2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
20 #include <asm/fpu/xstate.h>
27 static u32
xstate_required_size(u64 xstate_bv
, bool compacted
)
30 u32 ret
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
32 xstate_bv
&= XFEATURE_MASK_EXTEND
;
34 if (xstate_bv
& 0x1) {
35 u32 eax
, ebx
, ecx
, edx
, offset
;
36 cpuid_count(0xD, feature_bit
, &eax
, &ebx
, &ecx
, &edx
);
37 offset
= compacted
? ret
: ebx
;
38 ret
= max(ret
, offset
+ eax
);
48 bool kvm_mpx_supported(void)
50 return ((host_xcr0
& (XFEATURE_MASK_BNDREGS
| XFEATURE_MASK_BNDCSR
))
51 && kvm_x86_ops
->mpx_supported());
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported
);
55 u64
kvm_supported_xcr0(void)
57 u64 xcr0
= KVM_SUPPORTED_XCR0
& host_xcr0
;
59 if (!kvm_mpx_supported())
60 xcr0
&= ~(XFEATURE_MASK_BNDREGS
| XFEATURE_MASK_BNDCSR
);
65 #define F(x) bit(X86_FEATURE_##x)
67 int kvm_update_cpuid(struct kvm_vcpu
*vcpu
)
69 struct kvm_cpuid_entry2
*best
;
70 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
72 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
76 /* Update OSXSAVE bit */
77 if (boot_cpu_has(X86_FEATURE_XSAVE
) && best
->function
== 0x1) {
78 best
->ecx
&= ~F(OSXSAVE
);
79 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
80 best
->ecx
|= F(OSXSAVE
);
84 if (best
->ecx
& F(TSC_DEADLINE_TIMER
))
85 apic
->lapic_timer
.timer_mode_mask
= 3 << 17;
87 apic
->lapic_timer
.timer_mode_mask
= 1 << 17;
90 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
92 /* Update OSPKE bit */
93 if (boot_cpu_has(X86_FEATURE_PKU
) && best
->function
== 0x7) {
94 best
->ecx
&= ~F(OSPKE
);
95 if (kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
))
96 best
->ecx
|= F(OSPKE
);
100 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 0);
102 vcpu
->arch
.guest_supported_xcr0
= 0;
103 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
105 vcpu
->arch
.guest_supported_xcr0
=
106 (best
->eax
| ((u64
)best
->edx
<< 32)) &
107 kvm_supported_xcr0();
108 vcpu
->arch
.guest_xstate_size
= best
->ebx
=
109 xstate_required_size(vcpu
->arch
.xcr0
, false);
112 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 1);
113 if (best
&& (best
->eax
& (F(XSAVES
) | F(XSAVEC
))))
114 best
->ebx
= xstate_required_size(vcpu
->arch
.xcr0
, true);
116 kvm_x86_ops
->fpu_activate(vcpu
);
119 * The existing code assumes virtual address is 48-bit in the canonical
120 * address checks; exit if it is ever changed.
122 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
123 if (best
&& ((best
->eax
& 0xff00) >> 8) != 48 &&
124 ((best
->eax
& 0xff00) >> 8) != 0)
127 /* Update physical-address width */
128 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
130 kvm_pmu_refresh(vcpu
);
134 static int is_efer_nx(void)
136 unsigned long long efer
= 0;
138 rdmsrl_safe(MSR_EFER
, &efer
);
139 return efer
& EFER_NX
;
142 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
145 struct kvm_cpuid_entry2
*e
, *entry
;
148 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
149 e
= &vcpu
->arch
.cpuid_entries
[i
];
150 if (e
->function
== 0x80000001) {
155 if (entry
&& (entry
->edx
& F(NX
)) && !is_efer_nx()) {
156 entry
->edx
&= ~F(NX
);
157 printk(KERN_INFO
"kvm: guest NX capability removed\n");
161 int cpuid_query_maxphyaddr(struct kvm_vcpu
*vcpu
)
163 struct kvm_cpuid_entry2
*best
;
165 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
166 if (!best
|| best
->eax
< 0x80000008)
168 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
170 return best
->eax
& 0xff;
174 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr
);
176 /* when an old userspace process fills a new kernel module */
177 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
178 struct kvm_cpuid
*cpuid
,
179 struct kvm_cpuid_entry __user
*entries
)
182 struct kvm_cpuid_entry
*cpuid_entries
= NULL
;
185 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
189 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) *
194 if (copy_from_user(cpuid_entries
, entries
,
195 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
198 for (i
= 0; i
< cpuid
->nent
; i
++) {
199 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
