Linux 4.9.199
[linux/fpc-iii.git] / fs / namespace.c
blob41f906a6f5d9a58bb85c75e99fad697c5654628e
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 INIT_LIST_HEAD(&mnt->mnt_umounting);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
243 #endif
244 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 return mnt;
248 #ifdef CONFIG_SMP
249 out_free_devname:
250 kfree_const(mnt->mnt_devname);
251 #endif
252 out_free_id:
253 mnt_free_id(mnt);
254 out_free_cache:
255 kmem_cache_free(mnt_cache, mnt);
256 return NULL;
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
265 * a filesystem.
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
276 * r/w.
278 int __mnt_is_readonly(struct vfsmount *mnt)
280 if (mnt->mnt_flags & MNT_READONLY)
281 return 1;
282 if (mnt->mnt_sb->s_flags & MS_RDONLY)
283 return 1;
284 return 0;
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288 static inline void mnt_inc_writers(struct mount *mnt)
290 #ifdef CONFIG_SMP
291 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
292 #else
293 mnt->mnt_writers++;
294 #endif
297 static inline void mnt_dec_writers(struct mount *mnt)
299 #ifdef CONFIG_SMP
300 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
301 #else
302 mnt->mnt_writers--;
303 #endif
306 static unsigned int mnt_get_writers(struct mount *mnt)
308 #ifdef CONFIG_SMP
309 unsigned int count = 0;
310 int cpu;
312 for_each_possible_cpu(cpu) {
313 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
316 return count;
317 #else
318 return mnt->mnt_writers;
319 #endif
322 static int mnt_is_readonly(struct vfsmount *mnt)
324 if (mnt->mnt_sb->s_readonly_remount)
325 return 1;
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 smp_rmb();
328 return __mnt_is_readonly(mnt);
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
347 int __mnt_want_write(struct vfsmount *m)
349 struct mount *mnt = real_mount(m);
350 int ret = 0;
352 preempt_disable();
353 mnt_inc_writers(mnt);
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
359 smp_mb();
360 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
361 cpu_relax();
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
367 smp_rmb();
368 if (mnt_is_readonly(m)) {
369 mnt_dec_writers(mnt);
370 ret = -EROFS;
372 preempt_enable();
374 return ret;
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 int mnt_want_write(struct vfsmount *m)
388 int ret;
390 sb_start_write(m->mnt_sb);
391 ret = __mnt_want_write(m);
392 if (ret)
393 sb_end_write(m->mnt_sb);
394 return ret;
396 EXPORT_SYMBOL_GPL(mnt_want_write);
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
410 int mnt_clone_write(struct vfsmount *mnt)
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt))
414 return -EROFS;
415 preempt_disable();
416 mnt_inc_writers(real_mount(mnt));
417 preempt_enable();
418 return 0;
420 EXPORT_SYMBOL_GPL(mnt_clone_write);
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int __mnt_want_write_file(struct file *file)
431 if (!(file->f_mode & FMODE_WRITER))
432 return __mnt_want_write(file->f_path.mnt);
433 else
434 return mnt_clone_write(file->f_path.mnt);
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
444 int mnt_want_write_file(struct file *file)
446 int ret;
448 sb_start_write(file->f_path.mnt->mnt_sb);
449 ret = __mnt_want_write_file(file);
450 if (ret)
451 sb_end_write(file->f_path.mnt->mnt_sb);
452 return ret;
454 EXPORT_SYMBOL_GPL(mnt_want_write_file);
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
464 void __mnt_drop_write(struct vfsmount *mnt)
466 preempt_disable();
467 mnt_dec_writers(real_mount(mnt));
468 preempt_enable();
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
479 void mnt_drop_write(struct vfsmount *mnt)
481 __mnt_drop_write(mnt);
482 sb_end_write(mnt->mnt_sb);
484 EXPORT_SYMBOL_GPL(mnt_drop_write);
486 void __mnt_drop_write_file(struct file *file)
488 __mnt_drop_write(file->f_path.mnt);
491 void mnt_drop_write_file(struct file *file)
493 mnt_drop_write(file->f_path.mnt);
495 EXPORT_SYMBOL(mnt_drop_write_file);
497 static int mnt_make_readonly(struct mount *mnt)
499 int ret = 0;
501 lock_mount_hash();
502 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
507 smp_mb();
510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
525 if (mnt_get_writers(mnt) > 0)
