spi: efm32: Convert to use GPIO descriptors
[linux/fpc-iii.git] / fs / aio.c
blob5f3d3d8149287777d1b051215c5279cb6bb89acb
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 #include <linux/pseudo_fs.h>
47 #include <asm/kmap_types.h>
48 #include <linux/uaccess.h>
49 #include <linux/nospec.h>
51 #include "internal.h"
53 #define KIOCB_KEY 0
55 #define AIO_RING_MAGIC 0xa10a10a1
56 #define AIO_RING_COMPAT_FEATURES 1
57 #define AIO_RING_INCOMPAT_FEATURES 0
58 struct aio_ring {
59 unsigned id; /* kernel internal index number */
60 unsigned nr; /* number of io_events */
61 unsigned head; /* Written to by userland or under ring_lock
62 * mutex by aio_read_events_ring(). */
63 unsigned tail;
65 unsigned magic;
66 unsigned compat_features;
67 unsigned incompat_features;
68 unsigned header_length; /* size of aio_ring */
71 struct io_event io_events[0];
72 }; /* 128 bytes + ring size */
75 * Plugging is meant to work with larger batches of IOs. If we don't
76 * have more than the below, then don't bother setting up a plug.
78 #define AIO_PLUG_THRESHOLD 2
80 #define AIO_RING_PAGES 8
82 struct kioctx_table {
83 struct rcu_head rcu;
84 unsigned nr;
85 struct kioctx __rcu *table[];
88 struct kioctx_cpu {
89 unsigned reqs_available;
92 struct ctx_rq_wait {
93 struct completion comp;
94 atomic_t count;
97 struct kioctx {
98 struct percpu_ref users;
99 atomic_t dead;
101 struct percpu_ref reqs;
103 unsigned long user_id;
105 struct __percpu kioctx_cpu *cpu;
108 * For percpu reqs_available, number of slots we move to/from global
109 * counter at a time:
111 unsigned req_batch;
113 * This is what userspace passed to io_setup(), it's not used for
114 * anything but counting against the global max_reqs quota.
116 * The real limit is nr_events - 1, which will be larger (see
117 * aio_setup_ring())
119 unsigned max_reqs;
121 /* Size of ringbuffer, in units of struct io_event */
122 unsigned nr_events;
124 unsigned long mmap_base;
125 unsigned long mmap_size;
127 struct page **ring_pages;
128 long nr_pages;
130 struct rcu_work free_rwork; /* see free_ioctx() */
133 * signals when all in-flight requests are done
135 struct ctx_rq_wait *rq_wait;
137 struct {
139 * This counts the number of available slots in the ringbuffer,
140 * so we avoid overflowing it: it's decremented (if positive)
141 * when allocating a kiocb and incremented when the resulting
142 * io_event is pulled off the ringbuffer.
144 * We batch accesses to it with a percpu version.
146 atomic_t reqs_available;
147 } ____cacheline_aligned_in_smp;
149 struct {
150 spinlock_t ctx_lock;
151 struct list_head active_reqs; /* used for cancellation */
152 } ____cacheline_aligned_in_smp;
154 struct {
155 struct mutex ring_lock;
156 wait_queue_head_t wait;
157 } ____cacheline_aligned_in_smp;
159 struct {
160 unsigned tail;
161 unsigned completed_events;
162 spinlock_t completion_lock;
163 } ____cacheline_aligned_in_smp;
165 struct page *internal_pages[AIO_RING_PAGES];
166 struct file *aio_ring_file;
168 unsigned id;
172 * First field must be the file pointer in all the
173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
175 struct fsync_iocb {
176 struct file *file;
177 struct work_struct work;
178 bool datasync;
181 struct poll_iocb {
182 struct file *file;
183 struct wait_queue_head *head;
184 __poll_t events;
185 bool done;
186 bool cancelled;
187 struct wait_queue_entry wait;
188 struct work_struct work;
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
197 struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
208 struct io_event ki_res;
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
218 struct eventfd_ctx *ki_eventfd;
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 unsigned long aio_nr; /* current system wide number of aio requests */
224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
227 static struct kmem_cache *kiocb_cachep;
228 static struct kmem_cache *kioctx_cachep;
230 static struct vfsmount *aio_mnt;
232 static const struct file_operations aio_ring_fops;
233 static const struct address_space_operations aio_ctx_aops;
235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
237 struct file *file;
238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
248 if (IS_ERR(file))
249 iput(inode);
250 return file;
253 static int aio_init_fs_context(struct fs_context *fc)
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
256 return -ENOMEM;
257 fc->s_iflags |= SB_I_NOEXEC;
258 return 0;
261 /* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
265 static int __init aio_setup(void)
267 static struct file_system_type aio_fs = {
268 .name = "aio",
269 .init_fs_context = aio_init_fs_context,
270 .kill_sb = kill_anon_super,
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 return 0;
280 __initcall(aio_setup);
282 static void put_aio_ring_file(struct kioctx *ctx)
284 struct file *aio_ring_file = ctx->aio_ring_file;
285 struct address_space *i_mapping;
287 if (aio_ring_file) {
288 truncate_setsize(file_inode(aio_ring_file), 0);
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping = aio_ring_file->f_mapping;
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
294 ctx->aio_ring_file = NULL;
295 spin_unlock(&i_mapping->private_lock);
297 fput(aio_ring_file);
301 static void aio_free_ring(struct kioctx *ctx)
303 int i;
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
308 put_aio_ring_file(ctx);
310 for (i = 0; i < ctx->nr_pages; i++) {
311 struct page *page;
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 kfree(ctx->ring_pages);
323 ctx->ring_pages = NULL;
327 static int aio_ring_mremap(struct vm_area_struct *vma)
329 struct file *file = vma->vm_file;
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
332 int i, res = -EINVAL;
334 spin_lock(&mm->ioctx_lock);
335 rcu_read_lock();
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
338 struct kioctx *ctx;
340 ctx = rcu_dereference(table->table[i]);
341 if (ctx && ctx->aio_ring_file == file) {
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
344 res = 0;
346 break;
350 rcu_read_unlock();
351 spin_unlock(&mm->ioctx_lock);
352 return res;
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
361 #endif
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
368 return 0;
371 static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
