1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Here is where the ball gets rolling as far as the kernel is concerned.
4 * When control is transferred to _start, the bootload has already
5 * loaded us to the correct address. All that's left to do here is
6 * to set up the kernel's global pointer and jump to the kernel
9 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * Copyright (C) 1999 VA Linux Systems
13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * Copyright (C) 1999 Intel Corp.
15 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
16 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
17 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
18 * -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
19 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
20 * Support for CPU Hotplug
24 #include <asm/asmmacro.h>
26 #include <asm/kregs.h>
27 #include <asm/mmu_context.h>
28 #include <asm/asm-offsets.h>
30 #include <asm/pgtable.h>
31 #include <asm/processor.h>
32 #include <asm/ptrace.h>
33 #include <asm/mca_asm.h>
34 #include <linux/init.h>
35 #include <linux/linkage.h>
36 #include <asm/export.h>
38 #ifdef CONFIG_HOTPLUG_CPU
39 #define SAL_PSR_BITS_TO_SET \
40 (IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
42 #define SAVE_FROM_REG(src, ptr, dest) \
46 #define RESTORE_REG(reg, ptr, _tmp) \
47 ld8 _tmp=[ptr],0x08;; \
50 #define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
51 mov ar.lc=IA64_NUM_DBG_REGS-1;; \
54 SAVE_FROM_REG(_breg[_idx], ptr, _dest);; \
58 #define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
59 mov ar.lc=IA64_NUM_DBG_REGS-1;; \
61 _lbl: RESTORE_REG(_breg[_idx], ptr, _tmp);; \
63 br.cloop.sptk.many _lbl
65 #define SAVE_ONE_RR(num, _reg, _tmp) \
66 movl _tmp=(num<<61);; \
69 #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
70 SAVE_ONE_RR(0,_r0, _tmp);; \
71 SAVE_ONE_RR(1,_r1, _tmp);; \
72 SAVE_ONE_RR(2,_r2, _tmp);; \
73 SAVE_ONE_RR(3,_r3, _tmp);; \
74 SAVE_ONE_RR(4,_r4, _tmp);; \
75 SAVE_ONE_RR(5,_r5, _tmp);; \
76 SAVE_ONE_RR(6,_r6, _tmp);; \
77 SAVE_ONE_RR(7,_r7, _tmp);;
79 #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
89 #define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
93 dep.z _idx2=_idx1,61,3;; \
95 mov rr[_idx2]=_tmp;; \
98 br.cloop.sptk.few RestRR
100 #define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
101 movl reg1=sal_state_for_booting_cpu;; \
105 * Adjust region registers saved before starting to save
106 * break regs and rest of the states that need to be preserved.
108 #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred) \
109 SAVE_FROM_REG(b0,_reg1,_reg2);; \
110 SAVE_FROM_REG(b1,_reg1,_reg2);; \
111 SAVE_FROM_REG(b2,_reg1,_reg2);; \
112 SAVE_FROM_REG(b3,_reg1,_reg2);; \
113 SAVE_FROM_REG(b4,_reg1,_reg2);; \
114 SAVE_FROM_REG(b5,_reg1,_reg2);; \
115 st8 [_reg1]=r1,0x08;; \
116 st8 [_reg1]=r12,0x08;; \
117 st8 [_reg1]=r13,0x08;; \
118 SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);; \
119 SAVE_FROM_REG(ar.pfs,_reg1,_reg2);; \
120 SAVE_FROM_REG(ar.rnat,_reg1,_reg2);; \
121 SAVE_FROM_REG(ar.unat,_reg1,_reg2);; \
122 SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);; \
123 SAVE_FROM_REG(cr.dcr,_reg1,_reg2);; \
124 SAVE_FROM_REG(cr.iva,_reg1,_reg2);; \
125 SAVE_FROM_REG(cr.pta,_reg1,_reg2);; \
126 SAVE_FROM_REG(cr.itv,_reg1,_reg2);; \
127 SAVE_FROM_REG(cr.pmv,_reg1,_reg2);; \
128 SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);; \
129 SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);; \
130 SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);; \
131 st8 [_reg1]=r4,0x08;; \
132 st8 [_reg1]=r5,0x08;; \
133 st8 [_reg1]=r6,0x08;; \