200 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
201 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
202 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
203 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
204 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
205 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
206 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
207 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
208 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
210 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
211 cpuid_fix_nx_cap(vcpu
);
212 kvm_apic_set_version(vcpu
);
213 kvm_x86_ops
->cpuid_update(vcpu
);
214 r
= kvm_update_cpuid(vcpu
);
217 vfree(cpuid_entries
);
221 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
222 struct kvm_cpuid2
*cpuid
,
223 struct kvm_cpuid_entry2 __user
*entries
)
228 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
231 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
232 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
234 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
235 kvm_apic_set_version(vcpu
);
236 kvm_x86_ops
->cpuid_update(vcpu
);
237 r
= kvm_update_cpuid(vcpu
);
242 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
243 struct kvm_cpuid2
*cpuid
,
244 struct kvm_cpuid_entry2 __user
*entries
)
249 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
252 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
253 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
258 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
262 static void cpuid_mask(u32
*word
, int wordnum
)
264 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
267 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
270 entry
->function
= function
;
271 entry
->index
= index
;
272 cpuid_count(entry
->function
, entry
->index
,
273 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
277 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2
*entry
,
278 u32 func
, u32 index
, int *nent
, int maxnent
)
282 entry
->eax
= 1; /* only one leaf currently */
286 entry
->ecx
= F(MOVBE
);
293 entry
->function
= func
;
294 entry
->index
= index
;
299 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
300 u32 index
, int *nent
, int maxnent
)
303 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
305 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
307 unsigned f_lm
= F(LM
);
309 unsigned f_gbpages
= 0;
312 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
313 unsigned f_invpcid
= kvm_x86_ops
->invpcid_supported() ? F(INVPCID
) : 0;
314 unsigned f_mpx
= kvm_mpx_supported() ? F(MPX
) : 0;
315 unsigned f_xsaves
= kvm_x86_ops
->xsaves_supported() ? F(XSAVES
) : 0;
318 const u32 kvm_cpuid_1_edx_x86_features
=
319 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
320 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
321 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
322 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
323 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLUSH
) |
324 0 /* Reserved, DS, ACPI */ | F(MMX
) |
325 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
326 0 /* HTT, TM, Reserved, PBE */;
327 /* cpuid 0x80000001.edx */
328 const u32 kvm_cpuid_8000_0001_edx_x86_features
=
329 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
330 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
331 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
332 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
333 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
334 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
335 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
336 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
338 const u32 kvm_cpuid_1_ecx_x86_features
=
339 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
340 * but *not* advertised to guests via CPUID ! */
341 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
342 0 /* DS-CPL, VMX, SMX, EST */ |
343 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
344 F(FMA
) | F(CX16