379 struct kioctx *ctx;
380 unsigned long flags;
381 pgoff_t idx;
382 int rc;
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
389 if (mode == MIGRATE_SYNC_NO_COPY)
390 return -EINVAL;
392 rc = 0;
394 /* mapping->private_lock here protects against the kioctx teardown. */
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
397 if (!ctx) {
398 rc = -EINVAL;
399 goto out;
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
406 if (!mutex_trylock(&ctx->ring_lock)) {
407 rc = -EAGAIN;
408 goto out;
411 idx = old->index;
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
415 rc = -EAGAIN;
416 } else
417 rc = -EINVAL;
419 if (rc != 0)
420 goto out_unlock;
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
424 get_page(new);
426 rc = migrate_page_move_mapping(mapping, new, old, 1);
427 if (rc != MIGRATEPAGE_SUCCESS) {
428 put_page(new);
429 goto out_unlock;
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
442 /* The old page is no longer accessible. */
443 put_page(old);
445 out_unlock:
446 mutex_unlock(&ctx->ring_lock);
447 out:
448 spin_unlock(&mapping->private_lock);
449 return rc;
451 #endif
453 static const struct address_space_operations aio_ctx_aops = {
454 .set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 .migratepage = aio_migratepage,
457 #endif
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
462 struct aio_ring *ring;
463 struct mm_struct *mm = current->mm;
464 unsigned long size, unused;
465 int nr_pages;
466 int i;
467 struct file *file;
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
475 nr_pages = PFN_UP(size);
476 if (nr_pages < 0)
477 return -EINVAL;
479 file = aio_private_file(ctx, nr_pages);
480 if (IS_ERR(file)) {
481 ctx->aio_ring_file = NULL;
482 return -ENOMEM;
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 GFP_KERNEL);
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
495 return -ENOMEM;
499 for (i = 0; i < nr_pages; i++) {
500 struct page *page;
501 page = find_or_create_page(file->f_mapping,
502 i, GFP_HIGHUSER | __GFP_ZERO);
503 if (!page)
504 break;
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
508 unlock_page(page);
510 ctx->ring_pages[i] = page;
512 ctx->nr_pages = i;
514 if (unlikely(i != nr_pages)) {
515 aio_free_ring(ctx);
516 return -ENOMEM;
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
522 if (down_write_killable(&mm->mmap_sem)) {
523 ctx->mmap_size = 0;
524 aio_free_ring(ctx);
525 return -EINTR;
528 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
530 MAP_SHARED, 0, &unused, NULL);
531 up_write(&mm->mmap_sem);
532 if (IS_ERR((void *)ctx->mmap_base)) {
533 ctx->mmap_size = 0;
534 aio_free_ring(ctx);
535 return -ENOMEM;
538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
543 ring = kmap_atomic(ctx->ring_pages[0]);
544 ring->nr = nr_events; /* user copy */
545 ring->id = ~0U;
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
551 kunmap_atomic(ring);
552 flush_dcache_page(ctx->ring_pages[0]);
554 return 0;
557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 struct kioctx *ctx = req->ki_ctx;
565 unsigned long flags;
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 return;
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
572 req->ki_cancel = cancel;
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(). Use rcu_work.
582 static void free_ioctx(struct work_struct *work)
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 free_rwork);
586 pr_debug("freeing %p\n", ctx);
588 aio_free_ring(ctx);
589 free_percpu(ctx->cpu);
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
592 kmem_cache_free(kioctx_cachep, ctx);
595 static void free_ioctx_reqs(struct percpu_ref *ref)
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
599 /* At this point we know that there are no any in-flight requests */
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
603 /* Synchronize against RCU protected table->table[] dereferences */
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
613 static void free_ioctx_users(struct percpu_ref *ref)
615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 struct aio_kiocb *req;
618 spin_lock_irq(&ctx->ctx_lock);
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
622 struct aio_kiocb, ki_list);
623 req->ki_cancel(&req->rw);
624 list_del_init(&req->ki_list);
627 spin_unlock_irq(&ctx->ctx_lock);
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
635 unsigned i, new_nr;
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
639 spin_lock(&mm->ioctx_lock);
640 table = rcu_dereference_raw(mm->ioctx_table);
642 while (1) {
643 if (table)
644 for (i = 0; i < table->nr; i++)
645 if (!rcu_access_pointer(table->table[i])) {
646 ctx->id = i;
647 rcu_assign_pointer(table->table[i], ctx);
648 spin_unlock(&mm->ioctx_lock);
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
654 ring = kmap_atomic(ctx->ring_pages[0]);
655 ring->id = ctx->id;
656 kunmap_atomic(ring);
657 return 0;
660 new_nr = (table ? table->nr : 1) * 4;
661 spin_unlock(&mm->ioctx_lock);
663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
664 new_nr, GFP_KERNEL);
665 if (!table)
666 return -ENOMEM;
668 table->nr = new_nr;
670 spin_lock(&mm->ioctx_lock);
671 old = rcu_dereference_raw(mm->ioctx_table);
673 if (!old) {
674 rcu_assign_pointer(mm->ioctx_table, table);
675 } else if (table->nr > old->nr) {
676 memcpy(table->table, old->table,
677 old->nr * sizeof(struct kioctx *));
679 rcu_assign_pointer(mm->ioctx_table, table);
680 kfree_rcu(old, rcu);
681 } else {
682 kfree(table);
683 table = old;
688 static void aio_nr_sub(unsigned nr)
690 spin_lock(&aio_nr_lock);
691 if (WARN_ON(aio_nr - nr > aio_nr))
692 aio_nr = 0;
693 else
694 aio_nr -= nr;
695 spin_unlock(&aio_nr_lock);
698 /* ioctx_alloc
699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
701 static struct kioctx *ioctx_alloc(unsigned nr_events)
703 struct mm_struct *mm = current->mm;
704 struct kioctx *ctx;
705 int err = -ENOMEM;
708 * Store the original nr_events -- what userspace passed to io_setup(),
709 * for counting against the global limit -- before it changes.
711 unsigned int max_reqs = nr_events;
714 * We keep track of the number of available ringbuffer slots, to prevent
715 * overflow (reqs_available), and we also use percpu counters for this.