134 st8 [_reg1]=r7,0x08;; \
135 st8 [_reg1]=_pred,0x08;; \
136 SAVE_FROM_REG(ar.lc, _reg1, _reg2);; \
137 stf.spill.nta [_reg1]=f2,16;; \
138 stf.spill.nta [_reg1]=f3,16;; \
139 stf.spill.nta [_reg1]=f4,16;; \
140 stf.spill.nta [_reg1]=f5,16;; \
141 stf.spill.nta [_reg1]=f16,16;; \
142 stf.spill.nta [_reg1]=f17,16;; \
143 stf.spill.nta [_reg1]=f18,16;; \
144 stf.spill.nta [_reg1]=f19,16;; \
145 stf.spill.nta [_reg1]=f20,16;; \
146 stf.spill.nta [_reg1]=f21,16;; \
147 stf.spill.nta [_reg1]=f22,16;; \
148 stf.spill.nta [_reg1]=f23,16;; \
149 stf.spill.nta [_reg1]=f24,16;; \
150 stf.spill.nta [_reg1]=f25,16;; \
151 stf.spill.nta [_reg1]=f26,16;; \
152 stf.spill.nta [_reg1]=f27,16;; \
153 stf.spill.nta [_reg1]=f28,16;; \
154 stf.spill.nta [_reg1]=f29,16;; \
155 stf.spill.nta [_reg1]=f30,16;; \
156 stf.spill.nta [_reg1]=f31,16;;
159 #define SET_AREA_FOR_BOOTING_CPU(a1, a2)
160 #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
161 #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
162 #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
165 #define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
166 movl _tmp1=(num << 61);; \
167 mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
172 .global empty_zero_page
173 EXPORT_DATA_SYMBOL_GPL(empty_zero_page)
177 .global swapper_pg_dir
183 stringz "Halting kernel\n"
190 * Start the kernel. When the bootloader passes control to _start(), r28
191 * points to the address of the boot parameter area. Execution reaches
192 * here in physical mode.
197 .save rp, r0 // terminate unwind chain with a NULL rp
205 flushrs // must be first insn in group
210 * Save the region registers, predicate before they get clobbered
212 SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
216 * Initialize kernel region registers:
217 * rr[0]: VHPT enabled, page size = PAGE_SHIFT
218 * rr[1]: VHPT enabled, page size = PAGE_SHIFT
219 * rr[2]: VHPT enabled, page size = PAGE_SHIFT
220 * rr[3]: VHPT enabled, page size = PAGE_SHIFT
221 * rr[4]: VHPT enabled, page size = PAGE_SHIFT
222 * rr[5]: VHPT enabled, page size = PAGE_SHIFT
223 * rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
224 * rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
225 * We initialize all of them to prevent inadvertently assuming
226 * something about the state of address translation early in boot.
228 SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
229 SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
230 SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
231 SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
232 SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
233 SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
234 SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
235 SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
237 * Now pin mappings into the TLB for kernel text and data
239 mov r18=KERNEL_TR_PAGE_SHIFT<<2
240 movl r17=KERNEL_START
244 mov r16=IA64_TR_KERNEL
248 dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
261 * Switch into virtual mode:
263 movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
274 1: // now we are in virtual mode
276 SET_AREA_FOR_BOOTING_CPU(r2, r16);
278 STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
279 SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
282 // set IVT entry point---can't access I/O ports without it
294 #define isAP p2 // are we an Application Processor?
295 #define isBP p3 // are we the Bootstrap Processor?
299 * Find the init_task for the currently booting CPU. At poweron, and in
300 * UP mode, task_for_booting_cpu is NULL.
