spi: efm32: Convert to use GPIO descriptors
[linux/fpc-iii.git] / arch / ia64 / kernel / topology.c
blob09fc385c2acd2ce0bc7fae3a9ffe05c1f1441427
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/memblock.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
30 static struct ia64_cpu *sysfs_cpus;
32 void arch_fix_phys_package_id(int num, u32 slot)
34 #ifdef CONFIG_SMP
35 if (cpu_data(num)->socket_id == -1)
36 cpu_data(num)->socket_id = slot;
37 #endif
39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
42 #ifdef CONFIG_HOTPLUG_CPU
43 int __ref arch_register_cpu(int num)
46 * If CPEI can be re-targeted or if this is not
47 * CPEI target, then it is hotpluggable
49 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
50 sysfs_cpus[num].cpu.hotpluggable = 1;
51 map_cpu_to_node(num, node_cpuid[num].nid);
52 return register_cpu(&sysfs_cpus[num].cpu, num);
54 EXPORT_SYMBOL(arch_register_cpu);
56 void __ref arch_unregister_cpu(int num)
58 unregister_cpu(&sysfs_cpus[num].cpu);
59 unmap_cpu_from_node(num, cpu_to_node(num));
61 EXPORT_SYMBOL(arch_unregister_cpu);
62 #else
63 static int __init arch_register_cpu(int num)
65 return register_cpu(&sysfs_cpus[num].cpu, num);
67 #endif /*CONFIG_HOTPLUG_CPU*/
70 static int __init topology_init(void)
72 int i, err = 0;
74 #ifdef CONFIG_NUMA
76 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
78 for_each_online_node(i) {
79 if ((err = register_one_node(i)))
80 goto out;
82 #endif
84 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
85 if (!sysfs_cpus)
86 panic("kzalloc in topology_init failed - NR_CPUS too big?");
88 for_each_present_cpu(i) {
89 if((err = arch_register_cpu(i)))
90 goto out;
92 out:
93 return err;
96 subsys_initcall(topology_init);
100 * Export cpu cache information through sysfs
104 * A bunch of string array to get pretty printing
106 static const char *cache_types[] = {
107 "", /* not used */
108 "Instruction",
109 "Data",
110 "Unified" /* unified */
113 static const char *cache_mattrib[]={
114 "WriteThrough",
115 "WriteBack",
116 "", /* reserved */
117 "" /* reserved */
120 struct cache_info {
121 pal_cache_config_info_t cci;
122 cpumask_t shared_cpu_map;
123 int level;
124 int type;
125 struct kobject kobj;
128 struct cpu_cache_info {
129 struct cache_info *cache_leaves;
130 int num_cache_leaves;
131 struct kobject kobj;
134 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
135 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
137 #ifdef CONFIG_SMP
138 static void cache_shared_cpu_map_setup(unsigned int cpu,
139 struct cache_info * this_leaf)
141 pal_cache_shared_info_t csi;
142 int num_shared, i = 0;
143 unsigned int j;
145 if (cpu_data(cpu)->threads_per_core <= 1 &&
146 cpu_data(cpu)->cores_per_socket <= 1) {
147 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
148 return;
151 if (ia64_pal_cache_shared_info(this_leaf->level,
152 this_leaf->type,
154 &csi) != PAL_STATUS_SUCCESS)
155 return;
157 num_shared = (int) csi.num_shared;
158 do {
159 for_each_possible_cpu(j)
160 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
161 && cpu_data(j)->core_id == csi.log1_cid
162 && cpu_data(j)->thread_id == csi.log1_tid)
163 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
165 i++;
166 } while (i < num_shared &&
167 ia64_pal_cache_shared_info(this_leaf->level,
168 this_leaf->type,
170 &csi) == PAL_STATUS_SUCCESS);
172 #else
173 static void cache_shared_cpu_map_setup(unsigned int cpu,
174 struct cache_info * this_leaf)
176 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
177 return;
179 #endif
181 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
182 char *buf)
184 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
187 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
188 char *buf)
190 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
193 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
195 return sprintf(buf,
196 "%s\n",
197 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
200 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
202 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
205 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
207 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
208 number_of_sets /= this_leaf->cci.pcci_assoc;
209 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
211 return sprintf(buf, "%u\n", number_of_sets);
214 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
216 cpumask_t shared_cpu_map;
218 cpumask_and(&shared_cpu_map,
219 &this_leaf->shared_cpu_map, cpu_online_mask);
220 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
221 cpumask_pr_args(&shared_cpu_map));
224 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
226 int type = this_leaf->type + this_leaf->cci.pcci_unified;
227 return sprintf(buf, "%s\n", cache_types[type]);
