passive side) where data is allowed to be sent before a connection
892 * is fully established.
894 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
895 !tcp_passive_fastopen(sk)) {
896 err = sk_stream_wait_connect(sk, &timeo);
897 if (err != 0)
898 goto out_err;
901 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
903 mss_now = tcp_send_mss(sk, &size_goal, flags);
904 copied = 0;
906 err = -EPIPE;
907 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
908 goto out_err;
910 while (size > 0) {
911 struct sk_buff *skb = tcp_write_queue_tail(sk);
912 int copy, i;
913 bool can_coalesce;
915 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
916 !tcp_skb_can_collapse_to(skb)) {
917 new_segment:
918 if (!sk_stream_memory_free(sk))
919 goto wait_for_sndbuf;
921 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
922 skb_queue_empty(&sk->sk_write_queue));
923 if (!skb)
924 goto wait_for_memory;
926 skb_entail(sk, skb);
927 copy = size_goal;
930 if (copy > size)
931 copy = size;
933 i = skb_shinfo(skb)->nr_frags;
934 can_coalesce = skb_can_coalesce(skb, i, page, offset);
935 if (!can_coalesce && i >= sysctl_max_skb_frags) {
936 tcp_mark_push(tp, skb);
937 goto new_segment;
939 if (!sk_wmem_schedule(sk, copy))
940 goto wait_for_memory;
942 if (can_coalesce) {
943 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
944 } else {
945 get_page(page);
946 skb_fill_page_desc(skb, i, page, offset, copy);
948 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
950 skb->len += copy;
951 skb->data_len += copy;
952 skb->truesize += copy;
953 sk->sk_wmem_queued += copy;
954 sk_mem_charge(sk, copy);
955 skb->ip_summed = CHECKSUM_PARTIAL;
956 tp->write_seq += copy;
957 TCP_SKB_CB(skb)->end_seq += copy;
958 tcp_skb_pcount_set(skb, 0);
960 if (!copied)
961 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
963 copied += copy;
964 offset += copy;
965 size -= copy;
966 if (!size) {
967 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
968 goto out;
971 if (skb->len < size_goal || (flags & MSG_OOB))
972 continue;
974 if (forced_push(tp)) {
975 tcp_mark_push(tp, skb);
976 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
977 } else if (skb == tcp_send_head(sk))
978 tcp_push_one(sk, mss_now);
979 continue;
981 wait_for_sndbuf:
982 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
983 wait_for_memory:
984 tcp_push(sk, flags & ~MSG_MORE, mss_now,
985 TCP_NAGLE_PUSH, size_goal);
987 err = sk_stream_wait_memory(sk, &timeo);
988 if (err != 0)
989 goto do_error;
991 mss_now = tcp_send_mss(sk, &size_goal, flags);
994 out:
995 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
996 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
997 return copied;
999 do_error:
1000 if (copied)
1001 goto out;
1002 out_err:
1003 /* make sure we wake any epoll edge trigger waiter */
1004 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1005 sk->sk_write_space(sk);
1006 return sk_stream_error(sk, flags, err);
1009 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1010 size_t size, int flags)
1012 ssize_t res;
1014 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1015 !sk_check_csum_caps(sk))
1016 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1017 flags);
1019 lock_sock(sk);
1021 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1023 res = do_tcp_sendpages(sk, page, offset, size, flags);
1024 release_sock(sk);
1025 return res;
1027 EXPORT_SYMBOL(tcp_sendpage);
1029 /* Do not bother using a page frag for very small frames.
1030 * But use this heuristic only for the first skb in write queue.
1032 * Having no payload in skb->head allows better SACK shifting
1033 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1034 * write queue has less skbs.
1035 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1036 * This also speeds up tso_fragment(), since it wont fallback
1037 * to tcp_fragment().
1039 static int linear_payload_sz(bool first_skb)
1041 if (first_skb)
1042 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1043 return 0;
1046 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1048 const struct tcp_sock *tp = tcp_sk(sk);
1049 int tmp = tp->mss_cache;
1051 if (sg) {
1052 if (sk_can_gso(sk)) {
1053 tmp = linear_payload_sz(first_skb);
1054 } else {
1055 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1057 if (tmp >= pgbreak &&
1058 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1059 tmp = pgbreak;
1063 return tmp;
1066 void tcp_free_fastopen_req(struct tcp_sock *tp)
1068 if (tp->fastopen_req) {
1069 kfree(tp->fastopen_req);
1070 tp->fastopen_req = NULL;
1074 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1075 int *copied, size_t size)
1077 struct tcp_sock *tp = tcp_sk(sk);
1078 int err, flags;
1080 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1081 return -EOPNOTSUPP;
1082 if (tp->fastopen_req)
1083 return -EALREADY; /* Another Fast Open is in progress */
1085 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1086 sk->sk_allocation);
1087 if (unlikely(!tp->fastopen_req))
1088 return -ENOBUFS;
1089 tp->fastopen_req->data = msg;
1090 tp->fastopen_req->size = size;
1092 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1093 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1094 msg->msg_namelen, flags);
1095 *copied = tp->fastopen_req->copied;
1096 tcp_free_fastopen_req(tp);
1097 return err;
1100 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1102 struct tcp_sock *tp = tcp_sk(sk);
1103 struct sk_buff *skb;
1104 struct sockcm_cookie sockc;
1105 int flags, err, copied = 0;
1106 int mss_now = 0, size_goal, copied_syn = 0;
1107 bool process_backlog = false;
1108 bool sg;
1109 long timeo;
1111 lock_sock(sk);
1113 flags = msg->msg_flags;
1114 if (flags & MSG_FASTOPEN) {
1115 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1116 if (err == -EINPROGRESS && copied_syn > 0)
1117 goto out;
1118 else if (err)
1119 goto out_err;
1122 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1124 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1126 /* Wait for a connection to finish. One exception is TCP Fast Open
1127 * (passive side) where data is allowed to be sent before a connection
1128 * is fully established.
1130 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1131 !tcp_passive_fastopen(sk)) {
1132 err = sk_stream_wait_connect(sk, &timeo);
1133 if (err != 0)
1134 goto do_error;
1137 if (unlikely(tp->repair)) {
1138 if (tp->repair_queue == TCP_RECV_QUEUE) {
1139 copied = tcp_send_rcvq(sk, msg, size);
1140 goto out_nopush;
1143 err = -EINVAL;
1144 if (tp->repair_queue == TCP_NO_QUEUE)
1145 goto out_err;
1147 /* 'common' sending to sendq */
1150 sockc.tsflags = sk->sk_tsflags;
1151 if (msg->msg_controllen) {
1152 err = sock_cmsg_send(sk, msg, &sockc);
1153 if (unlikely(err)) {
1154 err = -EINVAL;
1155 goto out_err;
1159 /* This should be in poll */
1160 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1162 /* Ok commence sending. */
1163 copied = 0;
1165 restart:
1166 mss_now = tcp_send_mss(sk, &size_goal, flags);
1168 err = -EPIPE;
1169 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1170 goto out_err;
1172 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1174 while (msg_data_left(msg)) {
1175 int copy = 0;
1176 int max = size_goal;
1178 skb = tcp_write_queue_tail(sk);
1179 if (tcp_send_head(sk)) {
1180 if (skb->ip_summed == CHECKSUM_NONE)
1181 max = mss_now;
1182 copy = max - skb->len;
1185 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1186 bool first_skb;
1188 new_segment:
1189 /* Allocate new segment. If the interface is SG,
1190 * allocate skb fitting to single page.
1192 if (!sk_stream_memory_free(sk))
1193 goto wait_for_sndbuf;
1195 if (process_backlog && sk_flush_backlog(sk)) {
1196 process_backlog = false;
1197 goto restart;
1199 first_skb = skb_queue_empty(&sk->sk_write_queue);
1200 skb = sk_stream_alloc_skb(sk,
1201 select_size(sk, sg, first_skb),
1202 sk->sk_allocation,
1203 first_skb);
1204 if (!skb)
1205 goto wait_for_memory;
1207 process_backlog = true;
1209 * Check whether we can use HW checksum.
1211 if (sk_check_csum_caps(sk))
1212 skb->ip_summed = CHECKSUM_PARTIAL;
1214 skb_entail(sk, skb);
1215 copy = size_goal;
1216 max = size_goal;
1218 /* All packets are restored as if they have
1219 * already been sent. skb_mstamp isn't set to
1220 * avoid wrong rtt estimation.