302 movl r3=task_for_booting_cpu
307 cmp.eq isBP,isAP=r3,r0
312 cmp.eq isBP,isAP=r0,r0
315 tpa r3=r2 // r3 == phys addr of task struct
317 (isBP) br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
319 // load mapping for stack (virtaddr in r2, physaddr in r3)
327 dep r2=-1,r3,61,3 // IMVA of task
330 shr.u r16=r3,IA64_GRANULE_SHIFT
337 mov r19=IA64_TR_CURRENT_STACK
346 // load the "current" pointer (r13) and ar.k6 with the current task
347 mov IA64_KR(CURRENT)=r2 // virtual address
348 mov IA64_KR(CURRENT_STACK)=r16
351 * Reserve space at the top of the stack for "struct pt_regs". Kernel
352 * threads don't store interesting values in that structure, but the space
353 * still needs to be there because time-critical stuff such as the context
354 * switching can be implemented more efficiently (for example, __switch_to()
355 * always sets the psr.dfh bit of the task it is switching to).
358 addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
359 addl r2=IA64_RBS_OFFSET,r2 // initialize the RSE
360 mov ar.rsc=0 // place RSE in enforced lazy mode
362 loadrs // clear the dirty partition
363 movl r19=__phys_per_cpu_start
364 mov r18=PERCPU_PAGE_SIZE
371 movl r20=__cpu0_per_cpu
379 (p7) br.cond.dptk.few 1b
386 .pred.rel.mutex isBP,isAP
387 (isBP) mov IA64_KR(PER_CPU_DATA)=r19 // per-CPU base for cpu0
388 (isAP) mov IA64_KR(PER_CPU_DATA)=r0 // clear physical per-CPU base
390 mov ar.bspstore=r2 // establish the new RSE stack
392 mov ar.rsc=0x3 // place RSE in eager mode
394 (isBP) dep r28=-1,r28,61,3 // make address virtual
395 (isBP) movl r2=ia64_boot_param
397 (isBP) st8 [r2]=r28 // save the address of the boot param area passed by the bootloader
400 (isAP) br.call.sptk.many rp=start_secondary
402 (isAP) br.cond.sptk self
405 // This is executed by the bootstrap processor (bsp) only:
407 #ifdef CONFIG_IA64_FW_EMU
408 // initialize PAL & SAL emulator:
409 br.call.sptk.many rp=sys_fw_init
412 br.call.sptk.many rp=start_kernel
413 .ret2: addl r3=@ltoff(halt_msg),gp
415 alloc r2=ar.pfs,8,0,2,0
418 br.call.sptk.many b0=console_print
421 br.sptk.many self // endless loop
426 GLOBAL_ENTRY(ia64_save_debug_regs)
427 alloc r16=ar.pfs,1,0,0,0
428 mov r20=ar.lc // preserve ar.lc
429 mov ar.lc=IA64_NUM_DBG_REGS-1
431 add r19=IA64_NUM_DBG_REGS*8,in0
434 #ifdef CONFIG_ITANIUM
443 br.cloop.sptk.many 1b
445 mov ar.lc=r20 // restore ar.lc
447 END(ia64_save_debug_regs)
449 GLOBAL_ENTRY(ia64_load_debug_regs)
450 alloc r16=ar.pfs,1,0,0,0
452 mov r20=ar.lc // preserve ar.lc
453 add r19=IA64_NUM_DBG_REGS*8,in0
454 mov ar.lc=IA64_NUM_DBG_REGS-1
457 1: ld8.nta r16=[in0],8
462 #ifdef CONFIG_ITANIUM