717 * So since up to half the slots might be on other cpu's percpu counters
718 * and unavailable, double nr_events so userspace sees what they
719 * expected: additionally, we move req_batch slots to/from percpu
720 * counters at a time, so make sure that isn't 0:
722 nr_events = max(nr_events, num_possible_cpus() * 4);
723 nr_events *= 2;
725 /* Prevent overflows */
726 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
727 pr_debug("ENOMEM: nr_events too high\n");
728 return ERR_PTR(-EINVAL);
731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
732 return ERR_PTR(-EAGAIN);
734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
735 if (!ctx)
736 return ERR_PTR(-ENOMEM);
738 ctx->max_reqs = max_reqs;
740 spin_lock_init(&ctx->ctx_lock);
741 spin_lock_init(&ctx->completion_lock);
742 mutex_init(&ctx->ring_lock);
743 /* Protect against page migration throughout kiotx setup by keeping
744 * the ring_lock mutex held until setup is complete. */
745 mutex_lock(&ctx->ring_lock);
746 init_waitqueue_head(&ctx->wait);
748 INIT_LIST_HEAD(&ctx->active_reqs);
750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
751 goto err;
753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
754 goto err;
756 ctx->cpu = alloc_percpu(struct kioctx_cpu);
757 if (!ctx->cpu)
758 goto err;
760 err = aio_setup_ring(ctx, nr_events);
761 if (err < 0)
762 goto err;
764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
766 if (ctx->req_batch < 1)
767 ctx->req_batch = 1;
769 /* limit the number of system wide aios */
770 spin_lock(&aio_nr_lock);
771 if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 aio_nr + ctx->max_reqs < aio_nr) {
773 spin_unlock(&aio_nr_lock);
774 err = -EAGAIN;
775 goto err_ctx;
777 aio_nr += ctx->max_reqs;
778 spin_unlock(&aio_nr_lock);
780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
783 err = ioctx_add_table(ctx, mm);
784 if (err)
785 goto err_cleanup;
787 /* Release the ring_lock mutex now that all setup is complete. */
788 mutex_unlock(&ctx->ring_lock);
790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 ctx, ctx->user_id, mm, ctx->nr_events);
792 return ctx;
794 err_cleanup:
795 aio_nr_sub(ctx->max_reqs);
796 err_ctx:
797 atomic_set(&ctx->dead, 1);
798 if (ctx->mmap_size)
799 vm_munmap(ctx->mmap_base, ctx->mmap_size);
800 aio_free_ring(ctx);
801 err:
802 mutex_unlock(&ctx->ring_lock);
803 free_percpu(ctx->cpu);
804 percpu_ref_exit(&ctx->reqs);
805 percpu_ref_exit(&ctx->users);
806 kmem_cache_free(kioctx_cachep, ctx);
807 pr_debug("error allocating ioctx %d\n", err);
808 return ERR_PTR(err);
811 /* kill_ioctx
812 * Cancels all outstanding aio requests on an aio context. Used
813 * when the processes owning a context have all exited to encourage
814 * the rapid destruction of the kioctx.
816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
817 struct ctx_rq_wait *wait)
819 struct kioctx_table *table;
821 spin_lock(&mm->ioctx_lock);
822 if (atomic_xchg(&ctx->dead, 1)) {
823 spin_unlock(&mm->ioctx_lock);
824 return -EINVAL;
827 table = rcu_dereference_raw(mm->ioctx_table);
828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 RCU_INIT_POINTER(table->table[ctx->id], NULL);
830 spin_unlock(&mm->ioctx_lock);
832 /* free_ioctx_reqs() will do the necessary RCU synchronization */
833 wake_up_all(&ctx->wait);
836 * It'd be more correct to do this in free_ioctx(), after all
837 * the outstanding kiocbs have finished - but by then io_destroy
838 * has already returned, so io_setup() could potentially return
839 * -EAGAIN with no ioctxs actually in use (as far as userspace
840 * could tell).
842 aio_nr_sub(ctx->max_reqs);
844 if (ctx->mmap_size)
845 vm_munmap(ctx->mmap_base, ctx->mmap_size);
847 ctx->rq_wait = wait;
848 percpu_ref_kill(&ctx->users);
849 return 0;
853 * exit_aio: called when the last user of mm goes away. At this point, there is
854 * no way for any new requests to be submited or any of the io_* syscalls to be
855 * called on the context.
857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
858 * them.
860 void exit_aio(struct mm_struct *mm)
862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
863 struct ctx_rq_wait wait;
864 int i, skipped;
866 if (!table)
867 return;
869 atomic_set(&wait.count, table->nr);
870 init_completion(&wait.comp);
872 skipped = 0;
873 for (i = 0; i < table->nr; ++i) {
874 struct kioctx *ctx =
875 rcu_dereference_protected(table->table[i], true);
877 if (!ctx) {
878 skipped++;
879 continue;
883 * We don't need to bother with munmap() here - exit_mmap(mm)
884 * is coming and it'll unmap everything. And we simply can't,
885 * this is not necessarily our ->mm.
886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 * that it needs to unmap the area, just set it to 0.
889 ctx->mmap_size = 0;
890 kill_ioctx(mm, ctx, &wait);
893 if (!atomic_sub_and_test(skipped, &wait.count)) {
894 /* Wait until all IO for the context are done. */
895 wait_for_completion(&wait.comp);
898 RCU_INIT_POINTER(mm->ioctx_table, NULL);
899 kfree(table);
902 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
904 struct kioctx_cpu *kcpu;
905 unsigned long flags;
907 local_irq_save(flags);
908 kcpu = this_cpu_ptr(ctx->cpu);
909 kcpu->reqs_available += nr;
911 while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 kcpu->reqs_available -= ctx->req_batch;
913 atomic_add(ctx->req_batch, &ctx->reqs_available);
916 local_irq_restore(flags);
919 static bool __get_reqs_available(struct kioctx *ctx)
921 struct kioctx_cpu *kcpu;
922 bool ret = false;
923 unsigned long flags;
925 local_irq_save(flags);
926 kcpu = this_cpu_ptr(ctx->cpu);
927 if (!kcpu->reqs_available) {
928 int old, avail = atomic_read(&ctx->reqs_available);
930 do {
931 if (avail < ctx->req_batch)
932 goto out;
934 old = avail;
935 avail = atomic_cmpxchg(&ctx->reqs_available,
936 avail, avail - ctx->req_batch);
937 } while (avail != old);
939 kcpu->reqs_available += ctx->req_batch;
942 ret = true;
943 kcpu->reqs_available--;
944 out:
945 local_irq_restore(flags);
946 return ret;
949 /* refill_reqs_available
950 * Updates the reqs_available reference counts used for tracking the
951 * number of free slots in the completion ring. This can be called
952 * from aio_complete() (to optimistically update reqs_available) or
953 * from aio_get_req() (the we're out of events case). It must be
954 * called holding ctx->completion_lock.
956 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
957 unsigned tail)
959 unsigned events_in_ring, completed;
961 /* Clamp head since userland can write to it. */
962 head %= ctx->nr_events;
963 if (head <= tail)
964 events_in_ring = tail - head;
965 else
966 events_in_ring = ctx->nr_events - (head - tail);
968 completed = ctx->completed_events;
969 if (events_in_ring < completed)
970 completed -= events_in_ring;
971 else
972 completed = 0;
974 if (!completed)
975 return;
977 ctx->completed_events -= completed;
978 put_reqs_available(ctx, completed);
981 /* user_refill_reqs_available
982 * Called to refill reqs_available when aio_get_req() encounters an
983 * out of space in the completion ring.
985 static void user_refill_reqs_available(struct kioctx *ctx)
987 spin_lock_irq(&ctx->completion_lock);
988 if (ctx->completed_events) {
989 struct aio_ring *ring;
990 unsigned head;
992 /* Access of ring->head may race with aio_read_events_ring()
993 * here, but that's okay since whether we read the old version
994 * or the new version, and either will be valid. The important
995 * part is that head cannot pass tail since we prevent
996 * aio_complete() from updating tail by holding
997 * ctx->completion_lock. Even if head is invalid, the check
998 * against ctx->completed_events below will make sure we do the
999 * safe/right thing.
