1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel support for the ptrace() and syscall tracing interfaces.
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
11 * Derived from the x86 and Alpha versions.
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/security.h>
22 #include <linux/audit.h>
23 #include <linux/signal.h>
24 #include <linux/regset.h>
25 #include <linux/elf.h>
26 #include <linux/tracehook.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/ptrace_offsets.h>
32 #include <linux/uaccess.h>
33 #include <asm/unwind.h>
35 #include <asm/perfmon.h>
41 * Bits in the PSR that we allow ptrace() to change:
42 * be, up, ac, mfl, mfh (the user mask; five bits total)
43 * db (debug breakpoint fault; one bit)
44 * id (instruction debug fault disable; one bit)
45 * dd (data debug fault disable; one bit)
46 * ri (restart instruction; two bits)
47 * is (instruction set; one bit)
49 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
50 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
52 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
53 #define PFM_MASK MASK(38)
55 #define PTRACE_DEBUG 0
58 # define dprintk(format...) printk(format)
61 # define dprintk(format...)
64 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
67 in_syscall (struct pt_regs
*pt
)
69 return (long) pt
->cr_ifs
>= 0;
73 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
74 * bitset where bit i is set iff the NaT bit of register i is set.
77 ia64_get_scratch_nat_bits (struct pt_regs
*pt
, unsigned long scratch_unat
)
79 # define GET_BITS(first, last, unat) \
81 unsigned long bit = ia64_unat_pos(&pt->r##first); \
82 unsigned long nbits = (last - first + 1); \
83 unsigned long mask = MASK(nbits) << first; \
86 dist = 64 + bit - first; \
89 ia64_rotr(unat, dist) & mask; \
94 * Registers that are stored consecutively in struct pt_regs
95 * can be handled in parallel. If the register order in
96 * struct_pt_regs changes, this code MUST be updated.
98 val
= GET_BITS( 1, 1, scratch_unat
);
99 val
|= GET_BITS( 2, 3, scratch_unat
);
100 val
|= GET_BITS(12, 13, scratch_unat
);
101 val
|= GET_BITS(14, 14, scratch_unat
);
102 val
|= GET_BITS(15, 15, scratch_unat
);
103 val
|= GET_BITS( 8, 11, scratch_unat
);
104 val
|= GET_BITS(16, 31, scratch_unat
);
111 * Set the NaT bits for the scratch registers according to NAT and
112 * return the resulting unat (assuming the scratch registers are
116 ia64_put_scratch_nat_bits (struct pt_regs
*pt
, unsigned long nat
)
118 # define PUT_BITS(first, last, nat) \
120 unsigned long bit = ia64_unat_pos(&pt->r##first); \
121 unsigned long nbits = (last - first + 1); \
122 unsigned long mask = MASK(nbits) << first; \
125 dist = 64 + bit - first; \
127 dist = bit - first; \
128 ia64_rotl(nat & mask, dist); \
130 unsigned long scratch_unat
;
133 * Registers that are stored consecutively in struct pt_regs
134 * can be handled in parallel. If the register order in
135 * struct_pt_regs changes, this code MUST be updated.
137 scratch_unat
= PUT_BITS( 1, 1, nat
);
138 scratch_unat
|= PUT_BITS( 2, 3, nat
);
139 scratch_unat
|= PUT_BITS(12, 13, nat
);
140 scratch_unat
|= PUT_BITS(14, 14, nat
);
141 scratch_unat
|= PUT_BITS(15, 15, nat
);
142 scratch_unat
|= PUT_BITS( 8, 11, nat
);
143 scratch_unat
|= PUT_BITS(16, 31, nat
);
150 #define IA64_MLX_TEMPLATE 0x2
151 #define IA64_MOVL_OPCODE 6
154 ia64_increment_ip (struct pt_regs
*regs
)
156 unsigned long w0
, ri
= ia64_psr(regs
)->ri
+ 1;
161 } else if (ri
== 2) {
162 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
163 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
165 * rfi'ing to slot 2 of an MLX bundle causes
166 * an illegal operation fault. We don't want
173 ia64_psr(regs
)->ri
= ri
;
177 ia64_decrement_ip (struct pt_regs
*regs
)
179 unsigned long w0
, ri
= ia64_psr(regs
)->ri
- 1;
181 if (ia64_psr(regs
)->ri
== 0) {
184 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
185 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
187 * rfi'ing to slot 2 of an MLX bundle causes
188 * an illegal operation fault. We don't want
194 ia64_psr(regs
)->ri
= ri
;
198 * This routine is used to read an rnat bits that are stored on the
199 * kernel backing store. Since, in general, the alignment of the user
200 * and kernel are different, this is not completely trivial. In
201 * essence, we need to construct the user RNAT based on up to two
202 * kernel RNAT values and/or the RNAT value saved in the child's
207 * +--------+ <-- lowest address
214 * | slot01 | > child_regs->ar_rnat
216 * | slot02 | / kernel rbs
217 * +--------+ +--------+
218 * <- child_regs->ar_bspstore | slot61 | <-- krbs
219 * +- - - - + +--------+
221 * +- - - - + +--------+
223 * +- - - - + +--------+
225 * +- - - - + +--------+
230 * | slot01 | > child_stack->ar_rnat
234 * <--- child_stack->ar_bspstore
236 * The way to think of this code is as follows: bit 0 in the user rnat
237 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
238 * value. The kernel rnat value holding this bit is stored in
239 * variable rnat0. rnat1 is loaded with the kernel rnat value that
240 * form the upper bits of the user rnat value.
244 * o when reading the rnat "below" the first rnat slot on the kernel
245 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
246 * merged in from pt->ar_rnat.
248 * o when reading the rnat "above" the last rnat slot on the kernel
249 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
252 get_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
253 unsigned long *krbs
, unsigned long *urnat_addr
,
254 unsigned long *urbs_end
)
256 unsigned long rnat0
= 0, rnat1
= 0, urnat
= 0, *slot0_kaddr
;
257 unsigned long umask
= 0, mask
, m
;
258 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
259 long num_regs
, nbits
;
262 pt
= task_pt_regs(task
);
263 kbsp
= (unsigned long *) sw
->ar_bspstore
;
264 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
266 if (urbs_end
< urnat_addr
)
267 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_end
);
272 * First, figure out which bit number slot 0 in user-land maps
273 * to in the kernel rnat. Do this by figuring out how many
274 * register slots we're beyond the user's backingstore and
275 * then computing the equivalent address in kernel space.
277 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
278 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
279 shift
= ia64_rse_slot_num(slot0_kaddr
);
280 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
281 rnat0_kaddr
= rnat1_kaddr
- 64;
283 if (ubspstore
+ 63 > urnat_addr
) {
284 /* some bits need to be merged in from pt->ar_rnat */
285 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
286 urnat
= (pt
->ar_rnat
& umask
);
293 if (rnat0_kaddr
>= kbsp
)
295 else if (rnat0_kaddr
> krbs
)
296 rnat0
= *rnat0_kaddr
;
297 urnat
|= (rnat0
& m
) >> shift
;
299 m
= mask
>> (63 - shift
);
300 if (rnat1_kaddr
>= kbsp
)
302 else if (rnat1_kaddr
> krbs
)
303 rnat1
= *rnat1_kaddr
;
304 urnat
|= (rnat1
& m
) << (63 - shift
);
309 * The reverse of get_rnat.