1222 if (tp->repair)
1223 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1226 /* Try to append data to the end of skb. */
1227 if (copy > msg_data_left(msg))
1228 copy = msg_data_left(msg);
1230 /* Where to copy to? */
1231 if (skb_availroom(skb) > 0) {
1232 /* We have some space in skb head. Superb! */
1233 copy = min_t(int, copy, skb_availroom(skb));
1234 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1235 if (err)
1236 goto do_fault;
1237 } else {
1238 bool merge = true;
1239 int i = skb_shinfo(skb)->nr_frags;
1240 struct page_frag *pfrag = sk_page_frag(sk);
1242 if (!sk_page_frag_refill(sk, pfrag))
1243 goto wait_for_memory;
1245 if (!skb_can_coalesce(skb, i, pfrag->page,
1246 pfrag->offset)) {
1247 if (i == sysctl_max_skb_frags || !sg) {
1248 tcp_mark_push(tp, skb);
1249 goto new_segment;
1251 merge = false;
1254 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1256 if (!sk_wmem_schedule(sk, copy))
1257 goto wait_for_memory;
1259 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1260 pfrag->page,
1261 pfrag->offset,
1262 copy);
1263 if (err)
1264 goto do_error;
1266 /* Update the skb. */
1267 if (merge) {
1268 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1269 } else {
1270 skb_fill_page_desc(skb, i, pfrag->page,
1271 pfrag->offset, copy);
1272 get_page(pfrag->page);
1274 pfrag->offset += copy;
1277 if (!copied)
1278 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1280 tp->write_seq += copy;
1281 TCP_SKB_CB(skb)->end_seq += copy;
1282 tcp_skb_pcount_set(skb, 0);
1284 copied += copy;
1285 if (!msg_data_left(msg)) {
1286 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1287 if (unlikely(flags & MSG_EOR))
1288 TCP_SKB_CB(skb)->eor = 1;
1289 goto out;
1292 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1293 continue;
1295 if (forced_push(tp)) {
1296 tcp_mark_push(tp, skb);
1297 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1298 } else if (skb == tcp_send_head(sk))
1299 tcp_push_one(sk, mss_now);
1300 continue;
1302 wait_for_sndbuf:
1303 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1304 wait_for_memory:
1305 if (copied)
1306 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1307 TCP_NAGLE_PUSH, size_goal);
1309 err = sk_stream_wait_memory(sk, &timeo);
1310 if (err != 0)
1311 goto do_error;
1313 mss_now = tcp_send_mss(sk, &size_goal, flags);
1316 out:
1317 if (copied)
1318 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1319 out_nopush:
1320 release_sock(sk);
1321 return copied + copied_syn;
1323 do_fault:
1324 if (!skb->len) {
1325 tcp_unlink_write_queue(skb, sk);
1326 /* It is the one place in all of TCP, except connection
1327 * reset, where we can be unlinking the send_head.
1329 tcp_check_send_head(sk, skb);
1330 sk_wmem_free_skb(sk, skb);
1333 do_error:
1334 if (copied + copied_syn)
1335 goto out;
1336 out_err:
1337 err = sk_stream_error(sk, flags, err);
1338 /* make sure we wake any epoll edge trigger waiter */
1339 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1340 sk->sk_write_space(sk);
1341 release_sock(sk);
1342 return err;
1344 EXPORT_SYMBOL(tcp_sendmsg);
1347 * Handle reading urgent data. BSD has very simple semantics for
1348 * this, no blocking and very strange errors 8)
1351 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1353 struct tcp_sock *tp = tcp_sk(sk);
1355 /* No URG data to read. */
1356 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1357 tp->urg_data == TCP_URG_READ)
1358 return -EINVAL; /* Yes this is right ! */
1360 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1361 return -ENOTCONN;
1363 if (tp->urg_data & TCP_URG_VALID) {
1364 int err = 0;
1365 char c = tp->urg_data;
1367 if (!(flags & MSG_PEEK))
1368 tp->urg_data = TCP_URG_READ;
1370 /* Read urgent data. */
1371 msg->msg_flags |= MSG_OOB;
1373 if (len > 0) {
1374 if (!(flags & MSG_TRUNC))
1375 err = memcpy_to_msg(msg, &c, 1);
1376 len = 1;
1377 } else
1378 msg->msg_flags |= MSG_TRUNC;
1380 return err ? -EFAULT : len;
1383 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1384 return 0;
1386 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1387 * the available implementations agree in this case:
1388 * this call should never block, independent of the
1389 * blocking state of the socket.
1390 * Mike <pall@rz.uni-karlsruhe.de>
1392 return -EAGAIN;
1395 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1397 struct sk_buff *skb;
1398 int copied = 0, err = 0;
1400 /* XXX -- need to support SO_PEEK_OFF */
1402 skb_queue_walk(&sk->sk_write_queue, skb) {
1403 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1404 if (err)
1405 break;
1407 copied += skb->len;
1410 return err ?: copied;
1413 /* Clean up the receive buffer for full frames taken by the user,
1414 * then send an ACK if necessary. COPIED is the number of bytes
1415 * tcp_recvmsg has given to the user so far, it speeds up the
1416 * calculation of whether or not we must ACK for the sake of
1417 * a window update.
1419 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1421 struct tcp_sock *tp = tcp_sk(sk);
1422 bool time_to_ack = false;
1424 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1426 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1427 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1428 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1430 if (inet_csk_ack_scheduled(sk)) {
1431 const struct inet_connection_sock *icsk = inet_csk(sk);
1432 /* Delayed ACKs frequently hit locked sockets during bulk
1433 * receive. */
1434 if (icsk->icsk_ack.blocked ||
1435 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1436 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1438 * If this read emptied read buffer, we send ACK, if
1439 * connection is not bidirectional, user drained
1440 * receive buffer and there was a small segment
1441 * in queue.
1443 (copied > 0 &&
1444 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1445 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1446 !icsk->icsk_ack.pingpong)) &&
1447 !atomic_read(&sk->sk_rmem_alloc)))
1448 time_to_ack = true;
1451 /* We send an ACK if we can now advertise a non-zero window
1452 * which has been raised "significantly".
1454 * Even if window raised up to infinity, do not send window open ACK
1455 * in states, where we will not receive more. It is useless.
1457 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1458 __u32 rcv_window_now = tcp_receive_window(tp);
1460 /* Optimize, __tcp_select_window() is not cheap. */
1461 if (2*rcv_window_now <= tp->window_clamp) {
1462 __u32 new_window = __tcp_select_window(sk);
1464 /* Send ACK now, if this read freed lots of space
1465 * in our buffer. Certainly, new_window is new window.
1466 * We can advertise it now, if it is not less than current one.
1467 * "Lots" means "at least twice" here.
1469 if (new_window && new_window >= 2 * rcv_window_now)
1470 time_to_ack = true;
1473 if (time_to_ack)
1474 tcp_send_ack(sk);
1477 static void tcp_prequeue_process(struct sock *sk)
1479 struct sk_buff *skb;
1480 struct tcp_sock *tp = tcp_sk(sk);
1482 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1484 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1485 sk_backlog_rcv(sk, skb);
1487 /* Clear memory counter. */
1488 tp->ucopy.memory = 0;
1491 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1493 struct sk_buff *skb;
1494 u32 offset;
1496 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1497 offset = seq - TCP_SKB_CB(skb)->seq;
1498 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1499 pr_err_once("%s: found a SYN, please report !\n", __func__);
1500 offset--;
1502 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1503 *off = offset;
1504 return skb;
1506 /* This looks weird, but this can happen if TCP collapsing
1507 * splitted a fat GRO packet, while we released socket lock
1508 * in skb_splice_bits()
1510 sk_eat_skb(sk, skb);
1512 return NULL;
1516 * This routine provides an alternative to tcp_recvmsg() for routines
1517 * that would like to handle copying from skbuffs directly in 'sendfile'
1518 * fashion.
1519 * Note:
1520 * - It is assumed that the socket was locked by the caller.
1521 * - The routine does not block.
1522 * - At present, there is no support for reading OOB data
1523 * or for 'peeking' the socket using this routine
1524 * (although both would be easy to implement).
1526 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1527 sk_read_actor_t recv_actor)
1529 struct sk_buff *skb;
1530 struct tcp_sock *tp = tcp_sk(sk);
1531 u32 seq = tp->copied_seq;
1532 u32 offset;
1533 int copied = 0;
1535 if (sk->sk_state == TCP_LISTEN)
1536 return -ENOTCONN;
1537 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1538 if (offset < skb->len) {
1539 int used;
1540 size_t len;
1542 len = skb->len - offset;
1543 /* Stop reading if we hit a patch of urgent data */
1544 if (tp->urg_data) {
1545 u32 urg_offset = tp->urg_seq - seq;
1546 if (urg_offset < len)
1547 len = urg_offset;
1548 if (!len)
1549 break;
1551 used = recv_actor(desc, skb, offset, len);
1552 if (used <= 0) {
1553 if (!copied)
1554 copied = used;
1555 break;
1556 } else if (used <= len) {
1557 seq += used;
1558 copied += used;
1559 offset += used;
1561 /* If recv_actor drops the lock (e.g. TCP splice
1562 * receive) the skb pointer might be invalid when
1563 * getting here: tcp_collapse might have deleted it
1564 * while aggregating skbs from the socket queue.