1001 ring = kmap_atomic(ctx->ring_pages[0]);
1002 head = ring->head;
1003 kunmap_atomic(ring);
1005 refill_reqs_available(ctx, head, ctx->tail);
1008 spin_unlock_irq(&ctx->completion_lock);
1011 static bool get_reqs_available(struct kioctx *ctx)
1013 if (__get_reqs_available(ctx))
1014 return true;
1015 user_refill_reqs_available(ctx);
1016 return __get_reqs_available(ctx);
1019 /* aio_get_req
1020 * Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
1023 * The refcount is initialized to 2 - one for the async op completion,
1024 * one for the synchronous code that does this.
1026 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1028 struct aio_kiocb *req;
1030 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1031 if (unlikely(!req))
1032 return NULL;
1034 if (unlikely(!get_reqs_available(ctx))) {
1035 kmem_cache_free(kiocb_cachep, req);
1036 return NULL;
1039 percpu_ref_get(&ctx->reqs);
1040 req->ki_ctx = ctx;
1041 INIT_LIST_HEAD(&req->ki_list);
1042 refcount_set(&req->ki_refcnt, 2);
1043 req->ki_eventfd = NULL;
1044 return req;
1047 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1049 struct aio_ring __user *ring = (void __user *)ctx_id;
1050 struct mm_struct *mm = current->mm;
1051 struct kioctx *ctx, *ret = NULL;
1052 struct kioctx_table *table;
1053 unsigned id;
1055 if (get_user(id, &ring->id))
1056 return NULL;
1058 rcu_read_lock();
1059 table = rcu_dereference(mm->ioctx_table);
1061 if (!table || id >= table->nr)
1062 goto out;
1064 id = array_index_nospec(id, table->nr);
1065 ctx = rcu_dereference(table->table[id]);
1066 if (ctx && ctx->user_id == ctx_id) {
1067 if (percpu_ref_tryget_live(&ctx->users))
1068 ret = ctx;
1070 out:
1071 rcu_read_unlock();
1072 return ret;
1075 static inline void iocb_destroy(struct aio_kiocb *iocb)
1077 if (iocb->ki_eventfd)
1078 eventfd_ctx_put(iocb->ki_eventfd);
1079 if (iocb->ki_filp)
1080 fput(iocb->ki_filp);
1081 percpu_ref_put(&iocb->ki_ctx->reqs);
1082 kmem_cache_free(kiocb_cachep, iocb);
1085 /* aio_complete
1086 * Called when the io request on the given iocb is complete.
1088 static void aio_complete(struct aio_kiocb *iocb)
1090 struct kioctx *ctx = iocb->ki_ctx;
1091 struct aio_ring *ring;
1092 struct io_event *ev_page, *event;
1093 unsigned tail, pos, head;
1094 unsigned long flags;
1097 * Add a completion event to the ring buffer. Must be done holding
1098 * ctx->completion_lock to prevent other code from messing with the tail
1099 * pointer since we might be called from irq context.
1101 spin_lock_irqsave(&ctx->completion_lock, flags);
1103 tail = ctx->tail;
1104 pos = tail + AIO_EVENTS_OFFSET;
1106 if (++tail >= ctx->nr_events)
1107 tail = 0;
1109 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1110 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1112 *event = iocb->ki_res;
1114 kunmap_atomic(ev_page);
1115 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1117 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1118 (void __user *)(unsigned long)iocb->ki_res.obj,
1119 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1121 /* after flagging the request as done, we
1122 * must never even look at it again
1124 smp_wmb(); /* make event visible before updating tail */
1126 ctx->tail = tail;
1128 ring = kmap_atomic(ctx->ring_pages[0]);
1129 head = ring->head;
1130 ring->tail = tail;
1131 kunmap_atomic(ring);
1132 flush_dcache_page(ctx->ring_pages[0]);
1134 ctx->completed_events++;
1135 if (ctx->completed_events > 1)
1136 refill_reqs_available(ctx, head, tail);
1137 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1139 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1142 * Check if the user asked us to deliver the result through an
1143 * eventfd. The eventfd_signal() function is safe to be called
1144 * from IRQ context.
1146 if (iocb->ki_eventfd)
1147 eventfd_signal(iocb->ki_eventfd, 1);
1150 * We have to order our ring_info tail store above and test
1151 * of the wait list below outside the wait lock. This is
1152 * like in wake_up_bit() where clearing a bit has to be
1153 * ordered with the unlocked test.
1155 smp_mb();
1157 if (waitqueue_active(&ctx->wait))
1158 wake_up(&ctx->wait);
1161 static inline void iocb_put(struct aio_kiocb *iocb)
1163 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1164 aio_complete(iocb);
1165 iocb_destroy(iocb);
1169 /* aio_read_events_ring
1170 * Pull an event off of the ioctx's event ring. Returns the number of
1171 * events fetched
1173 static long aio_read_events_ring(struct kioctx *ctx,
1174 struct io_event __user *event, long nr)
1176 struct aio_ring *ring;
1177 unsigned head, tail, pos;
1178 long ret = 0;
1179 int copy_ret;
1182 * The mutex can block and wake us up and that will cause
1183 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 * and repeat. This should be rare enough that it doesn't cause
1185 * peformance issues. See the comment in read_events() for more detail.
1187 sched_annotate_sleep();
1188 mutex_lock(&ctx->ring_lock);
1190 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191 ring = kmap_atomic(ctx->ring_pages[0]);
1192 head = ring->head;
1193 tail = ring->tail;
1194 kunmap_atomic(ring);
1197 * Ensure that once we've read the current tail pointer, that
1198 * we also see the events that were stored up to the tail.
1200 smp_rmb();
1202 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1204 if (head == tail)
1205 goto out;
1207 head %= ctx->nr_events;
1208 tail %= ctx->nr_events;
1210 while (ret < nr) {
1211 long avail;
1212 struct io_event *ev;
1213 struct page *page;
1215 avail = (head <= tail ? tail : ctx->nr_events) - head;
1216 if (head == tail)
1217 break;
1219 pos = head + AIO_EVENTS_OFFSET;
1220 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1221 pos %= AIO_EVENTS_PER_PAGE;
1223 avail = min(avail, nr - ret);
1224 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1226 ev = kmap(page);
1227 copy_ret = copy_to_user(event + ret, ev + pos,
1228 sizeof(*ev) * avail);
1229 kunmap(page);
1231 if (unlikely(copy_ret)) {
1232 ret = -EFAULT;
1233 goto out;
1236 ret += avail;
1237 head += avail;
1238 head %= ctx->nr_events;
1241 ring = kmap_atomic(ctx->ring_pages[0]);
1242 ring->head = head;
1243 kunmap_atomic(ring);
1244 flush_dcache_page(ctx->ring_pages[0]);
1246 pr_debug("%li h%u t%u\n", ret, head, tail);
1247 out:
1248 mutex_unlock(&ctx->ring_lock);
1250 return ret;
1253 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 struct io_event __user *event, long *i)
1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1258 if (ret > 0)
1259 *i += ret;
1261 if (unlikely(atomic_read(&ctx->dead)))
1262 ret = -EINVAL;
1264 if (!*i)
1265 *i = ret;
1267 return ret < 0 || *i >= min_nr;
1270 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271 struct io_event __user *event,
1272 ktime_t until)
1274 long ret = 0;
1277 * Note that aio_read_events() is being called as the conditional - i.e.