312 put_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
313 unsigned long *krbs
, unsigned long *urnat_addr
, unsigned long urnat
,
314 unsigned long *urbs_end
)
316 unsigned long rnat0
= 0, rnat1
= 0, *slot0_kaddr
, umask
= 0, mask
, m
;
317 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
318 long num_regs
, nbits
;
320 unsigned long cfm
, *urbs_kargs
;
322 pt
= task_pt_regs(task
);
323 kbsp
= (unsigned long *) sw
->ar_bspstore
;
324 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
326 urbs_kargs
= urbs_end
;
327 if (in_syscall(pt
)) {
329 * If entered via syscall, don't allow user to set rnat bits
333 urbs_kargs
= ia64_rse_skip_regs(urbs_end
, -(cfm
& 0x7f));
336 if (urbs_kargs
>= urnat_addr
)
339 if ((urnat_addr
- 63) >= urbs_kargs
)
341 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_kargs
);
346 * First, figure out which bit number slot 0 in user-land maps
347 * to in the kernel rnat. Do this by figuring out how many
348 * register slots we're beyond the user's backingstore and
349 * then computing the equivalent address in kernel space.
351 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
352 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
353 shift
= ia64_rse_slot_num(slot0_kaddr
);
354 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
355 rnat0_kaddr
= rnat1_kaddr
- 64;
357 if (ubspstore
+ 63 > urnat_addr
) {
358 /* some bits need to be place in pt->ar_rnat: */
359 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
360 pt
->ar_rnat
= (pt
->ar_rnat
& ~umask
) | (urnat
& umask
);
366 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
367 * rnat slot is ignored. so we don't have to clear it here.
369 rnat0
= (urnat
<< shift
);
371 if (rnat0_kaddr
>= kbsp
)
372 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat0
& m
);
373 else if (rnat0_kaddr
> krbs
)
374 *rnat0_kaddr
= ((*rnat0_kaddr
& ~m
) | (rnat0
& m
));
376 rnat1
= (urnat
>> (63 - shift
));
377 m
= mask
>> (63 - shift
);
378 if (rnat1_kaddr
>= kbsp
)
379 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat1
& m
);
380 else if (rnat1_kaddr
> krbs
)
381 *rnat1_kaddr
= ((*rnat1_kaddr
& ~m
) | (rnat1
& m
));
385 on_kernel_rbs (unsigned long addr
, unsigned long bspstore
,
386 unsigned long urbs_end
)
388 unsigned long *rnat_addr
= ia64_rse_rnat_addr((unsigned long *)
390 return (addr
>= bspstore
&& addr
<= (unsigned long) rnat_addr
);
394 * Read a word from the user-level backing store of task CHILD. ADDR
395 * is the user-level address to read the word from, VAL a pointer to
396 * the return value, and USER_BSP gives the end of the user-level
397 * backing store (i.e., it's the address that would be in ar.bsp after
398 * the user executed a "cover" instruction).
400 * This routine takes care of accessing the kernel register backing
401 * store for those registers that got spilled there. It also takes
402 * care of calculating the appropriate RNaT collection words.
405 ia64_peek (struct task_struct
*child
, struct switch_stack
*child_stack
,
406 unsigned long user_rbs_end
, unsigned long addr
, long *val
)
408 unsigned long *bspstore
, *krbs
, regnum
, *laddr
, *urbs_end
, *rnat_addr
;
409 struct pt_regs
*child_regs
;
413 urbs_end
= (long *) user_rbs_end
;
414 laddr
= (unsigned long *) addr
;
415 child_regs
= task_pt_regs(child
);
416 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
417 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
418 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
419 (unsigned long) urbs_end
))
422 * Attempt to read the RBS in an area that's actually
423 * on the kernel RBS => read the corresponding bits in
426 rnat_addr
= ia64_rse_rnat_addr(laddr
);
427 ret
= get_rnat(child
, child_stack
, krbs
, rnat_addr
, urbs_end
);
429 if (laddr
== rnat_addr
) {
430 /* return NaT collection word itself */
435 if (((1UL << ia64_rse_slot_num(laddr
)) & ret
) != 0) {
437 * It is implementation dependent whether the
438 * data portion of a NaT value gets saved on a
439 * st8.spill or RSE spill (e.g., see EAS 2.6,
440 * 4.4.4.6 Register Spill and Fill). To get
441 * consistent behavior across all possible
442 * IA-64 implementations, we return zero in
449 if (laddr
< urbs_end
) {
451 * The desired word is on the kernel RBS and
454 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
455 *val
= *ia64_rse_skip_regs(krbs
, regnum
);
459 copied
= access_process_vm(child
, addr
, &ret
, sizeof(ret
), FOLL_FORCE
);
460 if (copied
!= sizeof(ret
))
467 ia64_poke (struct task_struct
*child
, struct switch_stack
*child_stack
,
468 unsigned long user_rbs_end
, unsigned long addr
, long val
)
470 unsigned long *bspstore
, *krbs
, regnum
, *laddr
;
471 unsigned long *urbs_end
= (long *) user_rbs_end
;
472 struct pt_regs
*child_regs
;
474 laddr
= (unsigned long *) addr
;
475 child_regs
= task_pt_regs(child
);
476 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
477 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
478 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
479 (unsigned long) urbs_end
))
482 * Attempt to write the RBS in an area that's actually
483 * on the kernel RBS => write the corresponding bits
486 if (ia64_rse_is_rnat_slot(laddr
))
487 put_rnat(child
, child_stack
, krbs
, laddr
, val
,
490 if (laddr
< urbs_end
) {
491 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
492 *ia64_rse_skip_regs(krbs
, regnum
) = val
;
495 } else if (access_process_vm(child
, addr
, &val
, sizeof(val
),
496 FOLL_FORCE
| FOLL_WRITE
)
503 * Calculate the address of the end of the user-level register backing
504 * store. This is the address that would have been stored in ar.bsp
505 * if the user had executed a "cover" instruction right before
506 * entering the kernel. If CFMP is not NULL, it is used to return the
507 * "current frame mask" that was active at the time the kernel was
511 ia64_get_user_rbs_end (struct task_struct
*child
, struct pt_regs
*pt
,
514 unsigned long *krbs
, *bspstore
, cfm
= pt
->cr_ifs
;
517 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
518 bspstore
= (unsigned long *) pt
->ar_bspstore
;
519 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
522 ndirty
+= (cfm
& 0x7f);
524 cfm
&= ~(1UL << 63); /* clear valid bit */
528 return (unsigned long) ia64_rse_skip_regs(bspstore
, ndirty
);
532 * Synchronize (i.e, write) the RSE backing store living in kernel
533 * space to the VM of the CHILD task. SW and PT are the pointers to
534 * the switch_stack and pt_regs structures, respectively.
