spi: efm32: Convert to use GPIO descriptors
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_hv_uvmem.c
blob79b1202b1c628e92acb6a0bb928926c73d18a13e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Secure pages management: Migration of pages between normal and secure
4 * memory of KVM guests.
6 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7 */
9 /*
10 * A pseries guest can be run as secure guest on Ultravisor-enabled
11 * POWER platforms. On such platforms, this driver will be used to manage
12 * the movement of guest pages between the normal memory managed by
13 * hypervisor (HV) and secure memory managed by Ultravisor (UV).
15 * The page-in or page-out requests from UV will come to HV as hcalls and
16 * HV will call back into UV via ultracalls to satisfy these page requests.
18 * Private ZONE_DEVICE memory equal to the amount of secure memory
19 * available in the platform for running secure guests is hotplugged.
20 * Whenever a page belonging to the guest becomes secure, a page from this
21 * private device memory is used to represent and track that secure page
22 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23 * shared between UV and HV. However such pages aren't represented by
24 * device private memory and mappings to shared memory exist in both
25 * UV and HV page tables.
29 * Notes on locking
31 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32 * page-in and page-out requests for the same GPA. Concurrent accesses
33 * can either come via UV (guest vCPUs requesting for same page)
34 * or when HV and guest simultaneously access the same page.
35 * This mutex serializes the migration of page from HV(normal) to
36 * UV(secure) and vice versa. So the serialization points are around
37 * migrate_vma routines and page-in/out routines.
39 * Per-guest mutex comes with a cost though. Mainly it serializes the
40 * fault path as page-out can occur when HV faults on accessing secure
41 * guest pages. Currently UV issues page-in requests for all the guest
42 * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43 * not a cause for concern. Also currently the number of page-outs caused
44 * by HV touching secure pages is very very low. If an when UV supports
45 * overcommitting, then we might see concurrent guest driven page-outs.
47 * Locking order
49 * 1. kvm->srcu - Protects KVM memslots
50 * 2. kvm->mm->mmap_sem - find_vma, migrate_vma_pages and helpers, ksm_madvise
51 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52 * as sync-points for page-in/out
56 * Notes on page size
58 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60 * secure GPAs at 64K page size and maintains one device PFN for each
61 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62 * for 64K page at a time.
64 * HV faulting on secure pages: When HV touches any secure page, it
65 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66 * UV splits and remaps the 2MB page if necessary and copies out the
67 * required 64K page contents.
69 * Shared pages: Whenever guest shares a secure page, UV will split and
70 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
72 * HV invalidating a page: When a regular page belonging to secure
73 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74 * page size. Using 64K page size is correct here because any non-secure
75 * page will essentially be of 64K page size. Splitting by UV during sharing
76 * and page-out ensures this.
78 * Page fault handling: When HV handles page fault of a page belonging
79 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80 * Using 64K size is correct here too as UV would have split the 2MB page
81 * into 64k mappings and would have done page-outs earlier.
83 * In summary, the current secure pages handling code in HV assumes
84 * 64K page size and in fact fails any page-in/page-out requests of
85 * non-64K size upfront. If and when UV starts supporting multiple
86 * page-sizes, we need to break this assumption.
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <asm/ultravisor.h>
94 #include <asm/mman.h>
95 #include <asm/kvm_ppc.h>
97 static struct dev_pagemap kvmppc_uvmem_pgmap;
98 static unsigned long *kvmppc_uvmem_bitmap;
99 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
101 #define KVMPPC_UVMEM_PFN (1UL << 63)
103 struct kvmppc_uvmem_slot {
104 struct list_head list;
105 unsigned long nr_pfns;
106 unsigned long base_pfn;
107 unsigned long *pfns;
110 struct kvmppc_uvmem_page_pvt {
111 struct kvm *kvm;
112 unsigned long gpa;
113 bool skip_page_out;
116 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
118 struct kvmppc_uvmem_slot *p;
120 p = kzalloc(sizeof(*p), GFP_KERNEL);
121 if (!p)
122 return -ENOMEM;
123 p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
124 if (!p->pfns) {
125 kfree(p);
126 return -ENOMEM;
128 p->nr_pfns = slot->npages;
129 p->base_pfn = slot->base_gfn;
131 mutex_lock(&kvm->arch.uvmem_lock);
132 list_add(&p->list, &kvm->arch.uvmem_pfns);
133 mutex_unlock(&kvm->arch.uvmem_lock);
135 return 0;
139 * All device PFNs are already released by the time we come here.