1278 * we're calling it after prepare_to_wait() has set task state to
1279 * TASK_INTERRUPTIBLE.
1281 * But aio_read_events() can block, and if it blocks it's going to flip
1282 * the task state back to TASK_RUNNING.
1284 * This should be ok, provided it doesn't flip the state back to
1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 * will only happen if the mutex_lock() call blocks, and we then find
1287 * the ringbuffer empty. So in practice we should be ok, but it's
1288 * something to be aware of when touching this code.
1290 if (until == 0)
1291 aio_read_events(ctx, min_nr, nr, event, &ret);
1292 else
1293 wait_event_interruptible_hrtimeout(ctx->wait,
1294 aio_read_events(ctx, min_nr, nr, event, &ret),
1295 until);
1296 return ret;
1299 /* sys_io_setup:
1300 * Create an aio_context capable of receiving at least nr_events.
1301 * ctxp must not point to an aio_context that already exists, and
1302 * must be initialized to 0 prior to the call. On successful
1303 * creation of the aio_context, *ctxp is filled in with the resulting
1304 * handle. May fail with -EINVAL if *ctxp is not initialized,
1305 * if the specified nr_events exceeds internal limits. May fail
1306 * with -EAGAIN if the specified nr_events exceeds the user's limit
1307 * of available events. May fail with -ENOMEM if insufficient kernel
1308 * resources are available. May fail with -EFAULT if an invalid
1309 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1310 * implemented.
1312 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1314 struct kioctx *ioctx = NULL;
1315 unsigned long ctx;
1316 long ret;
1318 ret = get_user(ctx, ctxp);
1319 if (unlikely(ret))
1320 goto out;
1322 ret = -EINVAL;
1323 if (unlikely(ctx || nr_events == 0)) {
1324 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1325 ctx, nr_events);
1326 goto out;
1329 ioctx = ioctx_alloc(nr_events);
1330 ret = PTR_ERR(ioctx);
1331 if (!IS_ERR(ioctx)) {
1332 ret = put_user(ioctx->user_id, ctxp);
1333 if (ret)
1334 kill_ioctx(current->mm, ioctx, NULL);
1335 percpu_ref_put(&ioctx->users);
1338 out:
1339 return ret;
1342 #ifdef CONFIG_COMPAT
1343 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1345 struct kioctx *ioctx = NULL;
1346 unsigned long ctx;
1347 long ret;
1349 ret = get_user(ctx, ctx32p);
1350 if (unlikely(ret))
1351 goto out;
1353 ret = -EINVAL;
1354 if (unlikely(ctx || nr_events == 0)) {
1355 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356 ctx, nr_events);
1357 goto out;
1360 ioctx = ioctx_alloc(nr_events);
1361 ret = PTR_ERR(ioctx);
1362 if (!IS_ERR(ioctx)) {
1363 /* truncating is ok because it's a user address */
1364 ret = put_user((u32)ioctx->user_id, ctx32p);
1365 if (ret)
1366 kill_ioctx(current->mm, ioctx, NULL);
1367 percpu_ref_put(&ioctx->users);
1370 out:
1371 return ret;
1373 #endif
1375 /* sys_io_destroy:
1376 * Destroy the aio_context specified. May cancel any outstanding
1377 * AIOs and block on completion. Will fail with -ENOSYS if not
1378 * implemented. May fail with -EINVAL if the context pointed to
1379 * is invalid.
1381 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1383 struct kioctx *ioctx = lookup_ioctx(ctx);
1384 if (likely(NULL != ioctx)) {
1385 struct ctx_rq_wait wait;
1386 int ret;
1388 init_completion(&wait.comp);
1389 atomic_set(&wait.count, 1);
1391 /* Pass requests_done to kill_ioctx() where it can be set
1392 * in a thread-safe way. If we try to set it here then we have
1393 * a race condition if two io_destroy() called simultaneously.
1395 ret = kill_ioctx(current->mm, ioctx, &wait);
1396 percpu_ref_put(&ioctx->users);
1398 /* Wait until all IO for the context are done. Otherwise kernel
1399 * keep using user-space buffers even if user thinks the context
1400 * is destroyed.
1402 if (!ret)
1403 wait_for_completion(&wait.comp);
1405 return ret;
1407 pr_debug("EINVAL: invalid context id\n");
1408 return -EINVAL;
1411 static void aio_remove_iocb(struct aio_kiocb *iocb)
1413 struct kioctx *ctx = iocb->ki_ctx;
1414 unsigned long flags;
1416 spin_lock_irqsave(&ctx->ctx_lock, flags);
1417 list_del(&iocb->ki_list);
1418 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1421 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1423 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1425 if (!list_empty_careful(&iocb->ki_list))
1426 aio_remove_iocb(iocb);
1428 if (kiocb->ki_flags & IOCB_WRITE) {
1429 struct inode *inode = file_inode(kiocb->ki_filp);
1432 * Tell lockdep we inherited freeze protection from submission
1433 * thread.
1435 if (S_ISREG(inode->i_mode))
1436 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437 file_end_write(kiocb->ki_filp);
1440 iocb->ki_res.res = res;
1441 iocb->ki_res.res2 = res2;
1442 iocb_put(iocb);
1445 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1447 int ret;
1449 req->ki_complete = aio_complete_rw;
1450 req->private = NULL;
1451 req->ki_pos = iocb->aio_offset;
1452 req->ki_flags = iocb_flags(req->ki_filp);
1453 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1454 req->ki_flags |= IOCB_EVENTFD;
1455 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1456 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1458 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459 * aio_reqprio is interpreted as an I/O scheduling
1460 * class and priority.
1462 ret = ioprio_check_cap(iocb->aio_reqprio);
1463 if (ret) {
1464 pr_debug("aio ioprio check cap error: %d\n", ret);
1465 return ret;
1468 req->ki_ioprio = iocb->aio_reqprio;
1469 } else
1470 req->ki_ioprio = get_current_ioprio();
1472 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1473 if (unlikely(ret))
1474 return ret;
1476 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1477 return 0;
1480 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1481 struct iovec **iovec, bool vectored, bool compat,
1482 struct iov_iter *iter)
1484 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1485 size_t len = iocb->aio_nbytes;
1487 if (!vectored) {
1488 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1489 *iovec = NULL;
1490 return ret;
1492 #ifdef CONFIG_COMPAT
1493 if (compat)
1494 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1495 iter);
1496 #endif
1497 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1500 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1502 switch (ret) {
1503 case -EIOCBQUEUED:
1504 break;
1505 case -ERESTARTSYS:
1506 case -ERESTARTNOINTR:
1507 case -ERESTARTNOHAND:
1508 case -ERESTART_RESTARTBLOCK:
1510 * There's no easy way to restart the syscall since other AIO's
1511 * may be already running. Just fail this IO with EINTR.
