2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29 #include <linux/nospec.h>
32 #include <asm/stacktrace.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
41 #include <asm/unwind.h>
43 #include "perf_event.h"
45 struct x86_pmu x86_pmu __read_mostly
;
47 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
51 struct static_key rdpmc_always_available
= STATIC_KEY_INIT_FALSE
;
53 u64 __read_mostly hw_cache_event_ids
54 [PERF_COUNT_HW_CACHE_MAX
]
55 [PERF_COUNT_HW_CACHE_OP_MAX
]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
57 u64 __read_mostly hw_cache_extra_regs
58 [PERF_COUNT_HW_CACHE_MAX
]
59 [PERF_COUNT_HW_CACHE_OP_MAX
]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
65 * Returns the delta events processed.
67 u64
x86_perf_event_update(struct perf_event
*event
)
69 struct hw_perf_event
*hwc
= &event
->hw
;
70 int shift
= 64 - x86_pmu
.cntval_bits
;
71 u64 prev_raw_count
, new_raw_count
;
75 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
79 * Careful: an NMI might modify the previous event value.
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
83 * count to the generic event atomically:
86 prev_raw_count
= local64_read(&hwc
->prev_count
);
87 rdpmcl(hwc
->event_base_rdpmc
, new_raw_count
);
89 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
90 new_raw_count
) != prev_raw_count
)
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
96 * (event-)time and add that to the generic event.
98 * Careful, not all hw sign-extends above the physical width
101 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
104 local64_add(delta
, &event
->count
);
105 local64_sub(delta
, &hwc
->period_left
);
107 return new_raw_count
;
111 * Find and validate any extra registers to set up.
113 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
115 struct hw_perf_event_extra
*reg
;
116 struct extra_reg
*er
;
118 reg
= &event
->hw
.extra_reg
;
120 if (!x86_pmu
.extra_regs
)
123 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
124 if (er
->event
!= (config
& er
->config_mask
))
126 if (event
->attr
.config1
& ~er
->valid_mask
)
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er
->extra_msr_access
)
133 reg
->config
= event
->attr
.config1
;
140 static atomic_t active_events
;
141 static atomic_t pmc_refcount
;
142 static DEFINE_MUTEX(pmc_reserve_mutex
);
144 #ifdef CONFIG_X86_LOCAL_APIC
146 static bool reserve_pmc_hardware(void)
150 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
155 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
163 for (i
--; i
>= 0; i
--)
164 release_evntsel_nmi(x86_pmu_config_addr(i
));
166 i
= x86_pmu
.num_counters
;
169 for (i
--; i
>= 0; i
--)
170 release_perfctr_nmi(x86_pmu_event_addr(i
));
175 static void release_pmc_hardware(void)
179 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
180 release_perfctr_nmi(x86_pmu_event_addr(i
));
181 release_evntsel_nmi(x86_pmu_config_addr(i
));
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
192 static bool check_hw_exists(void)
194 u64 val
, val_fail
= -1, val_new
= ~0;
195 int i
, reg
, reg_fail
= -1, ret
= 0;
200 * Check to see if the BIOS enabled any of the counters, if so
203 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
204 reg
= x86_pmu_config_addr(i
);
205 ret
= rdmsrl_safe(reg
, &val
);
208 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
) {
217 if (x86_pmu
.num_counters_fixed
) {
218 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
219 ret
= rdmsrl_safe(reg
, &val
);
222 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
223 if (val
& (0x03 << i
*4)) {
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
237 if (reg_safe
== -1) {
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 reg
= x86_pmu_event_addr(reg_safe
);
248 if (rdmsrl_safe(reg
, &val
))
251 ret
= wrmsrl_safe(reg
, val
);
252 ret
|= rdmsrl_safe(reg
, &val_new
);
253 if (ret
|| val
!= val_new
)
257 * We still allow the PMU driver to operate:
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR
)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
279 static void hw_perf_event_destroy(struct perf_event
*event
)
281 x86_release_hardware();
282 atomic_dec(&active_events
);
285 void hw_perf_lbr_event_destroy(struct perf_event
*event
)
287 hw_perf_event_destroy(event
);
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr
);
293 static inline int x86_pmu_initialized(void)
295 return x86_pmu
.handle_irq
!= NULL
;
299 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
301 struct perf_event_attr
*attr
= &event
->attr
;
302 unsigned int cache_type
, cache_op
, cache_result
;
305 config
= attr
->config
;
307 cache_type
= (config
>> 0) & 0xff;
308 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
310 cache_type
= array_index_nospec(cache_type
, PERF_COUNT_HW_CACHE_MAX
);
312 cache_op
= (config
>> 8) & 0xff;
313 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
315 cache_op
= array_index_nospec(cache_op
, PERF_COUNT_HW_CACHE_OP_MAX
);
317 cache_result
= (config
>> 16) & 0xff;
318 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
320 cache_result
= array_index_nospec(cache_result
, PERF_COUNT_HW_CACHE_RESULT_MAX
);
322 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
331 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
332 return x86_pmu_extra_regs(val
, event
);
335 int x86_reserve_hardware(void)
339 if (!atomic_inc_not_zero(&pmc_refcount
)) {
340 mutex_lock(&pmc_reserve_mutex
);
341 if (atomic_read(&pmc_refcount
) == 0) {
342 if (!reserve_pmc_hardware())
345 reserve_ds_buffers();
348 atomic_inc(&pmc_refcount
);
349 mutex_unlock(&pmc_reserve_mutex
);
355 void x86_release_hardware(void)
357 if (atomic_dec_and_mutex_lock(&pmc_refcount
, &pmc_reserve_mutex
)) {
358 release_pmc_hardware();
359 release_ds_buffers();
360 mutex_unlock(&pmc_reserve_mutex
);
365 * Check if we can create event of a certain type (that no conflicting events
368 int x86_add_exclusive(unsigned int what
)
373 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
374 * LBR and BTS are still mutually exclusive.