) | 0 /* xTPR Update, PDCM */ |
345 F(PCID
) | 0 /* Reserved, DCA */ | F(XMM4_1
) |
346 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
347 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
349 /* cpuid 0x80000001.ecx */
350 const u32 kvm_cpuid_8000_0001_ecx_x86_features
=
351 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
352 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
353 F(3DNOWPREFETCH
) | F(OSVW
) | 0 /* IBS */ | F(XOP
) |
354 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
356 /* cpuid 0x80000008.ebx */
357 const u32 kvm_cpuid_8000_0008_ebx_x86_features
=
358 F(AMD_IBPB
) | F(AMD_IBRS
) | F(AMD_SSBD
) | F(VIRT_SSBD
) |
359 F(AMD_SSB_NO
) | F(AMD_STIBP
);
361 /* cpuid 0xC0000001.edx */
362 const u32 kvm_cpuid_C000_0001_edx_x86_features
=
363 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
364 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
368 const u32 kvm_cpuid_7_0_ebx_x86_features
=
369 F(FSGSBASE
) | F(BMI1
) | F(HLE
) | F(AVX2
) | F(SMEP
) |
370 F(BMI2
) | F(ERMS
) | f_invpcid
| F(RTM
) | f_mpx
| F(RDSEED
) |
371 F(ADX
) | F(SMAP
) | F(AVX512F
) | F(AVX512PF
) | F(AVX512ER
) |
372 F(AVX512CD
) | F(CLFLUSHOPT
) | F(CLWB
) | F(AVX512DQ
) |
373 F(AVX512BW
) | F(AVX512VL
);
375 /* cpuid 0xD.1.eax */
376 const u32 kvm_cpuid_D_1_eax_x86_features
=
377 F(XSAVEOPT
) | F(XSAVEC
) | F(XGETBV1
) | f_xsaves
;
380 const u32 kvm_cpuid_7_0_ecx_x86_features
= F(PKU
) | 0 /*OSPKE*/;
383 const u32 kvm_cpuid_7_0_edx_x86_features
=
384 F(SPEC_CTRL
) | F(SPEC_CTRL_SSBD
) | F(ARCH_CAPABILITIES
) |
385 F(INTEL_STIBP
) | F(MD_CLEAR
);
387 /* all calls to cpuid_count() should be made on the same cpu */
392 if (*nent
>= maxnent
)
395 do_cpuid_1_ent(entry
, function
, index
);
400 entry
->eax
= min(entry
->eax
, (u32
)0xd);
403 entry
->edx
&= kvm_cpuid_1_edx_x86_features
;
404 cpuid_mask(&entry
->edx
, CPUID_1_EDX
);
405 entry
->ecx
&= kvm_cpuid_1_ecx_x86_features
;
406 cpuid_mask(&entry
->ecx
, CPUID_1_ECX
);
407 /* we support x2apic emulation even if host does not support
408 * it since we emulate x2apic in software */
409 entry
->ecx
|= F(X2APIC
);
411 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
412 * may return different values. This forces us to get_cpu() before
413 * issuing the first command, and also to emulate this annoying behavior
414 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
416 int t
, times
= entry
->eax
& 0xff;
418 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
419 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
420 for (t
= 1; t
< times
; ++t
) {
421 if (*nent
>= maxnent
)
424 do_cpuid_1_ent(&entry
[t
], function
, 0);
425 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
430 /* function 4 has additional index. */
434 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
435 /* read more entries until cache_type is zero */
437 if (*nent
>= maxnent
)
440 cache_type
= entry
[i
- 1].eax
& 0x1f;
443 do_cpuid_1_ent(&entry
[i
], function
, i
);
445 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
450 case 6: /* Thermal management */
451 entry
->eax
= 0x4; /* allow ARAT */
457 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
458 /* Mask ebx against host capability word 9 */
460 entry
->ebx
&= kvm_cpuid_7_0_ebx_x86_features
;
461 cpuid_mask(&entry
->ebx
, CPUID_7_0_EBX
);
462 // TSC_ADJUST is emulated
463 entry
->ebx
|= F(TSC_ADJUST
);
464 entry
->ecx
&= kvm_cpuid_7_0_ecx_x86_features
;
465 cpuid_mask(&entry
->ecx
, CPUID_7_ECX
);
466 /* PKU is not yet implemented for shadow paging. */
467 if (!tdp_enabled
|| !boot_cpu_has(X86_FEATURE_OSPKE
))
468 entry
->ecx
&= ~F(PKU
);
469 entry
->edx
&= kvm_cpuid_7_0_edx_x86_features
;
470 cpuid_mask(&entry
->edx
, CPUID_7_EDX
);
472 * We emulate ARCH_CAPABILITIES in software even
473 * if the host doesn't support it.
475 entry
->edx
|= F(ARCH_CAPABILITIES
);
486 case 0xa: { /* Architectural Performance Monitoring */
487 struct x86_pmu_capability cap
;
488 union cpuid10_eax eax
;
489 union cpuid10_edx edx
;
491 perf_get_x86_pmu_capability(&cap
);
494 * Only support guest architectural pmu on a host
495 * with architectural pmu.
