Linux 4.9.199
[linux/fpc-iii.git] / arch / x86 / events / core.c
blob1e9f610d36a4ae1586834973470c66aaf3e638b1
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29 #include <linux/nospec.h>
31 #include <asm/apic.h>
32 #include <asm/stacktrace.h>
33 #include <asm/nmi.h>
34 #include <asm/smp.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
39 #include <asm/desc.h>
40 #include <asm/ldt.h>
41 #include <asm/unwind.h>
43 #include "perf_event.h"
45 struct x86_pmu x86_pmu __read_mostly;
47 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48 .enabled = 1,
51 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
53 u64 __read_mostly hw_cache_event_ids
54 [PERF_COUNT_HW_CACHE_MAX]
55 [PERF_COUNT_HW_CACHE_OP_MAX]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX];
57 u64 __read_mostly hw_cache_extra_regs
58 [PERF_COUNT_HW_CACHE_MAX]
59 [PERF_COUNT_HW_CACHE_OP_MAX]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX];
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
65 * Returns the delta events processed.
67 u64 x86_perf_event_update(struct perf_event *event)
69 struct hw_perf_event *hwc = &event->hw;
70 int shift = 64 - x86_pmu.cntval_bits;
71 u64 prev_raw_count, new_raw_count;
72 int idx = hwc->idx;
73 u64 delta;
75 if (idx == INTEL_PMC_IDX_FIXED_BTS)
76 return 0;
79 * Careful: an NMI might modify the previous event value.
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
83 * count to the generic event atomically:
85 again:
86 prev_raw_count = local64_read(&hwc->prev_count);
87 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
90 new_raw_count) != prev_raw_count)
91 goto again;
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
96 * (event-)time and add that to the generic event.
98 * Careful, not all hw sign-extends above the physical width
99 * of the count.
101 delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 delta >>= shift;
104 local64_add(delta, &event->count);
105 local64_sub(delta, &hwc->period_left);
107 return new_raw_count;
111 * Find and validate any extra registers to set up.
113 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 struct hw_perf_event_extra *reg;
116 struct extra_reg *er;
118 reg = &event->hw.extra_reg;
120 if (!x86_pmu.extra_regs)
121 return 0;
123 for (er = x86_pmu.extra_regs; er->msr; er++) {
124 if (er->event != (config & er->config_mask))
125 continue;
126 if (event->attr.config1 & ~er->valid_mask)
127 return -EINVAL;
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er->extra_msr_access)
130 return -ENXIO;
132 reg->idx = er->idx;
133 reg->config = event->attr.config1;
134 reg->reg = er->msr;
135 break;
137 return 0;
140 static atomic_t active_events;
141 static atomic_t pmc_refcount;
142 static DEFINE_MUTEX(pmc_reserve_mutex);
144 #ifdef CONFIG_X86_LOCAL_APIC
146 static bool reserve_pmc_hardware(void)
148 int i;
150 for (i = 0; i < x86_pmu.num_counters; i++) {
151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
152 goto perfctr_fail;
155 for (i = 0; i < x86_pmu.num_counters; i++) {
156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
157 goto eventsel_fail;
160 return true;
162 eventsel_fail:
163 for (i--; i >= 0; i--)
164 release_evntsel_nmi(x86_pmu_config_addr(i));
166 i = x86_pmu.num_counters;
168 perfctr_fail:
169 for (i--; i >= 0; i--)
170 release_perfctr_nmi(x86_pmu_event_addr(i));
172 return false;
175 static void release_pmc_hardware(void)
177 int i;
179 for (i = 0; i < x86_pmu.num_counters; i++) {
180 release_perfctr_nmi(x86_pmu_event_addr(i));
181 release_evntsel_nmi(x86_pmu_config_addr(i));
185 #else
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
190 #endif
192 static bool check_hw_exists(void)
194 u64 val, val_fail = -1, val_new= ~0;
195 int i, reg, reg_fail = -1, ret = 0;
196 int bios_fail = 0;
197 int reg_safe = -1;
200 * Check to see if the BIOS enabled any of the counters, if so
201 * complain and bail.
203 for (i = 0; i < x86_pmu.num_counters; i++) {
204 reg = x86_pmu_config_addr(i);
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
208 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 bios_fail = 1;
210 val_fail = val;
211 reg_fail = reg;
212 } else {
213 reg_safe = i;
217 if (x86_pmu.num_counters_fixed) {
218 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 ret = rdmsrl_safe(reg, &val);
220 if (ret)
221 goto msr_fail;
222 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
223 if (val & (0x03 << i*4)) {
224 bios_fail = 1;
225 val_fail = val;
226 reg_fail = reg;
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
237 if (reg_safe == -1) {
238 reg = reg_safe;
239 goto msr_fail;
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 reg = x86_pmu_event_addr(reg_safe);
248 if (rdmsrl_safe(reg, &val))
249 goto msr_fail;
250 val ^= 0xffffUL;
251 ret = wrmsrl_safe(reg, val);
252 ret |= rdmsrl_safe(reg, &val_new);
253 if (ret || val != val_new)
254 goto msr_fail;
257 * We still allow the PMU driver to operate:
259 if (bios_fail) {
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 reg_fail, val_fail);
265 return true;
267 msr_fail:
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
270 } else {
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 reg, val_new);
276 return false;
279 static void hw_perf_event_destroy(struct perf_event *event)
281 x86_release_hardware();
282 atomic_dec(&active_events);
285 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 hw_perf_event_destroy(event);
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr);
293 static inline int x86_pmu_initialized(void)
295 return x86_pmu.handle_irq != NULL;
298 static inline int
299 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 struct perf_event_attr *attr = &event->attr;
302 unsigned int cache_type, cache_op, cache_result;
303 u64 config, val;
305 config = attr->config;
307 cache_type = (config >> 0) & 0xff;
308 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 return -EINVAL;
310 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312 cache_op = (config >> 8) & 0xff;
313 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
314 return -EINVAL;
315 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317 cache_result = (config >> 16) & 0xff;
318 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
319 return -EINVAL;
320 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324 if (val == 0)
325 return -ENOENT;
327 if (val == -1)
328 return -EINVAL;
330 hwc->config |= val;
331 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
332 return x86_pmu_extra_regs(val, event);
335 int x86_reserve_hardware(void)
337 int err = 0;
339 if (!atomic_inc_not_zero(&pmc_refcount)) {
340 mutex_lock(&pmc_reserve_mutex);
341 if (atomic_read(&pmc_refcount) == 0) {
342 if (!reserve_pmc_hardware())
343 err = -EBUSY;
344 else
345 reserve_ds_buffers();
347 if (!err)
348 atomic_inc(&pmc_refcount);
349 mutex_unlock(&pmc_reserve_mutex);
352 return err;
355 void x86_release_hardware(void)
357 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
358 release_pmc_hardware();
359 release_ds_buffers();
360 mutex_unlock(&pmc_reserve_mutex);
365 * Check if we can create event of a certain type (that no conflicting events
366 * are present).
368 int x86_add_exclusive(unsigned int what)
370 int i;
373 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
374 * LBR and BTS are still mutually exclusive.