376 if (x86_pmu
.lbr_pt_coexist
&& what
== x86_lbr_exclusive_pt
)
379 if (!atomic_inc_not_zero(&x86_pmu
.lbr_exclusive
[what
])) {
380 mutex_lock(&pmc_reserve_mutex
);
381 for (i
= 0; i
< ARRAY_SIZE(x86_pmu
.lbr_exclusive
); i
++) {
382 if (i
!= what
&& atomic_read(&x86_pmu
.lbr_exclusive
[i
]))
385 atomic_inc(&x86_pmu
.lbr_exclusive
[what
]);
386 mutex_unlock(&pmc_reserve_mutex
);
389 atomic_inc(&active_events
);
393 mutex_unlock(&pmc_reserve_mutex
);
397 void x86_del_exclusive(unsigned int what
)
399 if (x86_pmu
.lbr_pt_coexist
&& what
== x86_lbr_exclusive_pt
)
402 atomic_dec(&x86_pmu
.lbr_exclusive
[what
]);
403 atomic_dec(&active_events
);
406 int x86_setup_perfctr(struct perf_event
*event
)
408 struct perf_event_attr
*attr
= &event
->attr
;
409 struct hw_perf_event
*hwc
= &event
->hw
;
412 if (!is_sampling_event(event
)) {
413 hwc
->sample_period
= x86_pmu
.max_period
;
414 hwc
->last_period
= hwc
->sample_period
;
415 local64_set(&hwc
->period_left
, hwc
->sample_period
);
418 if (attr
->type
== PERF_TYPE_RAW
)
419 return x86_pmu_extra_regs(event
->attr
.config
, event
);
421 if (attr
->type
== PERF_TYPE_HW_CACHE
)
422 return set_ext_hw_attr(hwc
, event
);
424 if (attr
->config
>= x86_pmu
.max_events
)
427 attr
->config
= array_index_nospec((unsigned long)attr
->config
, x86_pmu
.max_events
);
432 config
= x86_pmu
.event_map(attr
->config
);
440 hwc
->config
|= config
;
446 * check that branch_sample_type is compatible with
447 * settings needed for precise_ip > 1 which implies
448 * using the LBR to capture ALL taken branches at the
449 * priv levels of the measurement
451 static inline int precise_br_compat(struct perf_event
*event
)
453 u64 m
= event
->attr
.branch_sample_type
;
456 /* must capture all branches */
457 if (!(m
& PERF_SAMPLE_BRANCH_ANY
))
460 m
&= PERF_SAMPLE_BRANCH_KERNEL
| PERF_SAMPLE_BRANCH_USER
;
462 if (!event
->attr
.exclude_user
)
463 b
|= PERF_SAMPLE_BRANCH_USER
;
465 if (!event
->attr
.exclude_kernel
)
466 b
|= PERF_SAMPLE_BRANCH_KERNEL
;
469 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
475 int x86_pmu_hw_config(struct perf_event
*event
)
477 if (event
->attr
.precise_ip
) {
480 /* Support for constant skid */
481 if (x86_pmu
.pebs_active
&& !x86_pmu
.pebs_broken
) {
484 /* Support for IP fixup */
485 if (x86_pmu
.lbr_nr
|| x86_pmu
.intel_cap
.pebs_format
>= 2)
488 if (x86_pmu
.pebs_prec_dist
)
492 if (event
->attr
.precise_ip
> precise
)
495 /* There's no sense in having PEBS for non sampling events: */
496 if (!is_sampling_event(event
))
500 * check that PEBS LBR correction does not conflict with
501 * whatever the user is asking with attr->branch_sample_type
503 if (event
->attr
.precise_ip
> 1 && x86_pmu
.intel_cap
.pebs_format
< 2) {
504 u64
*br_type
= &event
->attr
.branch_sample_type
;
506 if (has_branch_stack(event
)) {
507 if (!precise_br_compat(event
))
510 /* branch_sample_type is compatible */
514 * user did not specify branch_sample_type
516 * For PEBS fixups, we capture all
517 * the branches at the priv level of the
520 *br_type
= PERF_SAMPLE_BRANCH_ANY
;
522 if (!event
->attr
.exclude_user
)
523 *br_type
|= PERF_SAMPLE_BRANCH_USER
;
525 if (!event
->attr
.exclude_kernel
)
526 *br_type
|= PERF_SAMPLE_BRANCH_KERNEL
;
530 if (event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_CALL_STACK
)
531 event
->attach_state
|= PERF_ATTACH_TASK_DATA
;
535 * (keep 'enabled' bit clear for now)
537 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
540 * Count user and OS events unless requested not to
542 if (!event
->attr
.exclude_user
)
543 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
544 if (!event
->attr
.exclude_kernel
)
545 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
547 if (event
->attr
.type
== PERF_TYPE_RAW
)
548 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
550 if (event
->attr
.sample_period
&& x86_pmu
.limit_period
) {
551 if (x86_pmu
.limit_period(event
, event
->attr
.sample_period
) >
552 event
->attr
.sample_period
)
556 return x86_setup_perfctr(event
);
560 * Setup the hardware configuration for a given attr_type
562 static int __x86_pmu_event_init(struct perf_event
*event
)
566 if (!x86_pmu_initialized())
569 err
= x86_reserve_hardware();
573 atomic_inc(&active_events
);
574 event
->destroy
= hw_perf_event_destroy
;
577 event
->hw
.last_cpu
= -1;
578 event
->hw
.last_tag
= ~0ULL;
581 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
582 event
->hw
.branch_reg
.idx
= EXTRA_REG_NONE
;
584 return x86_pmu
.hw_config(event
);
587 void x86_pmu_disable_all(void)
589 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
592 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
595 if (!test_bit(idx
, cpuc
->active_mask
))
597 rdmsrl(x86_pmu_config_addr(idx
), val
);
598 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
600 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
601 wrmsrl(x86_pmu_config_addr(idx
), val
);
606 * There may be PMI landing after enabled=0. The PMI hitting could be before or
609 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
610 * It will not be re-enabled in the NMI handler again, because enabled=0. After
611 * handling the NMI, disable_all will be called, which will not change the
612 * state either. If PMI hits after disable_all, the PMU is already disabled
613 * before entering NMI handler. The NMI handler will not change the state
616 * So either situation is harmless.
618 static void x86_pmu_disable(struct pmu
*pmu
)
620 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
622 if (!x86_pmu_initialized())
632 x86_pmu
.disable_all();
635 void x86_pmu_enable_all(int added
)
637 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
640 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
641 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
643 if (!test_bit(idx
, cpuc
->active_mask
))
646 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
650 static struct pmu pmu
;
652 static inline int is_x86_event(struct perf_event
*event
)
654 return event
->pmu
== &pmu
;
658 * Event scheduler state:
660 * Assign events iterating over all events and counters, beginning
661 * with events with least weights first. Keep the current iterator
662 * state in struct sched_state.
666 int event
; /* event index */
667 int counter
; /* counter index */
668 int unassigned
; /* number of events to be assigned left */
669 int nr_gp
; /* number of GP counters used */
670 unsigned long used
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
673 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
674 #define SCHED_STATES_MAX 2
681 struct event_constraint
**constraints
;
682 struct sched_state state
;
683 struct sched_state saved
[SCHED_STATES_MAX
];
687 * Initialize interator that runs through all events and counters.
689 static void perf_sched_init(struct perf_sched
*sched
, struct event_constraint
**constraints
,
690 int num
, int wmin
, int wmax
, int gpmax
)
694 memset(sched
, 0, sizeof(*sched
));
695 sched
->max_events
= num
;
696 sched
->max_weight
= wmax
;
697 sched
->max_gp
= gpmax
;
698 sched
->constraints
= constraints
;
700 for (idx
= 0; idx
< num
; idx
++) {
701 if (constraints
[idx
]->weight
== wmin
)
705 sched
->state
.event
= idx
; /* start with min weight */
706 sched
->state
.weight
= wmin
;
707 sched
->state
.unassigned
= num
;
710 static void perf_sched_save_state(struct perf_sched
*sched
)
712 if (WARN_ON_ONCE(sched
->saved_states
>= SCHED_STATES_MAX
))
715 sched
->saved
[sched
->saved_states
] = sched
->state
;
716 sched
->saved_states
++;
719 static bool perf_sched_restore_state(struct perf_sched
*sched
)
721 if (!sched
->saved_states
)
724 sched
->saved_states
--;
725 sched
->state
= sched
->saved
[sched
->saved_states
];
727 /* continue with next counter: */
728 clear_bit(sched
->state
.counter
++, sched
->state
.used
);
734 * Select a counter for the current event to schedule. Return true on
737 static bool __perf_sched_find_counter(struct perf_sched
*sched
)
739 struct event_constraint
*c
;
742 if (!sched
->state
.unassigned
)
745 if (sched
->state
.event
>= sched
->max_events
)
748 c
= sched
->constraints
[sched
->state
.event
];
749 /* Prefer fixed purpose counters */
750 if (c
->idxmsk64
& (~0ULL << INTEL_PMC_IDX_FIXED
)) {
751 idx
= INTEL_PMC_IDX_FIXED
;
752 for_each_set_bit_from(idx
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
753 if (!__test_and_set_bit(idx
, sched
->state
.used
))
758 /* Grab the first unused counter starting with idx */
759 idx
= sched
->state
.counter
;
760 for_each_set_bit_from(idx
, c
->idxmsk
, INTEL_PMC_IDX_FIXED
) {
761 if (!__test_and_set_bit(idx
, sched
->state
.used
)) {
762 if (sched
->state
.nr_gp
++ >= sched
->max_gp
)
772 sched
->state
.counter
= idx
;
775 perf_sched_save_state(sched
);
780 static bool perf_sched_find_counter(struct perf_sched
*sched
)
782 while (!__perf_sched_find_counter(sched
)) {
783 if (!perf_sched_restore_state(sched
))
791 * Go through all unassigned events and find the next one to schedule.