1566 skb = tcp_recv_skb(sk, seq - 1, &offset);
1567 if (!skb)
1568 break;
1569 /* TCP coalescing might have appended data to the skb.
1570 * Try to splice more frags
1572 if (offset + 1 != skb->len)
1573 continue;
1575 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1576 sk_eat_skb(sk, skb);
1577 ++seq;
1578 break;
1580 sk_eat_skb(sk, skb);
1581 if (!desc->count)
1582 break;
1583 tp->copied_seq = seq;
1585 tp->copied_seq = seq;
1587 tcp_rcv_space_adjust(sk);
1589 /* Clean up data we have read: This will do ACK frames. */
1590 if (copied > 0) {
1591 tcp_recv_skb(sk, seq, &offset);
1592 tcp_cleanup_rbuf(sk, copied);
1594 return copied;
1596 EXPORT_SYMBOL(tcp_read_sock);
1598 int tcp_peek_len(struct socket *sock)
1600 return tcp_inq(sock->sk);
1602 EXPORT_SYMBOL(tcp_peek_len);
1605 * This routine copies from a sock struct into the user buffer.
1607 * Technical note: in 2.3 we work on _locked_ socket, so that
1608 * tricks with *seq access order and skb->users are not required.
1609 * Probably, code can be easily improved even more.
1612 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1613 int flags, int *addr_len)
1615 struct tcp_sock *tp = tcp_sk(sk);
1616 int copied = 0;
1617 u32 peek_seq;
1618 u32 *seq;
1619 unsigned long used;
1620 int err;
1621 int target; /* Read at least this many bytes */
1622 long timeo;
1623 struct task_struct *user_recv = NULL;
1624 struct sk_buff *skb, *last;
1625 u32 urg_hole = 0;
1627 if (unlikely(flags & MSG_ERRQUEUE))
1628 return inet_recv_error(sk, msg, len, addr_len);
1630 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1631 (sk->sk_state == TCP_ESTABLISHED))
1632 sk_busy_loop(sk, nonblock);
1634 lock_sock(sk);
1636 err = -ENOTCONN;
1637 if (sk->sk_state == TCP_LISTEN)
1638 goto out;
1640 timeo = sock_rcvtimeo(sk, nonblock);
1642 /* Urgent data needs to be handled specially. */
1643 if (flags & MSG_OOB)
1644 goto recv_urg;
1646 if (unlikely(tp->repair)) {
1647 err = -EPERM;
1648 if (!(flags & MSG_PEEK))
1649 goto out;
1651 if (tp->repair_queue == TCP_SEND_QUEUE)
1652 goto recv_sndq;
1654 err = -EINVAL;
1655 if (tp->repair_queue == TCP_NO_QUEUE)
1656 goto out;
1658 /* 'common' recv queue MSG_PEEK-ing */
1661 seq = &tp->copied_seq;
1662 if (flags & MSG_PEEK) {
1663 peek_seq = tp->copied_seq;
1664 seq = &peek_seq;
1667 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1669 do {
1670 u32 offset;
1672 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1673 if (tp->urg_data && tp->urg_seq == *seq) {
1674 if (copied)
1675 break;
1676 if (signal_pending(current)) {
1677 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1678 break;
1682 /* Next get a buffer. */
1684 last = skb_peek_tail(&sk->sk_receive_queue);
1685 skb_queue_walk(&sk->sk_receive_queue, skb) {
1686 last = skb;
1687 /* Now that we have two receive queues this
1688 * shouldn't happen.
1690 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1691 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1692 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1693 flags))
1694 break;
1696 offset = *seq - TCP_SKB_CB(skb)->seq;
1697 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1698 pr_err_once("%s: found a SYN, please report !\n", __func__);
1699 offset--;
1701 if (offset < skb->len)
1702 goto found_ok_skb;
1703 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1704 goto found_fin_ok;
1705 WARN(!(flags & MSG_PEEK),
1706 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1707 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1710 /* Well, if we have backlog, try to process it now yet. */
1712 if (copied >= target && !sk->sk_backlog.tail)
1713 break;
1715 if (copied) {
1716 if (sk->sk_err ||
1717 sk->sk_state == TCP_CLOSE ||
1718 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1719 !timeo ||
1720 signal_pending(current))
1721 break;
1722 } else {
1723 if (sock_flag(sk, SOCK_DONE))
1724 break;
1726 if (sk->sk_err) {
1727 copied = sock_error(sk);
1728 break;
1731 if (sk->sk_shutdown & RCV_SHUTDOWN)
1732 break;
1734 if (sk->sk_state == TCP_CLOSE) {
1735 if (!sock_flag(sk, SOCK_DONE)) {
1736 /* This occurs when user tries to read
1737 * from never connected socket.
1739 copied = -ENOTCONN;
1740 break;
1742 break;
1745 if (!timeo) {
1746 copied = -EAGAIN;
1747 break;
1750 if (signal_pending(current)) {
1751 copied = sock_intr_errno(timeo);
1752 break;
1756 tcp_cleanup_rbuf(sk, copied);
1758 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1759 /* Install new reader */
1760 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1761 user_recv = current;
1762 tp->ucopy.task = user_recv;
1763 tp->ucopy.msg = msg;
1766 tp->ucopy.len = len;
1768 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1769 !(flags & (MSG_PEEK | MSG_TRUNC)));
1771 /* Ugly... If prequeue is not empty, we have to
1772 * process it before releasing socket, otherwise
1773 * order will be broken at second iteration.
1774 * More elegant solution is required!!!
1776 * Look: we have the following (pseudo)queues:
1778 * 1. packets in flight
1779 * 2. backlog
1780 * 3. prequeue
1781 * 4. receive_queue
1783 * Each queue can be processed only if the next ones
1784 * are empty. At this point we have empty receive_queue.
1785 * But prequeue _can_ be not empty after 2nd iteration,
1786 * when we jumped to start of loop because backlog
1787 * processing added something to receive_queue.
1788 * We cannot release_sock(), because backlog contains
1789 * packets arrived _after_ prequeued ones.
1791 * Shortly, algorithm is clear --- to process all
1792 * the queues in order. We could make it more directly,
1793 * requeueing packets from backlog to prequeue, if
1794 * is not empty. It is more elegant, but eats cycles,
1795 * unfortunately.