141 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
143 struct kvmppc_uvmem_slot *p, *next;
145 mutex_lock(&kvm->arch.uvmem_lock);
146 list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
147 if (p->base_pfn == slot->base_gfn) {
148 vfree(p->pfns);
149 list_del(&p->list);
150 kfree(p);
151 break;
154 mutex_unlock(&kvm->arch.uvmem_lock);
157 static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn,
158 struct kvm *kvm)
160 struct kvmppc_uvmem_slot *p;
162 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
163 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
164 unsigned long index = gfn - p->base_pfn;
166 p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN;
167 return;
172 static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm)
174 struct kvmppc_uvmem_slot *p;
176 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
177 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
178 p->pfns[gfn - p->base_pfn] = 0;
179 return;
184 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
185 unsigned long *uvmem_pfn)
187 struct kvmppc_uvmem_slot *p;
189 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
190 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
191 unsigned long index = gfn - p->base_pfn;
193 if (p->pfns[index] & KVMPPC_UVMEM_PFN) {
194 if (uvmem_pfn)
195 *uvmem_pfn = p->pfns[index] &
196 ~KVMPPC_UVMEM_PFN;
197 return true;
198 } else
199 return false;
202 return false;
205 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
207 struct kvm_memslots *slots;
208 struct kvm_memory_slot *memslot;
209 int ret = H_SUCCESS;
210 int srcu_idx;
212 if (!kvmppc_uvmem_bitmap)
213 return H_UNSUPPORTED;
215 /* Only radix guests can be secure guests */
216 if (!kvm_is_radix(kvm))
217 return H_UNSUPPORTED;
219 srcu_idx = srcu_read_lock(&kvm->srcu);
220 slots = kvm_memslots(kvm);
221 kvm_for_each_memslot(memslot, slots) {
222 if (kvmppc_uvmem_slot_init(kvm, memslot)) {
223 ret = H_PARAMETER;
224 goto out;
226 ret = uv_register_mem_slot(kvm->arch.lpid,
227 memslot->base_gfn << PAGE_SHIFT,
228 memslot->npages * PAGE_SIZE,
229 0, memslot->id);
230 if (ret < 0) {
231 kvmppc_uvmem_slot_free(kvm, memslot);
232 ret = H_PARAMETER;
233 goto out;
236 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_START;
237 out:
238 srcu_read_unlock(&kvm->srcu, srcu_idx);
239 return ret;
242 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
244 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
245 return H_UNSUPPORTED;
247 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
248 pr_info("LPID %d went secure\n", kvm->arch.lpid);
249 return H_SUCCESS;
253 * Drop device pages that we maintain for the secure guest
255 * We first mark the pages to be skipped from UV_PAGE_OUT when there
256 * is HV side fault on these pages. Next we *get* these pages, forcing
257 * fault on them, do fault time migration to replace the device PTEs in
258 * QEMU page table with normal PTEs from newly allocated pages.
260 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free,
261 struct kvm *kvm, bool skip_page_out)
263 int i;
264 struct kvmppc_uvmem_page_pvt *pvt;
265 unsigned long pfn, uvmem_pfn;
266 unsigned long gfn = free->base_gfn;
268 for (i = free->npages; i; --i, ++gfn) {
269 struct page *uvmem_page;
271 mutex_lock(&kvm->arch.uvmem_lock);
272 if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
273 mutex_unlock(&kvm->arch.uvmem_lock);
274 continue;
277 uvmem_page = pfn_to_page(uvmem_pfn);
278 pvt = uvmem_page->zone_device_data;
279 pvt->skip_page_out = skip_page_out;
280 mutex_unlock(&kvm->arch.uvmem_lock);
282 pfn = gfn_to_pfn(kvm, gfn);
283 if (is_error_noslot_pfn(pfn))
284 continue;
285 kvm_release_pfn_clean(pfn);
289 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
291 int srcu_idx;
292 struct kvm_memory_slot *memslot;
295 * Expect to be called only after INIT_START and before INIT_DONE.
296 * If INIT_DONE was completed, use normal VM termination sequence.
298 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
299 return H_UNSUPPORTED;
301 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
302 return H_STATE;
304 srcu_idx = srcu_read_lock(&kvm->srcu);
306 kvm_for_each_memslot(memslot, kvm_memslots(kvm))
307 kvmppc_uvmem_drop_pages(memslot, kvm, false);
309 srcu_read_unlock(&kvm->srcu, srcu_idx);
311 kvm->arch.secure_guest = 0;
312 uv_svm_terminate(kvm->arch.lpid);
314 return H_PARAMETER;
318 * Get a free device PFN from the pool
320 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
321 * PFN will be used to keep track of the secure page on HV side.