792 * Take events with the least weight first. Return true on success.
794 static bool perf_sched_next_event(struct perf_sched
*sched
)
796 struct event_constraint
*c
;
798 if (!sched
->state
.unassigned
|| !--sched
->state
.unassigned
)
803 sched
->state
.event
++;
804 if (sched
->state
.event
>= sched
->max_events
) {
806 sched
->state
.event
= 0;
807 sched
->state
.weight
++;
808 if (sched
->state
.weight
> sched
->max_weight
)
811 c
= sched
->constraints
[sched
->state
.event
];
812 } while (c
->weight
!= sched
->state
.weight
);
814 sched
->state
.counter
= 0; /* start with first counter */
820 * Assign a counter for each event.
822 int perf_assign_events(struct event_constraint
**constraints
, int n
,
823 int wmin
, int wmax
, int gpmax
, int *assign
)
825 struct perf_sched sched
;
827 perf_sched_init(&sched
, constraints
, n
, wmin
, wmax
, gpmax
);
830 if (!perf_sched_find_counter(&sched
))
833 assign
[sched
.state
.event
] = sched
.state
.counter
;
834 } while (perf_sched_next_event(&sched
));
836 return sched
.state
.unassigned
;
838 EXPORT_SYMBOL_GPL(perf_assign_events
);
840 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
842 struct event_constraint
*c
;
843 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
844 struct perf_event
*e
;
845 int i
, wmin
, wmax
, unsched
= 0;
846 struct hw_perf_event
*hwc
;
848 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
850 if (x86_pmu
.start_scheduling
)
851 x86_pmu
.start_scheduling(cpuc
);
853 for (i
= 0, wmin
= X86_PMC_IDX_MAX
, wmax
= 0; i
< n
; i
++) {
854 cpuc
->event_constraint
[i
] = NULL
;
855 c
= x86_pmu
.get_event_constraints(cpuc
, i
, cpuc
->event_list
[i
]);
856 cpuc
->event_constraint
[i
] = c
;
858 wmin
= min(wmin
, c
->weight
);
859 wmax
= max(wmax
, c
->weight
);
863 * fastpath, try to reuse previous register
865 for (i
= 0; i
< n
; i
++) {
866 hwc
= &cpuc
->event_list
[i
]->hw
;
867 c
= cpuc
->event_constraint
[i
];
873 /* constraint still honored */
874 if (!test_bit(hwc
->idx
, c
->idxmsk
))
877 /* not already used */
878 if (test_bit(hwc
->idx
, used_mask
))
881 __set_bit(hwc
->idx
, used_mask
);
883 assign
[i
] = hwc
->idx
;
888 int gpmax
= x86_pmu
.num_counters
;
891 * Do not allow scheduling of more than half the available
894 * This helps avoid counter starvation of sibling thread by
895 * ensuring at most half the counters cannot be in exclusive
896 * mode. There is no designated counters for the limits. Any
897 * N/2 counters can be used. This helps with events with
898 * specific counter constraints.
900 if (is_ht_workaround_enabled() && !cpuc
->is_fake
&&
901 READ_ONCE(cpuc
->excl_cntrs
->exclusive_present
))
904 unsched
= perf_assign_events(cpuc
->event_constraint
, n
, wmin
,
905 wmax
, gpmax
, assign
);
909 * In case of success (unsched = 0), mark events as committed,
910 * so we do not put_constraint() in case new events are added
911 * and fail to be scheduled
913 * We invoke the lower level commit callback to lock the resource
915 * We do not need to do all of this in case we are called to
916 * validate an event group (assign == NULL)
918 if (!unsched
&& assign
) {
919 for (i
= 0; i
< n
; i
++) {
920 e
= cpuc
->event_list
[i
];
921 e
->hw
.flags
|= PERF_X86_EVENT_COMMITTED
;
922 if (x86_pmu
.commit_scheduling
)
923 x86_pmu
.commit_scheduling(cpuc
, i
, assign
[i
]);
926 for (i
= 0; i
< n
; i
++) {
927 e
= cpuc
->event_list
[i
];
929 * do not put_constraint() on comitted events,
930 * because they are good to go
932 if ((e
->hw
.flags
& PERF_X86_EVENT_COMMITTED
))
936 * release events that failed scheduling
938 if (x86_pmu
.put_event_constraints
)
939 x86_pmu
.put_event_constraints(cpuc
, e
);
943 if (x86_pmu
.stop_scheduling
)
944 x86_pmu
.stop_scheduling(cpuc
);
946 return unsched
? -EINVAL
: 0;
950 * dogrp: true if must collect siblings events (group)
951 * returns total number of events and error code
953 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
955 struct perf_event
*event
;
958 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
960 /* current number of events already accepted */
963 if (is_x86_event(leader
)) {
966 cpuc
->event_list
[n
] = leader
;
972 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
973 if (!is_x86_event(event
) ||
974 event
->state
<= PERF_EVENT_STATE_OFF
)
980 cpuc
->event_list
[n
] = event
;
986 static inline void x86_assign_hw_event(struct perf_event
*event
,
987 struct cpu_hw_events
*cpuc
, int i
)
989 struct hw_perf_event
*hwc
= &event
->hw
;
991 hwc
->idx
= cpuc
->assign
[i
];
992 hwc
->last_cpu
= smp_processor_id();
993 hwc
->last_tag
= ++cpuc
->tags
[i
];
995 if (hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
) {
996 hwc
->config_base
= 0;
998 } else if (hwc
->idx
>= INTEL_PMC_IDX_FIXED
) {
999 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
1000 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- INTEL_PMC_IDX_FIXED
);
1001 hwc
->event_base_rdpmc
= (hwc
->idx
- INTEL_PMC_IDX_FIXED
) | 1<<30;
1003 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
1004 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
1005 hwc
->event_base_rdpmc
= x86_pmu_rdpmc_index(hwc
->idx
);
1009 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
1010 struct cpu_hw_events
*cpuc
,
1013 return hwc
->idx
== cpuc
->assign
[i
] &&
1014 hwc
->last_cpu
== smp_processor_id() &&
1015 hwc
->last_tag
== cpuc
->tags
[i
];
1018 static void x86_pmu_start(struct perf_event
*event
, int flags
);
1020 static void x86_pmu_enable(struct pmu
*pmu
)
1022 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1023 struct perf_event
*event
;
1024 struct hw_perf_event
*hwc
;
1025 int i
, added
= cpuc
->n_added
;
1027 if (!x86_pmu_initialized())
1033 if (cpuc
->n_added
) {
1034 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
1036 * apply assignment obtained either from
1037 * hw_perf_group_sched_in() or x86_pmu_enable()
1039 * step1: save events moving to new counters
1041 for (i
= 0; i
< n_running
; i
++) {
1042 event
= cpuc
->event_list
[i
];
1046 * we can avoid reprogramming counter if:
1047 * - assigned same counter as last time
1048 * - running on same CPU as last time
1049 * - no other event has used the counter since
1051 if (hwc
->idx
== -1 ||
1052 match_prev_assignment(hwc
, cpuc
, i
))
1056 * Ensure we don't accidentally enable a stopped
1057 * counter simply because we rescheduled.