526 ret = -EBUSY;
527 else
528 mnt->mnt.mnt_flags |= MNT_READONLY;
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
533 smp_wmb();
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 unlock_mount_hash();
536 return ret;
539 static void __mnt_unmake_readonly(struct mount *mnt)
541 lock_mount_hash();
542 mnt->mnt.mnt_flags &= ~MNT_READONLY;
543 unlock_mount_hash();
546 int sb_prepare_remount_readonly(struct super_block *sb)
548 struct mount *mnt;
549 int err = 0;
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb->s_remove_count))
553 return -EBUSY;
555 lock_mount_hash();
556 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
557 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 smp_mb();
560 if (mnt_get_writers(mnt) > 0) {
561 err = -EBUSY;
562 break;
566 if (!err && atomic_long_read(&sb->s_remove_count))
567 err = -EBUSY;
569 if (!err) {
570 sb->s_readonly_remount = 1;
571 smp_wmb();
573 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
574 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
575 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 unlock_mount_hash();
579 return err;
582 static void free_vfsmnt(struct mount *mnt)
584 kfree_const(mnt->mnt_devname);
585 #ifdef CONFIG_SMP
586 free_percpu(mnt->mnt_pcp);
587 #endif
588 kmem_cache_free(mnt_cache, mnt);
591 static void delayed_free_vfsmnt(struct rcu_head *head)
593 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 /* call under rcu_read_lock */
597 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
599 struct mount *mnt;
600 if (read_seqretry(&mount_lock, seq))
601 return 1;
602 if (bastard == NULL)
603 return 0;
604 mnt = real_mount(bastard);
605 mnt_add_count(mnt, 1);
606 smp_mb(); // see mntput_no_expire()
607 if (likely(!read_seqretry(&mount_lock, seq)))
608 return 0;
609 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
610 mnt_add_count(mnt, -1);
611 return 1;
613 lock_mount_hash();
614 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
615 mnt_add_count(mnt, -1);
616 unlock_mount_hash();
617 return 1;
619 unlock_mount_hash();
620 /* caller will mntput() */
621 return -1;
624 /* call under rcu_read_lock */
625 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
627 int res = __legitimize_mnt(bastard, seq);
628 if (likely(!res))
629 return true;
630 if (unlikely(res < 0)) {
631 rcu_read_unlock();
632 mntput(bastard);
633 rcu_read_lock();
635 return false;
639 * find the first mount at @dentry on vfsmount @mnt.
640 * call under rcu_read_lock()
642 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
644 struct hlist_head *head = m_hash(mnt, dentry);
645 struct mount *p;
647 hlist_for_each_entry_rcu(p, head, mnt_hash)
648 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
649 return p;
650 return NULL;
654 * lookup_mnt - Return the first child mount mounted at path
656 * "First" means first mounted chronologically. If you create the
657 * following mounts:
659 * mount /dev/sda1 /mnt
660 * mount /dev/sda2 /mnt
661 * mount /dev/sda3 /mnt
663 * Then lookup_mnt() on the base /mnt dentry in the root mount will
664 * return successively the root dentry and vfsmount of /dev/sda1, then
665 * /dev/sda2, then /dev/sda3, then NULL.
667 * lookup_mnt takes a reference to the found vfsmount.
669 struct vfsmount *lookup_mnt(struct path *path)
671 struct mount *child_mnt;
672 struct vfsmount *m;
673 unsigned seq;
675 rcu_read_lock();
676 do {
677 seq = read_seqbegin(&mount_lock);
678 child_mnt = __lookup_mnt(path->mnt, path->dentry);
679 m = child_mnt ? &child_mnt->mnt : NULL;
680 } while (!legitimize_mnt(m, seq));
681 rcu_read_unlock();
682 return m;
686 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
687 * current mount namespace.
689 * The common case is dentries are not mountpoints at all and that
690 * test is handled inline. For the slow case when we are actually
691 * dealing with a mountpoint of some kind, walk through all of the
692 * mounts in the current mount namespace and test to see if the dentry
693 * is a mountpoint.
695 * The mount_hashtable is not usable in the context because we
696 * need to identify all mounts that may be in the current mount
697 * namespace not just a mount that happens to have some specified
698 * parent mount.