323 * Called with kvm->arch.uvmem_lock held
325 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
327 struct page *dpage = NULL;
328 unsigned long bit, uvmem_pfn;
329 struct kvmppc_uvmem_page_pvt *pvt;
330 unsigned long pfn_last, pfn_first;
332 pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT;
333 pfn_last = pfn_first +
334 (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT);
336 spin_lock(&kvmppc_uvmem_bitmap_lock);
337 bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
338 pfn_last - pfn_first);
339 if (bit >= (pfn_last - pfn_first))
340 goto out;
341 bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
342 spin_unlock(&kvmppc_uvmem_bitmap_lock);
344 pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
345 if (!pvt)
346 goto out_clear;
348 uvmem_pfn = bit + pfn_first;
349 kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
351 pvt->gpa = gpa;
352 pvt->kvm = kvm;
354 dpage = pfn_to_page(uvmem_pfn);
355 dpage->zone_device_data = pvt;
356 get_page(dpage);
357 lock_page(dpage);
358 return dpage;
359 out_clear:
360 spin_lock(&kvmppc_uvmem_bitmap_lock);
361 bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
362 out:
363 spin_unlock(&kvmppc_uvmem_bitmap_lock);
364 return NULL;
368 * Alloc a PFN from private device memory pool and copy page from normal
369 * memory to secure memory using UV_PAGE_IN uvcall.
371 static int
372 kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
373 unsigned long end, unsigned long gpa, struct kvm *kvm,
374 unsigned long page_shift, bool *downgrade)
376 unsigned long src_pfn, dst_pfn = 0;
377 struct migrate_vma mig;
378 struct page *spage;
379 unsigned long pfn;
380 struct page *dpage;
381 int ret = 0;
383 memset(&mig, 0, sizeof(mig));
384 mig.vma = vma;
385 mig.start = start;
386 mig.end = end;
387 mig.src = &src_pfn;
388 mig.dst = &dst_pfn;
391 * We come here with mmap_sem write lock held just for
392 * ksm_madvise(), otherwise we only need read mmap_sem.
393 * Hence downgrade to read lock once ksm_madvise() is done.
395 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
396 MADV_UNMERGEABLE, &vma->vm_flags);
397 downgrade_write(&kvm->mm->mmap_sem);
398 *downgrade = true;
399 if (ret)
400 return ret;
402 ret = migrate_vma_setup(&mig);
403 if (ret)
404 return ret;
406 if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
407 ret = -1;
408 goto out_finalize;
411 dpage = kvmppc_uvmem_get_page(gpa, kvm);
412 if (!dpage) {
413 ret = -1;
414 goto out_finalize;
417 pfn = *mig.src >> MIGRATE_PFN_SHIFT;
418 spage = migrate_pfn_to_page(*mig.src);
419 if (spage)
420 uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
421 page_shift);
423 *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
424 migrate_vma_pages(&mig);
425 out_finalize:
426 migrate_vma_finalize(&mig);
427 return ret;
431 * Shares the page with HV, thus making it a normal page.
433 * - If the page is already secure, then provision a new page and share
434 * - If the page is a normal page, share the existing page
436 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
437 * to unmap the device page from QEMU's page tables.
439 static unsigned long
440 kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
443 int ret = H_PARAMETER;
444 struct page *uvmem_page;
445 struct kvmppc_uvmem_page_pvt *pvt;
446 unsigned long pfn;
447 unsigned long gfn = gpa >> page_shift;
448 int srcu_idx;
449 unsigned long uvmem_pfn;
451 srcu_idx = srcu_read_lock(&kvm->srcu);
452 mutex_lock(&kvm->arch.uvmem_lock);
453 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
454 uvmem_page = pfn_to_page(uvmem_pfn);
455 pvt = uvmem_page->zone_device_data;
456 pvt->skip_page_out = true;
459 retry:
460 mutex_unlock(&kvm->arch.uvmem_lock);
461 pfn = gfn_to_pfn(kvm, gfn);
462 if (is_error_noslot_pfn(pfn))
463 goto out;
465 mutex_lock(&kvm->arch.uvmem_lock);
466 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
467 uvmem_page = pfn_to_page(uvmem_pfn);
468 pvt = uvmem_page->zone_device_data;
469 pvt->skip_page_out = true;
470 kvm_release_pfn_clean(pfn);
471 goto retry;
474 if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift))
475 ret = H_SUCCESS;
476 kvm_release_pfn_clean(pfn);
477 mutex_unlock(&kvm->arch.uvmem_lock);
478 out:
479 srcu_read_unlock(&kvm->srcu, srcu_idx);
480 return ret;
484 * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
486 * H_PAGE_IN_SHARED flag makes the page shared which means that the same
487 * memory in is visible from both UV and HV.