1059 if (hwc
->state
& PERF_HES_STOPPED
)
1060 hwc
->state
|= PERF_HES_ARCH
;
1062 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1066 * step2: reprogram moved events into new counters
1068 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1069 event
= cpuc
->event_list
[i
];
1072 if (!match_prev_assignment(hwc
, cpuc
, i
))
1073 x86_assign_hw_event(event
, cpuc
, i
);
1074 else if (i
< n_running
)
1077 if (hwc
->state
& PERF_HES_ARCH
)
1080 x86_pmu_start(event
, PERF_EF_RELOAD
);
1083 perf_events_lapic_init();
1089 x86_pmu
.enable_all(added
);
1092 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
1095 * Set the next IRQ period, based on the hwc->period_left value.
1096 * To be called with the event disabled in hw:
1098 int x86_perf_event_set_period(struct perf_event
*event
)
1100 struct hw_perf_event
*hwc
= &event
->hw
;
1101 s64 left
= local64_read(&hwc
->period_left
);
1102 s64 period
= hwc
->sample_period
;
1103 int ret
= 0, idx
= hwc
->idx
;
1105 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
1109 * If we are way outside a reasonable range then just skip forward:
1111 if (unlikely(left
<= -period
)) {
1113 local64_set(&hwc
->period_left
, left
);
1114 hwc
->last_period
= period
;
1118 if (unlikely(left
<= 0)) {
1120 local64_set(&hwc
->period_left
, left
);
1121 hwc
->last_period
= period
;
1125 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1127 if (unlikely(left
< 2))
1130 if (left
> x86_pmu
.max_period
)
1131 left
= x86_pmu
.max_period
;
1133 if (x86_pmu
.limit_period
)
1134 left
= x86_pmu
.limit_period(event
, left
);
1136 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
1139 * The hw event starts counting from this event offset,
1140 * mark it to be able to extra future deltas:
1142 local64_set(&hwc
->prev_count
, (u64
)-left
);
1144 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
1147 * Due to erratum on certan cpu we need
1148 * a second write to be sure the register
1149 * is updated properly
1151 if (x86_pmu
.perfctr_second_write
) {
1152 wrmsrl(hwc
->event_base
,
1153 (u64
)(-left
) & x86_pmu
.cntval_mask
);
1156 perf_event_update_userpage(event
);
1161 void x86_pmu_enable_event(struct perf_event
*event
)
1163 if (__this_cpu_read(cpu_hw_events
.enabled
))
1164 __x86_pmu_enable_event(&event
->hw
,
1165 ARCH_PERFMON_EVENTSEL_ENABLE
);
1169 * Add a single event to the PMU.
1171 * The event is added to the group of enabled events
1172 * but only if it can be scehduled with existing events.
1174 static int x86_pmu_add(struct perf_event
*event
, int flags
)
1176 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1177 struct hw_perf_event
*hwc
;
1178 int assign
[X86_PMC_IDX_MAX
];
1183 n0
= cpuc
->n_events
;
1184 ret
= n
= collect_events(cpuc
, event
, false);
1188 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1189 if (!(flags
& PERF_EF_START
))
1190 hwc
->state
|= PERF_HES_ARCH
;
1193 * If group events scheduling transaction was started,
1194 * skip the schedulability test here, it will be performed
1195 * at commit time (->commit_txn) as a whole.
1197 * If commit fails, we'll call ->del() on all events
1198 * for which ->add() was called.
1200 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1203 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1207 * copy new assignment, now we know it is possible
1208 * will be used by hw_perf_enable()
1210 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1214 * Commit the collect_events() state. See x86_pmu_del() and
1218 cpuc
->n_added
+= n
- n0
;
1219 cpuc
->n_txn
+= n
- n0
;
1223 * This is before x86_pmu_enable() will call x86_pmu_start(),
1224 * so we enable LBRs before an event needs them etc..
1234 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1236 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1237 int idx
= event
->hw
.idx
;
1239 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1242 if (WARN_ON_ONCE(idx
== -1))
1245 if (flags
& PERF_EF_RELOAD
) {
1246 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1247 x86_perf_event_set_period(event
);
1250 event
->hw
.state
= 0;
1252 cpuc
->events
[idx
] = event
;
1253 __set_bit(idx
, cpuc
->active_mask
);
1254 __set_bit(idx
, cpuc
->running
);
1255 x86_pmu
.enable(event
);
1256 perf_event_update_userpage(event
);
1259 void perf_event_print_debug(void)
1261 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1263 struct cpu_hw_events
*cpuc
;
1264 unsigned long flags
;
1267 if (!x86_pmu
.num_counters
)
1270 local_irq_save(flags
);
1272 cpu
= smp_processor_id();
1273 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1275 if (x86_pmu
.version
>= 2) {
1276 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1277 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1278 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1279 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1282 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1283 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1284 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1285 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1286 if (x86_pmu
.pebs_constraints
) {
1287 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1288 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1290 if (x86_pmu
.lbr_nr
) {
1291 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
1292 pr_info("CPU#%d: debugctl: %016llx\n", cpu
, debugctl
);
1295 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1297 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1298 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1299 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1301 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1303 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1304 cpu
, idx
, pmc_ctrl
);
1305 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1306 cpu
, idx
, pmc_count
);
1307 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1308 cpu
, idx
, prev_left
);
1310 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1311 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1313 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1314 cpu
, idx
, pmc_count
);
1316 local_irq_restore(flags
);
1319 void x86_pmu_stop(struct perf_event
*event
, int flags
)
1321 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1322 struct hw_perf_event
*hwc
= &event
->hw
;
1324 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1325 x86_pmu
.disable(event
);
1326 cpuc
->events
[hwc
->idx
] = NULL
;
1327 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1328 hwc
->state
|= PERF_HES_STOPPED
;
1331 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1333 * Drain the remaining delta count out of a event
1334 * that we are disabling:
1336 x86_perf_event_update(event
);
1337 hwc
->state
|= PERF_HES_UPTODATE
;
1341 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1343 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1347 * event is descheduled
1349 event
->hw
.flags
&= ~PERF_X86_EVENT_COMMITTED
;
1352 * If we're called during a txn, we only need to undo x86_pmu.add.
1353 * The events never got scheduled and ->cancel_txn will truncate
1356 * XXX assumes any ->del() called during a TXN will only be on
1357 * an event added during that same TXN.