700 bool __is_local_mountpoint(struct dentry *dentry)
702 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
703 struct mount *mnt;
704 bool is_covered = false;
706 if (!d_mountpoint(dentry))
707 goto out;
709 down_read(&namespace_sem);
710 list_for_each_entry(mnt, &ns->list, mnt_list) {
711 is_covered = (mnt->mnt_mountpoint == dentry);
712 if (is_covered)
713 break;
715 up_read(&namespace_sem);
716 out:
717 return is_covered;
720 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
722 struct hlist_head *chain = mp_hash(dentry);
723 struct mountpoint *mp;
725 hlist_for_each_entry(mp, chain, m_hash) {
726 if (mp->m_dentry == dentry) {
727 /* might be worth a WARN_ON() */
728 if (d_unlinked(dentry))
729 return ERR_PTR(-ENOENT);
730 mp->m_count++;
731 return mp;
734 return NULL;
737 static struct mountpoint *get_mountpoint(struct dentry *dentry)
739 struct mountpoint *mp, *new = NULL;
740 int ret;
742 if (d_mountpoint(dentry)) {
743 mountpoint:
744 read_seqlock_excl(&mount_lock);
745 mp = lookup_mountpoint(dentry);
746 read_sequnlock_excl(&mount_lock);
747 if (mp)
748 goto done;
751 if (!new)
752 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
753 if (!new)
754 return ERR_PTR(-ENOMEM);
757 /* Exactly one processes may set d_mounted */
758 ret = d_set_mounted(dentry);
760 /* Someone else set d_mounted? */
761 if (ret == -EBUSY)
762 goto mountpoint;
764 /* The dentry is not available as a mountpoint? */
765 mp = ERR_PTR(ret);
766 if (ret)
767 goto done;
769 /* Add the new mountpoint to the hash table */
770 read_seqlock_excl(&mount_lock);
771 new->m_dentry = dentry;
772 new->m_count = 1;
773 hlist_add_head(&new->m_hash, mp_hash(dentry));
774 INIT_HLIST_HEAD(&new->m_list);
775 read_sequnlock_excl(&mount_lock);
777 mp = new;
778 new = NULL;
779 done:
780 kfree(new);
781 return mp;
784 static void put_mountpoint(struct mountpoint *mp)
786 if (!--mp->m_count) {
787 struct dentry *dentry = mp->m_dentry;
788 BUG_ON(!hlist_empty(&mp->m_list));
789 spin_lock(&dentry->d_lock);
790 dentry->d_flags &= ~DCACHE_MOUNTED;
791 spin_unlock(&dentry->d_lock);
792 hlist_del(&mp->m_hash);
793 kfree(mp);
797 static inline int check_mnt(struct mount *mnt)
799 return mnt->mnt_ns == current->nsproxy->mnt_ns;
803 * vfsmount lock must be held for write
805 static void touch_mnt_namespace(struct mnt_namespace *ns)
807 if (ns) {
808 ns->event = ++event;
809 wake_up_interruptible(&ns->poll);
814 * vfsmount lock must be held for write
816 static void __touch_mnt_namespace(struct mnt_namespace *ns)
818 if (ns && ns->event != event) {
819 ns->event = event;
820 wake_up_interruptible(&ns->poll);
825 * vfsmount lock must be held for write
827 static void unhash_mnt(struct mount *mnt)
829 mnt->mnt_parent = mnt;
830 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
831 list_del_init(&mnt->mnt_child);
832 hlist_del_init_rcu(&mnt->mnt_hash);
833 hlist_del_init(&mnt->mnt_mp_list);
834 put_mountpoint(mnt->mnt_mp);
835 mnt->mnt_mp = NULL;
839 * vfsmount lock must be held for write
841 static void detach_mnt(struct mount *mnt, struct path *old_path)
843 old_path->dentry = mnt->mnt_mountpoint;
844 old_path->mnt = &mnt->mnt_parent->mnt;
845 unhash_mnt(mnt);
849 * vfsmount lock must be held for write
851 static void umount_mnt(struct mount *mnt)
853 /* old mountpoint will be dropped when we can do that */
854 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
855 unhash_mnt(mnt);
859 * vfsmount lock must be held for write
861 void mnt_set_mountpoint(struct mount *mnt,
862 struct mountpoint *mp,
863 struct mount *child_mnt)
865 mp->m_count++;
866 mnt_add_count(mnt, 1); /* essentially, that's mntget */
867 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
868 child_mnt->mnt_parent = mnt;
869 child_mnt->mnt_mp = mp;
870 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
873 static void __attach_mnt(struct mount *mnt, struct mount *parent)
875 hlist_add_head_rcu(&mnt->mnt_hash,
876 m_hash(&parent->mnt, mnt->mnt_mountpoint));
877 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
881 * vfsmount lock must be held for write
883 static void attach_mnt(struct mount *mnt,
884 struct mount *parent,
885 struct mountpoint *mp)
887 mnt_set_mountpoint(parent, mp, mnt);
888 __attach_mnt(mnt, parent);
891 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
893 struct mountpoint *old_mp = mnt->mnt_mp;
894 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
895 struct mount *old_parent = mnt->mnt_parent;
897 list_del_init(&mnt->mnt_child);
898 hlist_del_init(&mnt->mnt_mp_list);
899 hlist_del_init_rcu(&mnt->mnt_hash);
901 attach_mnt(mnt, parent, mp);
903 put_mountpoint(old_mp);
906 * Safely avoid even the suggestion this code might sleep or
907 * lock the mount hash by taking advantage of the knowledge that
908 * mnt_change_mountpoint will not release the final reference
909 * to a mountpoint.
