1 // SPDX-License-Identifier: GPL-2.0-only
4 * Purpose: Generic MCA handling layer
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
24 * Copyright (C) 2006 FUJITSU LIMITED
25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29 * added min save state dump, added INIT handler.
31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
33 * errors, completed code for logging of corrected & uncorrected
34 * machine check errors, and updated for conformance with Nov. 2000
35 * revision of the SAL 3.0 spec.
37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39 * set SAL default return values, changed error record structure to
40 * linked list, added init call to sal_get_state_info_size().
42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46 * Added INIT backtrace support.
48 * 2003-12-08 Keith Owens <kaos@sgi.com>
49 * smp_call_function() must not be called from interrupt context
50 * (can deadlock on tasklist_lock).
51 * Use keventd to call smp_call_function().
53 * 2004-02-01 Keith Owens <kaos@sgi.com>
54 * Avoid deadlock when using printk() for MCA and INIT records.
55 * Delete all record printing code, moved to salinfo_decode in user
56 * space. Mark variables and functions static where possible.
57 * Delete dead variables and functions. Reorder to remove the need
58 * for forward declarations and to consolidate related code.
60 * 2005-08-12 Keith Owens <kaos@sgi.com>
61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
64 * 2005-10-07 Keith Owens <kaos@sgi.com>
65 * Add notify_die() hooks.
67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68 * Add printing support for MCA/INIT.
70 * 2007-04-27 Russ Anderson <rja@sgi.com>
71 * Support multiple cpus going through OS_MCA in the same event.
73 #include <linux/jiffies.h>
74 #include <linux/types.h>
75 #include <linux/init.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/debug.h>
78 #include <linux/sched/task.h>
79 #include <linux/interrupt.h>
80 #include <linux/irq.h>
81 #include <linux/memblock.h>
82 #include <linux/acpi.h>
83 #include <linux/timer.h>
84 #include <linux/module.h>
85 #include <linux/kernel.h>
86 #include <linux/smp.h>
87 #include <linux/workqueue.h>
88 #include <linux/cpumask.h>
89 #include <linux/kdebug.h>
90 #include <linux/cpu.h>
91 #include <linux/gfp.h>
93 #include <asm/delay.h>
94 #include <asm/meminit.h>
96 #include <asm/ptrace.h>
99 #include <asm/kexec.h>
102 #include <asm/hw_irq.h>
108 #if defined(IA64_MCA_DEBUG_INFO)
109 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
111 # define IA64_MCA_DEBUG(fmt...)
114 #define NOTIFY_INIT(event, regs, arg, spin) \
116 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
117 == NOTIFY_STOP) && ((spin) == 1)) \
118 ia64_mca_spin(__func__); \
121 #define NOTIFY_MCA(event, regs, arg, spin) \
123 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
124 == NOTIFY_STOP) && ((spin) == 1)) \
125 ia64_mca_spin(__func__); \
128 /* Used by mca_asm.S */
129 DEFINE_PER_CPU(u64
, ia64_mca_data
); /* == __per_cpu_mca[smp_processor_id()] */
130 DEFINE_PER_CPU(u64
, ia64_mca_per_cpu_pte
); /* PTE to map per-CPU area */
131 DEFINE_PER_CPU(u64
, ia64_mca_pal_pte
); /* PTE to map PAL code */
132 DEFINE_PER_CPU(u64
, ia64_mca_pal_base
); /* vaddr PAL code granule */
133 DEFINE_PER_CPU(u64
, ia64_mca_tr_reload
); /* Flag for TR reload */
135 unsigned long __per_cpu_mca
[NR_CPUS
];
138 extern void ia64_os_init_dispatch_monarch (void);
139 extern void ia64_os_init_dispatch_slave (void);
141 static int monarch_cpu
= -1;
143 static ia64_mc_info_t ia64_mc_info
;
145 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
146 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
147 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
148 #define CPE_HISTORY_LENGTH 5
149 #define CMC_HISTORY_LENGTH 5
151 static struct timer_list cpe_poll_timer
;
152 static struct timer_list cmc_poll_timer
;
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
158 static int cmc_polling_enabled
= 1;
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
166 static int cpe_poll_enabled
= 1;
168 extern void salinfo_log_wakeup(int type
, u8
*buffer
, u64 size
, int irqsafe
);
170 static int mca_init __initdata
;
173 * limited & delayed printing support for MCA/INIT handler
176 #define mprintk(fmt...) ia64_mca_printk(fmt)
178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
179 #define MLOGBUF_MSGMAX 256
180 static char mlogbuf
[MLOGBUF_SIZE
];
181 static DEFINE_SPINLOCK(mlogbuf_wlock
); /* mca context only */
182 static DEFINE_SPINLOCK(mlogbuf_rlock
); /* normal context only */
183 static unsigned long mlogbuf_start
;
184 static unsigned long mlogbuf_end
;
185 static unsigned int mlogbuf_finished
= 0;
186 static unsigned long mlogbuf_timestamp
= 0;
188 static int loglevel_save
= -1;
189 #define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
195 #define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
204 * Push messages into buffer, print them later if not urgent.
206 void ia64_mca_printk(const char *fmt
, ...)
210 char temp_buf
[MLOGBUF_MSGMAX
];
214 printed_len
= vscnprintf(temp_buf
, sizeof(temp_buf
), fmt
, args
);
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress
) {
219 /* mlogbuf was abandoned, use printk directly instead. */
220 printk("%s", temp_buf
);
222 spin_lock(&mlogbuf_wlock
);
223 for (p
= temp_buf
; *p
; p
++) {
224 unsigned long next
= (mlogbuf_end
+ 1) % MLOGBUF_SIZE
;
225 if (next
!= mlogbuf_start
) {
226 mlogbuf
[mlogbuf_end
] = *p
;
233 mlogbuf
[mlogbuf_end
] = '\0';
234 spin_unlock(&mlogbuf_wlock
);
237 EXPORT_SYMBOL(ia64_mca_printk
);
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
243 void ia64_mlogbuf_dump(void)
245 char temp_buf
[MLOGBUF_MSGMAX
];
249 unsigned int printed_len
;
251 /* Get output from mlogbuf */
252 while (mlogbuf_start
!= mlogbuf_end
) {
257 spin_lock_irqsave(&mlogbuf_rlock
, flags
);
259 index
= mlogbuf_start
;
260 while (index
!= mlogbuf_end
) {
262 index
= (index
+ 1) % MLOGBUF_SIZE
;
266 if (++printed_len
>= MLOGBUF_MSGMAX
- 1)
271 printk("%s", temp_buf
);
272 mlogbuf_start
= index
;
274 mlogbuf_timestamp
= 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock
, flags
);
278 EXPORT_SYMBOL(ia64_mlogbuf_dump
);
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
286 static void ia64_mlogbuf_finish(int wait
)
288 BREAK_LOGLEVEL(console_loglevel
);
290 spin_lock_init(&mlogbuf_rlock
);
292 printk(KERN_EMERG
"mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
302 mlogbuf_finished
= 1;
306 * Print buffered messages from INIT context.