1359 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1363 * Not a TXN, therefore cleanup properly.
1365 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1367 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1368 if (event
== cpuc
->event_list
[i
])
1372 if (WARN_ON_ONCE(i
== cpuc
->n_events
)) /* called ->del() without ->add() ? */
1375 /* If we have a newly added event; make sure to decrease n_added. */
1376 if (i
>= cpuc
->n_events
- cpuc
->n_added
)
1379 if (x86_pmu
.put_event_constraints
)
1380 x86_pmu
.put_event_constraints(cpuc
, event
);
1382 /* Delete the array entry. */
1383 while (++i
< cpuc
->n_events
) {
1384 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1385 cpuc
->event_constraint
[i
-1] = cpuc
->event_constraint
[i
];
1389 perf_event_update_userpage(event
);
1394 * This is after x86_pmu_stop(); so we disable LBRs after any
1395 * event can need them etc..
1401 int x86_pmu_handle_irq(struct pt_regs
*regs
)
1403 struct perf_sample_data data
;
1404 struct cpu_hw_events
*cpuc
;
1405 struct perf_event
*event
;
1406 int idx
, handled
= 0;
1409 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1412 * Some chipsets need to unmask the LVTPC in a particular spot
1413 * inside the nmi handler. As a result, the unmasking was pushed
1414 * into all the nmi handlers.
1416 * This generic handler doesn't seem to have any issues where the
1417 * unmasking occurs so it was left at the top.
1419 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1421 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1422 if (!test_bit(idx
, cpuc
->active_mask
)) {
1424 * Though we deactivated the counter some cpus
1425 * might still deliver spurious interrupts still
1426 * in flight. Catch them:
1428 if (__test_and_clear_bit(idx
, cpuc
->running
))
1433 event
= cpuc
->events
[idx
];
1435 val
= x86_perf_event_update(event
);
1436 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1443 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1445 if (!x86_perf_event_set_period(event
))
1448 if (perf_event_overflow(event
, &data
, regs
))
1449 x86_pmu_stop(event
, 0);
1453 inc_irq_stat(apic_perf_irqs
);
1458 void perf_events_lapic_init(void)
1460 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1464 * Always use NMI for PMU
1466 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1470 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1477 * All PMUs/events that share this PMI handler should make sure to
1478 * increment active_events for their events.
1480 if (!atomic_read(&active_events
))
1483 start_clock
= sched_clock();
1484 ret
= x86_pmu
.handle_irq(regs
);
1485 finish_clock
= sched_clock();
1487 perf_sample_event_took(finish_clock
- start_clock
);
1491 NOKPROBE_SYMBOL(perf_event_nmi_handler
);
1493 struct event_constraint emptyconstraint
;
1494 struct event_constraint unconstrained
;
1496 static int x86_pmu_prepare_cpu(unsigned int cpu
)
1498 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1501 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++)
1502 cpuc
->kfree_on_online
[i
] = NULL
;
1503 if (x86_pmu
.cpu_prepare
)
1504 return x86_pmu
.cpu_prepare(cpu
);
1508 static int x86_pmu_dead_cpu(unsigned int cpu
)
1510 if (x86_pmu
.cpu_dead
)
1511 x86_pmu
.cpu_dead(cpu
);
1515 static int x86_pmu_online_cpu(unsigned int cpu
)
1517 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1520 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++) {
1521 kfree(cpuc
->kfree_on_online
[i
]);
1522 cpuc
->kfree_on_online
[i
] = NULL
;
1527 static int x86_pmu_starting_cpu(unsigned int cpu
)
1529 if (x86_pmu
.cpu_starting
)
1530 x86_pmu
.cpu_starting(cpu
);
1534 static int x86_pmu_dying_cpu(unsigned int cpu
)
1536 if (x86_pmu
.cpu_dying
)
1537 x86_pmu
.cpu_dying(cpu
);
1541 static void __init
pmu_check_apic(void)
1543 if (boot_cpu_has(X86_FEATURE_APIC
))
1547 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1548 pr_info("no hardware sampling interrupt available.\n");
1551 * If we have a PMU initialized but no APIC
1552 * interrupts, we cannot sample hardware
1553 * events (user-space has to fall back and
1554 * sample via a hrtimer based software event):
1556 pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
1560 static struct attribute_group x86_pmu_format_group
= {
1566 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1567 * out of events_attr attributes.
1569 static void __init
filter_events(struct attribute
**attrs
)
1571 struct device_attribute
*d
;
1572 struct perf_pmu_events_attr
*pmu_attr
;
1576 for (i
= 0; attrs
[i
]; i
++) {
1577 d
= (struct device_attribute
*)attrs
[i
];
1578 pmu_attr
= container_of(d
, struct perf_pmu_events_attr
, attr
);
1580 if (pmu_attr
->event_str
)
1582 if (x86_pmu
.event_map(i
+ offset
))
1585 for (j
= i
; attrs
[j
]; j
++)
1586 attrs
[j
] = attrs
[j
+ 1];
1588 /* Check the shifted attr. */
1592 * event_map() is index based, the attrs array is organized
1593 * by increasing event index. If we shift the events, then
1594 * we need to compensate for the event_map(), otherwise
1595 * we are looking up the wrong event in the map
1601 /* Merge two pointer arrays */
1602 __init
struct attribute
**merge_attr(struct attribute
**a
, struct attribute
**b
)
1604 struct attribute
**new;
1607 for (j
= 0; a
[j
]; j
++)
1609 for (i
= 0; b
[i
]; i
++)
1613 new = kmalloc(sizeof(struct attribute
*) * j
, GFP_KERNEL
);
1618 for (i
= 0; a
[i
]; i
++)
1620 for (i
= 0; b
[i
]; i
++)
1627 ssize_t
events_sysfs_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
1629 struct perf_pmu_events_attr
*pmu_attr
= \
1630 container_of(attr
, struct perf_pmu_events_attr
, attr
);
1631 u64 config
= x86_pmu
.event_map(pmu_attr
->id
);
1633 /* string trumps id */
1634 if (pmu_attr
->event_str
)
1635 return sprintf(page
, "%s", pmu_attr
->event_str
);
1637 return x86_pmu
.events_sysfs_show(page
, config
);
1639 EXPORT_SYMBOL_GPL(events_sysfs_show
);
1641 ssize_t
events_ht_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
1644 struct perf_pmu_events_ht_attr
*pmu_attr
=
1645 container_of(attr
, struct perf_pmu_events_ht_attr
, attr
);
1648 * Report conditional events depending on Hyper-Threading.
1650 * This is overly conservative as usually the HT special
1651 * handling is not needed if the other CPU thread is idle.
1653 * Note this does not (and cannot) handle the case when thread
1654 * siblings are invisible, for example with virtualization
1655 * if they are owned by some other guest. The user tool
1656 * has to re-read when a thread sibling gets onlined later.
1658 return sprintf(page
, "%s",
1659 topology_max_smt_threads() > 1 ?