911 * During mounting, the mount passed in as the parent mount will
912 * continue to use the old mountpoint and during unmounting, the
913 * old mountpoint will continue to exist until namespace_unlock,
914 * which happens well after mnt_change_mountpoint.
916 spin_lock(&old_mountpoint->d_lock);
917 old_mountpoint->d_lockref.count--;
918 spin_unlock(&old_mountpoint->d_lock);
920 mnt_add_count(old_parent, -1);
924 * vfsmount lock must be held for write
926 static void commit_tree(struct mount *mnt)
928 struct mount *parent = mnt->mnt_parent;
929 struct mount *m;
930 LIST_HEAD(head);
931 struct mnt_namespace *n = parent->mnt_ns;
933 BUG_ON(parent == mnt);
935 list_add_tail(&head, &mnt->mnt_list);
936 list_for_each_entry(m, &head, mnt_list)
937 m->mnt_ns = n;
939 list_splice(&head, n->list.prev);
941 n->mounts += n->pending_mounts;
942 n->pending_mounts = 0;
944 __attach_mnt(mnt, parent);
945 touch_mnt_namespace(n);
948 static struct mount *next_mnt(struct mount *p, struct mount *root)
950 struct list_head *next = p->mnt_mounts.next;
951 if (next == &p->mnt_mounts) {
952 while (1) {
953 if (p == root)
954 return NULL;
955 next = p->mnt_child.next;
956 if (next != &p->mnt_parent->mnt_mounts)
957 break;
958 p = p->mnt_parent;
961 return list_entry(next, struct mount, mnt_child);
964 static struct mount *skip_mnt_tree(struct mount *p)
966 struct list_head *prev = p->mnt_mounts.prev;
967 while (prev != &p->mnt_mounts) {
968 p = list_entry(prev, struct mount, mnt_child);
969 prev = p->mnt_mounts.prev;
971 return p;
974 struct vfsmount *
975 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
977 struct mount *mnt;
978 struct dentry *root;
980 if (!type)
981 return ERR_PTR(-ENODEV);
983 mnt = alloc_vfsmnt(name);
984 if (!mnt)
985 return ERR_PTR(-ENOMEM);
987 if (flags & MS_KERNMOUNT)
988 mnt->mnt.mnt_flags = MNT_INTERNAL;
990 root = mount_fs(type, flags, name, data);
991 if (IS_ERR(root)) {
992 mnt_free_id(mnt);
993 free_vfsmnt(mnt);
994 return ERR_CAST(root);
997 mnt->mnt.mnt_root = root;
998 mnt->mnt.mnt_sb = root->d_sb;
999 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1000 mnt->mnt_parent = mnt;
1001 lock_mount_hash();
1002 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1003 unlock_mount_hash();
1004 return &mnt->mnt;
1006 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1008 struct vfsmount *
1009 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1010 const char *name, void *data)
1012 /* Until it is worked out how to pass the user namespace
1013 * through from the parent mount to the submount don't support
1014 * unprivileged mounts with submounts.