1797 if (!skb_queue_empty(&tp->ucopy.prequeue))
1798 goto do_prequeue;
1800 /* __ Set realtime policy in scheduler __ */
1803 if (copied >= target) {
1804 /* Do not sleep, just process backlog. */
1805 release_sock(sk);
1806 lock_sock(sk);
1807 } else {
1808 sk_wait_data(sk, &timeo, last);
1811 if (user_recv) {
1812 int chunk;
1814 /* __ Restore normal policy in scheduler __ */
1816 chunk = len - tp->ucopy.len;
1817 if (chunk != 0) {
1818 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1819 len -= chunk;
1820 copied += chunk;
1823 if (tp->rcv_nxt == tp->copied_seq &&
1824 !skb_queue_empty(&tp->ucopy.prequeue)) {
1825 do_prequeue:
1826 tcp_prequeue_process(sk);
1828 chunk = len - tp->ucopy.len;
1829 if (chunk != 0) {
1830 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1831 len -= chunk;
1832 copied += chunk;
1836 if ((flags & MSG_PEEK) &&
1837 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1838 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1839 current->comm,
1840 task_pid_nr(current));
1841 peek_seq = tp->copied_seq;
1843 continue;
1845 found_ok_skb:
1846 /* Ok so how much can we use? */
1847 used = skb->len - offset;
1848 if (len < used)
1849 used = len;
1851 /* Do we have urgent data here? */
1852 if (tp->urg_data) {
1853 u32 urg_offset = tp->urg_seq - *seq;
1854 if (urg_offset < used) {
1855 if (!urg_offset) {
1856 if (!sock_flag(sk, SOCK_URGINLINE)) {
1857 ++*seq;
1858 urg_hole++;
1859 offset++;
1860 used--;
1861 if (!used)
1862 goto skip_copy;
1864 } else
1865 used = urg_offset;
1869 if (!(flags & MSG_TRUNC)) {
1870 err = skb_copy_datagram_msg(skb, offset, msg, used);
1871 if (err) {
1872 /* Exception. Bailout! */
1873 if (!copied)
1874 copied = -EFAULT;
1875 break;
1879 *seq += used;
1880 copied += used;
1881 len -= used;
1883 tcp_rcv_space_adjust(sk);
1885 skip_copy:
1886 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1887 tp->urg_data = 0;
1888 tcp_fast_path_check(sk);
1890 if (used + offset < skb->len)
1891 continue;
1893 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1894 goto found_fin_ok;
1895 if (!(flags & MSG_PEEK))
1896 sk_eat_skb(sk, skb);
1897 continue;
1899 found_fin_ok:
1900 /* Process the FIN. */
1901 ++*seq;
1902 if (!(flags & MSG_PEEK))
1903 sk_eat_skb(sk, skb);
1904 break;
1905 } while (len > 0);
1907 if (user_recv) {
1908 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1909 int chunk;
1911 tp->ucopy.len = copied > 0 ? len : 0;
1913 tcp_prequeue_process(sk);
1915 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1916 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1917 len -= chunk;
1918 copied += chunk;
1922 tp->ucopy.task = NULL;
1923 tp->ucopy.len = 0;
1926 /* According to UNIX98, msg_name/msg_namelen are ignored
1927 * on connected socket. I was just happy when found this 8) --ANK
1930 /* Clean up data we have read: This will do ACK frames. */
1931 tcp_cleanup_rbuf(sk, copied);
1933 release_sock(sk);
1934 return copied;
1936 out:
1937 release_sock(sk);
1938 return err;
1940 recv_urg:
1941 err = tcp_recv_urg(sk, msg, len, flags);
1942 goto out;
1944 recv_sndq:
1945 err = tcp_peek_sndq(sk, msg, len);
1946 goto out;
1948 EXPORT_SYMBOL(tcp_recvmsg);
1950 void tcp_set_state(struct sock *sk, int state)
1952 int oldstate = sk->sk_state;
1954 switch (state) {
1955 case TCP_ESTABLISHED:
1956 if (oldstate != TCP_ESTABLISHED)
1957 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1958 break;
1960 case TCP_CLOSE:
1961 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1962 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1964 sk->sk_prot->unhash(sk);
1965 if (inet_csk(sk)->icsk_bind_hash &&
1966 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1967 inet_put_port(sk);
1968 /* fall through */
1969 default:
1970 if (oldstate == TCP_ESTABLISHED)
1971 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1974 /* Change state AFTER socket is unhashed to avoid closed
1975 * socket sitting in hash tables.
1977 sk_state_store(sk, state);
1979 #ifdef STATE_TRACE
1980 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1981 #endif
1983 EXPORT_SYMBOL_GPL(tcp_set_state);
1986 * State processing on a close. This implements the state shift for
1987 * sending our FIN frame. Note that we only send a FIN for some
1988 * states. A shutdown() may have already sent the FIN, or we may be
1989 * closed.
1992 static const unsigned char new_state[16] = {
1993 /* current state: new state: action: */
1994 [0 /* (Invalid) */] = TCP_CLOSE,
1995 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1996 [TCP_SYN_SENT] = TCP_CLOSE,
1997 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1998 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1999 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2000 [TCP_TIME_WAIT] = TCP_CLOSE,
2001 [TCP_CLOSE] = TCP_CLOSE,
2002 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2003 [TCP_LAST_ACK] = TCP_LAST_ACK,
2004 [TCP_LISTEN] = TCP_CLOSE,
2005 [TCP_CLOSING] = TCP_CLOSING,
2006 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2009 static int tcp_close_state(struct sock *sk)
2011 int next = (int)new_state[sk->sk_state];
2012 int ns = next & TCP_STATE_MASK;
2014 tcp_set_state(sk, ns);
2016 return next & TCP_ACTION_FIN;
2020 * Shutdown the sending side of a connection. Much like close except
2021 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2024 void tcp_shutdown(struct sock *sk, int how)
2026 /* We need to grab some memory, and put together a FIN,
2027 * and then put it into the queue to be sent.
2028 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2030 if (!(how & SEND_SHUTDOWN))
2031 return;
2033 /* If we've already sent a FIN, or it's a closed state, skip this. */
2034 if ((1 << sk->sk_state) &
2035 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2036 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2037 /* Clear out any half completed packets. FIN if needed. */
2038 if (tcp_close_state(sk))
2039 tcp_send_fin(sk);
2042 EXPORT_SYMBOL(tcp_shutdown);
2044 bool tcp_check_oom(struct sock *sk, int shift)
2046 bool too_many_orphans, out_of_socket_memory;
2048 too_many_orphans = tcp_too_many_orphans(sk, shift);
2049 out_of_socket_memory = tcp_out_of_memory(sk);
2051 if (too_many_orphans)
2052 net_info_ratelimited("too many orphaned sockets\n");
2053 if (out_of_socket_memory)
2054 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2055 return too_many_orphans || out_of_socket_memory;
2058 void tcp_close(struct sock *sk, long timeout)
2060 struct sk_buff *skb;
2061 int data_was_unread = 0;
2062 int state;
2064 lock_sock(sk);
2065 sk->sk_shutdown = SHUTDOWN_MASK;
2067 if (sk->sk_state == TCP_LISTEN) {
2068 tcp_set_state(sk, TCP_CLOSE);
2070 /* Special case. */
2071 inet_csk_listen_stop(sk);
2073 goto adjudge_to_death;
2076 /* We need to flush the recv. buffs. We do this only on the
2077 * descriptor close, not protocol-sourced closes, because the
2078 * reader process may not have drained the data yet!
2080 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2081 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2083 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2084 len--;
2085 data_was_unread += len;
2086 __kfree_skb(skb);
2089 sk_mem_reclaim(sk);
2091 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2092 if (sk->sk_state == TCP_CLOSE)
2093 goto adjudge_to_death;
2095 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2096 * data was lost. To witness the awful effects of the old behavior of
2097 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2098 * GET in an FTP client, suspend the process, wait for the client to
2099 * advertise a zero window, then kill -9 the FTP client, wheee...
2100 * Note: timeout is always zero in such a case.
2102 if (unlikely(tcp_sk(sk)->repair)) {
2103 sk->sk_prot->disconnect(sk, 0);
2104 } else if (data_was_unread) {
2105 /* Unread data was tossed, zap the connection. */
2106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2107 tcp_set_state(sk, TCP_CLOSE);
2108 tcp_send_active_reset(sk, sk->sk_allocation);
2109 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2110 /* Check zero linger _after_ checking for unread data. */
2111 sk->sk_prot->disconnect(sk, 0);
2112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2113 } else if (tcp_close_state(sk)) {
2114 /* We FIN if the application ate all the data before
2115 * zapping the connection.
2118 /* RED-PEN. Formally speaking, we have broken TCP state
2119 * machine. State transitions:
2121 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2122 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2123 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2125 * are legal only when FIN has been sent (i.e. in window),
2126 * rather than queued out of window. Purists blame.
2128 * F.e. "RFC state" is ESTABLISHED,
2129 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2131 * The visible declinations are that sometimes
2132 * we enter time-wait state, when it is not required really
2133 * (harmless), do not send active resets, when they are
2134 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2135 * they look as CLOSING or LAST_ACK for Linux)
2136 * Probably, I missed some more holelets.
2137 * --ANK
2138 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2139 * in a single packet! (May consider it later but will
2140 * probably need API support or TCP_CORK SYN-ACK until
2141 * data is written and socket is closed.)
2143 tcp_send_fin(sk);
2146 sk_stream_wait_close(sk, timeout);
2148 adjudge_to_death:
2149 state = sk->sk_state;
2150 sock_hold(sk);
2151 sock_orphan(sk);
2153 /* It is the last release_sock in its life. It will remove backlog. */
2154 release_sock(sk);
2157 /* Now socket is owned by kernel and we acquire BH lock
2158 to finish close. No need to check for user refs.
2160 local_bh_disable();
2161 bh_lock_sock(sk);
2162 WARN_ON(sock_owned_by_user(sk));
2164 percpu_counter_inc(sk->sk_prot->orphan_count);
2166 /* Have we already been destroyed by a softirq or backlog? */
2167 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2168 goto out;
2170 /* This is a (useful) BSD violating of the RFC. There is a
2171 * problem with TCP as specified in that the other end could
2172 * keep a socket open forever with no application left this end.
2173 * We use a 1 minute timeout (about the same as BSD) then kill
2174 * our end. If they send after that then tough - BUT: long enough
2175 * that we won't make the old 4*rto = almost no time - whoops
2176 * reset mistake.