1660 pmu_attr
->event_str_ht
:
1661 pmu_attr
->event_str_noht
);
1664 EVENT_ATTR(cpu
-cycles
, CPU_CYCLES
);
1665 EVENT_ATTR(instructions
, INSTRUCTIONS
);
1666 EVENT_ATTR(cache
-references
, CACHE_REFERENCES
);
1667 EVENT_ATTR(cache
-misses
, CACHE_MISSES
);
1668 EVENT_ATTR(branch
-instructions
, BRANCH_INSTRUCTIONS
);
1669 EVENT_ATTR(branch
-misses
, BRANCH_MISSES
);
1670 EVENT_ATTR(bus
-cycles
, BUS_CYCLES
);
1671 EVENT_ATTR(stalled
-cycles
-frontend
, STALLED_CYCLES_FRONTEND
);
1672 EVENT_ATTR(stalled
-cycles
-backend
, STALLED_CYCLES_BACKEND
);
1673 EVENT_ATTR(ref
-cycles
, REF_CPU_CYCLES
);
1675 static struct attribute
*empty_attrs
;
1677 static struct attribute
*events_attr
[] = {
1678 EVENT_PTR(CPU_CYCLES
),
1679 EVENT_PTR(INSTRUCTIONS
),
1680 EVENT_PTR(CACHE_REFERENCES
),
1681 EVENT_PTR(CACHE_MISSES
),
1682 EVENT_PTR(BRANCH_INSTRUCTIONS
),
1683 EVENT_PTR(BRANCH_MISSES
),
1684 EVENT_PTR(BUS_CYCLES
),
1685 EVENT_PTR(STALLED_CYCLES_FRONTEND
),
1686 EVENT_PTR(STALLED_CYCLES_BACKEND
),
1687 EVENT_PTR(REF_CPU_CYCLES
),
1691 static struct attribute_group x86_pmu_events_group
= {
1693 .attrs
= events_attr
,
1696 ssize_t
x86_event_sysfs_show(char *page
, u64 config
, u64 event
)
1698 u64 umask
= (config
& ARCH_PERFMON_EVENTSEL_UMASK
) >> 8;
1699 u64 cmask
= (config
& ARCH_PERFMON_EVENTSEL_CMASK
) >> 24;
1700 bool edge
= (config
& ARCH_PERFMON_EVENTSEL_EDGE
);
1701 bool pc
= (config
& ARCH_PERFMON_EVENTSEL_PIN_CONTROL
);
1702 bool any
= (config
& ARCH_PERFMON_EVENTSEL_ANY
);
1703 bool inv
= (config
& ARCH_PERFMON_EVENTSEL_INV
);
1707 * We have whole page size to spend and just little data
1708 * to write, so we can safely use sprintf.
1710 ret
= sprintf(page
, "event=0x%02llx", event
);
1713 ret
+= sprintf(page
+ ret
, ",umask=0x%02llx", umask
);
1716 ret
+= sprintf(page
+ ret
, ",edge");
1719 ret
+= sprintf(page
+ ret
, ",pc");
1722 ret
+= sprintf(page
+ ret
, ",any");
1725 ret
+= sprintf(page
+ ret
, ",inv");
1728 ret
+= sprintf(page
+ ret
, ",cmask=0x%02llx", cmask
);
1730 ret
+= sprintf(page
+ ret
, "\n");
1735 static int __init
init_hw_perf_events(void)
1737 struct x86_pmu_quirk
*quirk
;
1740 pr_info("Performance Events: ");
1742 switch (boot_cpu_data
.x86_vendor
) {
1743 case X86_VENDOR_INTEL
:
1744 err
= intel_pmu_init();
1746 case X86_VENDOR_AMD
:
1747 err
= amd_pmu_init();
1753 pr_cont("no PMU driver, software events only.\n");
1759 /* sanity check that the hardware exists or is emulated */
1760 if (!check_hw_exists())
1763 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1765 x86_pmu
.attr_rdpmc
= 1; /* enable userspace RDPMC usage by default */
1767 for (quirk
= x86_pmu
.quirks
; quirk
; quirk
= quirk
->next
)
1770 if (!x86_pmu
.intel_ctrl
)
1771 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1773 perf_events_lapic_init();
1774 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1776 unconstrained
= (struct event_constraint
)
1777 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1778 0, x86_pmu
.num_counters
, 0, 0);
1780 x86_pmu_format_group
.attrs
= x86_pmu
.format_attrs
;
1782 if (x86_pmu
.event_attrs
)
1783 x86_pmu_events_group
.attrs
= x86_pmu
.event_attrs
;
1785 if (!x86_pmu
.events_sysfs_show
)
1786 x86_pmu_events_group
.attrs
= &empty_attrs
;
1788 filter_events(x86_pmu_events_group
.attrs
);
1790 if (x86_pmu
.cpu_events
) {
1791 struct attribute
**tmp
;
1793 tmp
= merge_attr(x86_pmu_events_group
.attrs
, x86_pmu
.cpu_events
);
1795 x86_pmu_events_group
.attrs
= tmp
;
1798 pr_info("... version: %d\n", x86_pmu
.version
);
1799 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1800 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1801 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1802 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1803 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1804 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1807 * Install callbacks. Core will call them for each online
1810 err
= cpuhp_setup_state(CPUHP_PERF_X86_PREPARE
, "PERF_X86_PREPARE",
1811 x86_pmu_prepare_cpu
, x86_pmu_dead_cpu
);
1815 err
= cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING
,
1816 "AP_PERF_X86_STARTING", x86_pmu_starting_cpu
,
1821 err
= cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE
, "AP_PERF_X86_ONLINE",
1822 x86_pmu_online_cpu
, NULL
);
1826 err
= perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1833 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE
);
1835 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING
);
1837 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE
);
1840 early_initcall(init_hw_perf_events
);
1842 static inline void x86_pmu_read(struct perf_event
*event
)
1844 x86_perf_event_update(event
);
1848 * Start group events scheduling transaction
1849 * Set the flag to make pmu::enable() not perform the
1850 * schedulability test, it will be performed at commit time
1852 * We only support PERF_PMU_TXN_ADD transactions. Save the
1853 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1856 static void x86_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1858 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1860 WARN_ON_ONCE(cpuc
->txn_flags
); /* txn already in flight */
1862 cpuc
->txn_flags
= txn_flags
;
1863 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1866 perf_pmu_disable(pmu
);
1867 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1871 * Stop group events scheduling transaction
1872 * Clear the flag and pmu::enable() will perform the
1873 * schedulability test.
1875 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1877 unsigned int txn_flags
;
1878 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1880 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1882 txn_flags
= cpuc
->txn_flags
;
1883 cpuc
->txn_flags
= 0;
1884 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1888 * Truncate collected array by the number of events added in this
1889 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1891 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1892 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1893 perf_pmu_enable(pmu
);
1897 * Commit group events scheduling transaction
1898 * Perform the group schedulability test as a whole
1899 * Return 0 if success
1901 * Does not cancel the transaction on failure; expects the caller to do this.
