1 // SPDX-License-Identifier: GPL-2.0
6 * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
7 * exclusively use the autovector interrupts (the 'generic level0-level7'
8 * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
11 * - slot 0: one second interrupt (CA2)
12 * - slot 1: VBlank (CA1)
13 * - slot 2: ADB data ready (SR full)
14 * - slot 3: ADB data (CB2)
15 * - slot 4: ADB clock (CB1)
18 * - slot 7: status of IRQ; signals 'any enabled int.'
21 * - slot 0: SCSI DRQ (CA2)
22 * - slot 1: NUBUS IRQ (CA1) need to read port A to find which
23 * - slot 2: /EXP IRQ (only on IIci)
24 * - slot 3: SCSI IRQ (CB2)
25 * - slot 4: ASC IRQ (CB1)
26 * - slot 5: timer 2 (not on IIci)
27 * - slot 6: timer 1 (not on IIci)
28 * - slot 7: status of IRQ; signals 'any enabled int.'
30 * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
37 * [serial errors or special conditions seem to raise level 6
38 * interrupts on some models (LC4xx?)]
42 * Machines with Quadra-like VIA hardware, except PSC and PMU machines, support
43 * an alternate interrupt mapping, as used by A/UX. It spreads ethernet and
44 * sound out to their own autovector IRQs and gives VIA1 a higher priority:
50 * 5 - Apple Sound Chip (ASC)
54 * For OSS Macintoshes (IIfx only), we apply an interrupt mapping similar to
55 * the Quadra (A/UX) mapping:
67 * For PSC Macintoshes (660AV, 840AV):
73 * - slot 1: SCC channel A interrupt
74 * - slot 2: SCC channel B interrupt
81 * Finally we have good 'ole level 7, the non-maskable interrupt:
83 * 7 - NMI (programmer's switch on the back of some Macs)
84 * Also RAM parity error on models which support it (IIc, IIfx?)
86 * The current interrupt logic looks something like this:
88 * - We install dispatchers for the autovector interrupts (1-7). These
89 * dispatchers are responsible for querying the hardware (the
90 * VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
91 * this information a machspec interrupt number is generated by placing the
92 * index of the interrupt hardware into the low three bits and the original
93 * autovector interrupt number in the upper 5 bits. The handlers for the
94 * resulting machspec interrupt are then called.
96 * - Nubus is a special case because its interrupts are hidden behind two
97 * layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
98 * which translates to IRQ number 17. In this spot we install _another_
99 * dispatcher. This dispatcher finds the interrupting slot number (9-F) and
100 * then forms a new machspec interrupt number as above with the slot number
101 * minus 9 in the low three bits and the pseudo-level 7 in the upper five
102 * bits. The handlers for this new machspec interrupt number are then
103 * called. This puts Nubus interrupts into the range 56-62.
105 * - The Baboon interrupts (used on some PowerBooks) are an even more special
106 * case. They're hidden behind the Nubus slot $C interrupt thus adding a
107 * third layer of indirection. Why oh why did the Apple engineers do that?
111 #include <linux/types.h>
112 #include <linux/kernel.h>
113 #include <linux/sched.h>
114 #include <linux/sched/debug.h>
115 #include <linux/interrupt.h>
116 #include <linux/irq.h>
117 #include <linux/delay.h>
120 #include <asm/macintosh.h>
121 #include <asm/macints.h>
122 #include <asm/mac_via.h>
123 #include <asm/mac_psc.h>
124 #include <asm/mac_oss.h>
125 #include <asm/mac_iop.h>
126 #include <asm/mac_baboon.h>
127 #include <asm/hwtest.h>
128 #include <asm/irq_regs.h>
130 extern void show_registers(struct pt_regs
*);
132 irqreturn_t
mac_nmi_handler(int, void *);
134 static unsigned int mac_irq_startup(struct irq_data
*);
135 static void mac_irq_shutdown(struct irq_data
*);
137 static struct irq_chip mac_irq_chip
= {
139 .irq_enable
= mac_irq_enable
,
140 .irq_disable
= mac_irq_disable
,
141 .irq_startup
= mac_irq_startup
,
142 .irq_shutdown
= mac_irq_shutdown
,
145 void __init
mac_init_IRQ(void)
147 m68k_setup_irq_controller(&mac_irq_chip
, handle_simple_irq
, IRQ_USER
,
148 NUM_MAC_SOURCES
- IRQ_USER
);
151 * Now register the handlers for the master IRQ handlers
152 * at levels 1-7. Most of the work is done elsewhere.
156 oss_register_interrupts();
158 via_register_interrupts();
160 psc_register_interrupts();
162 baboon_register_interrupts();
163 iop_register_interrupts();
164 if (request_irq(IRQ_AUTO_7
, mac_nmi_handler
, 0, "NMI",
166 pr_err("Couldn't register NMI\n");
170 * mac_irq_enable - enable an interrupt source
171 * mac_irq_disable - disable an interrupt source
173 * These routines are just dispatchers to the VIA/OSS/PSC routines.
176 void mac_irq_enable(struct irq_data
*data
)
179 int irq_src
= IRQ_SRC(irq
);
196 else if (oss_present
)
201 baboon_irq_enable(irq
);
206 void mac_irq_disable(struct irq_data
*data
)
209 int irq_src
= IRQ_SRC(irq
);
216 oss_irq_disable(irq
);
218 via_irq_disable(irq
);
225 psc_irq_disable(irq
);
226 else if (oss_present
)
227 oss_irq_disable(irq
);
231 baboon_irq_disable(irq
);
236 static unsigned int mac_irq_startup(struct irq_data
*data
)
240 if (IRQ_SRC(irq
) == 7 && !oss_present
)
241 via_nubus_irq_startup(irq
);
243 mac_irq_enable(data
);
248 static void mac_irq_shutdown(struct irq_data
*data
)
252 if (IRQ_SRC(irq
) == 7 && !oss_present
)
253 via_nubus_irq_shutdown(irq
);
255 mac_irq_disable(data
);
258 static volatile int in_nmi
;
260 irqreturn_t
mac_nmi_handler(int irq
, void *dev_id
)
266 pr_info("Non-Maskable Interrupt\n");
267 show_registers(get_irq_regs());