1513 ret = -EINTR;
1514 /*FALLTHRU*/
1515 default:
1516 req->ki_complete(req, ret, 0);
1520 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1521 bool vectored, bool compat)
1523 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1524 struct iov_iter iter;
1525 struct file *file;
1526 int ret;
1528 ret = aio_prep_rw(req, iocb);
1529 if (ret)
1530 return ret;
1531 file = req->ki_filp;
1532 if (unlikely(!(file->f_mode & FMODE_READ)))
1533 return -EBADF;
1534 ret = -EINVAL;
1535 if (unlikely(!file->f_op->read_iter))
1536 return -EINVAL;
1538 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1539 if (ret < 0)
1540 return ret;
1541 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1542 if (!ret)
1543 aio_rw_done(req, call_read_iter(file, req, &iter));
1544 kfree(iovec);
1545 return ret;
1548 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1549 bool vectored, bool compat)
1551 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1552 struct iov_iter iter;
1553 struct file *file;
1554 int ret;
1556 ret = aio_prep_rw(req, iocb);
1557 if (ret)
1558 return ret;
1559 file = req->ki_filp;
1561 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1562 return -EBADF;
1563 if (unlikely(!file->f_op->write_iter))
1564 return -EINVAL;
1566 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1567 if (ret < 0)
1568 return ret;
1569 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1570 if (!ret) {
1572 * Open-code file_start_write here to grab freeze protection,
1573 * which will be released by another thread in
1574 * aio_complete_rw(). Fool lockdep by telling it the lock got
1575 * released so that it doesn't complain about the held lock when
1576 * we return to userspace.
1578 if (S_ISREG(file_inode(file)->i_mode)) {
1579 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1580 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1582 req->ki_flags |= IOCB_WRITE;
1583 aio_rw_done(req, call_write_iter(file, req, &iter));
1585 kfree(iovec);
1586 return ret;
1589 static void aio_fsync_work(struct work_struct *work)
1591 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1593 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1594 iocb_put(iocb);
1597 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598 bool datasync)
1600 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1601 iocb->aio_rw_flags))
1602 return -EINVAL;
1604 if (unlikely(!req->file->f_op->fsync))
1605 return -EINVAL;
1607 req->datasync = datasync;
1608 INIT_WORK(&req->work, aio_fsync_work);
1609 schedule_work(&req->work);
1610 return 0;
1613 static void aio_poll_put_work(struct work_struct *work)
1615 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1616 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1618 iocb_put(iocb);
1621 static void aio_poll_complete_work(struct work_struct *work)
1623 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1624 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1625 struct poll_table_struct pt = { ._key = req->events };
1626 struct kioctx *ctx = iocb->ki_ctx;
1627 __poll_t mask = 0;
1629 if (!READ_ONCE(req->cancelled))
1630 mask = vfs_poll(req->file, &pt) & req->events;
1633 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1634 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1635 * synchronize with them. In the cancellation case the list_del_init
1636 * itself is not actually needed, but harmless so we keep it in to
1637 * avoid further branches in the fast path.
1639 spin_lock_irq(&ctx->ctx_lock);
1640 if (!mask && !READ_ONCE(req->cancelled)) {
1641 add_wait_queue(req->head, &req->wait);
1642 spin_unlock_irq(&ctx->ctx_lock);
1643 return;
1645 list_del_init(&iocb->ki_list);
1646 iocb->ki_res.res = mangle_poll(mask);
1647 req->done = true;
1648 spin_unlock_irq(&ctx->ctx_lock);
1650 iocb_put(iocb);
1653 /* assumes we are called with irqs disabled */
1654 static int aio_poll_cancel(struct kiocb *iocb)
1656 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1657 struct poll_iocb *req = &aiocb->poll;
1659 spin_lock(&req->head->lock);
1660 WRITE_ONCE(req->cancelled, true);
1661 if (!list_empty(&req->wait.entry)) {
1662 list_del_init(&req->wait.entry);
1663 schedule_work(&aiocb->poll.work);
1665 spin_unlock(&req->head->lock);
1667 return 0;
1670 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1671 void *key)
1673 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1674 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1675 __poll_t mask = key_to_poll(key);
1676 unsigned long flags;
1678 /* for instances that support it check for an event match first: */
1679 if (mask && !(mask & req->events))
1680 return 0;
1682 list_del_init(&req->wait.entry);
1684 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1685 struct kioctx *ctx = iocb->ki_ctx;
1688 * Try to complete the iocb inline if we can. Use
1689 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1690 * call this function with IRQs disabled and because IRQs
1691 * have to be disabled before ctx_lock is obtained.
1693 list_del(&iocb->ki_list);
1694 iocb->ki_res.res = mangle_poll(mask);
1695 req->done = true;
1696 if (iocb->ki_eventfd && eventfd_signal_count()) {
1697 iocb = NULL;
1698 INIT_WORK(&req->work, aio_poll_put_work);
1699 schedule_work(&req->work);
1701 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1702 if (iocb)
1703 iocb_put(iocb);
1704 } else {
1705 schedule_work(&req->work);
1707 return 1;
1710 struct aio_poll_table {
1711 struct poll_table_struct pt;
1712 struct aio_kiocb *iocb;
1713 int error;
1716 static void
1717 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1718 struct poll_table_struct *p)
1720 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1722 /* multiple wait queues per file are not supported */
1723 if (unlikely(pt->iocb->poll.head)) {
1724 pt->error = -EINVAL;
1725 return;
1728 pt->error = 0;
1729 pt->iocb->poll.head = head;
1730 add_wait_queue(head, &pt->iocb->poll.wait);
1733 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1735 struct kioctx *ctx = aiocb->ki_ctx;
1736 struct poll_iocb *req = &aiocb->poll;
1737 struct aio_poll_table apt;
1738 bool cancel = false;
1739 __poll_t mask;
1741 /* reject any unknown events outside the normal event mask. */
1742 if ((u16)iocb->aio_buf != iocb->aio_buf)
1743 return -EINVAL;
1744 /* reject fields that are not defined for poll */
1745 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1746 return -EINVAL;
1748 INIT_WORK(&req->work, aio_poll_complete_work);
1749 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1751 req->head = NULL;
1752 req->done = false;
1753 req->cancelled = false;
1755 apt.pt._qproc = aio_poll_queue_proc;
1756 apt.pt._key = req->events;
1757 apt.iocb = aiocb;
1758 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1760 /* initialized the list so that we can do list_empty checks */
1761 INIT_LIST_HEAD(&req->wait.entry);
1762 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1764 mask = vfs_poll(req->file, &apt.pt) & req->events;
1765 spin_lock_irq(&ctx->ctx_lock);
1766 if (likely(req->head)) {
1767 spin_lock(&req->head->lock);
1768 if (unlikely(list_empty(&req->wait.entry))) {
1769 if (apt.error)
1770 cancel = true;
1771 apt.error = 0;
1772 mask = 0;
1774 if (mask || apt.error) {
1775 list_del_init(&req->wait.entry);
1776 } else if (cancel) {
1777 WRITE_ONCE(req->cancelled, true);
1778 } else if (!req->done) { /* actually waiting for an event */
1779 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1780 aiocb->ki_cancel = aio_poll_cancel;
1782 spin_unlock(&req->head->lock);
1784 if (mask) { /* no async, we'd stolen it */
1785 aiocb->ki_res.res = mangle_poll(mask);
1786 apt.error = 0;
1788 spin_unlock_irq(&ctx->ctx_lock);
1789 if (mask)
1790 iocb_put(aiocb);
1791 return apt.error;
1794 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1795 struct iocb __user *user_iocb, struct aio_kiocb *req,
1796 bool compat)
1798 req->ki_filp = fget(iocb->aio_fildes);
1799 if (unlikely(!req->ki_filp))
1800 return -EBADF;
1802 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1803 struct eventfd_ctx *eventfd;
1805 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1806 * instance of the file* now. The file descriptor must be
1807 * an eventfd() fd, and will be signaled for each completed
1808 * event using the eventfd_signal() function.