2178 * Nope, it was not mistake. It is really desired behaviour
2179 * f.e. on http servers, when such sockets are useless, but
2180 * consume significant resources. Let's do it with special
2181 * linger2 option. --ANK
2184 if (sk->sk_state == TCP_FIN_WAIT2) {
2185 struct tcp_sock *tp = tcp_sk(sk);
2186 if (tp->linger2 < 0) {
2187 tcp_set_state(sk, TCP_CLOSE);
2188 tcp_send_active_reset(sk, GFP_ATOMIC);
2189 __NET_INC_STATS(sock_net(sk),
2190 LINUX_MIB_TCPABORTONLINGER);
2191 } else {
2192 const int tmo = tcp_fin_time(sk);
2194 if (tmo > TCP_TIMEWAIT_LEN) {
2195 inet_csk_reset_keepalive_timer(sk,
2196 tmo - TCP_TIMEWAIT_LEN);
2197 } else {
2198 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2199 goto out;
2203 if (sk->sk_state != TCP_CLOSE) {
2204 sk_mem_reclaim(sk);
2205 if (tcp_check_oom(sk, 0)) {
2206 tcp_set_state(sk, TCP_CLOSE);
2207 tcp_send_active_reset(sk, GFP_ATOMIC);
2208 __NET_INC_STATS(sock_net(sk),
2209 LINUX_MIB_TCPABORTONMEMORY);
2213 if (sk->sk_state == TCP_CLOSE) {
2214 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2215 /* We could get here with a non-NULL req if the socket is
2216 * aborted (e.g., closed with unread data) before 3WHS
2217 * finishes.
2219 if (req)
2220 reqsk_fastopen_remove(sk, req, false);
2221 inet_csk_destroy_sock(sk);
2223 /* Otherwise, socket is reprieved until protocol close. */
2225 out:
2226 bh_unlock_sock(sk);
2227 local_bh_enable();
2228 sock_put(sk);
2230 EXPORT_SYMBOL(tcp_close);
2232 /* These states need RST on ABORT according to RFC793 */
2234 static inline bool tcp_need_reset(int state)
2236 return (1 << state) &
2237 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2238 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2241 int tcp_disconnect(struct sock *sk, int flags)
2243 struct inet_sock *inet = inet_sk(sk);
2244 struct inet_connection_sock *icsk = inet_csk(sk);
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 int err = 0;
2247 int old_state = sk->sk_state;
2249 if (old_state != TCP_CLOSE)
2250 tcp_set_state(sk, TCP_CLOSE);
2252 /* ABORT function of RFC793 */
2253 if (old_state == TCP_LISTEN) {
2254 inet_csk_listen_stop(sk);
2255 } else if (unlikely(tp->repair)) {
2256 sk->sk_err = ECONNABORTED;
2257 } else if (tcp_need_reset(old_state) ||
2258 (tp->snd_nxt != tp->write_seq &&
2259 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2260 /* The last check adjusts for discrepancy of Linux wrt. RFC
2261 * states
2263 tcp_send_active_reset(sk, gfp_any());
2264 sk->sk_err = ECONNRESET;
2265 } else if (old_state == TCP_SYN_SENT)
2266 sk->sk_err = ECONNRESET;
2268 tcp_clear_xmit_timers(sk);
2269 __skb_queue_purge(&sk->sk_receive_queue);
2270 tcp_write_queue_purge(sk);
2271 skb_rbtree_purge(&tp->out_of_order_queue);
2273 inet->inet_dport = 0;
2275 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2276 inet_reset_saddr(sk);
2278 sk->sk_shutdown = 0;
2279 sock_reset_flag(sk, SOCK_DONE);
2280 tp->srtt_us = 0;
2281 tp->write_seq += tp->max_window + 2;
2282 if (tp->write_seq == 0)
2283 tp->write_seq = 1;
2284 icsk->icsk_backoff = 0;
2285 tp->snd_cwnd = 2;
2286 icsk->icsk_probes_out = 0;
2287 tp->packets_out = 0;
2288 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2289 tp->snd_cwnd_cnt = 0;
2290 tp->window_clamp = 0;
2291 tcp_set_ca_state(sk, TCP_CA_Open);
2292 tcp_clear_retrans(tp);
2293 inet_csk_delack_init(sk);
2294 tcp_init_send_head(sk);
2295 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2296 __sk_dst_reset(sk);
2298 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2300 sk->sk_error_report(sk);
2301 return err;
2303 EXPORT_SYMBOL(tcp_disconnect);
2305 static inline bool tcp_can_repair_sock(const struct sock *sk)
2307 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2308 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2311 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2313 struct tcp_repair_window opt;
2315 if (!tp->repair)
2316 return -EPERM;
2318 if (len != sizeof(opt))
2319 return -EINVAL;
2321 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2322 return -EFAULT;
2324 if (opt.max_window < opt.snd_wnd)
2325 return -EINVAL;
2327 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2328 return -EINVAL;
2330 if (after(opt.rcv_wup, tp->rcv_nxt))
2331 return -EINVAL;
2333 tp->snd_wl1 = opt.snd_wl1;
2334 tp->snd_wnd = opt.snd_wnd;
2335 tp->max_window = opt.max_window;
2337 tp->rcv_wnd = opt.rcv_wnd;
2338 tp->rcv_wup = opt.rcv_wup;
2340 return 0;
2343 static int tcp_repair_options_est(struct tcp_sock *tp,
2344 struct tcp_repair_opt __user *optbuf, unsigned int len)
2346 struct tcp_repair_opt opt;
2348 while (len >= sizeof(opt)) {
2349 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2350 return -EFAULT;
2352 optbuf++;
2353 len -= sizeof(opt);
2355 switch (opt.opt_code) {
2356 case TCPOPT_MSS:
2357 tp->rx_opt.mss_clamp = opt.opt_val;
2358 break;
2359 case TCPOPT_WINDOW:
2361 u16 snd_wscale = opt.opt_val & 0xFFFF;
2362 u16 rcv_wscale = opt.opt_val >> 16;
2364 if (snd_wscale > 14 || rcv_wscale > 14)
2365 return -EFBIG;
2367 tp->rx_opt.snd_wscale = snd_wscale;
2368 tp->rx_opt.rcv_wscale = rcv_wscale;
2369 tp->rx_opt.wscale_ok = 1;
2371 break;
2372 case TCPOPT_SACK_PERM:
2373 if (opt.opt_val != 0)
2374 return -EINVAL;
2376 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2377 if (sysctl_tcp_fack)
2378 tcp_enable_fack(tp);
2379 break;
2380 case TCPOPT_TIMESTAMP:
2381 if (opt.opt_val != 0)
2382 return -EINVAL;
2384 tp->rx_opt.tstamp_ok = 1;
2385 break;
2389 return 0;
2393 * Socket option code for TCP.
2395 static int do_tcp_setsockopt(struct sock *sk, int level,
2396 int optname, char __user *optval, unsigned int optlen)
2398 struct tcp_sock *tp = tcp_sk(sk);
2399 struct inet_connection_sock *icsk = inet_csk(sk);
2400 struct net *net = sock_net(sk);
2401 int val;
2402 int err = 0;
2404 /* These are data/string values, all the others are ints */
2405 switch (optname) {
2406 case TCP_CONGESTION: {
2407 char name[TCP_CA_NAME_MAX];
2409 if (optlen < 1)
2410 return -EINVAL;
2412 val = strncpy_from_user(name, optval,
2413 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2414 if (val < 0)
2415 return -EFAULT;
2416 name[val] = 0;
2418 lock_sock(sk);
2419 err = tcp_set_congestion_control(sk, name);
2420 release_sock(sk);
2421 return err;
2423 default:
2424 /* fallthru */
2425 break;
2428 if (optlen < sizeof(int))
2429 return -EINVAL;
2431 if (get_user(val, (int __user *)optval))
2432 return -EFAULT;
2434 lock_sock(sk);
2436 switch (optname) {
2437 case TCP_MAXSEG:
2438 /* Values greater than interface MTU won't take effect. However
2439 * at the point when this call is done we typically don't yet
2440 * know which interface is going to be used */
2441 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2442 err = -EINVAL;
2443 break;
2445 tp->rx_opt.user_mss = val;
2446 break;
2448 case TCP_NODELAY:
2449 if (val) {
2450 /* TCP_NODELAY is weaker than TCP_CORK, so that
2451 * this option on corked socket is remembered, but
2452 * it is not activated until cork is cleared.
2454 * However, when TCP_NODELAY is set we make
2455 * an explicit push, which overrides even TCP_CORK
2456 * for currently queued segments.