376 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
377 return 0;
379 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
380 mutex_lock(&pmc_reserve_mutex);
381 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
382 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
383 goto fail_unlock;
385 atomic_inc(&x86_pmu.lbr_exclusive[what]);
386 mutex_unlock(&pmc_reserve_mutex);
389 atomic_inc(&active_events);
390 return 0;
392 fail_unlock:
393 mutex_unlock(&pmc_reserve_mutex);
394 return -EBUSY;
397 void x86_del_exclusive(unsigned int what)
399 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
400 return;
402 atomic_dec(&x86_pmu.lbr_exclusive[what]);
403 atomic_dec(&active_events);
406 int x86_setup_perfctr(struct perf_event *event)
408 struct perf_event_attr *attr = &event->attr;
409 struct hw_perf_event *hwc = &event->hw;
410 u64 config;
412 if (!is_sampling_event(event)) {
413 hwc->sample_period = x86_pmu.max_period;
414 hwc->last_period = hwc->sample_period;
415 local64_set(&hwc->period_left, hwc->sample_period);
418 if (attr->type == PERF_TYPE_RAW)
419 return x86_pmu_extra_regs(event->attr.config, event);
421 if (attr->type == PERF_TYPE_HW_CACHE)
422 return set_ext_hw_attr(hwc, event);
424 if (attr->config >= x86_pmu.max_events)
425 return -EINVAL;
427 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
430 * The generic map:
432 config = x86_pmu.event_map(attr->config);
434 if (config == 0)
435 return -ENOENT;
437 if (config == -1LL)
438 return -EINVAL;
440 hwc->config |= config;
442 return 0;
446 * check that branch_sample_type is compatible with
447 * settings needed for precise_ip > 1 which implies
448 * using the LBR to capture ALL taken branches at the
449 * priv levels of the measurement
451 static inline int precise_br_compat(struct perf_event *event)
453 u64 m = event->attr.branch_sample_type;
454 u64 b = 0;
456 /* must capture all branches */
457 if (!(m & PERF_SAMPLE_BRANCH_ANY))
458 return 0;
460 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462 if (!event->attr.exclude_user)
463 b |= PERF_SAMPLE_BRANCH_USER;
465 if (!event->attr.exclude_kernel)
466 b |= PERF_SAMPLE_BRANCH_KERNEL;
469 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
472 return m == b;
475 int x86_pmu_hw_config(struct perf_event *event)
477 if (event->attr.precise_ip) {
478 int precise = 0;
480 /* Support for constant skid */
481 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482 precise++;
484 /* Support for IP fixup */
485 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486 precise++;
488 if (x86_pmu.pebs_prec_dist)
489 precise++;
492 if (event->attr.precise_ip > precise)
493 return -EOPNOTSUPP;
495 /* There's no sense in having PEBS for non sampling events: */
496 if (!is_sampling_event(event))
497 return -EINVAL;
500 * check that PEBS LBR correction does not conflict with
501 * whatever the user is asking with attr->branch_sample_type
503 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
504 u64 *br_type = &event->attr.branch_sample_type;
506 if (has_branch_stack(event)) {
507 if (!precise_br_compat(event))
508 return -EOPNOTSUPP;
510 /* branch_sample_type is compatible */
512 } else {
514 * user did not specify branch_sample_type
516 * For PEBS fixups, we capture all
517 * the branches at the priv level of the
518 * event.
520 *br_type = PERF_SAMPLE_BRANCH_ANY;
522 if (!event->attr.exclude_user)
523 *br_type |= PERF_SAMPLE_BRANCH_USER;
525 if (!event->attr.exclude_kernel)
526 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
530 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
531 event->attach_state |= PERF_ATTACH_TASK_DATA;
534 * Generate PMC IRQs:
535 * (keep 'enabled' bit clear for now)
537 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
540 * Count user and OS events unless requested not to
542 if (!event->attr.exclude_user)
543 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
544 if (!event->attr.exclude_kernel)
545 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
547 if (event->attr.type == PERF_TYPE_RAW)
548 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
550 if (event->attr.sample_period && x86_pmu.limit_period) {
551 if (x86_pmu.limit_period(event, event->attr.sample_period) >
552 event->attr.sample_period)
553 return -EINVAL;
556 return x86_setup_perfctr(event);
560 * Setup the hardware configuration for a given attr_type
562 static int __x86_pmu_event_init(struct perf_event *event)
564 int err;
566 if (!x86_pmu_initialized())
567 return -ENODEV;
569 err = x86_reserve_hardware();
570 if (err)
571 return err;
573 atomic_inc(&active_events);
574 event->destroy = hw_perf_event_destroy;
576 event->hw.idx = -1;
577 event->hw.last_cpu = -1;
578 event->hw.last_tag = ~0ULL;
580 /* mark unused */
581 event->hw.extra_reg.idx = EXTRA_REG_NONE;
582 event->hw.branch_reg.idx = EXTRA_REG_NONE;
584 return x86_pmu.hw_config(event);
587 void x86_pmu_disable_all(void)
589 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
590 int idx;
592 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
593 u64 val;
595 if (!test_bit(idx, cpuc->active_mask))
596 continue;
597 rdmsrl(x86_pmu_config_addr(idx), val);
598 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
599 continue;
600 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
601 wrmsrl(x86_pmu_config_addr(idx), val);
606 * There may be PMI landing after enabled=0. The PMI hitting could be before or
607 * after disable_all.
609 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
610 * It will not be re-enabled in the NMI handler again, because enabled=0. After
611 * handling the NMI, disable_all will be called, which will not change the
612 * state either. If PMI hits after disable_all, the PMU is already disabled
613 * before entering NMI handler. The NMI handler will not change the state
614 * either.
616 * So either situation is harmless.
618 static void x86_pmu_disable(struct pmu *pmu)
620 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
622 if (!x86_pmu_initialized())
623 return;
625 if (!cpuc->enabled)
626 return;
628 cpuc->n_added = 0;
629 cpuc->enabled = 0;
630 barrier();
632 x86_pmu.disable_all();
635 void x86_pmu_enable_all(int added)
637 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
638 int idx;
640 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
641 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
643 if (!test_bit(idx, cpuc->active_mask))
644 continue;
646 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
650 static struct pmu pmu;
652 static inline int is_x86_event(struct perf_event *event)
654 return event->pmu == &pmu;
658 * Event scheduler state:
660 * Assign events iterating over all events and counters, beginning
661 * with events with least weights first. Keep the current iterator
662 * state in struct sched_state.
664 struct sched_state {
665 int weight;
666 int event; /* event index */
667 int counter; /* counter index */
668 int unassigned; /* number of events to be assigned left */
669 int nr_gp; /* number of GP counters used */
670 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
673 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
674 #define SCHED_STATES_MAX 2
676 struct perf_sched {
677 int max_weight;
678 int max_events;
679 int max_gp;
680 int saved_states;
681 struct event_constraint **constraints;
682 struct sched_state state;
683 struct sched_state saved[SCHED_STATES_MAX];
687 * Initialize interator that runs through all events and counters.