308 static void ia64_mlogbuf_dump_from_init(void)
310 if (mlogbuf_finished
)
313 if (mlogbuf_timestamp
&&
314 time_before(jiffies
, mlogbuf_timestamp
+ 30 * HZ
)) {
315 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
321 if (!spin_trylock(&mlogbuf_rlock
)) {
322 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR
"INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp
)
328 mlogbuf_timestamp
= jiffies
;
331 spin_unlock(&mlogbuf_rlock
);
336 ia64_mca_spin(const char *func
)
338 if (monarch_cpu
== smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG
"%s: spinning here, not returning to SAL\n", func
);
345 * IA64_MCA log support
347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350 typedef struct ia64_state_log_s
354 unsigned long isl_count
;
355 ia64_err_rec_t
*isl_log
[IA64_MAX_LOGS
]; /* need space to store header + error log */
358 static ia64_state_log_t ia64_state_log
[IA64_MAX_LOG_TYPES
];
360 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
361 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
362 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
363 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
364 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
365 #define IA64_LOG_INDEX_INC(it) \
366 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
367 ia64_state_log[it].isl_count++;}
368 #define IA64_LOG_INDEX_DEC(it) \
369 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
370 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
371 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
372 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
374 static inline void ia64_log_allocate(int it
, u64 size
)
376 ia64_state_log
[it
].isl_log
[IA64_LOG_CURR_INDEX(it
)] =
377 (ia64_err_rec_t
*)memblock_alloc(size
, SMP_CACHE_BYTES
);
378 if (!ia64_state_log
[it
].isl_log
[IA64_LOG_CURR_INDEX(it
)])
379 panic("%s: Failed to allocate %llu bytes\n", __func__
, size
);
381 ia64_state_log
[it
].isl_log
[IA64_LOG_NEXT_INDEX(it
)] =
382 (ia64_err_rec_t
*)memblock_alloc(size
, SMP_CACHE_BYTES
);
383 if (!ia64_state_log
[it
].isl_log
[IA64_LOG_NEXT_INDEX(it
)])
384 panic("%s: Failed to allocate %llu bytes\n", __func__
, size
);
389 * Reset the OS ia64 log buffer
390 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
394 ia64_log_init(int sal_info_type
)
398 IA64_LOG_NEXT_INDEX(sal_info_type
) = 0;
399 IA64_LOG_LOCK_INIT(sal_info_type
);
401 // SAL will tell us the maximum size of any error record of this type
402 max_size
= ia64_sal_get_state_info_size(sal_info_type
);
404 /* alloc_bootmem() doesn't like zero-sized allocations! */
407 // set up OS data structures to hold error info
408 ia64_log_allocate(sal_info_type
, max_size
);
414 * Get the current MCA log from SAL and copy it into the OS log buffer.
416 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
417 * irq_safe whether you can use printk at this point
418 * Outputs : size (total record length)
419 * *buffer (ptr to error record)
423 ia64_log_get(int sal_info_type
, u8
**buffer
, int irq_safe
)
425 sal_log_record_header_t
*log_buffer
;
429 IA64_LOG_LOCK(sal_info_type
);
431 /* Get the process state information */
432 log_buffer
= IA64_LOG_NEXT_BUFFER(sal_info_type
);
434 total_len
= ia64_sal_get_state_info(sal_info_type
, (u64
*)log_buffer
);
437 IA64_LOG_INDEX_INC(sal_info_type
);
438 IA64_LOG_UNLOCK(sal_info_type
);
440 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
441 __func__
, sal_info_type
, total_len
);
443 *buffer
= (u8
*) log_buffer
;
446 IA64_LOG_UNLOCK(sal_info_type
);
452 * ia64_mca_log_sal_error_record
454 * This function retrieves a specified error record type from SAL
455 * and wakes up any processes waiting for error records.
457 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
458 * FIXME: remove MCA and irq_safe.
461 ia64_mca_log_sal_error_record(int sal_info_type
)
464 sal_log_record_header_t
*rh
;
466 int irq_safe
= sal_info_type
!= SAL_INFO_TYPE_MCA
;
467 #ifdef IA64_MCA_DEBUG_INFO
468 static const char * const rec_name
[] = { "MCA", "INIT", "CMC", "CPE" };
471 size
= ia64_log_get(sal_info_type
, &buffer
, irq_safe
);
475 salinfo_log_wakeup(sal_info_type
, buffer
, size
, irq_safe
);
478 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
480 sal_info_type
< ARRAY_SIZE(rec_name
) ? rec_name
[sal_info_type
] : "UNKNOWN");
482 /* Clear logs from corrected errors in case there's no user-level logger */
483 rh
= (sal_log_record_header_t
*)buffer
;
484 if (rh
->severity
== sal_log_severity_corrected
)
485 ia64_sal_clear_state_info(sal_info_type
);
490 * See if the MCA surfaced in an instruction range
491 * that has been tagged as recoverable.
494 * first First address range to check
495 * last Last address range to check
496 * ip Instruction pointer, address we are looking for
499 * 1 on Success (in the table)/ 0 on Failure (not in the table)
502 search_mca_table (const struct mca_table_entry
*first
,
503 const struct mca_table_entry
*last
,
506 const struct mca_table_entry
*curr
;
507 u64 curr_start
, curr_end
;
510 while (curr
<= last
) {
511 curr_start
= (u64
) &curr
->start_addr
+ curr
->start_addr
;
512 curr_end
= (u64
) &curr
->end_addr
+ curr
->end_addr
;
514 if ((ip
>= curr_start
) && (ip
<= curr_end
)) {
522 /* Given an address, look for it in the mca tables. */
523 int mca_recover_range(unsigned long addr
)
525 extern struct mca_table_entry __start___mca_table
[];
526 extern struct mca_table_entry __stop___mca_table
[];
528 return search_mca_table(__start___mca_table
, __stop___mca_table
-1, addr
);
530 EXPORT_SYMBOL_GPL(mca_recover_range
);
533 int ia64_cpe_irq
= -1;
536 ia64_mca_cpe_int_handler (int cpe_irq
, void *arg
)
538 static unsigned long cpe_history
[CPE_HISTORY_LENGTH
];
540 static DEFINE_SPINLOCK(cpe_history_lock
);
542 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
543 __func__
, cpe_irq
, smp_processor_id());
545 /* SAL spec states this should run w/ interrupts enabled */
548 spin_lock(&cpe_history_lock
);
549 if (!cpe_poll_enabled
&& cpe_vector
>= 0) {
551 int i
, count
= 1; /* we know 1 happened now */
552 unsigned long now
= jiffies
;
554 for (i
= 0; i
< CPE_HISTORY_LENGTH
; i
++) {
555 if (now
- cpe_history
[i
] <= HZ
)
559 IA64_MCA_DEBUG(KERN_INFO
"CPE threshold %d/%d\n", count
, CPE_HISTORY_LENGTH
);
560 if (count
>= CPE_HISTORY_LENGTH
) {
562 cpe_poll_enabled
= 1;
563 spin_unlock(&cpe_history_lock
);
564 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR
));
567 * Corrected errors will still be corrected, but
568 * make sure there's a log somewhere that indicates
569 * something is generating more than we can handle.
571 printk(KERN_WARNING
"WARNING: Switching to polling CPE handler; error records may be lost\n");
573 mod_timer(&cpe_poll_timer
, jiffies
+ MIN_CPE_POLL_INTERVAL
);
575 /* lock already released, get out now */
578 cpe_history
[index
++] = now
;
579 if (index
== CPE_HISTORY_LENGTH
)
583 spin_unlock(&cpe_history_lock
);
585 /* Get the CPE error record and log it */
586 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE
);
594 * ia64_mca_register_cpev
596 * Register the corrected platform error vector with SAL.
599 * cpev Corrected Platform Error Vector number
605 ia64_mca_register_cpev (int cpev
)
607 /* Register the CPE interrupt vector with SAL */
608 struct ia64_sal_retval isrv
;
610 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT
, SAL_MC_PARAM_MECHANISM_INT
, cpev
, 0, 0);
612 printk(KERN_ERR
"Failed to register Corrected Platform "
613 "Error interrupt vector with SAL (status %ld)\n", isrv
.status
);
617 IA64_MCA_DEBUG("%s: corrected platform error "
618 "vector %#x registered\n", __func__
, cpev
);
622 * ia64_mca_cmc_vector_setup
624 * Setup the corrected machine check vector register in the processor.
625 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
626 * This function is invoked on a per-processor basis.
635 ia64_mca_cmc_vector_setup (void)
639 cmcv
.cmcv_regval
= 0;
640 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt at first */
641 cmcv
.cmcv_vector
= IA64_CMC_VECTOR
;
642 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
644 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
645 __func__
, smp_processor_id(), IA64_CMC_VECTOR
);
647 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
648 __func__
, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV
));
652 * ia64_mca_cmc_vector_disable
654 * Mask the corrected machine check vector register in the processor.
655 * This function is invoked on a per-processor basis.