535 * USER_RBS_END is the user-level address at which the backing store
539 ia64_sync_user_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
540 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
542 unsigned long addr
, val
;
545 /* now copy word for word from kernel rbs to user rbs: */
546 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
547 ret
= ia64_peek(child
, sw
, user_rbs_end
, addr
, &val
);
550 if (access_process_vm(child
, addr
, &val
, sizeof(val
),
551 FOLL_FORCE
| FOLL_WRITE
)
559 ia64_sync_kernel_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
560 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
562 unsigned long addr
, val
;
565 /* now copy word for word from user rbs to kernel rbs: */
566 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
567 if (access_process_vm(child
, addr
, &val
, sizeof(val
),
572 ret
= ia64_poke(child
, sw
, user_rbs_end
, addr
, val
);
579 typedef long (*syncfunc_t
)(struct task_struct
*, struct switch_stack
*,
580 unsigned long, unsigned long);
582 static void do_sync_rbs(struct unw_frame_info
*info
, void *arg
)
585 unsigned long urbs_end
;
588 if (unw_unwind_to_user(info
) < 0)
590 pt
= task_pt_regs(info
->task
);
591 urbs_end
= ia64_get_user_rbs_end(info
->task
, pt
, NULL
);
593 fn(info
->task
, info
->sw
, pt
->ar_bspstore
, urbs_end
);
597 * when a thread is stopped (ptraced), debugger might change thread's user
598 * stack (change memory directly), and we must avoid the RSE stored in kernel
599 * to override user stack (user space's RSE is newer than kernel's in the
600 * case). To workaround the issue, we copy kernel RSE to user RSE before the
601 * task is stopped, so user RSE has updated data. we then copy user RSE to
602 * kernel after the task is resummed from traced stop and kernel will use the
603 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
604 * synchronize user RSE to kernel.
606 void ia64_ptrace_stop(void)
608 if (test_and_set_tsk_thread_flag(current
, TIF_RESTORE_RSE
))
610 set_notify_resume(current
);
611 unw_init_running(do_sync_rbs
, ia64_sync_user_rbs
);
615 * This is called to read back the register backing store.
617 void ia64_sync_krbs(void)
619 clear_tsk_thread_flag(current
, TIF_RESTORE_RSE
);
621 unw_init_running(do_sync_rbs
, ia64_sync_kernel_rbs
);
625 * After PTRACE_ATTACH, a thread's register backing store area in user
626 * space is assumed to contain correct data whenever the thread is
627 * stopped. arch_ptrace_stop takes care of this on tracing stops.
628 * But if the child was already stopped for job control when we attach
629 * to it, then it might not ever get into ptrace_stop by the time we
630 * want to examine the user memory containing the RBS.
633 ptrace_attach_sync_user_rbs (struct task_struct
*child
)
636 struct unw_frame_info info
;
639 * If the child is in TASK_STOPPED, we need to change that to
640 * TASK_TRACED momentarily while we operate on it. This ensures
641 * that the child won't be woken up and return to user mode while
642 * we are doing the sync. (It can only be woken up for SIGKILL.)
645 read_lock(&tasklist_lock
);
646 if (child
->sighand
) {
647 spin_lock_irq(&child
->sighand
->siglock
);
648 if (child
->state
== TASK_STOPPED
&&
649 !test_and_set_tsk_thread_flag(child
, TIF_RESTORE_RSE
)) {
650 set_notify_resume(child
);
652 child
->state
= TASK_TRACED
;
655 spin_unlock_irq(&child
->sighand
->siglock
);
657 read_unlock(&tasklist_lock
);
662 unw_init_from_blocked_task(&info
, child
);
663 do_sync_rbs(&info
, ia64_sync_user_rbs
);
666 * Now move the child back into TASK_STOPPED if it should be in a
667 * job control stop, so that SIGCONT can be used to wake it up.
669 read_lock(&tasklist_lock
);
670 if (child
->sighand
) {
671 spin_lock_irq(&child
->sighand
->siglock
);
672 if (child
->state
== TASK_TRACED
&&
673 (child
->signal
->flags
& SIGNAL_STOP_STOPPED
)) {
674 child
->state
= TASK_STOPPED
;
676 spin_unlock_irq(&child
->sighand
->siglock
);
678 read_unlock(&tasklist_lock
);
682 * Write f32-f127 back to task->thread.fph if it has been modified.
685 ia64_flush_fph (struct task_struct
*task
)
687 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
690 * Prevent migrating this task while
691 * we're fiddling with the FPU state
694 if (ia64_is_local_fpu_owner(task
) && psr
->mfh
) {
696 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
697 ia64_save_fpu(&task
->thread
.fph
[0]);
703 * Sync the fph state of the task so that it can be manipulated
704 * through thread.fph. If necessary, f32-f127 are written back to
705 * thread.fph or, if the fph state hasn't been used before, thread.fph
706 * is cleared to zeroes. Also, access to f32-f127 is disabled to
707 * ensure that the task picks up the state from thread.fph when it
711 ia64_sync_fph (struct task_struct
*task
)
713 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
715 ia64_flush_fph(task
);
716 if (!(task
->thread
.flags
& IA64_THREAD_FPH_VALID
)) {
717 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
718 memset(&task
->thread
.fph
, 0, sizeof(task
->thread
.fph
));
725 * Change the machine-state of CHILD such that it will return via the normal
726 * kernel exit-path, rather than the syscall-exit path.
729 convert_to_non_syscall (struct task_struct
*child
, struct pt_regs
*pt
,
732 struct unw_frame_info info
, prev_info
;
733 unsigned long ip
, sp
, pr
;
735 unw_init_from_blocked_task(&info
, child
);
738 if (unw_unwind(&info
) < 0)
741 unw_get_sp(&info
, &sp
);
742 if ((long)((unsigned long)child
+ IA64_STK_OFFSET
- sp
)
743 < IA64_PT_REGS_SIZE
) {
744 dprintk("ptrace.%s: ran off the top of the kernel "
745 "stack\n", __func__
);
748 if (unw_get_pr (&prev_info
, &pr
) < 0) {
749 unw_get_rp(&prev_info
, &ip
);
750 dprintk("ptrace.%s: failed to read "
751 "predicate register (ip=0x%lx)\n",
755 if (unw_is_intr_frame(&info
)
756 && (pr
& (1UL << PRED_USER_STACK
)))
761 * Note: at the time of this call, the target task is blocked
762 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
763 * (aka, "pLvSys") we redirect execution from
764 * .work_pending_syscall_end to .work_processed_kernel.