498 memset(&cap
, 0, sizeof(cap
));
500 eax
.split
.version_id
= min(cap
.version
, 2);
501 eax
.split
.num_counters
= cap
.num_counters_gp
;
502 eax
.split
.bit_width
= cap
.bit_width_gp
;
503 eax
.split
.mask_length
= cap
.events_mask_len
;
505 edx
.split
.num_counters_fixed
= cap
.num_counters_fixed
;
506 edx
.split
.bit_width_fixed
= cap
.bit_width_fixed
;
507 edx
.split
.reserved
= 0;
509 entry
->eax
= eax
.full
;
510 entry
->ebx
= cap
.events_mask
;
512 entry
->edx
= edx
.full
;
515 /* function 0xb has additional index. */
519 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
520 /* read more entries until level_type is zero */
522 if (*nent
>= maxnent
)
525 level_type
= entry
[i
- 1].ecx
& 0xff00;
528 do_cpuid_1_ent(&entry
[i
], function
, i
);
530 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
537 u64 supported
= kvm_supported_xcr0();
539 entry
->eax
&= supported
;
540 entry
->ebx
= xstate_required_size(supported
, false);
541 entry
->ecx
= entry
->ebx
;
542 entry
->edx
&= supported
>> 32;
543 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
547 for (idx
= 1, i
= 1; idx
< 64; ++idx
) {
548 u64 mask
= ((u64
)1 << idx
);
549 if (*nent
>= maxnent
)
552 do_cpuid_1_ent(&entry
[i
], function
, idx
);
554 entry
[i
].eax
&= kvm_cpuid_D_1_eax_x86_features
;
555 cpuid_mask(&entry
[i
].eax
, CPUID_D_1_EAX
);
557 if (entry
[i
].eax
& (F(XSAVES
)|F(XSAVEC
)))
559 xstate_required_size(supported
,
562 if (entry
[i
].eax
== 0 || !(supported
& mask
))
564 if (WARN_ON_ONCE(entry
[i
].ecx
& 1))
570 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
576 case KVM_CPUID_SIGNATURE
: {
577 static const char signature
[12] = "KVMKVMKVM\0\0";
578 const u32
*sigptr
= (const u32
*)signature
;
579 entry
->eax
= KVM_CPUID_FEATURES
;
580 entry
->ebx
= sigptr
[0];
581 entry
->ecx
= sigptr
[1];
582 entry
->edx
= sigptr
[2];
585 case KVM_CPUID_FEATURES
:
586 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
587 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
588 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
589 (1 << KVM_FEATURE_ASYNC_PF
) |
590 (1 << KVM_FEATURE_PV_EOI
) |
591 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
) |
592 (1 << KVM_FEATURE_PV_UNHALT
);
595 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
602 entry
->eax
= min(entry
->eax
, 0x8000001a);
605 entry
->edx
&= kvm_cpuid_8000_0001_edx_x86_features
;
606 cpuid_mask(&entry
->edx
, CPUID_8000_0001_EDX
);
607 entry
->ecx
&= kvm_cpuid_8000_0001_ecx_x86_features
;
608 cpuid_mask(&entry
->ecx
, CPUID_8000_0001_ECX
);
610 case 0x80000007: /* Advanced power management */
611 /* invariant TSC is CPUID.80000007H:EDX[8] */
612 entry
->edx
&= (1 << 8);
613 /* mask against host */
614 entry
->edx
&= boot_cpu_data
.x86_power
;
615 entry
->eax
= entry
->ebx
= entry
->ecx
= 0;
618 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
619 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
620 unsigned phys_as
= entry
->eax
& 0xff;
624 entry
->eax
= g_phys_as
| (virt_as
<< 8);
627 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
630 if (boot_cpu_has(X86_FEATURE_AMD_IBPB
))
631 entry
->ebx
|= F(AMD_IBPB
);
632 if (boot_cpu_has(X86_FEATURE_AMD_IBRS
))
633 entry
->ebx
|= F(AMD_IBRS
);
634 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD
))
635 entry
->ebx
|= F(VIRT_SSBD
);
636 entry
->ebx
&= kvm_cpuid_8000_0008_ebx_x86_features
;
637 cpuid_mask(&entry
->ebx
, CPUID_8000_0008_EBX
);
639 * The preference is to use SPEC CTRL MSR instead of the
642 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD
) &&
643 !boot_cpu_has(X86_FEATURE_AMD_SSBD
))
644 entry
->ebx
|= F(VIRT_SSBD
);
648 entry
->ecx
= entry
->edx
= 0;
654 /*Add support for Centaur's CPUID instruction*/
656 /*Just support up to 0xC0000004 now*/
657 entry
->eax
= min(entry
->eax
, 0xC0000004);
660 entry
->edx
&= kvm_cpuid_C000_0001_edx_x86_features
;
661 cpuid_mask(&entry
->edx
, CPUID_C000_0001_EDX
);
663 case 3: /* Processor serial number */
664 case 5: /* MONITOR/MWAIT */
669 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
673 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
683 static int do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 func
,
684 u32 idx
, int *nent
, int maxnent
, unsigned int type
)
686 if (type
== KVM_GET_EMULATED_CPUID
)
687 return __do_cpuid_ent_emulated(entry
, func
, idx
, nent
, maxnent
);
689 return __do_cpuid_ent(entry
, func
, idx
, nent
, maxnent
);
694 struct kvm_cpuid_param
{
698 bool (*qualifier
)(const struct kvm_cpuid_param
*param
);
701 static bool is_centaur_cpu(const struct kvm_cpuid_param
*param
)
703 return boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
;
706 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user
*entries
,
707 __u32 num_entries
, unsigned int ioctl_type
)
712 if (ioctl_type
!= KVM_GET_EMULATED_CPUID
)
716 * We want to make sure that ->padding is being passed clean from
717 * userspace in case we want to use it for something in the future.