1810 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1811 if (IS_ERR(eventfd))
1812 return PTR_ERR(eventfd);
1814 req->ki_eventfd = eventfd;
1817 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1818 pr_debug("EFAULT: aio_key\n");
1819 return -EFAULT;
1822 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1823 req->ki_res.data = iocb->aio_data;
1824 req->ki_res.res = 0;
1825 req->ki_res.res2 = 0;
1827 switch (iocb->aio_lio_opcode) {
1828 case IOCB_CMD_PREAD:
1829 return aio_read(&req->rw, iocb, false, compat);
1830 case IOCB_CMD_PWRITE:
1831 return aio_write(&req->rw, iocb, false, compat);
1832 case IOCB_CMD_PREADV:
1833 return aio_read(&req->rw, iocb, true, compat);
1834 case IOCB_CMD_PWRITEV:
1835 return aio_write(&req->rw, iocb, true, compat);
1836 case IOCB_CMD_FSYNC:
1837 return aio_fsync(&req->fsync, iocb, false);
1838 case IOCB_CMD_FDSYNC:
1839 return aio_fsync(&req->fsync, iocb, true);
1840 case IOCB_CMD_POLL:
1841 return aio_poll(req, iocb);
1842 default:
1843 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1844 return -EINVAL;
1848 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1849 bool compat)
1851 struct aio_kiocb *req;
1852 struct iocb iocb;
1853 int err;
1855 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1856 return -EFAULT;
1858 /* enforce forwards compatibility on users */
1859 if (unlikely(iocb.aio_reserved2)) {
1860 pr_debug("EINVAL: reserve field set\n");
1861 return -EINVAL;
1864 /* prevent overflows */
1865 if (unlikely(
1866 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1867 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1868 ((ssize_t)iocb.aio_nbytes < 0)
1869 )) {
1870 pr_debug("EINVAL: overflow check\n");
1871 return -EINVAL;
1874 req = aio_get_req(ctx);
1875 if (unlikely(!req))
1876 return -EAGAIN;
1878 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1880 /* Done with the synchronous reference */
1881 iocb_put(req);
1884 * If err is 0, we'd either done aio_complete() ourselves or have
1885 * arranged for that to be done asynchronously. Anything non-zero
1886 * means that we need to destroy req ourselves.
1888 if (unlikely(err)) {
1889 iocb_destroy(req);
1890 put_reqs_available(ctx, 1);
1892 return err;
1895 /* sys_io_submit:
1896 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1897 * the number of iocbs queued. May return -EINVAL if the aio_context
1898 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1899 * *iocbpp[0] is not properly initialized, if the operation specified
1900 * is invalid for the file descriptor in the iocb. May fail with
1901 * -EFAULT if any of the data structures point to invalid data. May
1902 * fail with -EBADF if the file descriptor specified in the first
1903 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1904 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1905 * fail with -ENOSYS if not implemented.
1907 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1908 struct iocb __user * __user *, iocbpp)
1910 struct kioctx *ctx;
1911 long ret = 0;
1912 int i = 0;
1913 struct blk_plug plug;
1915 if (unlikely(nr < 0))
1916 return -EINVAL;
1918 ctx = lookup_ioctx(ctx_id);
1919 if (unlikely(!ctx)) {
1920 pr_debug("EINVAL: invalid context id\n");
1921 return -EINVAL;
1924 if (nr > ctx->nr_events)
1925 nr = ctx->nr_events;
1927 if (nr > AIO_PLUG_THRESHOLD)
1928 blk_start_plug(&plug);
1929 for (i = 0; i < nr; i++) {
1930 struct iocb __user *user_iocb;
1932 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1933 ret = -EFAULT;
1934 break;
1937 ret = io_submit_one(ctx, user_iocb, false);
1938 if (ret)
1939 break;
1941 if (nr > AIO_PLUG_THRESHOLD)
1942 blk_finish_plug(&plug);
1944 percpu_ref_put(&ctx->users);
1945 return i ? i : ret;
1948 #ifdef CONFIG_COMPAT
1949 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1950 int, nr, compat_uptr_t __user *, iocbpp)
1952 struct kioctx *ctx;
1953 long ret = 0;
1954 int i = 0;
1955 struct blk_plug plug;
1957 if (unlikely(nr < 0))
1958 return -EINVAL;
1960 ctx = lookup_ioctx(ctx_id);
1961 if (unlikely(!ctx)) {
1962 pr_debug("EINVAL: invalid context id\n");
1963 return -EINVAL;
1966 if (nr > ctx->nr_events)
1967 nr = ctx->nr_events;
1969 if (nr > AIO_PLUG_THRESHOLD)
1970 blk_start_plug(&plug);
1971 for (i = 0; i < nr; i++) {
1972 compat_uptr_t user_iocb;
1974 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1975 ret = -EFAULT;
1976 break;
1979 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1980 if (ret)
1981 break;
1983 if (nr > AIO_PLUG_THRESHOLD)
1984 blk_finish_plug(&plug);
1986 percpu_ref_put(&ctx->users);
1987 return i ? i : ret;
1989 #endif
1991 /* sys_io_cancel:
1992 * Attempts to cancel an iocb previously passed to io_submit. If
1993 * the operation is successfully cancelled, the resulting event is
1994 * copied into the memory pointed to by result without being placed
1995 * into the completion queue and 0 is returned. May fail with
1996 * -EFAULT if any of the data structures pointed to are invalid.
1997 * May fail with -EINVAL if aio_context specified by ctx_id is
1998 * invalid. May fail with -EAGAIN if the iocb specified was not
1999 * cancelled. Will fail with -ENOSYS if not implemented.