664 ia64_mca_cmc_vector_disable (void *dummy
)
668 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
670 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt */
671 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
673 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
674 __func__
, smp_processor_id(), cmcv
.cmcv_vector
);
678 * ia64_mca_cmc_vector_enable
680 * Unmask the corrected machine check vector register in the processor.
681 * This function is invoked on a per-processor basis.
690 ia64_mca_cmc_vector_enable (void *dummy
)
694 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
696 cmcv
.cmcv_mask
= 0; /* Unmask/enable interrupt */
697 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
699 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
700 __func__
, smp_processor_id(), cmcv
.cmcv_vector
);
704 * ia64_mca_cmc_vector_disable_keventd
706 * Called via keventd (smp_call_function() is not safe in interrupt context) to
707 * disable the cmc interrupt vector.
710 ia64_mca_cmc_vector_disable_keventd(struct work_struct
*unused
)
712 on_each_cpu(ia64_mca_cmc_vector_disable
, NULL
, 0);
716 * ia64_mca_cmc_vector_enable_keventd
718 * Called via keventd (smp_call_function() is not safe in interrupt context) to
719 * enable the cmc interrupt vector.
722 ia64_mca_cmc_vector_enable_keventd(struct work_struct
*unused
)
724 on_each_cpu(ia64_mca_cmc_vector_enable
, NULL
, 0);
730 * Send an inter-cpu interrupt to wake-up a particular cpu.
736 ia64_mca_wakeup(int cpu
)
738 ia64_send_ipi(cpu
, IA64_MCA_WAKEUP_VECTOR
, IA64_IPI_DM_INT
, 0);
742 * ia64_mca_wakeup_all
744 * Wakeup all the slave cpus which have rendez'ed previously.
750 ia64_mca_wakeup_all(void)
754 /* Clear the Rendez checkin flag for all cpus */
755 for_each_online_cpu(cpu
) {
756 if (ia64_mc_info
.imi_rendez_checkin
[cpu
] == IA64_MCA_RENDEZ_CHECKIN_DONE
)
757 ia64_mca_wakeup(cpu
);
763 * ia64_mca_rendez_interrupt_handler
765 * This is handler used to put slave processors into spinloop
766 * while the monarch processor does the mca handling and later
767 * wake each slave up once the monarch is done. The state
768 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
769 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
770 * the cpu has come out of OS rendezvous.
776 ia64_mca_rendez_int_handler(int rendez_irq
, void *arg
)
779 int cpu
= smp_processor_id();
780 struct ia64_mca_notify_die nd
=
781 { .sos
= NULL
, .monarch_cpu
= &monarch_cpu
};
783 /* Mask all interrupts */
784 local_irq_save(flags
);
786 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER
, get_irq_regs(), (long)&nd
, 1);
788 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_DONE
;
789 /* Register with the SAL monarch that the slave has
792 ia64_sal_mc_rendez();
794 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS
, get_irq_regs(), (long)&nd
, 1);
796 /* Wait for the monarch cpu to exit. */
797 while (monarch_cpu
!= -1)
798 cpu_relax(); /* spin until monarch leaves */
800 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE
, get_irq_regs(), (long)&nd
, 1);
802 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
803 /* Enable all interrupts */
804 local_irq_restore(flags
);
809 * ia64_mca_wakeup_int_handler
811 * The interrupt handler for processing the inter-cpu interrupt to the
812 * slave cpu which was spinning in the rendez loop.
813 * Since this spinning is done by turning off the interrupts and
814 * polling on the wakeup-interrupt bit in the IRR, there is
815 * nothing useful to be done in the handler.
817 * Inputs : wakeup_irq (Wakeup-interrupt bit)
818 * arg (Interrupt handler specific argument)
823 ia64_mca_wakeup_int_handler(int wakeup_irq
, void *arg
)
828 /* Function pointer for extra MCA recovery */
829 int (*ia64_mca_ucmc_extension
)
830 (void*,struct ia64_sal_os_state
*)
834 ia64_reg_MCA_extension(int (*fn
)(void *, struct ia64_sal_os_state
*))
836 if (ia64_mca_ucmc_extension
)
839 ia64_mca_ucmc_extension
= fn
;
844 ia64_unreg_MCA_extension(void)
846 if (ia64_mca_ucmc_extension
)
847 ia64_mca_ucmc_extension
= NULL
;
850 EXPORT_SYMBOL(ia64_reg_MCA_extension
);
851 EXPORT_SYMBOL(ia64_unreg_MCA_extension
);
855 copy_reg(const u64
*fr
, u64 fnat
, unsigned long *tr
, unsigned long *tnat
)
857 u64 fslot
, tslot
, nat
;
859 fslot
= ((unsigned long)fr
>> 3) & 63;
860 tslot
= ((unsigned long)tr
>> 3) & 63;
861 *tnat
&= ~(1UL << tslot
);
862 nat
= (fnat
>> fslot
) & 1;
863 *tnat
|= (nat
<< tslot
);
866 /* Change the comm field on the MCA/INT task to include the pid that
867 * was interrupted, it makes for easier debugging. If that pid was 0
868 * (swapper or nested MCA/INIT) then use the start of the previous comm
869 * field suffixed with its cpu.
873 ia64_mca_modify_comm(const struct task_struct
*previous_current
)
875 char *p
, comm
[sizeof(current
->comm
)];
876 if (previous_current
->pid
)
877 snprintf(comm
, sizeof(comm
), "%s %d",
878 current
->comm
, previous_current
->pid
);
881 if ((p
= strchr(previous_current
->comm
, ' ')))
882 l
= p
- previous_current
->comm
;
884 l
= strlen(previous_current
->comm
);
885 snprintf(comm
, sizeof(comm
), "%s %*s %d",
886 current
->comm
, l
, previous_current
->comm
,
887 task_thread_info(previous_current
)->cpu
);
889 memcpy(current
->comm
, comm
, sizeof(current
->comm
));
893 finish_pt_regs(struct pt_regs
*regs
, struct ia64_sal_os_state
*sos
,
896 const pal_min_state_area_t
*ms
= sos
->pal_min_state
;
899 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
900 * pmsa_{xip,xpsr,xfs}
902 if (ia64_psr(regs
)->ic
) {
903 regs
->cr_iip
= ms
->pmsa_iip
;
904 regs
->cr_ipsr
= ms
->pmsa_ipsr
;
905 regs
->cr_ifs
= ms
->pmsa_ifs
;
907 regs
->cr_iip
= ms
->pmsa_xip
;
908 regs
->cr_ipsr
= ms
->pmsa_xpsr
;
909 regs
->cr_ifs
= ms
->pmsa_xfs
;
911 sos
->iip
= ms
->pmsa_iip
;
912 sos
->ipsr
= ms
->pmsa_ipsr
;
913 sos
->ifs
= ms
->pmsa_ifs
;
915 regs
->pr
= ms
->pmsa_pr
;
916 regs
->b0
= ms
->pmsa_br0
;
917 regs
->ar_rsc
= ms
->pmsa_rsc
;
918 copy_reg(&ms
->pmsa_gr
[1-1], ms
->pmsa_nat_bits
, ®s
->r1
, nat
);
919 copy_reg(&ms
->pmsa_gr
[2-1], ms
->pmsa_nat_bits
, ®s
->r2
, nat
);
920 copy_reg(&ms
->pmsa_gr
[3-1], ms
->pmsa_nat_bits
, ®s
->r3
, nat
);
921 copy_reg(&ms
->pmsa_gr
[8-1], ms
->pmsa_nat_bits
, ®s
->r8
, nat
);
922 copy_reg(&ms
->pmsa_gr
[9-1], ms
->pmsa_nat_bits
, ®s
->r9
, nat
);
923 copy_reg(&ms
->pmsa_gr
[10-1], ms