766 unw_get_pr(&prev_info
, &pr
);
767 pr
&= ~((1UL << PRED_SYSCALL
) | (1UL << PRED_LEAVE_SYSCALL
));
768 pr
|= (1UL << PRED_NON_SYSCALL
);
769 unw_set_pr(&prev_info
, pr
);
771 pt
->cr_ifs
= (1UL << 63) | cfm
;
773 * Clear the memory that is NOT written on syscall-entry to
774 * ensure we do not leak kernel-state to user when execution
780 memset(&pt
->r16
, 0, 16*8); /* clear r16-r31 */
781 memset(&pt
->f6
, 0, 6*16); /* clear f6-f11 */
789 access_nat_bits (struct task_struct
*child
, struct pt_regs
*pt
,
790 struct unw_frame_info
*info
,
791 unsigned long *data
, int write_access
)
793 unsigned long regnum
, nat_bits
, scratch_unat
, dummy
= 0;
798 scratch_unat
= ia64_put_scratch_nat_bits(pt
, nat_bits
);
799 if (unw_set_ar(info
, UNW_AR_UNAT
, scratch_unat
) < 0) {
800 dprintk("ptrace: failed to set ar.unat\n");
803 for (regnum
= 4; regnum
<= 7; ++regnum
) {
804 unw_get_gr(info
, regnum
, &dummy
, &nat
);
805 unw_set_gr(info
, regnum
, dummy
,
806 (nat_bits
>> regnum
) & 1);
809 if (unw_get_ar(info
, UNW_AR_UNAT
, &scratch_unat
) < 0) {
810 dprintk("ptrace: failed to read ar.unat\n");
813 nat_bits
= ia64_get_scratch_nat_bits(pt
, scratch_unat
);
814 for (regnum
= 4; regnum
<= 7; ++regnum
) {
815 unw_get_gr(info
, regnum
, &dummy
, &nat
);
816 nat_bits
|= (nat
!= 0) << regnum
;
824 access_uarea (struct task_struct
*child
, unsigned long addr
,
825 unsigned long *data
, int write_access
);
828 ptrace_getregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
830 unsigned long psr
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
;
831 struct unw_frame_info info
;
832 struct ia64_fpreg fpval
;
833 struct switch_stack
*sw
;
835 long ret
, retval
= 0;
839 if (!access_ok(ppr
, sizeof(struct pt_all_user_regs
)))
842 pt
= task_pt_regs(child
);
843 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
844 unw_init_from_blocked_task(&info
, child
);
845 if (unw_unwind_to_user(&info
) < 0) {
849 if (((unsigned long) ppr
& 0x7) != 0) {
850 dprintk("ptrace:unaligned register address %p\n", ppr
);
854 if (access_uarea(child
, PT_CR_IPSR
, &psr
, 0) < 0
855 || access_uarea(child
, PT_AR_EC
, &ec
, 0) < 0
856 || access_uarea(child
, PT_AR_LC
, &lc
, 0) < 0
857 || access_uarea(child
, PT_AR_RNAT
, &rnat
, 0) < 0
858 || access_uarea(child
, PT_AR_BSP
, &bsp
, 0) < 0
859 || access_uarea(child
, PT_CFM
, &cfm
, 0)
860 || access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 0))
865 retval
|= __put_user(pt
->cr_iip
, &ppr
->cr_iip
);
866 retval
|= __put_user(psr
, &ppr
->cr_ipsr
);
870 retval
|= __put_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
871 retval
|= __put_user(pt
->ar_rsc
, &ppr
->ar
[PT_AUR_RSC
]);
872 retval
|= __put_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
873 retval
|= __put_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
874 retval
|= __put_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
875 retval
|= __put_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
877 retval
|= __put_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
878 retval
|= __put_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
879 retval
|= __put_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
880 retval
|= __put_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
881 retval
|= __put_user(cfm
, &ppr
->cfm
);
885 retval
|= __copy_to_user(&ppr
->gr
[1], &pt
->r1
, sizeof(long));
886 retval
|= __copy_to_user(&ppr
->gr
[2], &pt
->r2
, sizeof(long) *2);
890 for (i
= 4; i
< 8; i
++) {
891 if (unw_access_gr(&info
, i
, &val
, &nat
, 0) < 0)
893 retval
|= __put_user(val
, &ppr
->gr
[i
]);
898 retval
|= __copy_to_user(&ppr
->gr
[8], &pt
->r8
, sizeof(long) * 4);
902 retval
|= __copy_to_user(&ppr
->gr
[12], &pt
->r12
, sizeof(long) * 2);
903 retval
|= __copy_to_user(&ppr
->gr
[14], &pt
->r14
, sizeof(long));
904 retval
|= __copy_to_user(&ppr
->gr
[15], &pt
->r15
, sizeof(long));
908 retval
|= __copy_to_user(&ppr
->gr
[16], &pt
->r16
, sizeof(long) * 16);
912 retval
|= __put_user(pt
->b0
, &ppr
->br
[0]);
916 for (i
= 1; i
< 6; i
++) {
917 if (unw_access_br(&info
, i
, &val
, 0) < 0)
919 __put_user(val
, &ppr
->br
[i
]);
924 retval
|= __put_user(pt
->b6
, &ppr
->br
[6]);
925 retval
|= __put_user(pt
->b7
, &ppr
->br
[7]);
929 for (i
= 2; i
< 6; i
++) {
930 if (unw_get_fr(&info
, i
, &fpval
) < 0)
932 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
937 retval
|= __copy_to_user(&ppr
->fr
[6], &pt
->f6
,
938 sizeof(struct ia64_fpreg
) * 6);
940 /* fp scratch regs(12-15) */
942 retval
|= __copy_to_user(&ppr
->fr
[12], &sw
->f12
,
943 sizeof(struct ia64_fpreg
) * 4);
947 for (i
= 16; i
< 32; i
++) {
948 if (unw_get_fr(&info
, i
, &fpval
) < 0)
950 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
955 ia64_flush_fph(child
);
956 retval
|= __copy_to_user(&ppr
->fr
[32], &child
->thread
.fph
,
957 sizeof(ppr
->fr
[32]) * 96);
961 retval
|= __put_user(pt
->pr
, &ppr
->pr
);
965 retval
|= __put_user(nat_bits
, &ppr
->nat
);
967 ret
= retval
? -EIO
: 0;
972 ptrace_setregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
974 unsigned long psr
, rsc
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
= 0;
975 struct unw_frame_info info
;
976 struct switch_stack
*sw
;
977 struct ia64_fpreg fpval
;
979 long ret
, retval
= 0;
982 memset(&fpval
, 0, sizeof(fpval
));
984 if (!access_ok(ppr
, sizeof(struct pt_all_user_regs
)))
987 pt
= task_pt_regs(child
);
988 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
989 unw_init_from_blocked_task(&info
, child
);
990 if (unw_unwind_to_user(&info
) < 0) {
994 if (((unsigned long) ppr
& 0x7) != 0) {
995 dprintk("ptrace:unaligned register address %p\n", ppr
);
1001 retval
|= __get_user(pt
->cr_iip
, &ppr
->cr_iip
);
1002 retval
|= __get_user(psr
, &ppr
->cr_ipsr
);
1006 retval
|= __get_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
1007 retval
|= __get_user(rsc
, &ppr
->ar
[PT_AUR_RSC
]);
1008 retval
|= __get_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
1009 retval
|= __get_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
1010 retval
|= __get_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
1011 retval
|= __get_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
1013 retval
|= __get_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
1014 retval
|= __get_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
1015 retval
|= __get_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
1016 retval
|= __get_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
1017 retval
|= __get_user(cfm
, &ppr
->cfm
);
1021 retval
|= __copy_from_user(&pt
->r1
, &ppr
->gr
[1], sizeof(long));
1022 retval
|= __copy_from_user(&pt
->r2
, &ppr
->gr
[2], sizeof(long) * 2);
1026 for (i
= 4; i
< 8; i
++) {
1027 retval
|= __get_user(val
, &ppr
->gr
[i
]);
1028 /* NaT bit will be set via PT_NAT_BITS: */
1029 if (unw_set_gr(&info
, i
, val
, 0) < 0)
1035 retval
|= __copy_from_user(&pt
->r8
, &ppr
->gr
[8], sizeof(long) * 4);
1039 retval
|= __copy_from_user(&pt
->r12
, &ppr
->gr
[12], sizeof(long) * 2);