689 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
690 int num, int wmin, int wmax, int gpmax)
692 int idx;
694 memset(sched, 0, sizeof(*sched));
695 sched->max_events = num;
696 sched->max_weight = wmax;
697 sched->max_gp = gpmax;
698 sched->constraints = constraints;
700 for (idx = 0; idx < num; idx++) {
701 if (constraints[idx]->weight == wmin)
702 break;
705 sched->state.event = idx; /* start with min weight */
706 sched->state.weight = wmin;
707 sched->state.unassigned = num;
710 static void perf_sched_save_state(struct perf_sched *sched)
712 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
713 return;
715 sched->saved[sched->saved_states] = sched->state;
716 sched->saved_states++;
719 static bool perf_sched_restore_state(struct perf_sched *sched)
721 if (!sched->saved_states)
722 return false;
724 sched->saved_states--;
725 sched->state = sched->saved[sched->saved_states];
727 /* continue with next counter: */
728 clear_bit(sched->state.counter++, sched->state.used);
730 return true;
734 * Select a counter for the current event to schedule. Return true on
735 * success.
737 static bool __perf_sched_find_counter(struct perf_sched *sched)
739 struct event_constraint *c;
740 int idx;
742 if (!sched->state.unassigned)
743 return false;
745 if (sched->state.event >= sched->max_events)
746 return false;
748 c = sched->constraints[sched->state.event];
749 /* Prefer fixed purpose counters */
750 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
751 idx = INTEL_PMC_IDX_FIXED;
752 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
753 if (!__test_and_set_bit(idx, sched->state.used))
754 goto done;
758 /* Grab the first unused counter starting with idx */
759 idx = sched->state.counter;
760 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
761 if (!__test_and_set_bit(idx, sched->state.used)) {
762 if (sched->state.nr_gp++ >= sched->max_gp)
763 return false;
765 goto done;
769 return false;
771 done:
772 sched->state.counter = idx;
774 if (c->overlap)
775 perf_sched_save_state(sched);
777 return true;
780 static bool perf_sched_find_counter(struct perf_sched *sched)
782 while (!__perf_sched_find_counter(sched)) {
783 if (!perf_sched_restore_state(sched))
784 return false;
787 return true;
791 * Go through all unassigned events and find the next one to schedule.
792 * Take events with the least weight first. Return true on success.
794 static bool perf_sched_next_event(struct perf_sched *sched)
796 struct event_constraint *c;
798 if (!sched->state.unassigned || !--sched->state.unassigned)
799 return false;
801 do {
802 /* next event */
803 sched->state.event++;
804 if (sched->state.event >= sched->max_events) {
805 /* next weight */
806 sched->state.event = 0;
807 sched->state.weight++;
808 if (sched->state.weight > sched->max_weight)
809 return false;
811 c = sched->constraints[sched->state.event];
812 } while (c->weight != sched->state.weight);
814 sched->state.counter = 0; /* start with first counter */
816 return true;
820 * Assign a counter for each event.
822 int perf_assign_events(struct event_constraint **constraints, int n,
823 int wmin, int wmax, int gpmax, int *assign)
825 struct perf_sched sched;
827 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
829 do {
830 if (!perf_sched_find_counter(&sched))
831 break; /* failed */
832 if (assign)
833 assign[sched.state.event] = sched.state.counter;
834 } while (perf_sched_next_event(&sched));
836 return sched.state.unassigned;
838 EXPORT_SYMBOL_GPL(perf_assign_events);
840 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
842 struct event_constraint *c;
843 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
844 struct perf_event *e;
845 int i, wmin, wmax, unsched = 0;
846 struct hw_perf_event *hwc;
848 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
850 if (x86_pmu.start_scheduling)
851 x86_pmu.start_scheduling(cpuc);
853 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
854 cpuc->event_constraint[i] = NULL;
855 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
856 cpuc->event_constraint[i] = c;
858 wmin = min(wmin, c->weight);
859 wmax = max(wmax, c->weight);
863 * fastpath, try to reuse previous register
865 for (i = 0; i < n; i++) {
866 hwc = &cpuc->event_list[i]->hw;
867 c = cpuc->event_constraint[i];
869 /* never assigned */
870 if (hwc->idx == -1)
871 break;
873 /* constraint still honored */
874 if (!test_bit(hwc->idx, c->idxmsk))
875 break;
877 /* not already used */
878 if (test_bit(hwc->idx, used_mask))
879 break;
881 __set_bit(hwc->idx, used_mask);
882 if (assign)
883 assign[i] = hwc->idx;
886 /* slow path */
887 if (i != n) {
888 int gpmax = x86_pmu.num_counters;
891 * Do not allow scheduling of more than half the available
892 * generic counters.
894 * This helps avoid counter starvation of sibling thread by
895 * ensuring at most half the counters cannot be in exclusive
896 * mode. There is no designated counters for the limits. Any
897 * N/2 counters can be used. This helps with events with
898 * specific counter constraints.
900 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
901 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
902 gpmax /= 2;
904 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
905 wmax, gpmax, assign);
909 * In case of success (unsched = 0), mark events as committed,
910 * so we do not put_constraint() in case new events are added
911 * and fail to be scheduled
913 * We invoke the lower level commit callback to lock the resource
915 * We do not need to do all of this in case we are called to
916 * validate an event group (assign == NULL)
918 if (!unsched && assign) {
919 for (i = 0; i < n; i++) {
920 e = cpuc->event_list[i];
921 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
922 if (x86_pmu.commit_scheduling)
923 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
925 } else {
926 for (i = 0; i < n; i++) {
927 e = cpuc->event_list[i];
929 * do not put_constraint() on comitted events,
930 * because they are good to go
932 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
933 continue;
936 * release events that failed scheduling
938 if (x86_pmu.put_event_constraints)
939 x86_pmu.put_event_constraints(cpuc, e);
943 if (x86_pmu.stop_scheduling)
944 x86_pmu.stop_scheduling(cpuc);
946 return unsched ? -EINVAL : 0;
950 * dogrp: true if must collect siblings events (group)
951 * returns total number of events and error code
953 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
955 struct perf_event *event;
956 int n, max_count;
958 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
960 /* current number of events already accepted */
961 n = cpuc->n_events;
963 if (is_x86_event(leader)) {
964 if (n >= max_count)
965 return -EINVAL;
966 cpuc->event_list[n] = leader;
967 n++;
969 if (!dogrp)
970 return n;
972 list_for_each_entry(event, &leader->sibling_list, group_entry) {
973 if (!is_x86_event(event) ||
974 event->state <= PERF_EVENT_STATE_OFF)
975 continue;
977 if (n >= max_count)
978 return -EINVAL;
980 cpuc->event_list[n] = event;
981 n++;
983 return n;
986 static inline void x86_assign_hw_event(struct perf_event *event,
987 struct cpu_hw_events *cpuc, int i)
989 struct hw_perf_event *hwc = &event->hw;
991 hwc->idx = cpuc->assign[i];
992 hwc->last_cpu = smp_processor_id();
993 hwc->last_tag = ++cpuc->tags[i];
995 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
996 hwc->config_base = 0;
997 hwc->event_base = 0;
998 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
999 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1000 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1001 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1002 } else {
1003 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1004 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1005 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1009 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1010 struct cpu_hw_events *cpuc,
1011 int i)
1013 return hwc->idx == cpuc->assign[i] &&
1014 hwc->last_cpu == smp_processor_id() &&
1015 hwc->last_tag == cpuc->tags[i];
1018 static void x86_pmu_start(struct perf_event *event, int flags);
1020 static void x86_pmu_enable(struct pmu *pmu)
1022 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1023 struct perf_event *event;
1024 struct hw_perf_event *hwc;
1025 int i, added = cpuc->n_added;
1027 if (!x86_pmu_initialized())
1028 return;
1030 if (cpuc->enabled)
1031 return;
1033 if (cpuc->n_added) {
1034 int n_running = cpuc->n_events - cpuc->n_added;
1036 * apply assignment obtained either from
1037 * hw_perf_group_sched_in() or x86_pmu_enable()
1039 * step1: save events moving to new counters
1041 for (i = 0; i < n_running; i++) {
1042 event = cpuc->event_list[i];
1043 hwc = &event->hw;
1046 * we can avoid reprogramming counter if:
1047 * - assigned same counter as last time
1048 * - running on same CPU as last time
1049 * - no other event has used the counter since
1051 if (hwc->idx == -1 ||
1052 match_prev_assignment(hwc, cpuc, i))
1053 continue;
1056 * Ensure we don't accidentally enable a stopped
1057 * counter simply because we rescheduled.