719 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
720 * have to give ourselves satisfied only with the emulated side. /me
723 for (i
= 0; i
< num_entries
; i
++) {
724 if (copy_from_user(pad
, entries
[i
].padding
, sizeof(pad
)))
727 if (pad
[0] || pad
[1] || pad
[2])
733 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2
*cpuid
,
734 struct kvm_cpuid_entry2 __user
*entries
,
737 struct kvm_cpuid_entry2
*cpuid_entries
;
738 int limit
, nent
= 0, r
= -E2BIG
, i
;
740 static const struct kvm_cpuid_param param
[] = {
741 { .func
= 0, .has_leaf_count
= true },
742 { .func
= 0x80000000, .has_leaf_count
= true },
743 { .func
= 0xC0000000, .qualifier
= is_centaur_cpu
, .has_leaf_count
= true },
744 { .func
= KVM_CPUID_SIGNATURE
},
745 { .func
= KVM_CPUID_FEATURES
},
750 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
751 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
753 if (sanity_check_entries(entries
, cpuid
->nent
, type
))
757 cpuid_entries
= vzalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
762 for (i
= 0; i
< ARRAY_SIZE(param
); i
++) {
763 const struct kvm_cpuid_param
*ent
= ¶m
[i
];
765 if (ent
->qualifier
&& !ent
->qualifier(ent
))
768 r
= do_cpuid_ent(&cpuid_entries
[nent
], ent
->func
, ent
->idx
,
769 &nent
, cpuid
->nent
, type
);
774 if (!ent
->has_leaf_count
)
777 limit
= cpuid_entries
[nent
- 1].eax
;
778 for (func
= ent
->func
+ 1; func
<= limit
&& nent
< cpuid
->nent
&& r
== 0; ++func
)
779 r
= do_cpuid_ent(&cpuid_entries
[nent
], func
, ent
->idx
,
780 &nent
, cpuid
->nent
, type
);
787 if (copy_to_user(entries
, cpuid_entries
,
788 nent
* sizeof(struct kvm_cpuid_entry2
)))
794 vfree(cpuid_entries
);
799 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
801 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
802 struct kvm_cpuid_entry2
*ej
;
804 int nent
= vcpu
->arch
.cpuid_nent
;
806 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
807 /* when no next entry is found, the current entry[i] is reselected */
810 ej
= &vcpu
->arch
.cpuid_entries
[j
];
811 } while (ej
->function
!= e
->function
);
813 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
818 /* find an entry with matching function, matching index (if needed), and that
819 * should be read next (if it's stateful) */
820 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
821 u32 function
, u32 index
)
823 if (e
->function
!= function
)
825 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
827 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
828 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
833 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
834 u32 function
, u32 index
)
837 struct kvm_cpuid_entry2
*best
= NULL
;
839 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
840 struct kvm_cpuid_entry2
*e
;
842 e
= &vcpu
->arch
.cpuid_entries
[i
];
843 if (is_matching_cpuid_entry(e
, function
, index
)) {
844 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
845 move_to_next_stateful_cpuid_entry(vcpu
, i
);
852 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
855 * If no match is found, check whether we exceed the vCPU's limit
856 * and return the content of the highest valid _standard_ leaf instead.
857 * This is to satisfy the CPUID specification.
859 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
860 u32 function
, u32 index
)
862 struct kvm_cpuid_entry2
*maxlevel
;
864 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
865 if (!maxlevel
|| maxlevel
->eax
>= function
)
867 if (function
& 0x80000000) {
868 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
872 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
875 void kvm_cpuid(struct kvm_vcpu
*vcpu
, u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
877 u32 function
= *eax
, index
= *ecx
;
878 struct kvm_cpuid_entry2
*best
;
880 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
883 best
= check_cpuid_limit(vcpu
, function
, index
);
891 *eax
= *ebx
= *ecx
= *edx
= 0;
892 trace_kvm_cpuid(function
, *eax
, *ebx
, *ecx
, *edx
);
894 EXPORT_SYMBOL_GPL(kvm_cpuid
);
896 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
898 u32 function
, eax
, ebx
, ecx
, edx
;
900 function
= eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
901 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
902 kvm_cpuid(vcpu
, &eax
, &ebx
, &ecx
, &edx
);
903 kvm_register_write(vcpu
, VCPU_REGS_RAX
, eax
);
904 kvm_register_write(vcpu
, VCPU_REGS_RBX
, ebx
);
905 kvm_register_write(vcpu
, VCPU_REGS_RCX
, ecx
);
906 kvm_register_write(vcpu
, VCPU_REGS_RDX
, edx
);
907 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
909 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);