1040 retval
|= __copy_from_user(&pt
->r14
, &ppr
->gr
[14], sizeof(long));
1041 retval
|= __copy_from_user(&pt
->r15
, &ppr
->gr
[15], sizeof(long));
1045 retval
|= __copy_from_user(&pt
->r16
, &ppr
->gr
[16], sizeof(long) * 16);
1049 retval
|= __get_user(pt
->b0
, &ppr
->br
[0]);
1053 for (i
= 1; i
< 6; i
++) {
1054 retval
|= __get_user(val
, &ppr
->br
[i
]);
1055 unw_set_br(&info
, i
, val
);
1060 retval
|= __get_user(pt
->b6
, &ppr
->br
[6]);
1061 retval
|= __get_user(pt
->b7
, &ppr
->br
[7]);
1065 for (i
= 2; i
< 6; i
++) {
1066 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
], sizeof(fpval
));
1067 if (unw_set_fr(&info
, i
, fpval
) < 0)
1073 retval
|= __copy_from_user(&pt
->f6
, &ppr
->fr
[6],
1074 sizeof(ppr
->fr
[6]) * 6);
1076 /* fp scratch regs(12-15) */
1078 retval
|= __copy_from_user(&sw
->f12
, &ppr
->fr
[12],
1079 sizeof(ppr
->fr
[12]) * 4);
1083 for (i
= 16; i
< 32; i
++) {
1084 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
],
1086 if (unw_set_fr(&info
, i
, fpval
) < 0)
1092 ia64_sync_fph(child
);
1093 retval
|= __copy_from_user(&child
->thread
.fph
, &ppr
->fr
[32],
1094 sizeof(ppr
->fr
[32]) * 96);
1098 retval
|= __get_user(pt
->pr
, &ppr
->pr
);
1102 retval
|= __get_user(nat_bits
, &ppr
->nat
);
1104 retval
|= access_uarea(child
, PT_CR_IPSR
, &psr
, 1);
1105 retval
|= access_uarea(child
, PT_AR_RSC
, &rsc
, 1);
1106 retval
|= access_uarea(child
, PT_AR_EC
, &ec
, 1);
1107 retval
|= access_uarea(child
, PT_AR_LC
, &lc
, 1);
1108 retval
|= access_uarea(child
, PT_AR_RNAT
, &rnat
, 1);
1109 retval
|= access_uarea(child
, PT_AR_BSP
, &bsp
, 1);
1110 retval
|= access_uarea(child
, PT_CFM
, &cfm
, 1);
1111 retval
|= access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 1);
1113 ret
= retval
? -EIO
: 0;
1118 user_enable_single_step (struct task_struct
*child
)
1120 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1122 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1127 user_enable_block_step (struct task_struct
*child
)
1129 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1131 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1136 user_disable_single_step (struct task_struct
*child
)
1138 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1140 /* make sure the single step/taken-branch trap bits are not set: */
1141 clear_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1147 * Called by kernel/ptrace.c when detaching..
1149 * Make sure the single step bit is not set.
1152 ptrace_disable (struct task_struct
*child
)
1154 user_disable_single_step(child
);
1158 arch_ptrace (struct task_struct
*child
, long request
,
1159 unsigned long addr
, unsigned long data
)
1162 case PTRACE_PEEKTEXT
:
1163 case PTRACE_PEEKDATA
:
1164 /* read word at location addr */
1165 if (ptrace_access_vm(child
, addr
, &data
, sizeof(data
),
1169 /* ensure return value is not mistaken for error code */
1170 force_successful_syscall_return();
1173 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1174 * by the generic ptrace_request().
1177 case PTRACE_PEEKUSR
:
1178 /* read the word at addr in the USER area */
1179 if (access_uarea(child
, addr
, &data
, 0) < 0)
1181 /* ensure return value is not mistaken for error code */
1182 force_successful_syscall_return();
1185 case PTRACE_POKEUSR
:
1186 /* write the word at addr in the USER area */
1187 if (access_uarea(child
, addr
, &data
, 1) < 0)
1191 case PTRACE_OLD_GETSIGINFO
:
1192 /* for backwards-compatibility */
1193 return ptrace_request(child
, PTRACE_GETSIGINFO
, addr
, data
);
1195 case PTRACE_OLD_SETSIGINFO
:
1196 /* for backwards-compatibility */
1197 return ptrace_request(child
, PTRACE_SETSIGINFO
, addr
, data
);
1199 case PTRACE_GETREGS
:
1200 return ptrace_getregs(child
,
1201 (struct pt_all_user_regs __user
*) data
);
1203 case PTRACE_SETREGS
:
1204 return ptrace_setregs(child
,
1205 (struct pt_all_user_regs __user
*) data
);
1208 return ptrace_request(child
, request
, addr
, data
);
1213 /* "asmlinkage" so the input arguments are preserved... */
1216 syscall_trace_enter (long arg0
, long arg1
, long arg2
, long arg3
,
1217 long arg4
, long arg5
, long arg6
, long arg7
,
1218 struct pt_regs regs
)
1220 if (test_thread_flag(TIF_SYSCALL_TRACE
))
1221 if (tracehook_report_syscall_entry(®s
))
1224 /* copy user rbs to kernel rbs */
1225 if (test_thread_flag(TIF_RESTORE_RSE
))
1229 audit_syscall_entry(regs
.r15
, arg0
, arg1
, arg2
, arg3
);
1234 /* "asmlinkage" so the input arguments are preserved... */
1237 syscall_trace_leave (long arg0
, long arg1
, long arg2
, long arg3
,
1238 long arg4
, long arg5
, long arg6
, long arg7
,
1239 struct pt_regs regs
)
1243 audit_syscall_exit(®s
);
1245 step
= test_thread_flag(TIF_SINGLESTEP
);
1246 if (step
|| test_thread_flag(TIF_SYSCALL_TRACE
))
1247 tracehook_report_syscall_exit(®s
, step
);
1249 /* copy user rbs to kernel rbs */
1250 if (test_thread_flag(TIF_RESTORE_RSE
))
1254 /* Utrace implementation starts here */
1262 const void __user
*ubuf
;
1265 struct regset_getset
{
1266 struct task_struct
*target
;
1267 const struct user_regset
*regset
;
1269 struct regset_get get
;
1270 struct regset_set set
;
1278 access_elf_gpreg(struct task_struct
*target
, struct unw_frame_info
*info
,
1279 unsigned long addr
, unsigned long *data
, int write_access
)
1282 unsigned long *ptr
= NULL
;
1286 pt
= task_pt_regs(target
);
1288 case ELF_GR_OFFSET(1):
1291 case ELF_GR_OFFSET(2):
1292 case ELF_GR_OFFSET(3):
1293 ptr
= (void *)&pt
->r2
+ (addr
- ELF_GR_OFFSET(2));
1295 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1297 /* read NaT bit first: */
1298 unsigned long dummy
;
1300 ret
= unw_get_gr(info
, addr
/8, &dummy
, &nat
);
1304 return unw_access_gr(info
, addr
/8, data
, &nat
, write_access
);
1305 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1306 ptr
= (void *)&pt
->r8
+ addr
- ELF_GR_OFFSET(8);
1308 case ELF_GR_OFFSET(12):
1309 case ELF_GR_OFFSET(13):
1310 ptr
= (void *)&pt
->r12
+ addr
- ELF_GR_OFFSET(12);
1312 case ELF_GR_OFFSET(14):
1315 case ELF_GR_OFFSET(15):
1326 access_elf_breg(struct task_struct
*target
, struct unw_frame_info
*info
,
1327 unsigned long addr
, unsigned long *data
, int write_access
)
1330 unsigned long *ptr
= NULL
;
1332 pt
= task_pt_regs(target
);
1334 case ELF_BR_OFFSET(0):
1337 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1338 return unw_access_br(info
, (addr
- ELF_BR_OFFSET(0))/8,
1339 data
, write_access
);
1340 case ELF_BR_OFFSET(6):
1343 case ELF_BR_OFFSET(7):
1354 access_elf_areg(struct task_struct
*target
, struct unw_frame_info
*info
,
1355 unsigned long addr
, unsigned long *data
, int write_access
)
1358 unsigned long cfm
, urbs_end
;
1359 unsigned long *ptr
= NULL
;
1361 pt
= task_pt_regs(target
);
1362 if (addr
>= ELF_AR_RSC_OFFSET
&& addr
<= ELF_AR_SSD_OFFSET
) {
1364 case ELF_AR_RSC_OFFSET
:
1367 pt
->ar_rsc
= *data
| (3 << 2);
1371 case ELF_AR_BSP_OFFSET
:
1373 * By convention, we use PT_AR_BSP to refer to
1374 * the end of the user-level backing store.