1059 if (hwc->state & PERF_HES_STOPPED)
1060 hwc->state |= PERF_HES_ARCH;
1062 x86_pmu_stop(event, PERF_EF_UPDATE);
1066 * step2: reprogram moved events into new counters
1068 for (i = 0; i < cpuc->n_events; i++) {
1069 event = cpuc->event_list[i];
1070 hwc = &event->hw;
1072 if (!match_prev_assignment(hwc, cpuc, i))
1073 x86_assign_hw_event(event, cpuc, i);
1074 else if (i < n_running)
1075 continue;
1077 if (hwc->state & PERF_HES_ARCH)
1078 continue;
1080 x86_pmu_start(event, PERF_EF_RELOAD);
1082 cpuc->n_added = 0;
1083 perf_events_lapic_init();
1086 cpuc->enabled = 1;
1087 barrier();
1089 x86_pmu.enable_all(added);
1092 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1095 * Set the next IRQ period, based on the hwc->period_left value.
1096 * To be called with the event disabled in hw:
1098 int x86_perf_event_set_period(struct perf_event *event)
1100 struct hw_perf_event *hwc = &event->hw;
1101 s64 left = local64_read(&hwc->period_left);
1102 s64 period = hwc->sample_period;
1103 int ret = 0, idx = hwc->idx;
1105 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1106 return 0;
1109 * If we are way outside a reasonable range then just skip forward:
1111 if (unlikely(left <= -period)) {
1112 left = period;
1113 local64_set(&hwc->period_left, left);
1114 hwc->last_period = period;
1115 ret = 1;
1118 if (unlikely(left <= 0)) {
1119 left += period;
1120 local64_set(&hwc->period_left, left);
1121 hwc->last_period = period;
1122 ret = 1;
1125 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1127 if (unlikely(left < 2))
1128 left = 2;
1130 if (left > x86_pmu.max_period)
1131 left = x86_pmu.max_period;
1133 if (x86_pmu.limit_period)
1134 left = x86_pmu.limit_period(event, left);
1136 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1139 * The hw event starts counting from this event offset,
1140 * mark it to be able to extra future deltas:
1142 local64_set(&hwc->prev_count, (u64)-left);
1144 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1147 * Due to erratum on certan cpu we need
1148 * a second write to be sure the register
1149 * is updated properly
1151 if (x86_pmu.perfctr_second_write) {
1152 wrmsrl(hwc->event_base,
1153 (u64)(-left) & x86_pmu.cntval_mask);
1156 perf_event_update_userpage(event);
1158 return ret;
1161 void x86_pmu_enable_event(struct perf_event *event)
1163 if (__this_cpu_read(cpu_hw_events.enabled))
1164 __x86_pmu_enable_event(&event->hw,
1165 ARCH_PERFMON_EVENTSEL_ENABLE);
1169 * Add a single event to the PMU.
1171 * The event is added to the group of enabled events
1172 * but only if it can be scehduled with existing events.
1174 static int x86_pmu_add(struct perf_event *event, int flags)
1176 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1177 struct hw_perf_event *hwc;
1178 int assign[X86_PMC_IDX_MAX];
1179 int n, n0, ret;
1181 hwc = &event->hw;
1183 n0 = cpuc->n_events;
1184 ret = n = collect_events(cpuc, event, false);
1185 if (ret < 0)
1186 goto out;
1188 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1189 if (!(flags & PERF_EF_START))
1190 hwc->state |= PERF_HES_ARCH;
1193 * If group events scheduling transaction was started,
1194 * skip the schedulability test here, it will be performed
1195 * at commit time (->commit_txn) as a whole.
1197 * If commit fails, we'll call ->del() on all events
1198 * for which ->add() was called.
1200 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1201 goto done_collect;
1203 ret = x86_pmu.schedule_events(cpuc, n, assign);
1204 if (ret)
1205 goto out;
1207 * copy new assignment, now we know it is possible
1208 * will be used by hw_perf_enable()
1210 memcpy(cpuc->assign, assign, n*sizeof(int));
1212 done_collect:
1214 * Commit the collect_events() state. See x86_pmu_del() and
1215 * x86_pmu_*_txn().
1217 cpuc->n_events = n;
1218 cpuc->n_added += n - n0;
1219 cpuc->n_txn += n - n0;
1221 if (x86_pmu.add) {
1223 * This is before x86_pmu_enable() will call x86_pmu_start(),
1224 * so we enable LBRs before an event needs them etc..
1226 x86_pmu.add(event);
1229 ret = 0;
1230 out:
1231 return ret;
1234 static void x86_pmu_start(struct perf_event *event, int flags)
1236 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1237 int idx = event->hw.idx;
1239 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1240 return;
1242 if (WARN_ON_ONCE(idx == -1))
1243 return;
1245 if (flags & PERF_EF_RELOAD) {
1246 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1247 x86_perf_event_set_period(event);
1250 event->hw.state = 0;
1252 cpuc->events[idx] = event;
1253 __set_bit(idx, cpuc->active_mask);
1254 __set_bit(idx, cpuc->running);
1255 x86_pmu.enable(event);
1256 perf_event_update_userpage(event);
1259 void perf_event_print_debug(void)
1261 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1262 u64 pebs, debugctl;
1263 struct cpu_hw_events *cpuc;
1264 unsigned long flags;
1265 int cpu, idx;
1267 if (!x86_pmu.num_counters)
1268 return;
1270 local_irq_save(flags);
1272 cpu = smp_processor_id();
1273 cpuc = &per_cpu(cpu_hw_events, cpu);
1275 if (x86_pmu.version >= 2) {
1276 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1277 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1278 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1279 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1281 pr_info("\n");
1282 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1283 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1284 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1285 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1286 if (x86_pmu.pebs_constraints) {
1287 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1288 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1290 if (x86_pmu.lbr_nr) {
1291 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1292 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1295 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1297 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1298 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1299 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1301 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1303 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1304 cpu, idx, pmc_ctrl);
1305 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1306 cpu, idx, pmc_count);
1307 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1308 cpu, idx, prev_left);
1310 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1311 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1313 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1314 cpu, idx, pmc_count);
1316 local_irq_restore(flags);
1319 void x86_pmu_stop(struct perf_event *event, int flags)
1321 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1322 struct hw_perf_event *hwc = &event->hw;
1324 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1325 x86_pmu.disable(event);
1326 cpuc->events[hwc->idx] = NULL;
1327 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1328 hwc->state |= PERF_HES_STOPPED;
1331 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1333 * Drain the remaining delta count out of a event
1334 * that we are disabling:
1336 x86_perf_event_update(event);
1337 hwc->state |= PERF_HES_UPTODATE;
1341 static void x86_pmu_del(struct perf_event *event, int flags)
1343 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1344 int i;
1347 * event is descheduled
1349 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1352 * If we're called during a txn, we only need to undo x86_pmu.add.