1903 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1905 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1906 int assign
[X86_PMC_IDX_MAX
];
1909 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1911 if (cpuc
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1912 cpuc
->txn_flags
= 0;
1918 if (!x86_pmu_initialized())
1921 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1926 * copy new assignment, now we know it is possible
1927 * will be used by hw_perf_enable()
1929 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1931 cpuc
->txn_flags
= 0;
1932 perf_pmu_enable(pmu
);
1936 * a fake_cpuc is used to validate event groups. Due to
1937 * the extra reg logic, we need to also allocate a fake
1938 * per_core and per_cpu structure. Otherwise, group events
1939 * using extra reg may conflict without the kernel being
1940 * able to catch this when the last event gets added to
1943 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1945 intel_cpuc_finish(cpuc
);
1949 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1951 struct cpu_hw_events
*cpuc
;
1952 int cpu
= raw_smp_processor_id();
1954 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1956 return ERR_PTR(-ENOMEM
);
1959 if (intel_cpuc_prepare(cpuc
, cpu
))
1964 free_fake_cpuc(cpuc
);
1965 return ERR_PTR(-ENOMEM
);
1969 * validate that we can schedule this event
1971 static int validate_event(struct perf_event
*event
)
1973 struct cpu_hw_events
*fake_cpuc
;
1974 struct event_constraint
*c
;
1977 fake_cpuc
= allocate_fake_cpuc();
1978 if (IS_ERR(fake_cpuc
))
1979 return PTR_ERR(fake_cpuc
);
1981 c
= x86_pmu
.get_event_constraints(fake_cpuc
, -1, event
);
1983 if (!c
|| !c
->weight
)
1986 if (x86_pmu
.put_event_constraints
)
1987 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1989 free_fake_cpuc(fake_cpuc
);
1995 * validate a single event group
1997 * validation include:
1998 * - check events are compatible which each other
1999 * - events do not compete for the same counter
2000 * - number of events <= number of counters
2002 * validation ensures the group can be loaded onto the
2003 * PMU if it was the only group available.
2005 static int validate_group(struct perf_event
*event
)
2007 struct perf_event
*leader
= event
->group_leader
;
2008 struct cpu_hw_events
*fake_cpuc
;
2009 int ret
= -EINVAL
, n
;
2011 fake_cpuc
= allocate_fake_cpuc();
2012 if (IS_ERR(fake_cpuc
))
2013 return PTR_ERR(fake_cpuc
);
2015 * the event is not yet connected with its
2016 * siblings therefore we must first collect
2017 * existing siblings, then add the new event
2018 * before we can simulate the scheduling
2020 n
= collect_events(fake_cpuc
, leader
, true);
2024 fake_cpuc
->n_events
= n
;
2025 n
= collect_events(fake_cpuc
, event
, false);
2029 fake_cpuc
->n_events
= n
;
2031 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
2034 free_fake_cpuc(fake_cpuc
);
2038 static int x86_pmu_event_init(struct perf_event
*event
)
2043 switch (event
->attr
.type
) {
2045 case PERF_TYPE_HARDWARE
:
2046 case PERF_TYPE_HW_CACHE
:
2053 err
= __x86_pmu_event_init(event
);
2056 * we temporarily connect event to its pmu
2057 * such that validate_group() can classify
2058 * it as an x86 event using is_x86_event()
2063 if (event
->group_leader
!= event
)
2064 err
= validate_group(event
);
2066 err
= validate_event(event
);
2072 event
->destroy(event
);
2075 if (ACCESS_ONCE(x86_pmu
.attr_rdpmc
))
2076 event
->hw
.flags
|= PERF_X86_EVENT_RDPMC_ALLOWED
;
2081 static void refresh_pce(void *ignored
)
2083 if (current
->active_mm
)
2084 load_mm_cr4(current
->active_mm
);
2087 static void x86_pmu_event_mapped(struct perf_event
*event
)
2089 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2092 if (atomic_inc_return(¤t
->mm
->context
.perf_rdpmc_allowed
) == 1)
2093 on_each_cpu_mask(mm_cpumask(current
->mm
), refresh_pce
, NULL
, 1);
2096 static void x86_pmu_event_unmapped(struct perf_event
*event
)
2101 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2104 if (atomic_dec_and_test(¤t
->mm
->context
.perf_rdpmc_allowed
))
2105 on_each_cpu_mask(mm_cpumask(current
->mm
), refresh_pce
, NULL
, 1);
2108 static int x86_pmu_event_idx(struct perf_event
*event
)
2110 int idx
= event
->hw
.idx
;
2112 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2115 if (x86_pmu
.num_counters_fixed
&& idx
>= INTEL_PMC_IDX_FIXED
) {
2116 idx
-= INTEL_PMC_IDX_FIXED
;
2123 static ssize_t
get_attr_rdpmc(struct device
*cdev
,
2124 struct device_attribute
*attr
,
2127 return snprintf(buf
, 40, "%d\n", x86_pmu
.attr_rdpmc
);
2130 static ssize_t
set_attr_rdpmc(struct device
*cdev
,
2131 struct device_attribute
*attr
,
2132 const char *buf
, size_t count
)
2137 ret
= kstrtoul(buf
, 0, &val
);
2144 if (x86_pmu
.attr_rdpmc_broken
)
2147 if ((val
== 2) != (x86_pmu
.attr_rdpmc
== 2)) {
2149 * Changing into or out of always available, aka
2150 * perf-event-bypassing mode. This path is extremely slow,
2151 * but only root can trigger it, so it's okay.
2154 static_key_slow_inc(&rdpmc_always_available
);
2156 static_key_slow_dec(&rdpmc_always_available
);
2157 on_each_cpu(refresh_pce
, NULL
, 1);
2160 x86_pmu
.attr_rdpmc
= val
;
2165 static DEVICE_ATTR(rdpmc
, S_IRUSR
| S_IWUSR
, get_attr_rdpmc
, set_attr_rdpmc
);
2167 static struct attribute
*x86_pmu_attrs
[] = {
2168 &dev_attr_rdpmc
.attr
,
2172 static struct attribute_group x86_pmu_attr_group
= {
2173 .attrs
= x86_pmu_attrs
,
2176 static const struct attribute_group
*x86_pmu_attr_groups
[] = {
2177 &x86_pmu_attr_group
,
2178 &x86_pmu_format_group
,
2179 &x86_pmu_events_group
,
2183 static void x86_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
2185 if (x86_pmu
.sched_task
)
2186 x86_pmu
.sched_task(ctx
, sched_in
);
2189 void perf_check_microcode(void)
2191 if (x86_pmu
.check_microcode
)
2192 x86_pmu
.check_microcode();
2194 EXPORT_SYMBOL_GPL(perf_check_microcode
);
2196 static int x86_pmu_check_period(struct perf_event
*event
, u64 value
)
2198 if (x86_pmu
.check_period
&& x86_pmu
.check_period(event
, value
))
2201 if (value
&& x86_pmu
.limit_period
) {
2202 if (x86_pmu
.limit_period(event
, value
) > value
)
2209 static struct pmu pmu
= {
2210 .pmu_enable
= x86_pmu_enable
,
2211 .pmu_disable
= x86_pmu_disable
,
2213 .attr_groups
= x86_pmu_attr_groups
,
2215 .event_init
= x86_pmu_event_init
,
2217 .event_mapped
= x86_pmu_event_mapped
,
2218 .event_unmapped
= x86_pmu_event_unmapped
,
2222 .start
= x86_pmu_start
,
2223 .stop
= x86_pmu_stop
,
2224 .read
= x86_pmu_read
,
2226 .start_txn
= x86_pmu_start_txn
,
2227 .cancel_txn
= x86_pmu_cancel_txn
,
2228 .commit_txn
= x86_pmu_commit_txn
,
2230 .event_idx
= x86_pmu_event_idx
,
2231 .sched_task
= x86_pmu_sched_task
,
2232 .task_ctx_size
= sizeof(struct x86_perf_task_context
),
2233 .check_period
= x86_pmu_check_period
,
2236 void arch_perf_update_userpage(struct perf_event
*event
,
2237 struct perf_event_mmap_page
*userpg
, u64 now
)
2239 struct cyc2ns_data
*data
;
2241 userpg
->cap_user_time
= 0;
2242 userpg
->cap_user_time_zero
= 0;
2243 userpg
->cap_user_rdpmc
=
2244 !!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
);
2245 userpg
->pmc_width
= x86_pmu
.cntval_bits
;
2247 if (!sched_clock_stable())
2250 data
= cyc2ns_read_begin();
2253 * Internal timekeeping for enabled/running/stopped times
2254 * is always in the local_clock domain.