464 srlz.d // Errata 132 (NoFix status)
467 br.cloop.sptk.many 1b
469 mov ar.lc=r20 // restore ar.lc
471 END(ia64_load_debug_regs)
473 GLOBAL_ENTRY(__ia64_save_fpu)
474 alloc r2=ar.pfs,1,4,0,0
475 adds loc0=96*16-16,in0
476 adds loc1=96*16-16-128,in0
478 stf.spill.nta [loc0]=f127,-256
479 stf.spill.nta [loc1]=f119,-256
481 stf.spill.nta [loc0]=f111,-256
482 stf.spill.nta [loc1]=f103,-256
484 stf.spill.nta [loc0]=f95,-256
485 stf.spill.nta [loc1]=f87,-256
487 stf.spill.nta [loc0]=f79,-256
488 stf.spill.nta [loc1]=f71,-256
490 stf.spill.nta [loc0]=f63,-256
491 stf.spill.nta [loc1]=f55,-256
492 adds loc2=96*16-32,in0
494 stf.spill.nta [loc0]=f47,-256
495 stf.spill.nta [loc1]=f39,-256
496 adds loc3=96*16-32-128,in0
498 stf.spill.nta [loc2]=f126,-256
499 stf.spill.nta [loc3]=f118,-256
501 stf.spill.nta [loc2]=f110,-256
502 stf.spill.nta [loc3]=f102,-256
504 stf.spill.nta [loc2]=f94,-256
505 stf.spill.nta [loc3]=f86,-256
507 stf.spill.nta [loc2]=f78,-256
508 stf.spill.nta [loc3]=f70,-256
510 stf.spill.nta [loc2]=f62,-256
511 stf.spill.nta [loc3]=f54,-256
512 adds loc0=96*16-48,in0
514 stf.spill.nta [loc2]=f46,-256
515 stf.spill.nta [loc3]=f38,-256
516 adds loc1=96*16-48-128,in0
518 stf.spill.nta [loc0]=f125,-256
519 stf.spill.nta [loc1]=f117,-256
521 stf.spill.nta [loc0]=f109,-256
522 stf.spill.nta [loc1]=f101,-256
524 stf.spill.nta [loc0]=f93,-256
525 stf.spill.nta [loc1]=f85,-256
527 stf.spill.nta [loc0]=f77,-256
528 stf.spill.nta [loc1]=f69,-256
530 stf.spill.nta [loc0]=f61,-256
531 stf.spill.nta [loc1]=f53,-256
532 adds loc2=96*16-64,in0
534 stf.spill.nta [loc0]=f45,-256
535 stf.spill.nta [loc1]=f37,-256
536 adds loc3=96*16-64-128,in0
538 stf.spill.nta [loc2]=f124,-256
539 stf.spill.nta [loc3]=f116,-256
541 stf.spill.nta [loc2]=f108,-256
542 stf.spill.nta [loc3]=f100,-256
544 stf.spill.nta [loc2]=f92,-256
545 stf.spill.nta [loc3]=f84,-256
547 stf.spill.nta [loc2]=f76,-256
548 stf.spill.nta [loc3]=f68,-256
550 stf.spill.nta [loc2]=f60,-256
551 stf.spill.nta [loc3]=f52,-256
552 adds loc0=96*16-80,in0
554 stf.spill.nta [loc2]=f44,-256
555 stf.spill.nta [loc3]=f36,-256
556 adds loc1=96*16-80-128,in0
558 stf.spill.nta [loc0]=f123,-256
559 stf.spill.nta [loc1]=f115,-256
561 stf.spill.nta [loc0]=f107,-256
562 stf.spill.nta [loc1]=f99,-256
564 stf.spill.nta [loc0]=f91,-256
565 stf.spill.nta [loc1]=f83,-256
567 stf.spill.nta [loc0]=f75,-256
568 stf.spill.nta [loc1]=f67,-256
570 stf.spill.nta [loc0]=f59,-256
571 stf.spill.nta [loc1]=f51,-256
572 adds loc2=96*16-96,in0
574 stf.spill.nta [loc0]=f43,-256
575 stf.spill.nta [loc1]=f35,-256
576 adds loc3=96*16-96-128,in0
578 stf.spill.nta [loc2]=f122,-256