1353 * The events never got scheduled and ->cancel_txn will truncate
1354 * the event_list.
1356 * XXX assumes any ->del() called during a TXN will only be on
1357 * an event added during that same TXN.
1359 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1360 goto do_del;
1363 * Not a TXN, therefore cleanup properly.
1365 x86_pmu_stop(event, PERF_EF_UPDATE);
1367 for (i = 0; i < cpuc->n_events; i++) {
1368 if (event == cpuc->event_list[i])
1369 break;
1372 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1373 return;
1375 /* If we have a newly added event; make sure to decrease n_added. */
1376 if (i >= cpuc->n_events - cpuc->n_added)
1377 --cpuc->n_added;
1379 if (x86_pmu.put_event_constraints)
1380 x86_pmu.put_event_constraints(cpuc, event);
1382 /* Delete the array entry. */
1383 while (++i < cpuc->n_events) {
1384 cpuc->event_list[i-1] = cpuc->event_list[i];
1385 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1387 --cpuc->n_events;
1389 perf_event_update_userpage(event);
1391 do_del:
1392 if (x86_pmu.del) {
1394 * This is after x86_pmu_stop(); so we disable LBRs after any
1395 * event can need them etc..
1397 x86_pmu.del(event);
1401 int x86_pmu_handle_irq(struct pt_regs *regs)
1403 struct perf_sample_data data;
1404 struct cpu_hw_events *cpuc;
1405 struct perf_event *event;
1406 int idx, handled = 0;
1407 u64 val;
1409 cpuc = this_cpu_ptr(&cpu_hw_events);
1412 * Some chipsets need to unmask the LVTPC in a particular spot
1413 * inside the nmi handler. As a result, the unmasking was pushed
1414 * into all the nmi handlers.
1416 * This generic handler doesn't seem to have any issues where the
1417 * unmasking occurs so it was left at the top.
1419 apic_write(APIC_LVTPC, APIC_DM_NMI);
1421 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1422 if (!test_bit(idx, cpuc->active_mask)) {
1424 * Though we deactivated the counter some cpus
1425 * might still deliver spurious interrupts still
1426 * in flight. Catch them:
1428 if (__test_and_clear_bit(idx, cpuc->running))
1429 handled++;
1430 continue;
1433 event = cpuc->events[idx];
1435 val = x86_perf_event_update(event);
1436 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1437 continue;
1440 * event overflow
1442 handled++;
1443 perf_sample_data_init(&data, 0, event->hw.last_period);
1445 if (!x86_perf_event_set_period(event))
1446 continue;
1448 if (perf_event_overflow(event, &data, regs))
1449 x86_pmu_stop(event, 0);
1452 if (handled)
1453 inc_irq_stat(apic_perf_irqs);
1455 return handled;
1458 void perf_events_lapic_init(void)
1460 if (!x86_pmu.apic || !x86_pmu_initialized())
1461 return;
1464 * Always use NMI for PMU
1466 apic_write(APIC_LVTPC, APIC_DM_NMI);
1469 static int
1470 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1472 u64 start_clock;
1473 u64 finish_clock;
1474 int ret;
1477 * All PMUs/events that share this PMI handler should make sure to
1478 * increment active_events for their events.
1480 if (!atomic_read(&active_events))
1481 return NMI_DONE;
1483 start_clock = sched_clock();
1484 ret = x86_pmu.handle_irq(regs);
1485 finish_clock = sched_clock();
1487 perf_sample_event_took(finish_clock - start_clock);
1489 return ret;
1491 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1493 struct event_constraint emptyconstraint;
1494 struct event_constraint unconstrained;
1496 static int x86_pmu_prepare_cpu(unsigned int cpu)
1498 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1499 int i;
1501 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1502 cpuc->kfree_on_online[i] = NULL;
1503 if (x86_pmu.cpu_prepare)
1504 return x86_pmu.cpu_prepare(cpu);
1505 return 0;
1508 static int x86_pmu_dead_cpu(unsigned int cpu)
1510 if (x86_pmu.cpu_dead)
1511 x86_pmu.cpu_dead(cpu);
1512 return 0;
1515 static int x86_pmu_online_cpu(unsigned int cpu)
1517 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1518 int i;
1520 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1521 kfree(cpuc->kfree_on_online[i]);
1522 cpuc->kfree_on_online[i] = NULL;
1524 return 0;
1527 static int x86_pmu_starting_cpu(unsigned int cpu)
1529 if (x86_pmu.cpu_starting)
1530 x86_pmu.cpu_starting(cpu);
1531 return 0;
1534 static int x86_pmu_dying_cpu(unsigned int cpu)
1536 if (x86_pmu.cpu_dying)
1537 x86_pmu.cpu_dying(cpu);
1538 return 0;
1541 static void __init pmu_check_apic(void)
1543 if (boot_cpu_has(X86_FEATURE_APIC))
1544 return;
1546 x86_pmu.apic = 0;
1547 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1548 pr_info("no hardware sampling interrupt available.\n");
1551 * If we have a PMU initialized but no APIC
1552 * interrupts, we cannot sample hardware
1553 * events (user-space has to fall back and
1554 * sample via a hrtimer based software event):
1556 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1560 static struct attribute_group x86_pmu_format_group = {
1561 .name = "format",
1562 .attrs = NULL,
1566 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1567 * out of events_attr attributes.
1569 static void __init filter_events(struct attribute **attrs)
1571 struct device_attribute *d;
1572 struct perf_pmu_events_attr *pmu_attr;
1573 int offset = 0;
1574 int i, j;
1576 for (i = 0; attrs[i]; i++) {
1577 d = (struct device_attribute *)attrs[i];
1578 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1579 /* str trumps id */
1580 if (pmu_attr->event_str)
1581 continue;
1582 if (x86_pmu.event_map(i + offset))
1583 continue;
1585 for (j = i; attrs[j]; j++)
1586 attrs[j] = attrs[j + 1];
1588 /* Check the shifted attr. */
1589 i--;
1592 * event_map() is index based, the attrs array is organized
1593 * by increasing event index. If we shift the events, then
1594 * we need to compensate for the event_map(), otherwise
1595 * we are looking up the wrong event in the map
1597 offset++;
1601 /* Merge two pointer arrays */
1602 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1604 struct attribute **new;
1605 int j, i;
1607 for (j = 0; a[j]; j++)
1609 for (i = 0; b[i]; i++)
1610 j++;
1611 j++;
1613 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1614 if (!new)
1615 return NULL;
1617 j = 0;
1618 for (i = 0; a[i]; i++)
1619 new[j++] = a[i];
1620 for (i = 0; b[i]; i++)
1621 new[j++] = b[i];
1622 new[j] = NULL;
1624 return new;
1627 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1629 struct perf_pmu_events_attr *pmu_attr = \
1630 container_of(attr, struct perf_pmu_events_attr, attr);
1631 u64 config = x86_pmu.event_map(pmu_attr->id);
1633 /* string trumps id */
1634 if (pmu_attr->event_str)
1635 return sprintf(page, "%s", pmu_attr->event_str);
1637 return x86_pmu.events_sysfs_show(page, config);
1639 EXPORT_SYMBOL_GPL(events_sysfs_show);
1641 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1642 char *page)
1644 struct perf_pmu_events_ht_attr *pmu_attr =
1645 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1648 * Report conditional events depending on Hyper-Threading.