2256 userpg
->cap_user_time
= 1;
2257 userpg
->time_mult
= data
->cyc2ns_mul
;
2258 userpg
->time_shift
= data
->cyc2ns_shift
;
2259 userpg
->time_offset
= data
->cyc2ns_offset
- now
;
2262 * cap_user_time_zero doesn't make sense when we're using a different
2263 * time base for the records.
2265 if (!event
->attr
.use_clockid
) {
2266 userpg
->cap_user_time_zero
= 1;
2267 userpg
->time_zero
= data
->cyc2ns_offset
;
2270 cyc2ns_read_end(data
);
2274 perf_callchain_kernel(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
2276 struct unwind_state state
;
2279 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2280 /* TODO: We don't support guest os callchain now */
2284 if (perf_callchain_store(entry
, regs
->ip
))
2287 for (unwind_start(&state
, current
, regs
, NULL
); !unwind_done(&state
);
2288 unwind_next_frame(&state
)) {
2289 addr
= unwind_get_return_address(&state
);
2290 if (!addr
|| perf_callchain_store(entry
, addr
))
2296 valid_user_frame(const void __user
*fp
, unsigned long size
)
2298 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
2301 static unsigned long get_segment_base(unsigned int segment
)
2303 struct desc_struct
*desc
;
2304 int idx
= segment
>> 3;
2306 if ((segment
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
2307 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2308 struct ldt_struct
*ldt
;
2310 if (idx
> LDT_ENTRIES
)
2313 /* IRQs are off, so this synchronizes with smp_store_release */
2314 ldt
= lockless_dereference(current
->active_mm
->context
.ldt
);
2315 if (!ldt
|| idx
> ldt
->size
)
2318 desc
= &ldt
->entries
[idx
];
2323 if (idx
> GDT_ENTRIES
)
2326 desc
= raw_cpu_ptr(gdt_page
.gdt
) + idx
;
2329 return get_desc_base(desc
);
2332 #ifdef CONFIG_IA32_EMULATION
2334 #include <asm/compat.h>
2337 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry_ctx
*entry
)
2339 /* 32-bit process in 64-bit kernel. */
2340 unsigned long ss_base
, cs_base
;
2341 struct stack_frame_ia32 frame
;
2342 const void __user
*fp
;
2344 if (!test_thread_flag(TIF_IA32
))
2347 cs_base
= get_segment_base(regs
->cs
);
2348 ss_base
= get_segment_base(regs
->ss
);
2350 fp
= compat_ptr(ss_base
+ regs
->bp
);
2351 pagefault_disable();
2352 while (entry
->nr
< entry
->max_stack
) {
2353 unsigned long bytes
;
2354 frame
.next_frame
= 0;
2355 frame
.return_address
= 0;
2357 if (!valid_user_frame(fp
, sizeof(frame
)))
2360 bytes
= __copy_from_user_nmi(&frame
.next_frame
, fp
, 4);
2363 bytes
= __copy_from_user_nmi(&frame
.return_address
, fp
+4, 4);
2367 perf_callchain_store(entry
, cs_base
+ frame
.return_address
);
2368 fp
= compat_ptr(ss_base
+ frame
.next_frame
);
2375 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry_ctx
*entry
)
2382 perf_callchain_user(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
2384 struct stack_frame frame
;
2385 const unsigned long __user
*fp
;
2387 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2388 /* TODO: We don't support guest os callchain now */
2393 * We don't know what to do with VM86 stacks.. ignore them for now.
2395 if (regs
->flags
& (X86_VM_MASK
| PERF_EFLAGS_VM
))
2398 fp
= (unsigned long __user
*)regs
->bp
;
2400 perf_callchain_store(entry
, regs
->ip
);
2405 if (perf_callchain_user32(regs
, entry
))
2408 pagefault_disable();
2409 while (entry
->nr
< entry
->max_stack
) {
2410 unsigned long bytes
;
2412 frame
.next_frame
= NULL
;
2413 frame
.return_address
= 0;
2415 if (!valid_user_frame(fp
, sizeof(frame
)))
2418 bytes
= __copy_from_user_nmi(&frame
.next_frame
, fp
, sizeof(*fp
));
2421 bytes
= __copy_from_user_nmi(&frame
.return_address
, fp
+ 1, sizeof(*fp
));
2425 perf_callchain_store(entry
, frame
.return_address
);
2426 fp
= (void __user
*)frame
.next_frame
;
2432 * Deal with code segment offsets for the various execution modes:
2434 * VM86 - the good olde 16 bit days, where the linear address is
2435 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2437 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2438 * to figure out what the 32bit base address is.
2440 * X32 - has TIF_X32 set, but is running in x86_64
2442 * X86_64 - CS,DS,SS,ES are all zero based.
2444 static unsigned long code_segment_base(struct pt_regs
*regs
)
2447 * For IA32 we look at the GDT/LDT segment base to convert the
2448 * effective IP to a linear address.
2451 #ifdef CONFIG_X86_32
2453 * If we are in VM86 mode, add the segment offset to convert to a
2456 if (regs
->flags
& X86_VM_MASK
)
2457 return 0x10 * regs
->cs
;
2459 if (user_mode(regs
) && regs
->cs
!= __USER_CS
)
2460 return get_segment_base(regs
->cs
);
2462 if (user_mode(regs
) && !user_64bit_mode(regs
) &&
2463 regs
->cs
!= __USER32_CS
)
2464 return get_segment_base(regs
->cs
);
2469 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2471 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
2472 return perf_guest_cbs
->get_guest_ip();
2474 return regs
->ip
+ code_segment_base(regs
);
2477 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2481 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2482 if (perf_guest_cbs
->is_user_mode())
2483 misc
|= PERF_RECORD_MISC_GUEST_USER
;
2485 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
2487 if (user_mode(regs
))
2488 misc
|= PERF_RECORD_MISC_USER
;
2490 misc
|= PERF_RECORD_MISC_KERNEL
;
2493 if (regs
->flags
& PERF_EFLAGS_EXACT
)
2494 misc
|= PERF_RECORD_MISC_EXACT_IP
;
2499 void perf_get_x86_pmu_capability(struct x86_pmu_capability
*cap
)
2501 cap
->version
= x86_pmu
.version
;
2502 cap
->num_counters_gp
= x86_pmu
.num_counters
;
2503 cap
->num_counters_fixed
= x86_pmu
.num_counters_fixed
;
2504 cap
->bit_width_gp
= x86_pmu
.cntval_bits
;
2505 cap
->bit_width_fixed
= x86_pmu
.cntval_bits
;
2506 cap
->events_mask
= (unsigned int)x86_pmu
.events_maskl
;
2507 cap
->events_mask_len
= x86_pmu
.events_mask_len
;
2509 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability
);