1375 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1376 * to get the real value of ar.bsp at the time
1377 * the kernel was entered.
1379 * Furthermore, when changing the contents of
1380 * PT_AR_BSP (or PT_CFM) while the task is
1381 * blocked in a system call, convert the state
1382 * so that the non-system-call exit
1383 * path is used. This ensures that the proper
1384 * state will be picked up when resuming
1385 * execution. However, it *also* means that
1386 * once we write PT_AR_BSP/PT_CFM, it won't be
1387 * possible to modify the syscall arguments of
1388 * the pending system call any longer. This
1389 * shouldn't be an issue because modifying
1390 * PT_AR_BSP/PT_CFM generally implies that
1391 * we're either abandoning the pending system
1392 * call or that we defer it's re-execution
1393 * (e.g., due to GDB doing an inferior
1396 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1398 if (*data
!= urbs_end
) {
1400 convert_to_non_syscall(target
,
1404 * Simulate user-level write
1408 pt
->ar_bspstore
= *data
;
1413 case ELF_AR_BSPSTORE_OFFSET
:
1414 ptr
= &pt
->ar_bspstore
;
1416 case ELF_AR_RNAT_OFFSET
:
1419 case ELF_AR_CCV_OFFSET
:
1422 case ELF_AR_UNAT_OFFSET
:
1425 case ELF_AR_FPSR_OFFSET
:
1428 case ELF_AR_PFS_OFFSET
:
1431 case ELF_AR_LC_OFFSET
:
1432 return unw_access_ar(info
, UNW_AR_LC
, data
,
1434 case ELF_AR_EC_OFFSET
:
1435 return unw_access_ar(info
, UNW_AR_EC
, data
,
1437 case ELF_AR_CSD_OFFSET
:
1440 case ELF_AR_SSD_OFFSET
:
1443 } else if (addr
>= ELF_CR_IIP_OFFSET
&& addr
<= ELF_CR_IPSR_OFFSET
) {
1445 case ELF_CR_IIP_OFFSET
:
1448 case ELF_CFM_OFFSET
:
1449 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1451 if (((cfm
^ *data
) & PFM_MASK
) != 0) {
1453 convert_to_non_syscall(target
,
1456 pt
->cr_ifs
= ((pt
->cr_ifs
& ~PFM_MASK
)
1457 | (*data
& PFM_MASK
));
1462 case ELF_CR_IPSR_OFFSET
:
1464 unsigned long tmp
= *data
;
1465 /* psr.ri==3 is a reserved value: SDM 2:25 */
1466 if ((tmp
& IA64_PSR_RI
) == IA64_PSR_RI
)
1467 tmp
&= ~IA64_PSR_RI
;
1468 pt
->cr_ipsr
= ((tmp
& IPSR_MASK
)
1469 | (pt
->cr_ipsr
& ~IPSR_MASK
));
1471 *data
= (pt
->cr_ipsr
& IPSR_MASK
);
1474 } else if (addr
== ELF_NAT_OFFSET
)
1475 return access_nat_bits(target
, pt
, info
,
1476 data
, write_access
);
1477 else if (addr
== ELF_PR_OFFSET
)
1491 access_elf_reg(struct task_struct
*target
, struct unw_frame_info
*info
,
1492 unsigned long addr
, unsigned long *data
, int write_access
)
1494 if (addr
>= ELF_GR_OFFSET(1) && addr
<= ELF_GR_OFFSET(15))
1495 return access_elf_gpreg(target
, info
, addr
, data
, write_access
);
1496 else if (addr
>= ELF_BR_OFFSET(0) && addr
<= ELF_BR_OFFSET(7))
1497 return access_elf_breg(target
, info
, addr
, data
, write_access
);
1499 return access_elf_areg(target
, info
, addr
, data
, write_access
);
1502 void do_gpregs_get(struct unw_frame_info
*info
, void *arg
)
1505 struct regset_getset
*dst
= arg
;
1507 unsigned int i
, index
, min_copy
;
1509 if (unw_unwind_to_user(info
) < 0)
1515 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1516 * predicate registers (p0-p63)
1519 * ar.rsc ar.bsp ar.bspstore ar.rnat
1520 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1525 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1526 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1529 0, ELF_GR_OFFSET(1));
1530 if (dst
->ret
|| dst
->count
== 0)
1535 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1536 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1537 min_copy
= ELF_GR_OFFSET(16) > (dst
->pos
+ dst
->count
) ?
1538 (dst
->pos
+ dst
->count
) : ELF_GR_OFFSET(16);
1539 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1541 if (access_elf_reg(dst
->target
, info
, i
,
1542 &tmp
[index
], 0) < 0) {
1546 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1547 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1548 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1549 if (dst
->ret
|| dst
->count
== 0)
1554 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1555 pt
= task_pt_regs(dst
->target
);
1556 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1557 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, &pt
->r16
,
1558 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1559 if (dst
->ret
|| dst
->count
== 0)
1563 /* nat, pr, b0 - b7 */
1564 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1565 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1566 min_copy
= ELF_CR_IIP_OFFSET
> (dst
->pos
+ dst
->count
) ?
1567 (dst
->pos
+ dst
->count
) : ELF_CR_IIP_OFFSET
;
1568 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1570 if (access_elf_reg(dst
->target
, info
, i
,
1571 &tmp
[index
], 0) < 0) {
1575 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1576 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1577 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1578 if (dst
->ret
|| dst
->count
== 0)
1582 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1583 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1585 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1586 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1587 min_copy
= ELF_AR_END_OFFSET
> (dst
->pos
+ dst
->count
) ?