1650 * This is overly conservative as usually the HT special
1651 * handling is not needed if the other CPU thread is idle.
1653 * Note this does not (and cannot) handle the case when thread
1654 * siblings are invisible, for example with virtualization
1655 * if they are owned by some other guest. The user tool
1656 * has to re-read when a thread sibling gets onlined later.
1658 return sprintf(page, "%s",
1659 topology_max_smt_threads() > 1 ?
1660 pmu_attr->event_str_ht :
1661 pmu_attr->event_str_noht);
1664 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1665 EVENT_ATTR(instructions, INSTRUCTIONS );
1666 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1667 EVENT_ATTR(cache-misses, CACHE_MISSES );
1668 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1669 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1670 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1671 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1672 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1673 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1675 static struct attribute *empty_attrs;
1677 static struct attribute *events_attr[] = {
1678 EVENT_PTR(CPU_CYCLES),
1679 EVENT_PTR(INSTRUCTIONS),
1680 EVENT_PTR(CACHE_REFERENCES),
1681 EVENT_PTR(CACHE_MISSES),
1682 EVENT_PTR(BRANCH_INSTRUCTIONS),
1683 EVENT_PTR(BRANCH_MISSES),
1684 EVENT_PTR(BUS_CYCLES),
1685 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1686 EVENT_PTR(STALLED_CYCLES_BACKEND),
1687 EVENT_PTR(REF_CPU_CYCLES),
1688 NULL,
1691 static struct attribute_group x86_pmu_events_group = {
1692 .name = "events",
1693 .attrs = events_attr,
1696 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1698 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1699 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1700 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1701 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1702 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1703 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1704 ssize_t ret;
1707 * We have whole page size to spend and just little data
1708 * to write, so we can safely use sprintf.
1710 ret = sprintf(page, "event=0x%02llx", event);
1712 if (umask)
1713 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1715 if (edge)
1716 ret += sprintf(page + ret, ",edge");
1718 if (pc)
1719 ret += sprintf(page + ret, ",pc");
1721 if (any)
1722 ret += sprintf(page + ret, ",any");
1724 if (inv)
1725 ret += sprintf(page + ret, ",inv");
1727 if (cmask)
1728 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1730 ret += sprintf(page + ret, "\n");
1732 return ret;
1735 static int __init init_hw_perf_events(void)
1737 struct x86_pmu_quirk *quirk;
1738 int err;
1740 pr_info("Performance Events: ");
1742 switch (boot_cpu_data.x86_vendor) {
1743 case X86_VENDOR_INTEL:
1744 err = intel_pmu_init();
1745 break;
1746 case X86_VENDOR_AMD:
1747 err = amd_pmu_init();
1748 break;
1749 default:
1750 err = -ENOTSUPP;
1752 if (err != 0) {
1753 pr_cont("no PMU driver, software events only.\n");
1754 return 0;
1757 pmu_check_apic();
1759 /* sanity check that the hardware exists or is emulated */
1760 if (!check_hw_exists())
1761 return 0;
1763 pr_cont("%s PMU driver.\n", x86_pmu.name);
1765 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1767 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1768 quirk->func();
1770 if (!x86_pmu.intel_ctrl)
1771 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1773 perf_events_lapic_init();
1774 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1776 unconstrained = (struct event_constraint)
1777 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1778 0, x86_pmu.num_counters, 0, 0);
1780 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1782 if (x86_pmu.event_attrs)
1783 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1785 if (!x86_pmu.events_sysfs_show)
1786 x86_pmu_events_group.attrs = &empty_attrs;
1787 else
1788 filter_events(x86_pmu_events_group.attrs);
1790 if (x86_pmu.cpu_events) {
1791 struct attribute **tmp;
1793 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1794 if (!WARN_ON(!tmp))
1795 x86_pmu_events_group.attrs = tmp;
1798 pr_info("... version: %d\n", x86_pmu.version);
1799 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1800 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1801 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1802 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1803 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1804 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1807 * Install callbacks. Core will call them for each online
1808 * cpu.
1810 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
1811 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1812 if (err)
1813 return err;
1815 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1816 "AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
1817 x86_pmu_dying_cpu);
1818 if (err)
1819 goto out;
1821 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
1822 x86_pmu_online_cpu, NULL);
1823 if (err)
1824 goto out1;
1826 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1827 if (err)
1828 goto out2;
1830 return 0;
1832 out2:
1833 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1834 out1:
1835 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1836 out:
1837 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1838 return err;
1840 early_initcall(init_hw_perf_events);
1842 static inline void x86_pmu_read(struct perf_event *event)
1844 x86_perf_event_update(event);
1848 * Start group events scheduling transaction
1849 * Set the flag to make pmu::enable() not perform the
1850 * schedulability test, it will be performed at commit time
1852 * We only support PERF_PMU_TXN_ADD transactions. Save the
1853 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1854 * transactions.
1856 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1858 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1860 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1862 cpuc->txn_flags = txn_flags;
1863 if (txn_flags & ~PERF_PMU_TXN_ADD)
1864 return;
1866 perf_pmu_disable(pmu);
1867 __this_cpu_write(cpu_hw_events.n_txn, 0);
1871 * Stop group events scheduling transaction
1872 * Clear the flag and pmu::enable() will perform the
1873 * schedulability test.
1875 static void x86_pmu_cancel_txn(struct pmu *pmu)
1877 unsigned int txn_flags;
1878 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1880 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1882 txn_flags = cpuc->txn_flags;
1883 cpuc->txn_flags = 0;
1884 if (txn_flags & ~PERF_PMU_TXN_ADD)
1885 return;
1888 * Truncate collected array by the number of events added in this
1889 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1891 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1892 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1893 perf_pmu_enable(pmu);
1897 * Commit group events scheduling transaction
1898 * Perform the group schedulability test as a whole
1899 * Return 0 if success
1901 * Does not cancel the transaction on failure; expects the caller to do this.