489 unsigned long
490 kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
491 unsigned long flags, unsigned long page_shift)
493 bool downgrade = false;
494 unsigned long start, end;
495 struct vm_area_struct *vma;
496 int srcu_idx;
497 unsigned long gfn = gpa >> page_shift;
498 int ret;
500 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
501 return H_UNSUPPORTED;
503 if (page_shift != PAGE_SHIFT)
504 return H_P3;
506 if (flags & ~H_PAGE_IN_SHARED)
507 return H_P2;
509 if (flags & H_PAGE_IN_SHARED)
510 return kvmppc_share_page(kvm, gpa, page_shift);
512 ret = H_PARAMETER;
513 srcu_idx = srcu_read_lock(&kvm->srcu);
514 down_write(&kvm->mm->mmap_sem);
516 start = gfn_to_hva(kvm, gfn);
517 if (kvm_is_error_hva(start))
518 goto out;
520 mutex_lock(&kvm->arch.uvmem_lock);
521 /* Fail the page-in request of an already paged-in page */
522 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
523 goto out_unlock;
525 end = start + (1UL << page_shift);
526 vma = find_vma_intersection(kvm->mm, start, end);
527 if (!vma || vma->vm_start > start || vma->vm_end < end)
528 goto out_unlock;
530 if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
531 &downgrade))
532 ret = H_SUCCESS;
533 out_unlock:
534 mutex_unlock(&kvm->arch.uvmem_lock);
535 out:
536 if (downgrade)
537 up_read(&kvm->mm->mmap_sem);
538 else
539 up_write(&kvm->mm->mmap_sem);
540 srcu_read_unlock(&kvm->srcu, srcu_idx);
541 return ret;
545 * Provision a new page on HV side and copy over the contents
546 * from secure memory using UV_PAGE_OUT uvcall.
548 static int
549 kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start,
550 unsigned long end, unsigned long page_shift,
551 struct kvm *kvm, unsigned long gpa)
553 unsigned long src_pfn, dst_pfn = 0;
554 struct migrate_vma mig;
555 struct page *dpage, *spage;
556 struct kvmppc_uvmem_page_pvt *pvt;
557 unsigned long pfn;
558 int ret = U_SUCCESS;
560 memset(&mig, 0, sizeof(mig));
561 mig.vma = vma;
562 mig.start = start;
563 mig.end = end;
564 mig.src = &src_pfn;
565 mig.dst = &dst_pfn;
567 mutex_lock(&kvm->arch.uvmem_lock);
568 /* The requested page is already paged-out, nothing to do */
569 if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
570 goto out;
572 ret = migrate_vma_setup(&mig);
573 if (ret)
574 goto out;
576 spage = migrate_pfn_to_page(*mig.src);
577 if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
578 goto out_finalize;
580 if (!is_zone_device_page(spage))
581 goto out_finalize;
583 dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
584 if (!dpage) {
585 ret = -1;
586 goto out_finalize;
589 lock_page(dpage);
590 pvt = spage->zone_device_data;
591 pfn = page_to_pfn(dpage);
594 * This function is used in two cases:
595 * - When HV touches a secure page, for which we do UV_PAGE_OUT
596 * - When a secure page is converted to shared page, we *get*
597 * the page to essentially unmap the device page. In this
598 * case we skip page-out.
600 if (!pvt->skip_page_out)
601 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
602 gpa, 0, page_shift);
604 if (ret == U_SUCCESS)
605 *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
606 else {
607 unlock_page(dpage);
608 __free_page(dpage);
609 goto out_finalize;
612 migrate_vma_pages(&mig);
613 out_finalize:
614 migrate_vma_finalize(&mig);
615 out:
616 mutex_unlock(&kvm->arch.uvmem_lock);
617 return ret;
621 * Fault handler callback that gets called when HV touches any page that
622 * has been moved to secure memory, we ask UV to give back the page by
623 * issuing UV_PAGE_OUT uvcall.
625 * This eventually results in dropping of device PFN and the newly
626 * provisioned page/PFN gets populated in QEMU page tables.
628 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
630 struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
632 if (kvmppc_svm_page_out(vmf->vma, vmf->address,
633 vmf->address + PAGE_SIZE, PAGE_SHIFT,
634 pvt->kvm, pvt->gpa))
635 return VM_FAULT_SIGBUS;
636 else
637 return 0;
641 * Release the device PFN back to the pool
643 * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT.