579 stf.spill.nta [loc3]=f114,-256
581 stf.spill.nta [loc2]=f106,-256
582 stf.spill.nta [loc3]=f98,-256
584 stf.spill.nta [loc2]=f90,-256
585 stf.spill.nta [loc3]=f82,-256
587 stf.spill.nta [loc2]=f74,-256
588 stf.spill.nta [loc3]=f66,-256
590 stf.spill.nta [loc2]=f58,-256
591 stf.spill.nta [loc3]=f50,-256
592 adds loc0=96*16-112,in0
594 stf.spill.nta [loc2]=f42,-256
595 stf.spill.nta [loc3]=f34,-256
596 adds loc1=96*16-112-128,in0
598 stf.spill.nta [loc0]=f121,-256
599 stf.spill.nta [loc1]=f113,-256
601 stf.spill.nta [loc0]=f105,-256
602 stf.spill.nta [loc1]=f97,-256
604 stf.spill.nta [loc0]=f89,-256
605 stf.spill.nta [loc1]=f81,-256
607 stf.spill.nta [loc0]=f73,-256
608 stf.spill.nta [loc1]=f65,-256
610 stf.spill.nta [loc0]=f57,-256
611 stf.spill.nta [loc1]=f49,-256
612 adds loc2=96*16-128,in0
614 stf.spill.nta [loc0]=f41,-256
615 stf.spill.nta [loc1]=f33,-256
616 adds loc3=96*16-128-128,in0
618 stf.spill.nta [loc2]=f120,-256
619 stf.spill.nta [loc3]=f112,-256
621 stf.spill.nta [loc2]=f104,-256
622 stf.spill.nta [loc3]=f96,-256
624 stf.spill.nta [loc2]=f88,-256
625 stf.spill.nta [loc3]=f80,-256
627 stf.spill.nta [loc2]=f72,-256
628 stf.spill.nta [loc3]=f64,-256
630 stf.spill.nta [loc2]=f56,-256
631 stf.spill.nta [loc3]=f48,-256
633 stf.spill.nta [loc2]=f40
634 stf.spill.nta [loc3]=f32
638 GLOBAL_ENTRY(__ia64_load_fpu)
639 alloc r2=ar.pfs,1,2,0,0
646 ldf.fill.nta f32=[in0],loc0
647 ldf.fill.nta f40=[ r3],loc0
648 ldf.fill.nta f48=[r14],loc0
649 ldf.fill.nta f56=[r15],loc0
651 ldf.fill.nta f64=[in0],loc0
652 ldf.fill.nta f72=[ r3],loc0
653 ldf.fill.nta f80=[r14],loc0
654 ldf.fill.nta f88=[r15],loc0
656 ldf.fill.nta f96=[in0],loc1
657 ldf.fill.nta f104=[ r3],loc1
658 ldf.fill.nta f112=[r14],loc1
659 ldf.fill.nta f120=[r15],loc1
661 ldf.fill.nta f33=[in0],loc0
662 ldf.fill.nta f41=[ r3],loc0
663 ldf.fill.nta f49=[r14],loc0
664 ldf.fill.nta f57=[r15],loc0
666 ldf.fill.nta f65=[in0],loc0
667 ldf.fill.nta f73=[ r3],loc0
668 ldf.fill.nta f81=[r14],loc0
669 ldf.fill.nta f89=[r15],loc0
671 ldf.fill.nta f97=[in0],loc1
672 ldf.fill.nta f105=[ r3],loc1
673 ldf.fill.nta f113=[r14],loc1
674 ldf.fill.nta f121=[r15],loc1
676 ldf.fill.nta f34=[in0],loc0
677 ldf.fill.nta f42=[ r3],loc0
678 ldf.fill.nta f50=[r14],loc0
679 ldf.fill.nta f58=[r15],loc0
681 ldf.fill.nta f66=[in0],loc0
682 ldf.fill.nta f74=[ r3],loc0
683 ldf.fill.nta f82=[r14],loc0
684 ldf.fill.nta f90=[r15],loc0
686 ldf.fill.nta f98=[in0],loc1
687 ldf.fill.nta f106=[ r3],loc1
688 ldf.fill.nta f114=[r14],loc1
689 ldf.fill.nta f122=[r15],loc1
691 ldf.fill.nta f35=[in0],loc0
692 ldf.fill.nta f43=[ r3],loc0
693 ldf.fill.nta f51=[r14],loc0