1903 static int x86_pmu_commit_txn(struct pmu *pmu)
1905 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1906 int assign[X86_PMC_IDX_MAX];
1907 int n, ret;
1909 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1911 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1912 cpuc->txn_flags = 0;
1913 return 0;
1916 n = cpuc->n_events;
1918 if (!x86_pmu_initialized())
1919 return -EAGAIN;
1921 ret = x86_pmu.schedule_events(cpuc, n, assign);
1922 if (ret)
1923 return ret;
1926 * copy new assignment, now we know it is possible
1927 * will be used by hw_perf_enable()
1929 memcpy(cpuc->assign, assign, n*sizeof(int));
1931 cpuc->txn_flags = 0;
1932 perf_pmu_enable(pmu);
1933 return 0;
1936 * a fake_cpuc is used to validate event groups. Due to
1937 * the extra reg logic, we need to also allocate a fake
1938 * per_core and per_cpu structure. Otherwise, group events
1939 * using extra reg may conflict without the kernel being
1940 * able to catch this when the last event gets added to
1941 * the group.
1943 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1945 intel_cpuc_finish(cpuc);
1946 kfree(cpuc);
1949 static struct cpu_hw_events *allocate_fake_cpuc(void)
1951 struct cpu_hw_events *cpuc;
1952 int cpu = raw_smp_processor_id();
1954 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1955 if (!cpuc)
1956 return ERR_PTR(-ENOMEM);
1957 cpuc->is_fake = 1;
1959 if (intel_cpuc_prepare(cpuc, cpu))
1960 goto error;
1962 return cpuc;
1963 error:
1964 free_fake_cpuc(cpuc);
1965 return ERR_PTR(-ENOMEM);
1969 * validate that we can schedule this event
1971 static int validate_event(struct perf_event *event)
1973 struct cpu_hw_events *fake_cpuc;
1974 struct event_constraint *c;
1975 int ret = 0;
1977 fake_cpuc = allocate_fake_cpuc();
1978 if (IS_ERR(fake_cpuc))
1979 return PTR_ERR(fake_cpuc);
1981 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1983 if (!c || !c->weight)
1984 ret = -EINVAL;
1986 if (x86_pmu.put_event_constraints)
1987 x86_pmu.put_event_constraints(fake_cpuc, event);
1989 free_fake_cpuc(fake_cpuc);
1991 return ret;
1995 * validate a single event group
1997 * validation include:
1998 * - check events are compatible which each other
1999 * - events do not compete for the same counter
2000 * - number of events <= number of counters
2002 * validation ensures the group can be loaded onto the
2003 * PMU if it was the only group available.
2005 static int validate_group(struct perf_event *event)
2007 struct perf_event *leader = event->group_leader;
2008 struct cpu_hw_events *fake_cpuc;
2009 int ret = -EINVAL, n;
2011 fake_cpuc = allocate_fake_cpuc();
2012 if (IS_ERR(fake_cpuc))
2013 return PTR_ERR(fake_cpuc);
2015 * the event is not yet connected with its
2016 * siblings therefore we must first collect
2017 * existing siblings, then add the new event
2018 * before we can simulate the scheduling
2020 n = collect_events(fake_cpuc, leader, true);
2021 if (n < 0)
2022 goto out;
2024 fake_cpuc->n_events = n;
2025 n = collect_events(fake_cpuc, event, false);
2026 if (n < 0)
2027 goto out;
2029 fake_cpuc->n_events = n;
2031 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2033 out:
2034 free_fake_cpuc(fake_cpuc);
2035 return ret;
2038 static int x86_pmu_event_init(struct perf_event *event)
2040 struct pmu *tmp;
2041 int err;
2043 switch (event->attr.type) {
2044 case PERF_TYPE_RAW:
2045 case PERF_TYPE_HARDWARE:
2046 case PERF_TYPE_HW_CACHE:
2047 break;
2049 default:
2050 return -ENOENT;
2053 err = __x86_pmu_event_init(event);
2054 if (!err) {
2056 * we temporarily connect event to its pmu
2057 * such that validate_group() can classify
2058 * it as an x86 event using is_x86_event()
2060 tmp = event->pmu;
2061 event->pmu = &pmu;
2063 if (event->group_leader != event)
2064 err = validate_group(event);
2065 else
2066 err = validate_event(event);
2068 event->pmu = tmp;
2070 if (err) {
2071 if (event->destroy)
2072 event->destroy(event);
2075 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2076 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2078 return err;
2081 static void refresh_pce(void *ignored)
2083 if (current->active_mm)
2084 load_mm_cr4(current->active_mm);
2087 static void x86_pmu_event_mapped(struct perf_event *event)
2089 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2090 return;
2092 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2093 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2096 static void x86_pmu_event_unmapped(struct perf_event *event)
2098 if (!current->mm)
2099 return;
2101 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2102 return;
2104 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2105 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2108 static int x86_pmu_event_idx(struct perf_event *event)
2110 int idx = event->hw.idx;
2112 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2113 return 0;
2115 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2116 idx -= INTEL_PMC_IDX_FIXED;
2117 idx |= 1 << 30;
2120 return idx + 1;
2123 static ssize_t get_attr_rdpmc(struct device *cdev,
2124 struct device_attribute *attr,
2125 char *buf)
2127 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2130 static ssize_t set_attr_rdpmc(struct device *cdev,
2131 struct device_attribute *attr,
2132 const char *buf, size_t count)
2134 unsigned long val;
2135 ssize_t ret;
2137 ret = kstrtoul(buf, 0, &val);
2138 if (ret)
2139 return ret;
2141 if (val > 2)
2142 return -EINVAL;
2144 if (x86_pmu.attr_rdpmc_broken)
2145 return -ENOTSUPP;
2147 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2149 * Changing into or out of always available, aka
2150 * perf-event-bypassing mode. This path is extremely slow,
2151 * but only root can trigger it, so it's okay.
2153 if (val == 2)
2154 static_key_slow_inc(&rdpmc_always_available);
2155 else
2156 static_key_slow_dec(&rdpmc_always_available);
2157 on_each_cpu(refresh_pce, NULL, 1);
2160 x86_pmu.attr_rdpmc = val;
2162 return count;
2165 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2167 static struct attribute *x86_pmu_attrs[] = {
2168 &dev_attr_rdpmc.attr,
2169 NULL,
2172 static struct attribute_group x86_pmu_attr_group = {
2173 .attrs = x86_pmu_attrs,
2176 static const struct attribute_group *x86_pmu_attr_groups[] = {
2177 &x86_pmu_attr_group,
2178 &x86_pmu_format_group,
2179 &x86_pmu_events_group,
2180 NULL,
2183 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2185 if (x86_pmu.sched_task)
2186 x86_pmu.sched_task(ctx, sched_in);
2189 void perf_check_microcode(void)
2191 if (x86_pmu.check_microcode)
2192 x86_pmu.check_microcode();
2194 EXPORT_SYMBOL_GPL(perf_check_microcode);
2196 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2198 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2199 return -EINVAL;
2201 if (value && x86_pmu.limit_period) {
2202 if (x86_pmu.limit_period(event, value) > value)
2203 return -EINVAL;
2206 return 0;
2209 static struct pmu pmu = {
2210 .pmu_enable = x86_pmu_enable,
2211 .pmu_disable = x86_pmu_disable,
2213 .attr_groups = x86_pmu_attr_groups,
2215 .event_init = x86_pmu_event_init,
2217 .event_mapped = x86_pmu_event_mapped,
2218 .event_unmapped = x86_pmu_event_unmapped,
2220 .add = x86_pmu_add,
2221 .del = x86_pmu_del,
2222 .start = x86_pmu_start,
2223 .stop = x86_pmu_stop,
2224 .read = x86_pmu_read,
2226 .start_txn = x86_pmu_start_txn,
2227 .cancel_txn = x86_pmu_cancel_txn,
2228 .commit_txn = x86_pmu_commit_txn,
2230 .event_idx = x86_pmu_event_idx,
2231 .sched_task = x86_pmu_sched_task,
2232 .task_ctx_size = sizeof(struct x86_perf_task_context),
2233 .check_period = x86_pmu_check_period,
2236 void arch_perf_update_userpage(struct perf_event *event,
2237 struct perf_event_mmap_page *userpg, u64 now)
2239 struct cyc2ns_data *data;
2241 userpg->cap_user_time = 0;
2242 userpg->cap_user_time_zero = 0;
2243 userpg->cap_user_rdpmc =
2244 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2245 userpg->pmc_width = x86_pmu.cntval_bits;
2247 if (!sched_clock_stable())
2248 return;
2250 data = cyc2ns_read_begin();
2253 * Internal timekeeping for enabled/running/stopped times
2254 * is always in the local_clock domain.