644 * Gets called with kvm->arch.uvmem_lock held.
646 static void kvmppc_uvmem_page_free(struct page *page)
648 unsigned long pfn = page_to_pfn(page) -
649 (kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT);
650 struct kvmppc_uvmem_page_pvt *pvt;
652 spin_lock(&kvmppc_uvmem_bitmap_lock);
653 bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
654 spin_unlock(&kvmppc_uvmem_bitmap_lock);
656 pvt = page->zone_device_data;
657 page->zone_device_data = NULL;
658 kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
659 kfree(pvt);
662 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
663 .page_free = kvmppc_uvmem_page_free,
664 .migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
668 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
670 unsigned long
671 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
672 unsigned long flags, unsigned long page_shift)
674 unsigned long gfn = gpa >> page_shift;
675 unsigned long start, end;
676 struct vm_area_struct *vma;
677 int srcu_idx;
678 int ret;
680 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
681 return H_UNSUPPORTED;
683 if (page_shift != PAGE_SHIFT)
684 return H_P3;
686 if (flags)
687 return H_P2;
689 ret = H_PARAMETER;
690 srcu_idx = srcu_read_lock(&kvm->srcu);
691 down_read(&kvm->mm->mmap_sem);
692 start = gfn_to_hva(kvm, gfn);
693 if (kvm_is_error_hva(start))
694 goto out;
696 end = start + (1UL << page_shift);
697 vma = find_vma_intersection(kvm->mm, start, end);
698 if (!vma || vma->vm_start > start || vma->vm_end < end)
699 goto out;
701 if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
702 ret = H_SUCCESS;
703 out:
704 up_read(&kvm->mm->mmap_sem);
705 srcu_read_unlock(&kvm->srcu, srcu_idx);
706 return ret;
709 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
711 unsigned long pfn;
712 int ret = U_SUCCESS;
714 pfn = gfn_to_pfn(kvm, gfn);
715 if (is_error_noslot_pfn(pfn))
716 return -EFAULT;
718 mutex_lock(&kvm->arch.uvmem_lock);
719 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
720 goto out;
722 ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
723 0, PAGE_SHIFT);
724 out:
725 kvm_release_pfn_clean(pfn);
726 mutex_unlock(&kvm->arch.uvmem_lock);
727 return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
730 static u64 kvmppc_get_secmem_size(void)
732 struct device_node *np;
733 int i, len;
734 const __be32 *prop;
735 u64 size = 0;
737 np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
738 if (!np)
739 goto out;
741 prop = of_get_property(np, "secure-memory-ranges", &len);
742 if (!prop)
743 goto out_put;
745 for (i = 0; i < len / (sizeof(*prop) * 4); i++)
746 size += of_read_number(prop + (i * 4) + 2, 2);
748 out_put:
749 of_node_put(np);
750 out:
751 return size;
754 int kvmppc_uvmem_init(void)
756 int ret = 0;
757 unsigned long size;
758 struct resource *res;
759 void *addr;
760 unsigned long pfn_last, pfn_first;
762 size = kvmppc_get_secmem_size();
763 if (!size) {
765 * Don't fail the initialization of kvm-hv module if
766 * the platform doesn't export ibm,uv-firmware node.
767 * Let normal guests run on such PEF-disabled platform.
769 pr_info("KVMPPC-UVMEM: No support for secure guests\n");
770 goto out;
773 res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
774 if (IS_ERR(res)) {
775 ret = PTR_ERR(res);
776 goto out;
779 kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
780 kvmppc_uvmem_pgmap.res = *res;
781 kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
782 addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
783 if (IS_ERR(addr)) {
784 ret = PTR_ERR(addr);
785 goto out_free_region;
788 pfn_first = res->start >> PAGE_SHIFT;
789 pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
790 kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
791 sizeof(unsigned long), GFP_KERNEL);
792 if (!kvmppc_uvmem_bitmap) {
793 ret = -ENOMEM;
794 goto out_unmap;
797 pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
798 return ret;
799 out_unmap:
800 memunmap_pages(&kvmppc_uvmem_pgmap);
801 out_free_region:
802 release_mem_region(res->start, size);
803 out:
804 return ret;
807 void kvmppc_uvmem_free(void)
809 memunmap_pages(&kvmppc_uvmem_pgmap);
810 release_mem_region(kvmppc_uvmem_pgmap.res.start,
811 resource_size(&kvmppc_uvmem_pgmap.res));
812 kfree(kvmppc_uvmem_bitmap);