1588 (dst
->pos
+ dst
->count
) : ELF_AR_END_OFFSET
;
1589 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1591 if (access_elf_reg(dst
->target
, info
, i
,
1592 &tmp
[index
], 0) < 0) {
1596 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1597 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1598 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1602 void do_gpregs_set(struct unw_frame_info
*info
, void *arg
)
1605 struct regset_getset
*dst
= arg
;
1607 unsigned int i
, index
;
1609 if (unw_unwind_to_user(info
) < 0)
1613 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1614 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1617 0, ELF_GR_OFFSET(1));
1618 if (dst
->ret
|| dst
->count
== 0)
1623 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1625 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1626 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1627 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1628 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1631 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1632 if (access_elf_reg(dst
->target
, info
, i
,
1633 &tmp
[index
], 1) < 0) {
1637 if (dst
->count
== 0)
1642 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1643 pt
= task_pt_regs(dst
->target
);
1644 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1645 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, &pt
->r16
,
1646 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1647 if (dst
->ret
|| dst
->count
== 0)
1651 /* nat, pr, b0 - b7 */
1652 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1654 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1655 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1656 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1657 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1660 for (; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1661 if (access_elf_reg(dst
->target
, info
, i
,
1662 &tmp
[index
], 1) < 0) {
1666 if (dst
->count
== 0)
1670 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1671 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1673 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1675 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1676 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1677 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1678 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1681 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1682 if (access_elf_reg(dst
->target
, info
, i
,
1683 &tmp
[index
], 1) < 0) {
1690 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1692 void do_fpregs_get(struct unw_frame_info
*info
, void *arg
)
1694 struct regset_getset
*dst
= arg
;
1695 struct task_struct
*task
= dst
->target
;
1696 elf_fpreg_t tmp
[30];
1697 int index
, min_copy
, i
;
1699 if (unw_unwind_to_user(info
) < 0)
1702 /* Skip pos 0 and 1 */
1703 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1704 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1707 0, ELF_FP_OFFSET(2));
1708 if (dst
->count
== 0 || dst
->ret
)
1713 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1714 index
= (dst
->pos
- ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t
);
1716 min_copy
= min(((unsigned int)ELF_FP_OFFSET(32)),
1717 dst
->pos
+ dst
->count
);
1718 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_fpreg_t
),
1720 if (unw_get_fr(info
, i
/ sizeof(elf_fpreg_t
),
1725 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1726 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1727 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1728 if (dst
->count
== 0 || dst
->ret
)
1733 if (dst
->count
> 0) {
1734 ia64_flush_fph(dst
->target
);
1735 if (task
->thread
.flags
& IA64_THREAD_FPH_VALID
)
1736 dst
->ret
= user_regset_copyout(
1737 &dst
->pos
, &dst
->count
,
1738 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1739 &dst
->target
->thread
.fph
,
1740 ELF_FP_OFFSET(32), -1);
1742 /* Zero fill instead. */
1743 dst
->ret
= user_regset_copyout_zero(
1744 &dst
->pos
, &dst
->count
,
1745 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1746 ELF_FP_OFFSET(32), -1);
1750 void do_fpregs_set(struct unw_frame_info
*info
, void *arg
)
1752 struct regset_getset
*dst
= arg
;
1753 elf_fpreg_t fpreg
, tmp
[30];
1754 int index
, start
, end
;
1756 if (unw_unwind_to_user(info
) < 0)
1759 /* Skip pos 0 and 1 */
1760 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1761 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1764 0, ELF_FP_OFFSET(2));
1765 if (dst
->count
== 0 || dst
->ret
)
1770 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1772 end
= min(((unsigned int)ELF_FP_OFFSET(32)),
1773 dst
->pos
+ dst
->count
);
1774 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1775 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1776 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1780 if (start
& 0xF) { /* only write high part */
1781 if (unw_get_fr(info
, start
/ sizeof(elf_fpreg_t
),
1786 tmp
[start
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[0]
1790 if (end
& 0xF) { /* only write low part */
1791 if (unw_get_fr(info
, end
/ sizeof(elf_fpreg_t
),
1796 tmp
[end
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[1]
1798 end
= (end
+ 0xF) & ~0xFUL
;
1801 for ( ; start
< end
; start
+= sizeof(elf_fpreg_t
)) {
1802 index
= start
/ sizeof(elf_fpreg_t
);
1803 if (unw_set_fr(info
, index
, tmp
[index
- 2])) {
1808 if (dst
->ret
|| dst
->count
== 0)
1813 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(128)) {
1814 ia64_sync_fph(dst
->target
);
1815 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1818 &dst
->target
->thread
.fph
,
1819 ELF_FP_OFFSET(32), -1);
1824 do_regset_call(void (*call
)(struct unw_frame_info
*, void *),
1825 struct task_struct
*target
,
1826 const struct user_regset
*regset
,
1827 unsigned int pos
, unsigned int count
,
1828 const void *kbuf
, const void __user
*ubuf
)
1830 struct regset_getset info
= { .target
= target
, .regset
= regset
,
1831 .pos
= pos
, .count
= count
,
1832 .u
.set
= { .kbuf
= kbuf
, .ubuf
= ubuf
},
1835 if (target
== current
)
1836 unw_init_running(call
, &info
);
1838 struct unw_frame_info ufi
;
1839 memset(&ufi
, 0, sizeof(ufi
));
1840 unw_init_from_blocked_task(&ufi
, target
);
1841 (*call
)(&ufi
, &info
);
1848 gpregs_get(struct task_struct
*target
,
1849 const struct user_regset
*regset
,
1850 unsigned int pos
, unsigned int count
,
1851 void *kbuf
, void __user
*ubuf
)
1853 return do_regset_call(do_gpregs_get
, target
, regset
, pos
, count
,
1857 static int gpregs_set(struct task_struct
*target
,
1858 const struct user_regset
*regset
,
1859 unsigned int pos
, unsigned int count
,
1860 const void *kbuf
, const void __user
*ubuf
)
1862 return do_regset_call(do_gpregs_set
, target
, regset
, pos
, count
,
1866 static void do_gpregs_writeback(struct unw_frame_info
*info
, void *arg
)
1868 do_sync_rbs(info
, ia64_sync_user_rbs
);
1872 * This is called to write back the register backing store.
1873 * ptrace does this before it stops, so that a tracer reading the user
1874 * memory after the thread stops will get the current register data.