1016 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1017 return ERR_PTR(-EPERM);
1019 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1021 EXPORT_SYMBOL_GPL(vfs_submount);
1023 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1024 int flag)
1026 struct super_block *sb = old->mnt.mnt_sb;
1027 struct mount *mnt;
1028 int err;
1030 mnt = alloc_vfsmnt(old->mnt_devname);
1031 if (!mnt)
1032 return ERR_PTR(-ENOMEM);
1034 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1035 mnt->mnt_group_id = 0; /* not a peer of original */
1036 else
1037 mnt->mnt_group_id = old->mnt_group_id;
1039 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1040 err = mnt_alloc_group_id(mnt);
1041 if (err)
1042 goto out_free;
1045 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1046 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1047 /* Don't allow unprivileged users to change mount flags */
1048 if (flag & CL_UNPRIVILEGED) {
1049 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1051 if (mnt->mnt.mnt_flags & MNT_READONLY)
1052 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1054 if (mnt->mnt.mnt_flags & MNT_NODEV)
1055 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1057 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1058 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1060 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1061 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1064 /* Don't allow unprivileged users to reveal what is under a mount */
1065 if ((flag & CL_UNPRIVILEGED) &&
1066 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1067 mnt->mnt.mnt_flags |= MNT_LOCKED;
1069 atomic_inc(&sb->s_active);
1070 mnt->mnt.mnt_sb = sb;
1071 mnt->mnt.mnt_root = dget(root);
1072 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1073 mnt->mnt_parent = mnt;
1074 lock_mount_hash();
1075 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1076 unlock_mount_hash();
1078 if ((flag & CL_SLAVE) ||
1079 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1080 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1081 mnt->mnt_master = old;
1082 CLEAR_MNT_SHARED(mnt);
1083 } else if (!(flag & CL_PRIVATE)) {
1084 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1085 list_add(&mnt->mnt_share, &old->mnt_share);
1086 if (IS_MNT_SLAVE(old))
1087 list_add(&mnt->mnt_slave, &old->mnt_slave);
1088 mnt->mnt_master = old->mnt_master;
1090 if (flag & CL_MAKE_SHARED)
1091 set_mnt_shared(mnt);
1093 /* stick the duplicate mount on the same expiry list
1094 * as the original if that was on one */
1095 if (flag & CL_EXPIRE) {
1096 if (!list_empty(&old->mnt_expire))
1097 list_add(&mnt->mnt_expire, &old->mnt_expire);
1100 return mnt;
1102 out_free:
1103 mnt_free_id(mnt);
1104 free_vfsmnt(mnt);
1105 return ERR_PTR(err);
1108 static void cleanup_mnt(struct mount *mnt)
1111 * This probably indicates that somebody messed
1112 * up a mnt_want/drop_write() pair. If this
1113 * happens, the filesystem was probably unable
1114 * to make r/w->r/o transitions.
1117 * The locking used to deal with mnt_count decrement provides barriers,
1118 * so mnt_get_writers() below is safe.
1120 WARN_ON(mnt_get_writers(mnt));
1121 if (unlikely(mnt->mnt_pins.first))
1122 mnt_pin_kill(mnt);
1123 fsnotify_vfsmount_delete(&mnt->mnt);
1124 dput(mnt->mnt.mnt_root);
1125 deactivate_super(mnt->mnt.mnt_sb);
1126 mnt_free_id(mnt);
1127 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1130 static void __cleanup_mnt(struct rcu_head *head)
1132 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1135 static LLIST_HEAD(delayed_mntput_list);
1136 static void delayed_mntput(struct work_struct *unused)
1138 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1139 struct llist_node *next;
1141 for (; node; node = next) {
1142 next = llist_next(node);
1143 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1146 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1148 static void mntput_no_expire(struct mount *mnt)
1150 rcu_read_lock();
1151 if (likely(READ_ONCE(mnt->mnt_ns))) {
1153 * Since we don't do lock_mount_hash() here,
1154 * ->mnt_ns can change under us. However, if it's
1155 * non-NULL, then there's a reference that won't
1156 * be dropped until after an RCU delay done after
1157 * turning ->mnt_ns NULL. So if we observe it
1158 * non-NULL under rcu_read_lock(), the reference
1159 * we are dropping is not the final one.
1161 mnt_add_count(mnt, -1);
1162 rcu_read_unlock();
1163 return;
1165 lock_mount_hash();
1167 * make sure that if __legitimize_mnt() has not seen us grab
1168 * mount_lock, we'll see their refcount increment here.