2458 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2459 tcp_push_pending_frames(sk);
2460 } else {
2461 tp->nonagle &= ~TCP_NAGLE_OFF;
2463 break;
2465 case TCP_THIN_LINEAR_TIMEOUTS:
2466 if (val < 0 || val > 1)
2467 err = -EINVAL;
2468 else
2469 tp->thin_lto = val;
2470 break;
2472 case TCP_THIN_DUPACK:
2473 if (val < 0 || val > 1)
2474 err = -EINVAL;
2475 else {
2476 tp->thin_dupack = val;
2477 if (tp->thin_dupack)
2478 tcp_disable_early_retrans(tp);
2480 break;
2482 case TCP_REPAIR:
2483 if (!tcp_can_repair_sock(sk))
2484 err = -EPERM;
2485 else if (val == 1) {
2486 tp->repair = 1;
2487 sk->sk_reuse = SK_FORCE_REUSE;
2488 tp->repair_queue = TCP_NO_QUEUE;
2489 } else if (val == 0) {
2490 tp->repair = 0;
2491 sk->sk_reuse = SK_NO_REUSE;
2492 tcp_send_window_probe(sk);
2493 } else
2494 err = -EINVAL;
2496 break;
2498 case TCP_REPAIR_QUEUE:
2499 if (!tp->repair)
2500 err = -EPERM;
2501 else if (val < TCP_QUEUES_NR)
2502 tp->repair_queue = val;
2503 else
2504 err = -EINVAL;
2505 break;
2507 case TCP_QUEUE_SEQ:
2508 if (sk->sk_state != TCP_CLOSE)
2509 err = -EPERM;
2510 else if (tp->repair_queue == TCP_SEND_QUEUE)
2511 tp->write_seq = val;
2512 else if (tp->repair_queue == TCP_RECV_QUEUE)
2513 tp->rcv_nxt = val;
2514 else
2515 err = -EINVAL;
2516 break;
2518 case TCP_REPAIR_OPTIONS:
2519 if (!tp->repair)
2520 err = -EINVAL;
2521 else if (sk->sk_state == TCP_ESTABLISHED)
2522 err = tcp_repair_options_est(tp,
2523 (struct tcp_repair_opt __user *)optval,
2524 optlen);
2525 else
2526 err = -EPERM;
2527 break;
2529 case TCP_CORK:
2530 /* When set indicates to always queue non-full frames.
2531 * Later the user clears this option and we transmit
2532 * any pending partial frames in the queue. This is
2533 * meant to be used alongside sendfile() to get properly
2534 * filled frames when the user (for example) must write
2535 * out headers with a write() call first and then use
2536 * sendfile to send out the data parts.
2538 * TCP_CORK can be set together with TCP_NODELAY and it is
2539 * stronger than TCP_NODELAY.
2541 if (val) {
2542 tp->nonagle |= TCP_NAGLE_CORK;
2543 } else {
2544 tp->nonagle &= ~TCP_NAGLE_CORK;
2545 if (tp->nonagle&TCP_NAGLE_OFF)
2546 tp->nonagle |= TCP_NAGLE_PUSH;
2547 tcp_push_pending_frames(sk);
2549 break;
2551 case TCP_KEEPIDLE:
2552 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2553 err = -EINVAL;
2554 else {
2555 tp->keepalive_time = val * HZ;
2556 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2557 !((1 << sk->sk_state) &
2558 (TCPF_CLOSE | TCPF_LISTEN))) {
2559 u32 elapsed = keepalive_time_elapsed(tp);
2560 if (tp->keepalive_time > elapsed)
2561 elapsed = tp->keepalive_time - elapsed;
2562 else
2563 elapsed = 0;
2564 inet_csk_reset_keepalive_timer(sk, elapsed);
2567 break;
2568 case TCP_KEEPINTVL:
2569 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2570 err = -EINVAL;
2571 else
2572 tp->keepalive_intvl = val * HZ;
2573 break;
2574 case TCP_KEEPCNT:
2575 if (val < 1 || val > MAX_TCP_KEEPCNT)
2576 err = -EINVAL;
2577 else
2578 tp->keepalive_probes = val;
2579 break;
2580 case TCP_SYNCNT:
2581 if (val < 1 || val > MAX_TCP_SYNCNT)
2582 err = -EINVAL;
2583 else
2584 icsk->icsk_syn_retries = val;
2585 break;
2587 case TCP_SAVE_SYN:
2588 if (val < 0 || val > 1)
2589 err = -EINVAL;
2590 else
2591 tp->save_syn = val;
2592 break;
2594 case TCP_LINGER2:
2595 if (val < 0)
2596 tp->linger2 = -1;
2597 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2598 tp->linger2 = 0;
2599 else
2600 tp->linger2 = val * HZ;
2601 break;
2603 case TCP_DEFER_ACCEPT:
2604 /* Translate value in seconds to number of retransmits */
2605 icsk->icsk_accept_queue.rskq_defer_accept =
2606 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2607 TCP_RTO_MAX / HZ);
2608 break;
2610 case TCP_WINDOW_CLAMP:
2611 if (!val) {
2612 if (sk->sk_state != TCP_CLOSE) {
2613 err = -EINVAL;
2614 break;
2616 tp->window_clamp = 0;
2617 } else
2618 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2619 SOCK_MIN_RCVBUF / 2 : val;
2620 break;
2622 case TCP_QUICKACK:
2623 if (!val) {
2624 icsk->icsk_ack.pingpong = 1;
2625 } else {
2626 icsk->icsk_ack.pingpong = 0;
2627 if ((1 << sk->sk_state) &
2628 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2629 inet_csk_ack_scheduled(sk)) {
2630 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2631 tcp_cleanup_rbuf(sk, 1);
2632 if (!(val & 1))
2633 icsk->icsk_ack.pingpong = 1;
2636 break;
2638 #ifdef CONFIG_TCP_MD5SIG
2639 case TCP_MD5SIG:
2640 /* Read the IP->Key mappings from userspace */
2641 err = tp->af_specific->md5_parse(sk, optval, optlen);
2642 break;
2643 #endif
2644 case TCP_USER_TIMEOUT:
2645 /* Cap the max time in ms TCP will retry or probe the window
2646 * before giving up and aborting (ETIMEDOUT) a connection.