1877 gpregs_writeback(struct task_struct
*target
,
1878 const struct user_regset
*regset
,
1881 if (test_and_set_tsk_thread_flag(target
, TIF_RESTORE_RSE
))
1883 set_notify_resume(target
);
1884 return do_regset_call(do_gpregs_writeback
, target
, regset
, 0, 0,
1889 fpregs_active(struct task_struct
*target
, const struct user_regset
*regset
)
1891 return (target
->thread
.flags
& IA64_THREAD_FPH_VALID
) ? 128 : 32;
1894 static int fpregs_get(struct task_struct
*target
,
1895 const struct user_regset
*regset
,
1896 unsigned int pos
, unsigned int count
,
1897 void *kbuf
, void __user
*ubuf
)
1899 return do_regset_call(do_fpregs_get
, target
, regset
, pos
, count
,
1903 static int fpregs_set(struct task_struct
*target
,
1904 const struct user_regset
*regset
,
1905 unsigned int pos
, unsigned int count
,
1906 const void *kbuf
, const void __user
*ubuf
)
1908 return do_regset_call(do_fpregs_set
, target
, regset
, pos
, count
,
1913 access_uarea(struct task_struct
*child
, unsigned long addr
,
1914 unsigned long *data
, int write_access
)
1916 unsigned int pos
= -1; /* an invalid value */
1918 unsigned long *ptr
, regnum
;
1920 if ((addr
& 0x7) != 0) {
1921 dprintk("ptrace: unaligned register address 0x%lx\n", addr
);
1924 if ((addr
>= PT_NAT_BITS
+ 8 && addr
< PT_F2
) ||
1925 (addr
>= PT_R7
+ 8 && addr
< PT_B1
) ||
1926 (addr
>= PT_AR_LC
+ 8 && addr
< PT_CR_IPSR
) ||
1927 (addr
>= PT_AR_SSD
+ 8 && addr
< PT_DBR
)) {
1928 dprintk("ptrace: rejecting access to register "
1929 "address 0x%lx\n", addr
);
1934 case PT_F32
... (PT_F127
+ 15):
1935 pos
= addr
- PT_F32
+ ELF_FP_OFFSET(32);
1937 case PT_F2
... (PT_F5
+ 15):
1938 pos
= addr
- PT_F2
+ ELF_FP_OFFSET(2);
1940 case PT_F10
... (PT_F31
+ 15):
1941 pos
= addr
- PT_F10
+ ELF_FP_OFFSET(10);
1943 case PT_F6
... (PT_F9
+ 15):
1944 pos
= addr
- PT_F6
+ ELF_FP_OFFSET(6);
1950 ret
= fpregs_set(child
, NULL
, pos
,
1951 sizeof(unsigned long), data
, NULL
);
1953 ret
= fpregs_get(child
, NULL
, pos
,
1954 sizeof(unsigned long), data
, NULL
);
1962 pos
= ELF_NAT_OFFSET
;
1964 case PT_R4
... PT_R7
:
1965 pos
= addr
- PT_R4
+ ELF_GR_OFFSET(4);
1967 case PT_B1
... PT_B5
:
1968 pos
= addr
- PT_B1
+ ELF_BR_OFFSET(1);
1971 pos
= ELF_AR_EC_OFFSET
;
1974 pos
= ELF_AR_LC_OFFSET
;
1977 pos
= ELF_CR_IPSR_OFFSET
;
1980 pos
= ELF_CR_IIP_OFFSET
;
1983 pos
= ELF_CFM_OFFSET
;
1986 pos
= ELF_AR_UNAT_OFFSET
;
1989 pos
= ELF_AR_PFS_OFFSET
;
1992 pos
= ELF_AR_RSC_OFFSET
;
1995 pos
= ELF_AR_RNAT_OFFSET
;
1997 case PT_AR_BSPSTORE
:
1998 pos
= ELF_AR_BSPSTORE_OFFSET
;
2001 pos
= ELF_PR_OFFSET
;
2004 pos
= ELF_BR_OFFSET(6);
2007 pos
= ELF_AR_BSP_OFFSET
;
2009 case PT_R1
... PT_R3
:
2010 pos
= addr
- PT_R1
+ ELF_GR_OFFSET(1);
2012 case PT_R12
... PT_R15
:
2013 pos
= addr
- PT_R12
+ ELF_GR_OFFSET(12);
2015 case PT_R8
... PT_R11
:
2016 pos
= addr
- PT_R8
+ ELF_GR_OFFSET(8);
2018 case PT_R16
... PT_R31
:
2019 pos
= addr
- PT_R16
+ ELF_GR_OFFSET(16);
2022 pos
= ELF_AR_CCV_OFFSET
;
2025 pos
= ELF_AR_FPSR_OFFSET
;
2028 pos
= ELF_BR_OFFSET(0);
2031 pos
= ELF_BR_OFFSET(7);
2034 pos
= ELF_AR_CSD_OFFSET
;
2037 pos
= ELF_AR_SSD_OFFSET
;
2043 ret
= gpregs_set(child
, NULL
, pos
,
2044 sizeof(unsigned long), data
, NULL
);
2046 ret
= gpregs_get(child
, NULL
, pos
,
2047 sizeof(unsigned long), data
, NULL
);
2053 /* access debug registers */
2054 if (addr
>= PT_IBR
) {
2055 regnum
= (addr
- PT_IBR
) >> 3;
2056 ptr
= &child
->thread
.ibr
[0];
2058 regnum
= (addr
- PT_DBR
) >> 3;
2059 ptr
= &child
->thread
.dbr
[0];
2063 dprintk("ptrace: rejecting access to register "
2064 "address 0x%lx\n", addr
);
2067 #ifdef CONFIG_PERFMON
2069 * Check if debug registers are used by perfmon. This
2070 * test must be done once we know that we can do the
2071 * operation, i.e. the arguments are all valid, but
2072 * before we start modifying the state.
2074 * Perfmon needs to keep a count of how many processes
2075 * are trying to modify the debug registers for system
2076 * wide monitoring sessions.
2078 * We also include read access here, because they may
2079 * cause the PMU-installed debug register state
2080 * (dbr[], ibr[]) to be reset. The two arrays are also
2081 * used by perfmon, but we do not use
2082 * IA64_THREAD_DBG_VALID. The registers are restored
2083 * by the PMU context switch code.
2085 if (pfm_use_debug_registers(child
))
2089 if (!(child
->thread
.flags
& IA64_THREAD_DBG_VALID
)) {
2090 child
->thread
.flags
|= IA64_THREAD_DBG_VALID
;
2091 memset(child
->thread
.dbr
, 0,
2092 sizeof(child
->thread
.dbr
));
2093 memset(child
->thread
.ibr
, 0,
2094 sizeof(child
->thread
.ibr
));
2099 if ((regnum
& 1) && write_access
) {
2100 /* don't let the user set kernel-level breakpoints: */
2101 *ptr
= *data
& ~(7UL << 56);
2111 static const struct user_regset native_regsets
[] = {
2113 .core_note_type
= NT_PRSTATUS
,
2115 .size
= sizeof(elf_greg_t
), .align
= sizeof(elf_greg_t
),
2116 .get
= gpregs_get
, .set
= gpregs_set
,
2117 .writeback
= gpregs_writeback
2120 .core_note_type
= NT_PRFPREG
,
2122 .size
= sizeof(elf_fpreg_t
), .align
= sizeof(elf_fpreg_t
),
2123 .get
= fpregs_get
, .set
= fpregs_set
, .active
= fpregs_active
2127 static const struct user_regset_view user_ia64_view
= {
2129 .e_machine
= EM_IA_64
,
2130 .regsets
= native_regsets
, .n
= ARRAY_SIZE(native_regsets
)
2133 const struct user_regset_view
*task_user_regset_view(struct task_struct
*tsk
)
2135 return &user_ia64_view
;
2138 struct syscall_get_set_args
{
2141 unsigned long *args
;
2142 struct pt_regs
*regs
;
2146 static void syscall_get_set_args_cb(struct unw_frame_info
*info
, void *data
)
2148 struct syscall_get_set_args
*args
= data
;
2149 struct pt_regs
*pt
= args
->regs
;
2150 unsigned long *krbs
, cfm
, ndirty
;
2153 if (unw_unwind_to_user(info
) < 0)
2157 krbs
= (unsigned long *)info
->task
+ IA64_RBS_OFFSET
/8;
2158 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
2162 count
= min_t(int, args
->n
, cfm
& 0x7f);
2164 for (i
= 0; i
< count
; i
++) {
2166 *ia64_rse_skip_regs(krbs
, ndirty
+ i
+ args
->i
) =
2169 args
->args
[i
] = *ia64_rse_skip_regs(krbs
,
2170 ndirty
+ i
+ args
->i
);
2174 while (i
< args
->n
) {
2181 void ia64_syscall_get_set_arguments(struct task_struct
*task
,
2182 struct pt_regs
*regs
, unsigned long *args
, int rw
)
2184 struct syscall_get_set_args data
= {
2192 if (task
== current
)
2193 unw_init_running(syscall_get_set_args_cb
, &data
);
2195 struct unw_frame_info ufi
;
2196 memset(&ufi
, 0, sizeof(ufi
));
2197 unw_init_from_blocked_task(&ufi
, task
);
2198 syscall_get_set_args_cb(&ufi
, &data
);