2256 userpg->cap_user_time = 1;
2257 userpg->time_mult = data->cyc2ns_mul;
2258 userpg->time_shift = data->cyc2ns_shift;
2259 userpg->time_offset = data->cyc2ns_offset - now;
2262 * cap_user_time_zero doesn't make sense when we're using a different
2263 * time base for the records.
2265 if (!event->attr.use_clockid) {
2266 userpg->cap_user_time_zero = 1;
2267 userpg->time_zero = data->cyc2ns_offset;
2270 cyc2ns_read_end(data);
2273 void
2274 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2276 struct unwind_state state;
2277 unsigned long addr;
2279 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2280 /* TODO: We don't support guest os callchain now */
2281 return;
2284 if (perf_callchain_store(entry, regs->ip))
2285 return;
2287 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2288 unwind_next_frame(&state)) {
2289 addr = unwind_get_return_address(&state);
2290 if (!addr || perf_callchain_store(entry, addr))
2291 return;
2295 static inline int
2296 valid_user_frame(const void __user *fp, unsigned long size)
2298 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2301 static unsigned long get_segment_base(unsigned int segment)
2303 struct desc_struct *desc;
2304 int idx = segment >> 3;
2306 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2307 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2308 struct ldt_struct *ldt;
2310 if (idx > LDT_ENTRIES)
2311 return 0;
2313 /* IRQs are off, so this synchronizes with smp_store_release */
2314 ldt = lockless_dereference(current->active_mm->context.ldt);
2315 if (!ldt || idx > ldt->size)
2316 return 0;
2318 desc = &ldt->entries[idx];
2319 #else
2320 return 0;
2321 #endif
2322 } else {
2323 if (idx > GDT_ENTRIES)
2324 return 0;
2326 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2329 return get_desc_base(desc);
2332 #ifdef CONFIG_IA32_EMULATION
2334 #include <asm/compat.h>
2336 static inline int
2337 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2339 /* 32-bit process in 64-bit kernel. */
2340 unsigned long ss_base, cs_base;
2341 struct stack_frame_ia32 frame;
2342 const void __user *fp;
2344 if (!test_thread_flag(TIF_IA32))
2345 return 0;
2347 cs_base = get_segment_base(regs->cs);
2348 ss_base = get_segment_base(regs->ss);
2350 fp = compat_ptr(ss_base + regs->bp);
2351 pagefault_disable();
2352 while (entry->nr < entry->max_stack) {
2353 unsigned long bytes;
2354 frame.next_frame = 0;
2355 frame.return_address = 0;
2357 if (!valid_user_frame(fp, sizeof(frame)))
2358 break;
2360 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2361 if (bytes != 0)
2362 break;
2363 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2364 if (bytes != 0)
2365 break;
2367 perf_callchain_store(entry, cs_base + frame.return_address);
2368 fp = compat_ptr(ss_base + frame.next_frame);
2370 pagefault_enable();
2371 return 1;
2373 #else
2374 static inline int
2375 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2377 return 0;
2379 #endif
2381 void
2382 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2384 struct stack_frame frame;
2385 const unsigned long __user *fp;
2387 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2388 /* TODO: We don't support guest os callchain now */
2389 return;
2393 * We don't know what to do with VM86 stacks.. ignore them for now.
2395 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2396 return;
2398 fp = (unsigned long __user *)regs->bp;
2400 perf_callchain_store(entry, regs->ip);
2402 if (!current->mm)
2403 return;
2405 if (perf_callchain_user32(regs, entry))
2406 return;
2408 pagefault_disable();
2409 while (entry->nr < entry->max_stack) {
2410 unsigned long bytes;
2412 frame.next_frame = NULL;
2413 frame.return_address = 0;
2415 if (!valid_user_frame(fp, sizeof(frame)))
2416 break;
2418 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2419 if (bytes != 0)
2420 break;
2421 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2422 if (bytes != 0)
2423 break;
2425 perf_callchain_store(entry, frame.return_address);
2426 fp = (void __user *)frame.next_frame;
2428 pagefault_enable();
2432 * Deal with code segment offsets for the various execution modes:
2434 * VM86 - the good olde 16 bit days, where the linear address is
2435 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2437 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2438 * to figure out what the 32bit base address is.
2440 * X32 - has TIF_X32 set, but is running in x86_64
2442 * X86_64 - CS,DS,SS,ES are all zero based.
2444 static unsigned long code_segment_base(struct pt_regs *regs)
2447 * For IA32 we look at the GDT/LDT segment base to convert the
2448 * effective IP to a linear address.
2451 #ifdef CONFIG_X86_32
2453 * If we are in VM86 mode, add the segment offset to convert to a
2454 * linear address.
2456 if (regs->flags & X86_VM_MASK)
2457 return 0x10 * regs->cs;
2459 if (user_mode(regs) && regs->cs != __USER_CS)
2460 return get_segment_base(regs->cs);
2461 #else
2462 if (user_mode(regs) && !user_64bit_mode(regs) &&
2463 regs->cs != __USER32_CS)
2464 return get_segment_base(regs->cs);
2465 #endif
2466 return 0;
2469 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2471 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2472 return perf_guest_cbs->get_guest_ip();
2474 return regs->ip + code_segment_base(regs);
2477 unsigned long perf_misc_flags(struct pt_regs *regs)
2479 int misc = 0;
2481 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2482 if (perf_guest_cbs->is_user_mode())
2483 misc |= PERF_RECORD_MISC_GUEST_USER;
2484 else
2485 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2486 } else {
2487 if (user_mode(regs))
2488 misc |= PERF_RECORD_MISC_USER;
2489 else
2490 misc |= PERF_RECORD_MISC_KERNEL;
2493 if (regs->flags & PERF_EFLAGS_EXACT)
2494 misc |= PERF_RECORD_MISC_EXACT_IP;
2496 return misc;
2499 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2501 cap->version = x86_pmu.version;
2502 cap->num_counters_gp = x86_pmu.num_counters;
2503 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2504 cap->bit_width_gp = x86_pmu.cntval_bits;
2505 cap->bit_width_fixed = x86_pmu.cntval_bits;
2506 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2507 cap->events_mask_len = x86_pmu.events_mask_len;
2509 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);