->pmsa_nat_bits
, ®s
->r10
, nat
);
924 copy_reg(&ms
->pmsa_gr
[11-1], ms
->pmsa_nat_bits
, ®s
->r11
, nat
);
925 copy_reg(&ms
->pmsa_gr
[12-1], ms
->pmsa_nat_bits
, ®s
->r12
, nat
);
926 copy_reg(&ms
->pmsa_gr
[13-1], ms
->pmsa_nat_bits
, ®s
->r13
, nat
);
927 copy_reg(&ms
->pmsa_gr
[14-1], ms
->pmsa_nat_bits
, ®s
->r14
, nat
);
928 copy_reg(&ms
->pmsa_gr
[15-1], ms
->pmsa_nat_bits
, ®s
->r15
, nat
);
929 if (ia64_psr(regs
)->bn
)
930 bank
= ms
->pmsa_bank1_gr
;
932 bank
= ms
->pmsa_bank0_gr
;
933 copy_reg(&bank
[16-16], ms
->pmsa_nat_bits
, ®s
->r16
, nat
);
934 copy_reg(&bank
[17-16], ms
->pmsa_nat_bits
, ®s
->r17
, nat
);
935 copy_reg(&bank
[18-16], ms
->pmsa_nat_bits
, ®s
->r18
, nat
);
936 copy_reg(&bank
[19-16], ms
->pmsa_nat_bits
, ®s
->r19
, nat
);
937 copy_reg(&bank
[20-16], ms
->pmsa_nat_bits
, ®s
->r20
, nat
);
938 copy_reg(&bank
[21-16], ms
->pmsa_nat_bits
, ®s
->r21
, nat
);
939 copy_reg(&bank
[22-16], ms
->pmsa_nat_bits
, ®s
->r22
, nat
);
940 copy_reg(&bank
[23-16], ms
->pmsa_nat_bits
, ®s
->r23
, nat
);
941 copy_reg(&bank
[24-16], ms
->pmsa_nat_bits
, ®s
->r24
, nat
);
942 copy_reg(&bank
[25-16], ms
->pmsa_nat_bits
, ®s
->r25
, nat
);
943 copy_reg(&bank
[26-16], ms
->pmsa_nat_bits
, ®s
->r26
, nat
);
944 copy_reg(&bank
[27-16], ms
->pmsa_nat_bits
, ®s
->r27
, nat
);
945 copy_reg(&bank
[28-16], ms
->pmsa_nat_bits
, ®s
->r28
, nat
);
946 copy_reg(&bank
[29-16], ms
->pmsa_nat_bits
, ®s
->r29
, nat
);
947 copy_reg(&bank
[30-16], ms
->pmsa_nat_bits
, ®s
->r30
, nat
);
948 copy_reg(&bank
[31-16], ms
->pmsa_nat_bits
, ®s
->r31
, nat
);
951 /* On entry to this routine, we are running on the per cpu stack, see
952 * mca_asm.h. The original stack has not been touched by this event. Some of
953 * the original stack's registers will be in the RBS on this stack. This stack
954 * also contains a partial pt_regs and switch_stack, the rest of the data is in
957 * The first thing to do is modify the original stack to look like a blocked
958 * task so we can run backtrace on the original task. Also mark the per cpu
959 * stack as current to ensure that we use the correct task state, it also means
960 * that we can do backtrace on the MCA/INIT handler code itself.
963 static struct task_struct
*
964 ia64_mca_modify_original_stack(struct pt_regs
*regs
,
965 const struct switch_stack
*sw
,
966 struct ia64_sal_os_state
*sos
,
971 extern char ia64_leave_kernel
[]; /* Need asm address, not function descriptor */
972 const pal_min_state_area_t
*ms
= sos
->pal_min_state
;
973 struct task_struct
*previous_current
;
974 struct pt_regs
*old_regs
;
975 struct switch_stack
*old_sw
;
976 unsigned size
= sizeof(struct pt_regs
) +
977 sizeof(struct switch_stack
) + 16;
978 unsigned long *old_bspstore
, *old_bsp
;
979 unsigned long *new_bspstore
, *new_bsp
;
980 unsigned long old_unat
, old_rnat
, new_rnat
, nat
;
981 u64 slots
, loadrs
= regs
->loadrs
;
982 u64 r12
= ms
->pmsa_gr
[12-1], r13
= ms
->pmsa_gr
[13-1];
983 u64 ar_bspstore
= regs
->ar_bspstore
;
984 u64 ar_bsp
= regs
->ar_bspstore
+ (loadrs
>> 16);
986 int cpu
= smp_processor_id();
988 previous_current
= curr_task(cpu
);
989 ia64_set_curr_task(cpu
, current
);
990 if ((p
= strchr(current
->comm
, ' ')))
993 /* Best effort attempt to cope with MCA/INIT delivered while in
996 regs
->cr_ipsr
= ms
->pmsa_ipsr
;
997 if (ia64_psr(regs
)->dt
== 0) {
1004 if (va
.f
.reg
== 0) {
1009 if (ia64_psr(regs
)->rt
== 0) {
1011 if (va
.f
.reg
== 0) {
1016 if (va
.f
.reg
== 0) {
1022 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023 * have been copied to the old stack, the old stack may fail the
1024 * validation tests below. So ia64_old_stack() must restore the dirty
1025 * registers from the new stack. The old and new bspstore probably
1026 * have different alignments, so loadrs calculated on the old bsp
1027 * cannot be used to restore from the new bsp. Calculate a suitable
1028 * loadrs for the new stack and save it in the new pt_regs, where
1029 * ia64_old_stack() can get it.
1031 old_bspstore
= (unsigned long *)ar_bspstore
;
1032 old_bsp
= (unsigned long *)ar_bsp
;
1033 slots
= ia64_rse_num_regs(old_bspstore
, old_bsp
);
1034 new_bspstore
= (unsigned long *)((u64
)current
+ IA64_RBS_OFFSET
);
1035 new_bsp
= ia64_rse_skip_regs(new_bspstore
, slots
);
1036 regs
->loadrs
= (new_bsp
- new_bspstore
) * 8 << 16;
1038 /* Verify the previous stack state before we change it */
1039 if (user_mode(regs
)) {
1040 msg
= "occurred in user space";
1041 /* previous_current is guaranteed to be valid when the task was
1042 * in user space, so ...
1044 ia64_mca_modify_comm(previous_current
);
1048 if (r13
!= sos
->prev_IA64_KR_CURRENT
) {
1049 msg
= "inconsistent previous current and r13";
1053 if (!mca_recover_range(ms
->pmsa_iip
)) {
1054 if ((r12
- r13
) >= KERNEL_STACK_SIZE
) {
1055 msg
= "inconsistent r12 and r13";
1058 if ((ar_bspstore
- r13
) >= KERNEL_STACK_SIZE
) {
1059 msg
= "inconsistent ar.bspstore and r13";
1062 va
.p
= old_bspstore
;
1064 msg
= "old_bspstore is in the wrong region";
1067 if ((ar_bsp
- r13
) >= KERNEL_STACK_SIZE
) {
1068 msg
= "inconsistent ar.bsp and r13";
1071 size
+= (ia64_rse_skip_regs(old_bspstore
, slots
) - old_bspstore
) * 8;
1072 if (ar_bspstore
+ size
> r12
) {
1073 msg
= "no room for blocked state";
1078 ia64_mca_modify_comm(previous_current
);
1080 /* Make the original task look blocked. First stack a struct pt_regs,
1081 * describing the state at the time of interrupt. mca_asm.S built a
1082 * partial pt_regs, copy it and fill in the blanks using minstate.
1084 p
= (char *)r12
- sizeof(*regs
);
1085 old_regs
= (struct pt_regs
*)p
;
1086 memcpy(old_regs
, regs
, sizeof(*regs
));
1087 old_regs
->loadrs
= loadrs
;
1088 old_unat
= old_regs
->ar_unat
;
1089 finish_pt_regs(old_regs
, sos
, &old_unat
);
1091 /* Next stack a struct switch_stack. mca_asm.S built a partial
1092 * switch_stack, copy it and fill in the blanks using pt_regs and
1095 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096 * ar.pfs is set to 0.
1098 * unwind.c::unw_unwind() does special processing for interrupt frames.
1099 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1101 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1102 * switch_stack on the original stack so it will unwind correctly when
1103 * unwind.c reads pt_regs.
1105 * thread.ksp is updated to point to the synthesized switch_stack.