694 ldf.fill.nta f59=[r15],loc0
696 ldf.fill.nta f67=[in0],loc0
697 ldf.fill.nta f75=[ r3],loc0
698 ldf.fill.nta f83=[r14],loc0
699 ldf.fill.nta f91=[r15],loc0
701 ldf.fill.nta f99=[in0],loc1
702 ldf.fill.nta f107=[ r3],loc1
703 ldf.fill.nta f115=[r14],loc1
704 ldf.fill.nta f123=[r15],loc1
706 ldf.fill.nta f36=[in0],loc0
707 ldf.fill.nta f44=[ r3],loc0
708 ldf.fill.nta f52=[r14],loc0
709 ldf.fill.nta f60=[r15],loc0
711 ldf.fill.nta f68=[in0],loc0
712 ldf.fill.nta f76=[ r3],loc0
713 ldf.fill.nta f84=[r14],loc0
714 ldf.fill.nta f92=[r15],loc0
716 ldf.fill.nta f100=[in0],loc1
717 ldf.fill.nta f108=[ r3],loc1
718 ldf.fill.nta f116=[r14],loc1
719 ldf.fill.nta f124=[r15],loc1
721 ldf.fill.nta f37=[in0],loc0
722 ldf.fill.nta f45=[ r3],loc0
723 ldf.fill.nta f53=[r14],loc0
724 ldf.fill.nta f61=[r15],loc0
726 ldf.fill.nta f69=[in0],loc0
727 ldf.fill.nta f77=[ r3],loc0
728 ldf.fill.nta f85=[r14],loc0
729 ldf.fill.nta f93=[r15],loc0
731 ldf.fill.nta f101=[in0],loc1
732 ldf.fill.nta f109=[ r3],loc1
733 ldf.fill.nta f117=[r14],loc1
734 ldf.fill.nta f125=[r15],loc1
736 ldf.fill.nta f38 =[in0],loc0
737 ldf.fill.nta f46 =[ r3],loc0
738 ldf.fill.nta f54 =[r14],loc0
739 ldf.fill.nta f62 =[r15],loc0
741 ldf.fill.nta f70 =[in0],loc0
742 ldf.fill.nta f78 =[ r3],loc0
743 ldf.fill.nta f86 =[r14],loc0
744 ldf.fill.nta f94 =[r15],loc0
746 ldf.fill.nta f102=[in0],loc1
747 ldf.fill.nta f110=[ r3],loc1
748 ldf.fill.nta f118=[r14],loc1
749 ldf.fill.nta f126=[r15],loc1
751 ldf.fill.nta f39 =[in0],loc0
752 ldf.fill.nta f47 =[ r3],loc0
753 ldf.fill.nta f55 =[r14],loc0
754 ldf.fill.nta f63 =[r15],loc0
756 ldf.fill.nta f71 =[in0],loc0
757 ldf.fill.nta f79 =[ r3],loc0
758 ldf.fill.nta f87 =[r14],loc0
759 ldf.fill.nta f95 =[r15],loc0
761 ldf.fill.nta f103=[in0]
762 ldf.fill.nta f111=[ r3]
763 ldf.fill.nta f119=[r14]
764 ldf.fill.nta f127=[r15]
768 GLOBAL_ENTRY(__ia64_init_fpu)
769 stf.spill [sp]=f0 // M3
773 ldfps f33,f34=[sp] // M0
774 ldfps f35,f36=[sp] // M1
782 ldfps f41,f42=[sp] // M0
783 ldfps f43,f44=[sp] // M1
790 ldfps f49,f50=[sp] // M0
791 ldfps f51,f52=[sp] // M1
798 ldfps f57,f58=[sp] // M0
799 ldfps f59,f60=[sp] // M1
806 ldfps f65,f66=[sp] // M0
807 ldfps f67,f68=[sp] // M1
814 ldfps f73,f74=[sp] // M0
815 ldfps f75,f76=[sp] // M1
822 ldfps f81,f82=[sp] // M0
823 ldfps f83,f84=[sp] // M1
831 * When the instructions are cached, it would be faster to initialize
832 * the remaining registers with simply mov instructions (F-unit).
833 * This gets the time down to ~29 cycles. However, this would use up
834 * 33 bundles, whereas continuing with the above pattern yields
835 * 10 bundles and ~30 cycles.