1170 smp_mb();
1171 mnt_add_count(mnt, -1);
1172 if (mnt_get_count(mnt)) {
1173 rcu_read_unlock();
1174 unlock_mount_hash();
1175 return;
1177 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1178 rcu_read_unlock();
1179 unlock_mount_hash();
1180 return;
1182 mnt->mnt.mnt_flags |= MNT_DOOMED;
1183 rcu_read_unlock();
1185 list_del(&mnt->mnt_instance);
1187 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1188 struct mount *p, *tmp;
1189 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1190 umount_mnt(p);
1193 unlock_mount_hash();
1195 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1196 struct task_struct *task = current;
1197 if (likely(!(task->flags & PF_KTHREAD))) {
1198 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1199 if (!task_work_add(task, &mnt->mnt_rcu, true))
1200 return;
1202 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1203 schedule_delayed_work(&delayed_mntput_work, 1);
1204 return;
1206 cleanup_mnt(mnt);
1209 void mntput(struct vfsmount *mnt)
1211 if (mnt) {
1212 struct mount *m = real_mount(mnt);
1213 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1214 if (unlikely(m->mnt_expiry_mark))
1215 m->mnt_expiry_mark = 0;
1216 mntput_no_expire(m);
1219 EXPORT_SYMBOL(mntput);
1221 struct vfsmount *mntget(struct vfsmount *mnt)
1223 if (mnt)
1224 mnt_add_count(real_mount(mnt), 1);
1225 return mnt;
1227 EXPORT_SYMBOL(mntget);
1229 struct vfsmount *mnt_clone_internal(struct path *path)
1231 struct mount *p;
1232 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 if (IS_ERR(p))
1234 return ERR_CAST(p);
1235 p->mnt.mnt_flags |= MNT_INTERNAL;
1236 return &p->mnt;
1239 static inline void mangle(struct seq_file *m, const char *s)
1241 seq_escape(m, s, " \t\n\\");
1245 * Simple .show_options callback for filesystems which don't want to
1246 * implement more complex mount option showing.
1248 * See also save_mount_options().
1250 int generic_show_options(struct seq_file *m, struct dentry *root)
1252 const char *options;
1254 rcu_read_lock();
1255 options = rcu_dereference(root->d_sb->s_options);
1257 if (options != NULL && options[0]) {
1258 seq_putc(m, ',');
1259 mangle(m, options);
1261 rcu_read_unlock();
1263 return 0;
1265 EXPORT_SYMBOL(generic_show_options);
1268 * If filesystem uses generic_show_options(), this function should be
1269 * called from the fill_super() callback.
1271 * The .remount_fs callback usually needs to be handled in a special
1272 * way, to make sure, that previous options are not overwritten if the
1273 * remount fails.
1275 * Also note, that if the filesystem's .remount_fs function doesn't
1276 * reset all options to their default value, but changes only newly
1277 * given options, then the displayed options will not reflect reality
1278 * any more.
1280 void save_mount_options(struct super_block *sb, char *options)
1282 BUG_ON(sb->s_options);
1283 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1285 EXPORT_SYMBOL(save_mount_options);
1287 void replace_mount_options(struct super_block *sb, char *options)
1289 char *old = sb->s_options;
1290 rcu_assign_pointer(sb->s_options, options);
1291 if (old) {
1292 synchronize_rcu();
1293 kfree(old);
1296 EXPORT_SYMBOL(replace_mount_options);
1298 #ifdef CONFIG_PROC_FS
1299 /* iterator; we want it to have access to namespace_sem, thus here... */
1300 static void *m_start(struct seq_file *m, loff_t *pos)
1302 struct proc_mounts *p = m->private;
1304 down_read(&namespace_sem);
1305 if (p->cached_event == p->ns->event) {
1306 void *v = p->cached_mount;
1307 if (*pos == p->cached_index)
1308 return v;
1309 if (*pos == p->cached_index + 1) {
1310 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1311 return p->cached_mount = v;
1315 p->cached_event = p->ns->event;
1316 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1317 p->cached_index = *pos;
1318 return p->cached_mount;
1321 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1323 struct proc_mounts *p = m->private;
1325 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1326 p->cached_index = *pos;
1327 return p->cached_mount;
1330 static void m_stop(struct seq_file *m, void *v)
1332 up_read(&namespace_sem);
1335 static int m_show(struct seq_file *m, void *v)
1337 struct proc_mounts *p = m->private;
1338 struct mount *r = list_entry(v, struct mount, mnt_list);
1339 return p->show(m, &r->mnt);
1342 const struct seq_operations mounts_op = {
1343 .start = m_start,
1344 .next = m_next,
1345 .stop = m_stop,
1346 .show = m_show,
1348 #endif /* CONFIG_PROC_FS */
1351 * may_umount_tree - check if a mount tree is busy
1352 * @mnt: root of mount tree
1354 * This is called to check if a tree of mounts has any
1355 * open files, pwds, chroots or sub mounts that are
1356 * busy.