1107 p
-= sizeof(struct switch_stack
);
1108 old_sw
= (struct switch_stack
*)p
;
1109 memcpy(old_sw
, sw
, sizeof(*sw
));
1110 old_sw
->caller_unat
= old_unat
;
1111 old_sw
->ar_fpsr
= old_regs
->ar_fpsr
;
1112 copy_reg(&ms
->pmsa_gr
[4-1], ms
->pmsa_nat_bits
, &old_sw
->r4
, &old_unat
);
1113 copy_reg(&ms
->pmsa_gr
[5-1], ms
->pmsa_nat_bits
, &old_sw
->r5
, &old_unat
);
1114 copy_reg(&ms
->pmsa_gr
[6-1], ms
->pmsa_nat_bits
, &old_sw
->r6
, &old_unat
);
1115 copy_reg(&ms
->pmsa_gr
[7-1], ms
->pmsa_nat_bits
, &old_sw
->r7
, &old_unat
);
1116 old_sw
->b0
= (u64
)ia64_leave_kernel
;
1117 old_sw
->b1
= ms
->pmsa_br1
;
1119 old_sw
->ar_unat
= old_unat
;
1120 old_sw
->pr
= old_regs
->pr
| (1UL << PRED_NON_SYSCALL
);
1121 previous_current
->thread
.ksp
= (u64
)p
- 16;
1123 /* Finally copy the original stack's registers back to its RBS.
1124 * Registers from ar.bspstore through ar.bsp at the time of the event
1125 * are in the current RBS, copy them back to the original stack. The
1126 * copy must be done register by register because the original bspstore
1127 * and the current one have different alignments, so the saved RNAT
1128 * data occurs at different places.
1130 * mca_asm does cover, so the old_bsp already includes all registers at
1131 * the time of MCA/INIT. It also does flushrs, so all registers before
1132 * this function have been written to backing store on the MCA/INIT
1135 new_rnat
= ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore
));
1136 old_rnat
= regs
->ar_rnat
;
1138 if (ia64_rse_is_rnat_slot(new_bspstore
)) {
1139 new_rnat
= ia64_get_rnat(new_bspstore
++);
1141 if (ia64_rse_is_rnat_slot(old_bspstore
)) {
1142 *old_bspstore
++ = old_rnat
;
1145 nat
= (new_rnat
>> ia64_rse_slot_num(new_bspstore
)) & 1UL;
1146 old_rnat
&= ~(1UL << ia64_rse_slot_num(old_bspstore
));
1147 old_rnat
|= (nat
<< ia64_rse_slot_num(old_bspstore
));
1148 *old_bspstore
++ = *new_bspstore
++;
1150 old_sw
->ar_bspstore
= (unsigned long)old_bspstore
;
1151 old_sw
->ar_rnat
= old_rnat
;
1153 sos
->prev_task
= previous_current
;
1154 return previous_current
;
1157 mprintk(KERN_INFO
"cpu %d, %s %s, original stack not modified\n",
1158 smp_processor_id(), type
, msg
);
1159 old_unat
= regs
->ar_unat
;
1160 finish_pt_regs(regs
, sos
, &old_unat
);
1161 return previous_current
;
1164 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1165 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1166 * not entered rendezvous yet then wait a bit. The assumption is that any
1167 * slave that has not rendezvoused after a reasonable time is never going to do
1168 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1169 * interrupt, as well as cpus that receive the INIT slave event.
1173 ia64_wait_for_slaves(int monarch
, const char *type
)
1178 * wait 5 seconds total for slaves (arbitrary)
1180 for (i
= 0; i
< 5000; i
++) {
1182 for_each_online_cpu(c
) {
1185 if (ia64_mc_info
.imi_rendez_checkin
[c
]
1186 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
) {
1187 udelay(1000); /* short wait */
1197 * Maybe slave(s) dead. Print buffered messages immediately.
1199 ia64_mlogbuf_finish(0);
1200 mprintk(KERN_INFO
"OS %s slave did not rendezvous on cpu", type
);
1201 for_each_online_cpu(c
) {
1204 if (ia64_mc_info
.imi_rendez_checkin
[c
] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
)
1211 mprintk(KERN_INFO
"All OS %s slaves have reached rendezvous\n", type
);
1217 * Switch rid when TR reload and needed!
1218 * iord: 1: itr, 2: itr;
1221 static void mca_insert_tr(u64 iord
)
1226 struct ia64_tr_entry
*p
;
1228 int cpu
= smp_processor_id();
1230 if (!ia64_idtrs
[cpu
])
1233 psr
= ia64_clear_ic();
1234 for (i
= IA64_TR_ALLOC_BASE
; i
< IA64_TR_ALLOC_MAX
; i
++) {
1235 p
= ia64_idtrs
[cpu
] + (iord
- 1) * IA64_TR_ALLOC_MAX
;
1237 old_rr
= ia64_get_rr(p
->ifa
);
1238 if (old_rr
!= p
->rr
) {
1239 ia64_set_rr(p
->ifa
, p
->rr
);
1242 ia64_ptr(iord
, p
->ifa
, p
->itir
>> 2);
1245 ia64_itr(0x1, i
, p
->ifa
, p
->pte
, p
->itir
>> 2);
1249 ia64_itr(0x2, i
, p
->ifa
, p
->pte
, p
->itir
>> 2);
1252 if (old_rr
!= p
->rr
) {
1253 ia64_set_rr(p
->ifa
, old_rr
);
1264 * This is uncorrectable machine check handler called from OS_MCA
1265 * dispatch code which is in turn called from SAL_CHECK().
1266 * This is the place where the core of OS MCA handling is done.
1267 * Right now the logs are extracted and displayed in a well-defined
1268 * format. This handler code is supposed to be run only on the
1269 * monarch processor. Once the monarch is done with MCA handling
1270 * further MCA logging is enabled by clearing logs.
1271 * Monarch also has the duty of sending wakeup-IPIs to pull the
1272 * slave processors out of rendezvous spinloop.
1274 * If multiple processors call into OS_MCA, the first will become
1275 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1276 * bitmask. After the first monarch has processed its MCA, it
1277 * will wake up the next cpu in the mca_cpu bitmask and then go
1278 * into the rendezvous loop. When all processors have serviced
1279 * their MCA, the last monarch frees up the rest of the processors.
1282 ia64_mca_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1283 struct ia64_sal_os_state
*sos
)
1285 int recover
, cpu
= smp_processor_id();
1286 struct task_struct
*previous_current
;
1287 struct ia64_mca_notify_die nd
=
1288 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
, .data
= &recover
};
1289 static atomic_t mca_count
;
1290 static cpumask_t mca_cpu
;
1292 if (atomic_add_return(1, &mca_count
) == 1) {
1296 cpumask_set_cpu(cpu
, &mca_cpu
);
1299 mprintk(KERN_INFO
"Entered OS MCA handler. PSP=%lx cpu=%d "
1300 "monarch=%ld\n", sos
->proc_state_param
, cpu
, sos
->monarch
);
1302 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "MCA");
1304 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER
, regs
, (long)&nd
, 1);
1306 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA
;
1308 ia64_wait_for_slaves(cpu
, "MCA");
1310 /* Wakeup all the processors which are spinning in the
1311 * rendezvous loop. They will leave SAL, then spin in the OS
1312 * with interrupts disabled until this monarch cpu leaves the
1313 * MCA handler. That gets control back to the OS so we can
1314 * backtrace the other cpus, backtrace when spinning in SAL
1317 ia64_mca_wakeup_all();
1319 while (cpumask_test_cpu(cpu
, &mca_cpu
))
1320 cpu_relax(); /* spin until monarch wakes us */
1323 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS
, regs
, (long)&nd
, 1);
1325 /* Get the MCA error record and log it */
1326 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA
);
1328 /* MCA error recovery */
1329 recover
= (ia64_mca_ucmc_extension
1330 && ia64_mca_ucmc_extension(
1331 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
),
1335 sal_log_record_header_t
*rh
= IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
);
1336 rh
->severity
= sal_log_severity_corrected
;
1337 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA
);
1338 sos
->os_status
= IA64_MCA_CORRECTED
;
1340 /* Dump buffered message to console */
1341 ia64_mlogbuf_finish(1);
1344 if (__this_cpu_read(ia64_mca_tr_reload
)) {
1345 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1349 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE
, regs
, (long)&nd
, 1);
1351 if (atomic_dec_return(&mca_count
) > 0) {
1354 /* wake up the next monarch cpu,
1355 * and put this cpu in the rendez loop.