838 ldfps f89,f90=[sp] // M0
839 ldfps f91,f92=[sp] // M1
846 ldfps f97,f98=[sp] // M0
847 ldfps f99,f100=[sp] // M1
854 ldfps f105,f106=[sp] // M0
855 ldfps f107,f108=[sp] // M1
862 ldfps f113,f114=[sp] // M0
863 ldfps f115,f116=[sp] // M1
870 ldfps f121,f122=[sp] // M0
871 ldfps f123,f124=[sp] // M1
876 br.ret.sptk.many rp // F
880 * Switch execution mode from virtual to physical
883 * r16 = new psr to establish
885 * r19 = old virtual address of ar.bsp
886 * r20 = old virtual address of sp
888 * Note: RSE must already be in enforced lazy mode
890 GLOBAL_ENTRY(ia64_switch_mode_phys)
892 rsm psr.i | psr.ic // disable interrupts and interrupt collection
897 flushrs // must be first insn in group
901 mov cr.ipsr=r16 // set new PSR
902 add r3=1f-ia64_switch_mode_phys,r15
906 mov r14=rp // get return address into a general register
909 // going to physical mode, use tpa to translate virt->phys
916 mov r18=ar.rnat // save ar.rnat
917 mov ar.bspstore=r17 // this steps on ar.rnat
921 mov ar.rnat=r18 // restore ar.rnat
922 rfi // must be last insn in group
926 END(ia64_switch_mode_phys)
929 * Switch execution mode from physical to virtual
932 * r16 = new psr to establish
933 * r19 = new bspstore to establish
934 * r20 = new sp to establish
936 * Note: RSE must already be in enforced lazy mode
938 GLOBAL_ENTRY(ia64_switch_mode_virt)
940 rsm psr.i | psr.ic // disable interrupts and interrupt collection
945 flushrs // must be first insn in group
949 mov cr.ipsr=r16 // set new PSR
950 add r3=1f-ia64_switch_mode_virt,r15
952 mov r14=rp // get return address into a general register
956 // - for code addresses, set upper bits of addr to KERNEL_START
957 // - for stack addresses, copy from input argument
958 movl r18=KERNEL_START
959 dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
960 dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
967 mov r18=ar.rnat // save ar.rnat
968 mov ar.bspstore=r19 // this steps on ar.rnat
972 mov ar.rnat=r18 // restore ar.rnat
973 rfi // must be last insn in group
977 END(ia64_switch_mode_virt)
979 GLOBAL_ENTRY(ia64_delay_loop)
981 { nop 0 // work around GAS unwind info generation bug...
989 // force loop to be 32-byte aligned (GAS bug means we cannot use .align
990 // inside function body without corrupting unwind info).
992 1: br.cloop.sptk.few 1b
999 * Return a CPU-local timestamp in nano-seconds. This timestamp is
1000 * NOT synchronized across CPUs its return value must never be
1001 * compared against the values returned on another CPU. The usage in
1002 * kernel/sched/core.c ensures that.
1004 * The return-value of sched_clock() is NOT supposed to wrap-around.
1005 * If it did, it would cause some scheduling hiccups (at the worst).
1006 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1007 * that would happen only once every 5+ years.
1009 * The code below basically calculates:
1011 * (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1013 * except that the multiplication and the shift are done with 128-bit
1014 * intermediate precision so that we can produce a full 64-bit result.
1016 GLOBAL_ENTRY(ia64_native_sched_clock)
1017 addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1018 mov.m r9=ar.itc // fetch cycle-counter (35 cyc)
1022 setf.sig f9=r9 // certain to stall, so issue it _after_ ldf8...
1024 xmpy.lu f10=f9,f8 // calculate low 64 bits of 128-bit product (4 cyc)
1025 xmpy.hu f11=f9,f8 // calculate high 64 bits of 128-bit product
1027 getf.sig r8=f10 // (5 cyc)
1030 shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1032 END(ia64_native_sched_clock)
1034 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1035 GLOBAL_ENTRY(cycle_to_nsec)
1036 alloc r16=ar.pfs,1,0,0,0
1037 addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1043 xmpy.lu f10=f9,f8 // calculate low 64 bits of 128-bit product (4 cyc)
1044 xmpy.hu f11=f9,f8 // calculate high 64 bits of 128-bit product
1046 getf.sig r8=f10 // (5 cyc)
1049 shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1052 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1054 #ifdef CONFIG_IA64_BRL_EMU
1057 * Assembly routines used by brl_emu.c to set preserved register state.