2648 if (val < 0)
2649 err = -EINVAL;
2650 else
2651 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2652 break;
2654 case TCP_FASTOPEN:
2655 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2656 TCPF_LISTEN))) {
2657 tcp_fastopen_init_key_once(true);
2659 fastopen_queue_tune(sk, val);
2660 } else {
2661 err = -EINVAL;
2663 break;
2664 case TCP_TIMESTAMP:
2665 if (!tp->repair)
2666 err = -EPERM;
2667 else
2668 tp->tsoffset = val - tcp_time_stamp;
2669 break;
2670 case TCP_REPAIR_WINDOW:
2671 err = tcp_repair_set_window(tp, optval, optlen);
2672 break;
2673 case TCP_NOTSENT_LOWAT:
2674 tp->notsent_lowat = val;
2675 sk->sk_write_space(sk);
2676 break;
2677 default:
2678 err = -ENOPROTOOPT;
2679 break;
2682 release_sock(sk);
2683 return err;
2686 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2687 unsigned int optlen)
2689 const struct inet_connection_sock *icsk = inet_csk(sk);
2691 if (level != SOL_TCP)
2692 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2693 optval, optlen);
2694 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2696 EXPORT_SYMBOL(tcp_setsockopt);
2698 #ifdef CONFIG_COMPAT
2699 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2700 char __user *optval, unsigned int optlen)
2702 if (level != SOL_TCP)
2703 return inet_csk_compat_setsockopt(sk, level, optname,
2704 optval, optlen);
2705 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2707 EXPORT_SYMBOL(compat_tcp_setsockopt);
2708 #endif
2710 /* Return information about state of tcp endpoint in API format. */
2711 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2713 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2714 const struct inet_connection_sock *icsk = inet_csk(sk);
2715 u32 now = tcp_time_stamp, intv;
2716 unsigned int start;
2717 int notsent_bytes;
2718 u64 rate64;
2719 u32 rate;
2721 memset(info, 0, sizeof(*info));
2722 if (sk->sk_type != SOCK_STREAM)
2723 return;
2725 info->tcpi_state = sk_state_load(sk);
2727 info->tcpi_ca_state = icsk->icsk_ca_state;
2728 info->tcpi_retransmits = icsk->icsk_retransmits;
2729 info->tcpi_probes = icsk->icsk_probes_out;
2730 info->tcpi_backoff = icsk->icsk_backoff;
2732 if (tp->rx_opt.tstamp_ok)
2733 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2734 if (tcp_is_sack(tp))
2735 info->tcpi_options |= TCPI_OPT_SACK;
2736 if (tp->rx_opt.wscale_ok) {
2737 info->tcpi_options |= TCPI_OPT_WSCALE;
2738 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2739 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2742 if (tp->ecn_flags & TCP_ECN_OK)
2743 info->tcpi_options |= TCPI_OPT_ECN;
2744 if (tp->ecn_flags & TCP_ECN_SEEN)
2745 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2746 if (tp->syn_data_acked)
2747 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2749 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2750 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2751 info->tcpi_snd_mss = tp->mss_cache;
2752 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2754 if (info->tcpi_state == TCP_LISTEN) {
2755 info->tcpi_unacked = sk->sk_ack_backlog;
2756 info->tcpi_sacked = sk->sk_max_ack_backlog;
2757 } else {
2758 info->tcpi_unacked = tp->packets_out;
2759 info->tcpi_sacked = tp->sacked_out;
2761 info->tcpi_lost = tp->lost_out;
2762 info->tcpi_retrans = tp->retrans_out;
2763 info->tcpi_fackets = tp->fackets_out;
2765 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2766 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2767 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2769 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2770 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2771 info->tcpi_rtt = tp->srtt_us >> 3;
2772 info->tcpi_rttvar = tp->mdev_us >> 2;
2773 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2774 info->tcpi_snd_cwnd = tp->snd_cwnd;
2775 info->tcpi_advmss = tp->advmss;
2776 info->tcpi_reordering = tp->reordering;
2778 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2779 info->tcpi_rcv_space = tp->rcvq_space.space;
2781 info->tcpi_total_retrans = tp->total_retrans;
2783 rate = READ_ONCE(sk->sk_pacing_rate);
2784 rate64 = rate != ~0U ? rate : ~0ULL;
2785 put_unaligned(rate64, &info->tcpi_pacing_rate);
2787 rate = READ_ONCE(sk->sk_max_pacing_rate);
2788 rate64 = rate != ~0U ? rate : ~0ULL;
2789 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2791 do {
2792 start = u64_stats_fetch_begin_irq(&tp->syncp);
2793 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2794 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2795 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2796 info->tcpi_segs_out = tp->segs_out;
2797 info->tcpi_segs_in = tp->segs_in;
2799 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2800 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2802 info->tcpi_min_rtt = tcp_min_rtt(tp);
2803 info->tcpi_data_segs_in = tp->data_segs_in;
2804 info->tcpi_data_segs_out = tp->data_segs_out;
2806 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2807 rate = READ_ONCE(tp->rate_delivered);
2808 intv = READ_ONCE(tp->rate_interval_us);
2809 if (rate && intv) {
2810 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2811 do_div(rate64, intv);
2812 put_unaligned(rate64, &info->tcpi_delivery_rate);
2815 EXPORT_SYMBOL_GPL(tcp_get_info);
2817 static int do_tcp_getsockopt(struct sock *sk, int level,
2818 int optname, char __user *optval, int __user *optlen)
2820 struct inet_connection_sock *icsk = inet_csk(sk);
2821 struct tcp_sock *tp = tcp_sk(sk);
2822 struct net *net = sock_net(sk);
2823 int val, len;
2825 if (get_user(len, optlen))
2826 return -EFAULT;
2828 len = min_t(unsigned int, len, sizeof(int));
2830 if (len < 0)
2831 return -EINVAL;
2833 switch (optname) {
2834 case TCP_MAXSEG:
2835 val = tp->mss_cache;
2836 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2837 val = tp->rx_opt.user_mss;
2838 if (tp->repair)
2839 val = tp->rx_opt.mss_clamp;
2840 break;
2841 case TCP_NODELAY:
2842 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2843 break;
2844 case TCP_CORK:
2845 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2846 break;
2847 case TCP_KEEPIDLE:
2848 val = keepalive_time_when(tp) / HZ;
2849 break;
2850 case TCP_KEEPINTVL:
2851 val = keepalive_intvl_when(tp) / HZ;
2852 break;
2853 case TCP_KEEPCNT:
2854 val = keepalive_probes(tp);
2855 break;
2856 case TCP_SYNCNT:
2857 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2858 break;
2859 case TCP_LINGER2:
2860 val = tp->linger2;
2861 if (val >= 0)
2862 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2863 break;
2864 case TCP_DEFER_ACCEPT:
2865 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2866 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2867 break;
2868 case TCP_WINDOW_CLAMP:
2869 val = tp->window_clamp;
2870 break;
2871 case TCP_INFO: {
2872 struct tcp_info info;
2874 if (get_user(len, optlen))
2875 return -EFAULT;
2877 tcp_get_info(sk, &info);
2879 len = min_t(unsigned int, len, sizeof(info));
2880 if (put_user(len, optlen))
2881 return -EFAULT;
2882 if (copy_to_user(optval, &info, len))
2883 return -EFAULT;
2884 return 0;
2886 case TCP_CC_INFO: {
2887 const struct tcp_congestion_ops *ca_ops;
2888 union tcp_cc_info info;
2889 size_t sz = 0;
2890 int attr;
2892 if (get_user(len, optlen))
2893 return -EFAULT;
2895 ca_ops = icsk->icsk_ca_ops;
2896 if (ca_ops && ca_ops->get_info)
2897 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2899 len = min_t(unsigned int, len, sz);
2900 if (put_user(len, optlen))
2901 return -EFAULT;
2902 if (copy_to_user(optval, &info, len))
2903 return -EFAULT;
2904 return 0;
2906 case TCP_QUICKACK:
2907 val = !icsk->icsk_ack.pingpong;
2908 break;
2910 case TCP_CONGESTION:
2911 if (get_user(len, optlen))
2912 return -EFAULT;
2913 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2914 if (put_user(len, optlen))
2915 return -EFAULT;
2916 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2917 return -EFAULT;
2918 return 0;
2920 case TCP_THIN_LINEAR_TIMEOUTS:
2921 val = tp->thin_lto;
2922 break;
2923 case TCP_THIN_DUPACK:
2924 val = tp->thin_dupack;
2925 break;
2927 case TCP_REPAIR:
2928 val = tp->repair;
2929 break;
2931 case TCP_REPAIR_QUEUE:
2932 if (tp->repair)
2933 val = tp->repair_queue;
2934 else
2935 return -EINVAL;
2936 break;
2938 case TCP_REPAIR_WINDOW: {
2939 struct tcp_repair_window opt;
2941 if (get_user(len, optlen))
2942 return -EFAULT;
2944 if (len != sizeof(opt))
2945 return -EINVAL;
2947 if (!tp->repair)
2948 return -EPERM;
2950 opt.snd_wl1 = tp->snd_wl1;
2951 opt.snd_wnd = tp->snd_wnd;
2952 opt.max_window = tp->max_window;
2953 opt.rcv_wnd = tp->rcv_wnd;
2954 opt.rcv_wup = tp->rcv_wup;
2956 if (copy_to_user(optval, &opt, len))
2957 return -EFAULT;
2958 return 0;
2960 case TCP_QUEUE_SEQ:
2961 if (tp->repair_queue == TCP_SEND_QUEUE)
2962 val = tp->write_seq;
2963 else if (tp->repair_queue == TCP_RECV_QUEUE)
2964 val = tp->rcv_nxt;
2965 else
2966 return -EINVAL;
2967 break;
2969 case TCP_USER_TIMEOUT:
2970 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2971 break;
2973 case TCP_FASTOPEN:
2974 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2975 break;
2977 case TCP_TIMESTAMP:
2978 val = tcp_time_stamp + tp->tsoffset;
2979 break;
2980 case TCP_NOTSENT_LOWAT:
2981 val = tp->notsent_lowat;
2982 break;
2983 case TCP_SAVE_SYN:
2984 val = tp->save_syn;
2985 break;
2986 case TCP_SAVED_SYN: {
2987 if (get_user(len, optlen))
2988 return -EFAULT;
2990 lock_sock(sk);
2991 if (tp->saved_syn) {
2992 if (len < tp->saved_syn[0]) {
2993 if (put_user(tp->saved_syn[0], optlen)) {
2994 release_sock(sk);
2995 return -EFAULT;
2997 release_sock(sk);
2998 return -EINVAL;
3000 len = tp->saved_syn[0];
3001 if (put_user(len, optlen)) {
3002 release_sock(sk);
3003 return -EFAULT;
3005 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3006 release_sock(sk);
3007 return -EFAULT;
3009 tcp_saved_syn_free(tp);
3010 release_sock(sk);
3011 } else {
3012 release_sock(sk);
3013 len = 0;
3014 if (put_user(len, optlen))
3015 return -EFAULT;
3017 return 0;
3019 default:
3020 return -ENOPROTOOPT;
3023 if (put_user(len, optlen))
3024 return -EFAULT;
3025 if (copy_to_user(optval, &val, len))
3026 return -EFAULT;
3027 return 0;
3030 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3031 int __user *optlen)
3033 struct inet_connection_sock *icsk = inet_csk(sk);
3035 if (level != SOL_TCP)
3036 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3037 optval, optlen);
3038 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3040 EXPORT_SYMBOL(tcp_getsockopt);
3042 #ifdef CONFIG_COMPAT
3043 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3044 char __user *optval, int __user *optlen)
3046 if (level != SOL_TCP)
3047 return inet_csk_compat_getsockopt(sk, level, optname,
3048 optval, optlen);
3049 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3051 EXPORT_SYMBOL(compat_tcp_getsockopt);
3052 #endif
3054 #ifdef CONFIG_TCP_MD5SIG
3055 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3056 static DEFINE_MUTEX(tcp_md5sig_mutex);
3057 static bool tcp_md5sig_pool_populated = false;
3059 static void __tcp_alloc_md5sig_pool(void)
3061 struct crypto_ahash *hash;
3062 int cpu;
3064 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3065 if (IS_ERR(hash))
3066 return;
3068 for_each_possible_cpu(cpu) {
3069 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3070 struct ahash_request *req;
3072 if (!scratch) {
3073 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3074 sizeof(struct tcphdr),
3075 GFP_KERNEL,
3076 cpu_to_node(cpu));
3077 if (!scratch)
3078 return;
3079 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3081 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3082 continue;
3084 req = ahash_request_alloc(hash, GFP_KERNEL);
3085 if (!req)
3086 return;
3088 ahash_request_set_callback(req, 0, NULL, NULL);
3090 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3092 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3093 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3095 smp_wmb();
3096 tcp_md5sig_pool_populated = true;
3099 bool tcp_alloc_md5sig_pool(void)
3101 if (unlikely(!tcp_md5sig_pool_populated)) {
3102 mutex_lock(&tcp_md5sig_mutex);
3104 if (!tcp_md5sig_pool_populated)
3105 __tcp_alloc_md5sig_pool();
3107 mutex_unlock(&tcp_md5sig_mutex);
3109 return tcp_md5sig_pool_populated;
3111 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3115 * tcp_get_md5sig_pool - get md5sig_pool for this user
3117 * We use percpu structure, so if we succeed, we exit with preemption
3118 * and BH disabled, to make sure another thread or softirq handling
3119 * wont try to get same context.