1357 for_each_online_cpu(i
) {
1358 if (cpumask_test_cpu(i
, &mca_cpu
)) {
1360 cpumask_clear_cpu(i
, &mca_cpu
); /* wake next cpu */
1361 while (monarch_cpu
!= -1)
1362 cpu_relax(); /* spin until last cpu leaves */
1363 ia64_set_curr_task(cpu
, previous_current
);
1364 ia64_mc_info
.imi_rendez_checkin
[cpu
]
1365 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1370 ia64_set_curr_task(cpu
, previous_current
);
1371 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1372 monarch_cpu
= -1; /* This frees the slaves and previous monarchs */
1375 static DECLARE_WORK(cmc_disable_work
, ia64_mca_cmc_vector_disable_keventd
);
1376 static DECLARE_WORK(cmc_enable_work
, ia64_mca_cmc_vector_enable_keventd
);
1379 * ia64_mca_cmc_int_handler
1381 * This is corrected machine check interrupt handler.
1382 * Right now the logs are extracted and displayed in a well-defined
1387 * client data arg ptr
1393 ia64_mca_cmc_int_handler(int cmc_irq
, void *arg
)
1395 static unsigned long cmc_history
[CMC_HISTORY_LENGTH
];
1397 static DEFINE_SPINLOCK(cmc_history_lock
);
1399 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400 __func__
, cmc_irq
, smp_processor_id());
1402 /* SAL spec states this should run w/ interrupts enabled */
1405 spin_lock(&cmc_history_lock
);
1406 if (!cmc_polling_enabled
) {
1407 int i
, count
= 1; /* we know 1 happened now */
1408 unsigned long now
= jiffies
;
1410 for (i
= 0; i
< CMC_HISTORY_LENGTH
; i
++) {
1411 if (now
- cmc_history
[i
] <= HZ
)
1415 IA64_MCA_DEBUG(KERN_INFO
"CMC threshold %d/%d\n", count
, CMC_HISTORY_LENGTH
);
1416 if (count
>= CMC_HISTORY_LENGTH
) {
1418 cmc_polling_enabled
= 1;
1419 spin_unlock(&cmc_history_lock
);
1420 /* If we're being hit with CMC interrupts, we won't
1421 * ever execute the schedule_work() below. Need to
1422 * disable CMC interrupts on this processor now.
1424 ia64_mca_cmc_vector_disable(NULL
);
1425 schedule_work(&cmc_disable_work
);
1428 * Corrected errors will still be corrected, but
1429 * make sure there's a log somewhere that indicates
1430 * something is generating more than we can handle.
1432 printk(KERN_WARNING
"WARNING: Switching to polling CMC handler; error records may be lost\n");
1434 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1436 /* lock already released, get out now */
1439 cmc_history
[index
++] = now
;
1440 if (index
== CMC_HISTORY_LENGTH
)
1444 spin_unlock(&cmc_history_lock
);
1446 /* Get the CMC error record and log it */
1447 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC
);
1449 local_irq_disable();
1455 * ia64_mca_cmc_int_caller
1457 * Triggered by sw interrupt from CMC polling routine. Calls
1458 * real interrupt handler and either triggers a sw interrupt
1459 * on the next cpu or does cleanup at the end.
1463 * client data arg ptr
1468 ia64_mca_cmc_int_caller(int cmc_irq
, void *arg
)
1470 static int start_count
= -1;
1473 cpuid
= smp_processor_id();
1475 /* If first cpu, update count */
1476 if (start_count
== -1)
1477 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
);
1479 ia64_mca_cmc_int_handler(cmc_irq
, arg
);
1481 cpuid
= cpumask_next(cpuid
+1, cpu_online_mask
);
1483 if (cpuid
< nr_cpu_ids
) {
1484 ia64_send_ipi(cpuid
, IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1486 /* If no log record, switch out of polling mode */
1487 if (start_count
== IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
)) {
1489 printk(KERN_WARNING
"Returning to interrupt driven CMC handler\n");
1490 schedule_work(&cmc_enable_work
);
1491 cmc_polling_enabled
= 0;
1495 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1507 * Poll for Corrected Machine Checks (CMCs)
1509 * Inputs : dummy(unused)
1514 ia64_mca_cmc_poll (struct timer_list
*unused
)
1516 /* Trigger a CMC interrupt cascade */
1517 ia64_send_ipi(cpumask_first(cpu_online_mask
), IA64_CMCP_VECTOR
,
1518 IA64_IPI_DM_INT
, 0);
1522 * ia64_mca_cpe_int_caller
1524 * Triggered by sw interrupt from CPE polling routine. Calls
1525 * real interrupt handler and either triggers a sw interrupt
1526 * on the next cpu or does cleanup at the end.
1530 * client data arg ptr
1535 ia64_mca_cpe_int_caller(int cpe_irq
, void *arg
)
1537 static int start_count
= -1;
1538 static int poll_time
= MIN_CPE_POLL_INTERVAL
;
1541 cpuid
= smp_processor_id();
1543 /* If first cpu, update count */
1544 if (start_count
== -1)
1545 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
);
1547 ia64_mca_cpe_int_handler(cpe_irq
, arg
);
1549 cpuid
= cpumask_next(cpuid
+1, cpu_online_mask
);
1551 if (cpuid
< NR_CPUS
) {
1552 ia64_send_ipi(cpuid
, IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1555 * If a log was recorded, increase our polling frequency,
1556 * otherwise, backoff or return to interrupt mode.
1558 if (start_count
!= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
)) {
1559 poll_time
= max(MIN_CPE_POLL_INTERVAL
, poll_time
/ 2);
1560 } else if (cpe_vector
< 0) {
1561 poll_time
= min(MAX_CPE_POLL_INTERVAL
, poll_time
* 2);
1563 poll_time
= MIN_CPE_POLL_INTERVAL
;
1565 printk(KERN_WARNING
"Returning to interrupt driven CPE handler\n");
1566 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR
));
1567 cpe_poll_enabled
= 0;
1570 if (cpe_poll_enabled
)
1571 mod_timer(&cpe_poll_timer
, jiffies
+ poll_time
);
1581 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1582 * on first cpu, from there it will trickle through all the cpus.
1584 * Inputs : dummy(unused)
1589 ia64_mca_cpe_poll (struct timer_list
*unused
)
1591 /* Trigger a CPE interrupt cascade */
1592 ia64_send_ipi(cpumask_first(cpu_online_mask
), IA64_CPEP_VECTOR
,
1593 IA64_IPI_DM_INT
, 0);
1597 default_monarch_init_process(struct notifier_block
*self
, unsigned long val
, void *data
)
1600 struct task_struct
*g
, *t
;
1601 if (val
!= DIE_INIT_MONARCH_PROCESS
)
1604 if (atomic_read(&kdump_in_progress
))
1609 * FIXME: mlogbuf will brim over with INIT stack dumps.
1610 * To enable show_stack from INIT, we use oops_in_progress which should
1611 * be used in real oops. This would cause something wrong after INIT.