1060 #define SET_REG(reg) \
1061 GLOBAL_ENTRY(ia64_set_##reg); \
1062 alloc r16=ar.pfs,1,0,0,0; \
1065 br.ret.sptk.many rp; \
1074 #endif /* CONFIG_IA64_BRL_EMU */
1078 #ifdef CONFIG_HOTPLUG_CPU
1079 GLOBAL_ENTRY(ia64_jump_to_sal)
1080 alloc r16=ar.pfs,1,0,0,0;;
1087 movl r18=tlb_purge_done;;
1088 DATA_VA_TO_PA(r18);;
1089 mov b1=r18 // Return location
1090 movl r18=ia64_do_tlb_purge;;
1091 DATA_VA_TO_PA(r18);;
1092 mov b2=r18 // doing tlb_flush work
1093 mov ar.rsc=0 // Put RSE in enforced lazy, LE mode
1095 DATA_VA_TO_PA(r17);;
1097 movl r16=SAL_PSR_BITS_TO_SET;;
1100 rfi;; // note: this unmask MCA/INIT (psr.mc)
1103 * Invalidate all TLB data/inst
1105 br.sptk.many b2;; // jump to tlb purge code
1108 RESTORE_REGION_REGS(r25, r17,r18,r19);;
1109 RESTORE_REG(b0, r25, r17);;
1110 RESTORE_REG(b1, r25, r17);;
1111 RESTORE_REG(b2, r25, r17);;
1112 RESTORE_REG(b3, r25, r17);;
1113 RESTORE_REG(b4, r25, r17);;
1114 RESTORE_REG(b5, r25, r17);;
1116 ld8 r12=[r25],0x08;;
1117 ld8 r13=[r25],0x08;;
1118 RESTORE_REG(ar.fpsr, r25, r17);;
1119 RESTORE_REG(ar.pfs, r25, r17);;
1120 RESTORE_REG(ar.rnat, r25, r17);;
1121 RESTORE_REG(ar.unat, r25, r17);;
1122 RESTORE_REG(ar.bspstore, r25, r17);;
1123 RESTORE_REG(cr.dcr, r25, r17);;
1124 RESTORE_REG(cr.iva, r25, r17);;
1125 RESTORE_REG(cr.pta, r25, r17);;
1126 srlz.d;; // required not to violate RAW dependency
1127 RESTORE_REG(cr.itv, r25, r17);;
1128 RESTORE_REG(cr.pmv, r25, r17);;
1129 RESTORE_REG(cr.cmcv, r25, r17);;
1130 RESTORE_REG(cr.lrr0, r25, r17);;
1131 RESTORE_REG(cr.lrr1, r25, r17);;
1136 ld8 r17=[r25],0x08;;
1138 RESTORE_REG(ar.lc, r25, r17);;
1140 * Now Restore floating point regs
1142 ldf.fill.nta f2=[r25],16;;
1143 ldf.fill.nta f3=[r25],16;;
1144 ldf.fill.nta f4=[r25],16;;
1145 ldf.fill.nta f5=[r25],16;;
1146 ldf.fill.nta f16=[r25],16;;
1147 ldf.fill.nta f17=[r25],16;;
1148 ldf.fill.nta f18=[r25],16;;
1149 ldf.fill.nta f19=[r25],16;;
1150 ldf.fill.nta f20=[r25],16;;
1151 ldf.fill.nta f21=[r25],16;;
1152 ldf.fill.nta f22=[r25],16;;
1153 ldf.fill.nta f23=[r25],16;;
1154 ldf.fill.nta f24=[r25],16;;
1155 ldf.fill.nta f25=[r25],16;;
1156 ldf.fill.nta f26=[r25],16;;
1157 ldf.fill.nta f27=[r25],16;;
1158 ldf.fill.nta f28=[r25],16;;
1159 ldf.fill.nta f29=[r25],16;;
1160 ldf.fill.nta f30=[r25],16;;
1161 ldf.fill.nta f31=[r25],16;;
1164 * Now that we have done all the register restores
1165 * we are now ready for the big DIVE to SAL Land
1169 br.ret.sptk.many b0;;
1170 END(ia64_jump_to_sal)
1171 #endif /* CONFIG_HOTPLUG_CPU */
1173 #endif /* CONFIG_SMP */