230 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
232 return sprintf(buf, "%u\n", this_leaf->level);
235 struct cache_attr {
236 struct attribute attr;
237 ssize_t (*show)(struct cache_info *, char *);
238 ssize_t (*store)(struct cache_info *, const char *, size_t count);
241 #ifdef define_one_ro
242 #undef define_one_ro
243 #endif
244 #define define_one_ro(_name) \
245 static struct cache_attr _name = \
246 __ATTR(_name, 0444, show_##_name, NULL)
248 define_one_ro(level);
249 define_one_ro(type);
250 define_one_ro(coherency_line_size);
251 define_one_ro(ways_of_associativity);
252 define_one_ro(size);
253 define_one_ro(number_of_sets);
254 define_one_ro(shared_cpu_map);
255 define_one_ro(attributes);
257 static struct attribute * cache_default_attrs[] = {
258 &type.attr,
259 &level.attr,
260 &coherency_line_size.attr,
261 &ways_of_associativity.attr,
262 &attributes.attr,
263 &size.attr,
264 &number_of_sets.attr,
265 &shared_cpu_map.attr,
266 NULL
269 #define to_object(k) container_of(k, struct cache_info, kobj)
270 #define to_attr(a) container_of(a, struct cache_attr, attr)
272 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
274 struct cache_attr *fattr = to_attr(attr);
275 struct cache_info *this_leaf = to_object(kobj);
276 ssize_t ret;
278 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
279 return ret;
282 static const struct sysfs_ops cache_sysfs_ops = {
283 .show = ia64_cache_show
286 static struct kobj_type cache_ktype = {
287 .sysfs_ops = &cache_sysfs_ops,
288 .default_attrs = cache_default_attrs,
291 static struct kobj_type cache_ktype_percpu_entry = {
292 .sysfs_ops = &cache_sysfs_ops,
295 static void cpu_cache_sysfs_exit(unsigned int cpu)
297 kfree(all_cpu_cache_info[cpu].cache_leaves);
298 all_cpu_cache_info[cpu].cache_leaves = NULL;
299 all_cpu_cache_info[cpu].num_cache_leaves = 0;
300 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
301 return;
304 static int cpu_cache_sysfs_init(unsigned int cpu)
306 unsigned long i, levels, unique_caches;
307 pal_cache_config_info_t cci;
308 int j;
309 long status;
310 struct cache_info *this_cache;
311 int num_cache_leaves = 0;
313 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
314 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
315 return -1;
318 this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
319 GFP_KERNEL);
320 if (this_cache == NULL)
321 return -ENOMEM;
323 for (i=0; i < levels; i++) {
324 for (j=2; j >0 ; j--) {
325 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
326 PAL_STATUS_SUCCESS)
327 continue;
329 this_cache[num_cache_leaves].cci = cci;
330 this_cache[num_cache_leaves].level = i + 1;
331 this_cache[num_cache_leaves].type = j;
333 cache_shared_cpu_map_setup(cpu,
334 &this_cache[num_cache_leaves]);
335 num_cache_leaves ++;
339 all_cpu_cache_info[cpu].cache_leaves = this_cache;
340 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
342 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
344 return 0;
347 /* Add cache interface for CPU device */
348 static int cache_add_dev(unsigned int cpu)
350 struct device *sys_dev = get_cpu_device(cpu);
351 unsigned long i, j;
352 struct cache_info *this_object;
353 int retval = 0;
355 if (all_cpu_cache_info[cpu].kobj.parent)
356 return 0;
359 retval = cpu_cache_sysfs_init(cpu);
360 if (unlikely(retval < 0))
361 return retval;
363 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
364 &cache_ktype_percpu_entry, &sys_dev->kobj,
365 "%s", "cache");
366 if (unlikely(retval < 0)) {
367 cpu_cache_sysfs_exit(cpu);
368 return retval;
371 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
372 this_object = LEAF_KOBJECT_PTR(cpu,i);
373 retval = kobject_init_and_add(&(this_object->kobj),
374 &cache_ktype,
375 &all_cpu_cache_info[cpu].kobj,
376 "index%1lu", i);
377 if (unlikely(retval)) {
378 for (j = 0; j < i; j++) {
379 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
381 kobject_put(&all_cpu_cache_info[cpu].kobj);
382 cpu_cache_sysfs_exit(cpu);
383 return retval;
385 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
387 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
388 return retval;
391 /* Remove cache interface for CPU device */
392 static int cache_remove_dev(unsigned int cpu)
394 unsigned long i;
396 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
397 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
399 if (all_cpu_cache_info[cpu].kobj.parent) {
400 kobject_put(&all_cpu_cache_info[cpu].kobj);
401 memset(&all_cpu_cache_info[cpu].kobj,
403 sizeof(struct kobject));
406 cpu_cache_sysfs_exit(cpu);
408 return 0;
411 static int __init cache_sysfs_init(void)
413 int ret;
415 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
416 cache_add_dev, cache_remove_dev);
417 WARN_ON(ret < 0);
418 return 0;
420 device_initcall(cache_sysfs_init);