1613 BREAK_LOGLEVEL(console_loglevel
);
1614 ia64_mlogbuf_dump_from_init();
1616 printk(KERN_ERR
"Processes interrupted by INIT -");
1617 for_each_online_cpu(c
) {
1618 struct ia64_sal_os_state
*s
;
1619 t
= __va(__per_cpu_mca
[c
] + IA64_MCA_CPU_INIT_STACK_OFFSET
);
1620 s
= (struct ia64_sal_os_state
*)((char *)t
+ MCA_SOS_OFFSET
);
1624 printk(" %d", g
->pid
);
1626 printk(" %d (cpu %d task 0x%p)", g
->pid
, task_cpu(g
), g
);
1630 if (read_trylock(&tasklist_lock
)) {
1631 do_each_thread (g
, t
) {
1632 printk("\nBacktrace of pid %d (%s)\n", t
->pid
, t
->comm
);
1633 show_stack(t
, NULL
);
1634 } while_each_thread (g
, t
);
1635 read_unlock(&tasklist_lock
);
1637 /* FIXME: This will not restore zapped printk locks. */
1638 RESTORE_LOGLEVEL(console_loglevel
);
1643 * C portion of the OS INIT handler
1645 * Called from ia64_os_init_dispatch
1647 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1648 * this event. This code is used for both monarch and slave INIT events, see
1651 * All INIT events switch to the INIT stack and change the previous process to
1652 * blocked status. If one of the INIT events is the monarch then we are
1653 * probably processing the nmi button/command. Use the monarch cpu to dump all
1654 * the processes. The slave INIT events all spin until the monarch cpu
1655 * returns. We can also get INIT slave events for MCA, in which case the MCA
1656 * process is the monarch.
1660 ia64_init_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1661 struct ia64_sal_os_state
*sos
)
1663 static atomic_t slaves
;
1664 static atomic_t monarchs
;
1665 struct task_struct
*previous_current
;
1666 int cpu
= smp_processor_id();
1667 struct ia64_mca_notify_die nd
=
1668 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
};
1670 NOTIFY_INIT(DIE_INIT_ENTER
, regs
, (long)&nd
, 0);
1672 mprintk(KERN_INFO
"Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1673 sos
->proc_state_param
, cpu
, sos
->monarch
);
1674 salinfo_log_wakeup(SAL_INFO_TYPE_INIT
, NULL
, 0, 0);
1676 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "INIT");
1677 sos
->os_status
= IA64_INIT_RESUME
;
1679 /* FIXME: Workaround for broken proms that drive all INIT events as
1680 * slaves. The last slave that enters is promoted to be a monarch.
1681 * Remove this code in September 2006, that gives platforms a year to
1682 * fix their proms and get their customers updated.
1684 if (!sos
->monarch
&& atomic_add_return(1, &slaves
) == num_online_cpus()) {
1685 mprintk(KERN_WARNING
"%s: Promoting cpu %d to monarch.\n",
1687 atomic_dec(&slaves
);
1691 /* FIXME: Workaround for broken proms that drive all INIT events as
1692 * monarchs. Second and subsequent monarchs are demoted to slaves.
1693 * Remove this code in September 2006, that gives platforms a year to
1694 * fix their proms and get their customers updated.
1696 if (sos
->monarch
&& atomic_add_return(1, &monarchs
) > 1) {
1697 mprintk(KERN_WARNING
"%s: Demoting cpu %d to slave.\n",
1699 atomic_dec(&monarchs
);
1703 if (!sos
->monarch
) {
1704 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_INIT
;
1707 while (monarch_cpu
== -1 && !atomic_read(&kdump_in_progress
))
1710 while (monarch_cpu
== -1)
1711 cpu_relax(); /* spin until monarch enters */
1714 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER
, regs
, (long)&nd
, 1);
1715 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS
, regs
, (long)&nd
, 1);
1718 while (monarch_cpu
!= -1 && !atomic_read(&kdump_in_progress
))
1721 while (monarch_cpu
!= -1)
1722 cpu_relax(); /* spin until monarch leaves */
1725 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE
, regs
, (long)&nd
, 1);
1727 mprintk("Slave on cpu %d returning to normal service.\n", cpu
);
1728 ia64_set_curr_task(cpu
, previous_current
);
1729 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1730 atomic_dec(&slaves
);
1735 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER
, regs
, (long)&nd
, 1);
1738 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1739 * generated via the BMC's command-line interface, but since the console is on the
1740 * same serial line, the user will need some time to switch out of the BMC before
1743 mprintk("Delaying for 5 seconds...\n");
1745 ia64_wait_for_slaves(cpu
, "INIT");
1746 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1747 * to default_monarch_init_process() above and just print all the
1750 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS
, regs
, (long)&nd
, 1);
1751 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE
, regs
, (long)&nd
, 1);
1753 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu
);
1754 atomic_dec(&monarchs
);
1755 ia64_set_curr_task(cpu
, previous_current
);
1761 ia64_mca_disable_cpe_polling(char *str
)
1763 cpe_poll_enabled
= 0;
1767 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling
);
1769 static struct irqaction cmci_irqaction
= {
1770 .handler
= ia64_mca_cmc_int_handler
,
1774 static struct irqaction cmcp_irqaction
= {
1775 .handler
= ia64_mca_cmc_int_caller
,
1779 static struct irqaction mca_rdzv_irqaction
= {
1780 .handler
= ia64_mca_rendez_int_handler
,
1784 static struct irqaction mca_wkup_irqaction
= {
1785 .handler
= ia64_mca_wakeup_int_handler
,
1789 static struct irqaction mca_cpe_irqaction
= {
1790 .handler
= ia64_mca_cpe_int_handler
,
1794 static struct irqaction mca_cpep_irqaction
= {
1795 .handler
= ia64_mca_cpe_int_caller
,
1799 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1800 * these stacks can never sleep, they cannot return from the kernel to user
1801 * space, they do not appear in a normal ps listing. So there is no need to
1802 * format most of the fields.
1806 format_mca_init_stack(void *mca_data
, unsigned long offset
,
1807 const char *type
, int cpu
)
1809 struct task_struct
*p
= (struct task_struct
*)((char *)mca_data
+ offset
);
1810 struct thread_info
*ti
;
1811 memset(p
, 0, KERNEL_STACK_SIZE
);
1812 ti
= task_thread_info(p
);
1813 ti
->flags
= _TIF_MCA_INIT
;
1814 ti
->preempt_count
= 1;
1818 p
->state
= TASK_UNINTERRUPTIBLE
;
1819 cpumask_set_cpu(cpu
, &p
->cpus_mask
);
1820 INIT_LIST_HEAD(&p
->tasks
);
1821 p
->parent
= p
->real_parent
= p
->group_leader
= p
;
1822 INIT_LIST_HEAD(&p
->children
);
1823 INIT_LIST_HEAD(&p
->sibling
);
1824 strncpy(p
->comm
, type
, sizeof(p
->comm
)-1);
1827 /* Caller prevents this from being called after init */
1828 static void * __ref
mca_bootmem(void)
1830 return memblock_alloc(sizeof(struct ia64_mca_cpu
), KERNEL_STACK_SIZE
);
1833 /* Do per-CPU MCA-related initialization. */
1835 ia64_mca_cpu_init(void *cpu_data
)
1839 long sz
= sizeof(struct ia64_mca_cpu
);
1840 int cpu
= smp_processor_id();
1841 static int first_time
= 1;
1844 * Structure will already be allocated if cpu has been online,
1847 if (__per_cpu_mca
[cpu
]) {
1848 data
= __va(__per_cpu_mca
[cpu
]);
1851 data
= mca_bootmem();
1854 data
= (void *)__get_free_pages(GFP_KERNEL
,
1857 panic("Could not allocate MCA memory for cpu %d\n",
1860 format_mca_init_stack(data
, offsetof(struct ia64_mca_cpu
, mca_stack
),
1862 format_mca_init_stack(data
, offsetof(struct ia64_mca_cpu
, init_stack
),
1864 __this_cpu_write(ia64_mca_data
, (__per_cpu_mca
[cpu
] = __pa(data
)));
1867 * Stash away a copy of the PTE needed to map the per-CPU page.
1868 * We may need it during MCA recovery.
1870 __this_cpu_write(ia64_mca_per_cpu_pte
,
1871 pte_val(mk_pte_phys(__pa(cpu_data
), PAGE_KERNEL
)));
1874 * Also, stash away a copy of the PAL address and the PTE
1877 pal_vaddr
= efi_get_pal_addr();
1880 __this_cpu_write(ia64_mca_pal_base
,
1881 GRANULEROUNDDOWN((unsigned long) pal_vaddr
));
1882 __this_cpu_write(ia64_mca_pal_pte
, pte_val(mk_pte_phys(__pa(pal_vaddr
),
1886 static int ia64_mca_cpu_online(unsigned int cpu
)
1888 unsigned long flags
;
1890 local_irq_save(flags
);
1891 if (!cmc_polling_enabled
)
1892 ia64_mca_cmc_vector_enable(NULL
);
1893 local_irq_restore(flags
);
1900 * Do all the system level mca specific initialization.