2001 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2002 struct io_event __user *, result)
2004 struct kioctx *ctx;
2005 struct aio_kiocb *kiocb;
2006 int ret = -EINVAL;
2007 u32 key;
2008 u64 obj = (u64)(unsigned long)iocb;
2010 if (unlikely(get_user(key, &iocb->aio_key)))
2011 return -EFAULT;
2012 if (unlikely(key != KIOCB_KEY))
2013 return -EINVAL;
2015 ctx = lookup_ioctx(ctx_id);
2016 if (unlikely(!ctx))
2017 return -EINVAL;
2019 spin_lock_irq(&ctx->ctx_lock);
2020 /* TODO: use a hash or array, this sucks. */
2021 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2022 if (kiocb->ki_res.obj == obj) {
2023 ret = kiocb->ki_cancel(&kiocb->rw);
2024 list_del_init(&kiocb->ki_list);
2025 break;
2028 spin_unlock_irq(&ctx->ctx_lock);
2030 if (!ret) {
2032 * The result argument is no longer used - the io_event is
2033 * always delivered via the ring buffer. -EINPROGRESS indicates
2034 * cancellation is progress:
2036 ret = -EINPROGRESS;
2039 percpu_ref_put(&ctx->users);
2041 return ret;
2044 static long do_io_getevents(aio_context_t ctx_id,
2045 long min_nr,
2046 long nr,
2047 struct io_event __user *events,
2048 struct timespec64 *ts)
2050 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2051 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2052 long ret = -EINVAL;
2054 if (likely(ioctx)) {
2055 if (likely(min_nr <= nr && min_nr >= 0))
2056 ret = read_events(ioctx, min_nr, nr, events, until);
2057 percpu_ref_put(&ioctx->users);
2060 return ret;
2063 /* io_getevents:
2064 * Attempts to read at least min_nr events and up to nr events from
2065 * the completion queue for the aio_context specified by ctx_id. If
2066 * it succeeds, the number of read events is returned. May fail with
2067 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2068 * out of range, if timeout is out of range. May fail with -EFAULT
2069 * if any of the memory specified is invalid. May return 0 or
2070 * < min_nr if the timeout specified by timeout has elapsed
2071 * before sufficient events are available, where timeout == NULL
2072 * specifies an infinite timeout. Note that the timeout pointed to by
2073 * timeout is relative. Will fail with -ENOSYS if not implemented.
2075 #ifdef CONFIG_64BIT
2077 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2078 long, min_nr,
2079 long, nr,
2080 struct io_event __user *, events,
2081 struct __kernel_timespec __user *, timeout)
2083 struct timespec64 ts;
2084 int ret;
2086 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2087 return -EFAULT;
2089 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2090 if (!ret && signal_pending(current))
2091 ret = -EINTR;
2092 return ret;
2095 #endif
2097 struct __aio_sigset {
2098 const sigset_t __user *sigmask;
2099 size_t sigsetsize;
2102 SYSCALL_DEFINE6(io_pgetevents,
2103 aio_context_t, ctx_id,
2104 long, min_nr,
2105 long, nr,
2106 struct io_event __user *, events,
2107 struct __kernel_timespec __user *, timeout,
2108 const struct __aio_sigset __user *, usig)
2110 struct __aio_sigset ksig = { NULL, };
2111 struct timespec64 ts;
2112 bool interrupted;
2113 int ret;
2115 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2116 return -EFAULT;
2118 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2119 return -EFAULT;
2121 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2122 if (ret)
2123 return ret;
2125 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2127 interrupted = signal_pending(current);
2128 restore_saved_sigmask_unless(interrupted);
2129 if (interrupted && !ret)
2130 ret = -ERESTARTNOHAND;
2132 return ret;
2135 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2137 SYSCALL_DEFINE6(io_pgetevents_time32,
2138 aio_context_t, ctx_id,
2139 long, min_nr,
2140 long, nr,
2141 struct io_event __user *, events,
2142 struct old_timespec32 __user *, timeout,
2143 const struct __aio_sigset __user *, usig)
2145 struct __aio_sigset ksig = { NULL, };
2146 struct timespec64 ts;
2147 bool interrupted;
2148 int ret;
2150 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2151 return -EFAULT;
2153 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2154 return -EFAULT;
2157 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2158 if (ret)
2159 return ret;
2161 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2163 interrupted = signal_pending(current);
2164 restore_saved_sigmask_unless(interrupted);
2165 if (interrupted && !ret)
2166 ret = -ERESTARTNOHAND;
2168 return ret;
2171 #endif
2173 #if defined(CONFIG_COMPAT_32BIT_TIME)
2175 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2176 __s32, min_nr,
2177 __s32, nr,
2178 struct io_event __user *, events,
2179 struct old_timespec32 __user *, timeout)
2181 struct timespec64 t;
2182 int ret;
2184 if (timeout && get_old_timespec32(&t, timeout))
2185 return -EFAULT;
2187 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2188 if (!ret && signal_pending(current))
2189 ret = -EINTR;
2190 return ret;
2193 #endif
2195 #ifdef CONFIG_COMPAT
2197 struct __compat_aio_sigset {
2198 compat_uptr_t sigmask;
2199 compat_size_t sigsetsize;
2202 #if defined(CONFIG_COMPAT_32BIT_TIME)
2204 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2205 compat_aio_context_t, ctx_id,
2206 compat_long_t, min_nr,
2207 compat_long_t, nr,
2208 struct io_event __user *, events,
2209 struct old_timespec32 __user *, timeout,
2210 const struct __compat_aio_sigset __user *, usig)
2212 struct __compat_aio_sigset ksig = { 0, };
2213 struct timespec64 t;
2214 bool interrupted;
2215 int ret;
2217 if (timeout && get_old_timespec32(&t, timeout))
2218 return -EFAULT;
2220 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2221 return -EFAULT;
2223 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2224 if (ret)
2225 return ret;
2227 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2229 interrupted = signal_pending(current);
2230 restore_saved_sigmask_unless(interrupted);
2231 if (interrupted && !ret)
2232 ret = -ERESTARTNOHAND;
2234 return ret;
2237 #endif
2239 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2240 compat_aio_context_t, ctx_id,
2241 compat_long_t, min_nr,
2242 compat_long_t, nr,
2243 struct io_event __user *, events,
2244 struct __kernel_timespec __user *, timeout,
2245 const struct __compat_aio_sigset __user *, usig)
2247 struct __compat_aio_sigset ksig = { 0, };
2248 struct timespec64 t;
2249 bool interrupted;
2250 int ret;
2252 if (timeout && get_timespec64(&t, timeout))
2253 return -EFAULT;
2255 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2256 return -EFAULT;
2258 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2259 if (ret)
2260 return ret;
2262 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2264 interrupted = signal_pending(current);
2265 restore_saved_sigmask_unless(interrupted);
2266 if (interrupted && !ret)
2267 ret = -ERESTARTNOHAND;
2269 return ret;
2271 #endif