3121 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3123 local_bh_disable();
3125 if (tcp_md5sig_pool_populated) {
3126 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3127 smp_rmb();
3128 return this_cpu_ptr(&tcp_md5sig_pool);
3130 local_bh_enable();
3131 return NULL;
3133 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3135 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3136 const struct sk_buff *skb, unsigned int header_len)
3138 struct scatterlist sg;
3139 const struct tcphdr *tp = tcp_hdr(skb);
3140 struct ahash_request *req = hp->md5_req;
3141 unsigned int i;
3142 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3143 skb_headlen(skb) - header_len : 0;
3144 const struct skb_shared_info *shi = skb_shinfo(skb);
3145 struct sk_buff *frag_iter;
3147 sg_init_table(&sg, 1);
3149 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3150 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3151 if (crypto_ahash_update(req))
3152 return 1;
3154 for (i = 0; i < shi->nr_frags; ++i) {
3155 const struct skb_frag_struct *f = &shi->frags[i];
3156 unsigned int offset = f->page_offset;
3157 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3159 sg_set_page(&sg, page, skb_frag_size(f),
3160 offset_in_page(offset));
3161 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3162 if (crypto_ahash_update(req))
3163 return 1;
3166 skb_walk_frags(skb, frag_iter)
3167 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3168 return 1;
3170 return 0;
3172 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3174 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3176 struct scatterlist sg;
3178 sg_init_one(&sg, key->key, key->keylen);
3179 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3180 return crypto_ahash_update(hp->md5_req);
3182 EXPORT_SYMBOL(tcp_md5_hash_key);
3184 #endif
3186 void tcp_done(struct sock *sk)
3188 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3190 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3191 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3193 tcp_set_state(sk, TCP_CLOSE);
3194 tcp_clear_xmit_timers(sk);
3195 if (req)
3196 reqsk_fastopen_remove(sk, req, false);
3198 sk->sk_shutdown = SHUTDOWN_MASK;
3200 if (!sock_flag(sk, SOCK_DEAD))
3201 sk->sk_state_change(sk);
3202 else
3203 inet_csk_destroy_sock(sk);
3205 EXPORT_SYMBOL_GPL(tcp_done);
3207 int tcp_abort(struct sock *sk, int err)
3209 if (!sk_fullsock(sk)) {
3210 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3211 struct request_sock *req = inet_reqsk(sk);
3213 local_bh_disable();
3214 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3215 req);
3216 local_bh_enable();
3217 return 0;
3219 return -EOPNOTSUPP;
3222 /* Don't race with userspace socket closes such as tcp_close. */
3223 lock_sock(sk);
3225 if (sk->sk_state == TCP_LISTEN) {
3226 tcp_set_state(sk, TCP_CLOSE);
3227 inet_csk_listen_stop(sk);
3230 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3231 local_bh_disable();
3232 bh_lock_sock(sk);
3234 if (!sock_flag(sk, SOCK_DEAD)) {
3235 sk->sk_err = err;
3236 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3237 smp_wmb();
3238 sk->sk_error_report(sk);
3239 if (tcp_need_reset(sk->sk_state))
3240 tcp_send_active_reset(sk, GFP_ATOMIC);
3241 tcp_done(sk);
3244 bh_unlock_sock(sk);
3245 local_bh_enable();
3246 release_sock(sk);
3247 return 0;
3249 EXPORT_SYMBOL_GPL(tcp_abort);
3251 extern struct tcp_congestion_ops tcp_reno;
3253 static __initdata unsigned long thash_entries;
3254 static int __init set_thash_entries(char *str)
3256 ssize_t ret;
3258 if (!str)
3259 return 0;
3261 ret = kstrtoul(str, 0, &thash_entries);
3262 if (ret)
3263 return 0;
3265 return 1;
3267 __setup("thash_entries=", set_thash_entries);
3269 static void __init tcp_init_mem(void)
3271 unsigned long limit = nr_free_buffer_pages() / 16;
3273 limit = max(limit, 128UL);
3274 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3275 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3276 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3279 void __init tcp_init(void)
3281 int max_rshare, max_wshare, cnt;
3282 unsigned long limit;
3283 unsigned int i;
3285 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3286 FIELD_SIZEOF(struct sk_buff, cb));
3288 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3289 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3290 tcp_hashinfo.bind_bucket_cachep =
3291 kmem_cache_create("tcp_bind_bucket",
3292 sizeof(struct inet_bind_bucket), 0,
3293 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3295 /* Size and allocate the main established and bind bucket
3296 * hash tables.
3298 * The methodology is similar to that of the buffer cache.
3300 tcp_hashinfo.ehash =
3301 alloc_large_system_hash("TCP established",
3302 sizeof(struct inet_ehash_bucket),
3303 thash_entries,
3304 17, /* one slot per 128 KB of memory */
3306 NULL,
3307 &tcp_hashinfo.ehash_mask,
3309 thash_entries ? 0 : 512 * 1024);
3310 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3311 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3313 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3314 panic("TCP: failed to alloc ehash_locks");
3315 tcp_hashinfo.bhash =
3316 alloc_large_system_hash("TCP bind",
3317 sizeof(struct inet_bind_hashbucket),
3318 tcp_hashinfo.ehash_mask + 1,
3319 17, /* one slot per 128 KB of memory */
3321 &tcp_hashinfo.bhash_size,
3322 NULL,
3324 64 * 1024);
3325 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3326 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3327 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3328 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3332 cnt = tcp_hashinfo.ehash_mask + 1;
3334 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3335 sysctl_tcp_max_orphans = cnt / 2;
3336 sysctl_max_syn_backlog = max(128, cnt / 256);
3338 tcp_init_mem();
3339 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3340 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3341 max_wshare = min(4UL*1024*1024, limit);
3342 max_rshare = min(6UL*1024*1024, limit);
3344 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3345 sysctl_tcp_wmem[1] = 16*1024;
3346 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3348 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3349 sysctl_tcp_rmem[1] = 87380;
3350 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3352 pr_info("Hash tables configured (established %u bind %u)\n",
3353 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3355 tcp_metrics_init();
3356 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3357 tcp_tasklet_init();