1902 * 1. Register spinloop and wakeup request interrupt vectors
1904 * 2. Register OS_MCA handler entry point
1906 * 3. Register OS_INIT handler entry point
1908 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1910 * Note that this initialization is done very early before some kernel
1911 * services are available.
1920 ia64_fptr_t
*init_hldlr_ptr_monarch
= (ia64_fptr_t
*)ia64_os_init_dispatch_monarch
;
1921 ia64_fptr_t
*init_hldlr_ptr_slave
= (ia64_fptr_t
*)ia64_os_init_dispatch_slave
;
1922 ia64_fptr_t
*mca_hldlr_ptr
= (ia64_fptr_t
*)ia64_os_mca_dispatch
;
1925 struct ia64_sal_retval isrv
;
1926 unsigned long timeout
= IA64_MCA_RENDEZ_TIMEOUT
; /* platform specific */
1927 static struct notifier_block default_init_monarch_nb
= {
1928 .notifier_call
= default_monarch_init_process
,
1929 .priority
= 0/* we need to notified last */
1932 IA64_MCA_DEBUG("%s: begin\n", __func__
);
1934 /* Clear the Rendez checkin flag for all cpus */
1935 for(i
= 0 ; i
< NR_CPUS
; i
++)
1936 ia64_mc_info
.imi_rendez_checkin
[i
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1939 * Register the rendezvous spinloop and wakeup mechanism with SAL
1942 /* Register the rendezvous interrupt vector with SAL */
1944 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT
,
1945 SAL_MC_PARAM_MECHANISM_INT
,
1946 IA64_MCA_RENDEZ_VECTOR
,
1948 SAL_MC_PARAM_RZ_ALWAYS
);
1953 printk(KERN_INFO
"Increasing MCA rendezvous timeout from "
1954 "%ld to %ld milliseconds\n", timeout
, isrv
.v0
);
1956 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT
, NULL
, timeout
, 0);
1959 printk(KERN_ERR
"Failed to register rendezvous interrupt "
1960 "with SAL (status %ld)\n", rc
);
1964 /* Register the wakeup interrupt vector with SAL */
1965 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP
,
1966 SAL_MC_PARAM_MECHANISM_INT
,
1967 IA64_MCA_WAKEUP_VECTOR
,
1971 printk(KERN_ERR
"Failed to register wakeup interrupt with SAL "
1972 "(status %ld)\n", rc
);
1976 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__
);
1978 ia64_mc_info
.imi_mca_handler
= ia64_tpa(mca_hldlr_ptr
->fp
);
1980 * XXX - disable SAL checksum by setting size to 0; should be
1981 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1983 ia64_mc_info
.imi_mca_handler_size
= 0;
1985 /* Register the os mca handler with SAL */
1986 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_MCA
,
1987 ia64_mc_info
.imi_mca_handler
,
1988 ia64_tpa(mca_hldlr_ptr
->gp
),
1989 ia64_mc_info
.imi_mca_handler_size
,
1992 printk(KERN_ERR
"Failed to register OS MCA handler with SAL "
1993 "(status %ld)\n", rc
);
1997 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__
,
1998 ia64_mc_info
.imi_mca_handler
, ia64_tpa(mca_hldlr_ptr
->gp
));
2001 * XXX - disable SAL checksum by setting size to 0, should be
2002 * size of the actual init handler in mca_asm.S.
2004 ia64_mc_info
.imi_monarch_init_handler
= ia64_tpa(init_hldlr_ptr_monarch
->fp
);
2005 ia64_mc_info
.imi_monarch_init_handler_size
= 0;
2006 ia64_mc_info
.imi_slave_init_handler
= ia64_tpa(init_hldlr_ptr_slave
->fp
);
2007 ia64_mc_info
.imi_slave_init_handler_size
= 0;
2009 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__
,
2010 ia64_mc_info
.imi_monarch_init_handler
);
2012 /* Register the os init handler with SAL */
2013 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_INIT
,
2014 ia64_mc_info
.imi_monarch_init_handler
,
2015 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
2016 ia64_mc_info
.imi_monarch_init_handler_size
,
2017 ia64_mc_info
.imi_slave_init_handler
,
2018 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
2019 ia64_mc_info
.imi_slave_init_handler_size
)))
2021 printk(KERN_ERR
"Failed to register m/s INIT handlers with SAL "
2022 "(status %ld)\n", rc
);
2025 if (register_die_notifier(&default_init_monarch_nb
)) {
2026 printk(KERN_ERR
"Failed to register default monarch INIT process\n");
2030 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__
);
2032 /* Initialize the areas set aside by the OS to buffer the
2033 * platform/processor error states for MCA/INIT/CMC
2036 ia64_log_init(SAL_INFO_TYPE_MCA
);
2037 ia64_log_init(SAL_INFO_TYPE_INIT
);
2038 ia64_log_init(SAL_INFO_TYPE_CMC
);
2039 ia64_log_init(SAL_INFO_TYPE_CPE
);
2042 printk(KERN_INFO
"MCA related initialization done\n");
2047 * These pieces cannot be done in ia64_mca_init() because it is called before
2048 * early_irq_init() which would wipe out our percpu irq registrations. But we
2049 * cannot leave them until ia64_mca_late_init() because by then all the other
2050 * processors have been brought online and have set their own CMC vectors to
2051 * point at a non-existant action. Called from arch_early_irq_init().
2053 void __init
ia64_mca_irq_init(void)
2056 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2057 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2059 register_percpu_irq(IA64_CMC_VECTOR
, &cmci_irqaction
);
2060 register_percpu_irq(IA64_CMCP_VECTOR
, &cmcp_irqaction
);
2061 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2063 /* Setup the MCA rendezvous interrupt vector */
2064 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR
, &mca_rdzv_irqaction
);
2066 /* Setup the MCA wakeup interrupt vector */
2067 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR
, &mca_wkup_irqaction
);
2069 /* Setup the CPEI/P handler */
2070 register_percpu_irq(IA64_CPEP_VECTOR
, &mca_cpep_irqaction
);
2074 * ia64_mca_late_init
2076 * Opportunity to setup things that require initialization later
2077 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2078 * platform doesn't support an interrupt driven mechanism.
2084 ia64_mca_late_init(void)
2089 /* Setup the CMCI/P vector and handler */
2090 timer_setup(&cmc_poll_timer
, ia64_mca_cmc_poll
, 0);
2092 /* Unmask/enable the vector */
2093 cmc_polling_enabled
= 0;
2094 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "ia64/mca:online",
2095 ia64_mca_cpu_online
, NULL
);
2096 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__
);
2098 /* Setup the CPEI/P vector and handler */
2099 cpe_vector
= acpi_request_vector(ACPI_INTERRUPT_CPEI
);
2100 timer_setup(&cpe_poll_timer
, ia64_mca_cpe_poll
, 0);
2105 if (cpe_vector
>= 0) {
2106 /* If platform supports CPEI, enable the irq. */
2107 irq
= local_vector_to_irq(cpe_vector
);
2109 cpe_poll_enabled
= 0;
2110 irq_set_status_flags(irq
, IRQ_PER_CPU
);
2111 setup_irq(irq
, &mca_cpe_irqaction
);
2113 ia64_mca_register_cpev(cpe_vector
);
2114 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2118 printk(KERN_ERR
"%s: Failed to find irq for CPE "
2119 "interrupt handler, vector %d\n",
2120 __func__
, cpe_vector
);
2122 /* If platform doesn't support CPEI, get the timer going. */
2123 if (cpe_poll_enabled
) {
2124 ia64_mca_cpe_poll(0UL);
2125 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__
);
2132 device_initcall(ia64_mca_late_init
);