1358 int may_umount_tree(struct vfsmount *m)
1360 struct mount *mnt = real_mount(m);
1361 int actual_refs = 0;
1362 int minimum_refs = 0;
1363 struct mount *p;
1364 BUG_ON(!m);
1366 /* write lock needed for mnt_get_count */
1367 lock_mount_hash();
1368 for (p = mnt; p; p = next_mnt(p, mnt)) {
1369 actual_refs += mnt_get_count(p);
1370 minimum_refs += 2;
1372 unlock_mount_hash();
1374 if (actual_refs > minimum_refs)
1375 return 0;
1377 return 1;
1380 EXPORT_SYMBOL(may_umount_tree);
1383 * may_umount - check if a mount point is busy
1384 * @mnt: root of mount
1386 * This is called to check if a mount point has any
1387 * open files, pwds, chroots or sub mounts. If the
1388 * mount has sub mounts this will return busy
1389 * regardless of whether the sub mounts are busy.
1391 * Doesn't take quota and stuff into account. IOW, in some cases it will
1392 * give false negatives. The main reason why it's here is that we need
1393 * a non-destructive way to look for easily umountable filesystems.
1395 int may_umount(struct vfsmount *mnt)
1397 int ret = 1;
1398 down_read(&namespace_sem);
1399 lock_mount_hash();
1400 if (propagate_mount_busy(real_mount(mnt), 2))
1401 ret = 0;
1402 unlock_mount_hash();
1403 up_read(&namespace_sem);
1404 return ret;
1407 EXPORT_SYMBOL(may_umount);
1409 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1411 static void namespace_unlock(void)
1413 struct hlist_head head;
1415 hlist_move_list(&unmounted, &head);
1417 up_write(&namespace_sem);
1419 if (likely(hlist_empty(&head)))
1420 return;
1422 synchronize_rcu();
1424 group_pin_kill(&head);
1427 static inline void namespace_lock(void)
1429 down_write(&namespace_sem);
1432 enum umount_tree_flags {
1433 UMOUNT_SYNC = 1,
1434 UMOUNT_PROPAGATE = 2,
1435 UMOUNT_CONNECTED = 4,
1438 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1440 /* Leaving mounts connected is only valid for lazy umounts */
1441 if (how & UMOUNT_SYNC)
1442 return true;
1444 /* A mount without a parent has nothing to be connected to */
1445 if (!mnt_has_parent(mnt))
1446 return true;
1448 /* Because the reference counting rules change when mounts are
1449 * unmounted and connected, umounted mounts may not be
1450 * connected to mounted mounts.
1452 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1453 return true;
1455 /* Has it been requested that the mount remain connected? */
1456 if (how & UMOUNT_CONNECTED)
1457 return false;
1459 /* Is the mount locked such that it needs to remain connected? */
1460 if (IS_MNT_LOCKED(mnt))
1461 return false;
1463 /* By default disconnect the mount */
1464 return true;
1468 * mount_lock must be held
1469 * namespace_sem must be held for write
1471 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1473 LIST_HEAD(tmp_list);
1474 struct mount *p;
1476 if (how & UMOUNT_PROPAGATE)
1477 propagate_mount_unlock(mnt);
1479 /* Gather the mounts to umount */
1480 for (p = mnt; p; p = next_mnt(p, mnt)) {
1481 p->mnt.mnt_flags |= MNT_UMOUNT;
1482 list_move(&p->mnt_list, &tmp_list);
1485 /* Hide the mounts from mnt_mounts */
1486 list_for_each_entry(p, &tmp_list, mnt_list) {
1487 list_del_init(&p->mnt_child);
1490 /* Add propogated mounts to the tmp_list */
1491 if (how & UMOUNT_PROPAGATE)
1492 propagate_umount(&tmp_list);
1494 while (!list_empty(&tmp_list)) {
1495 struct mnt_namespace *ns;
1496 bool disconnect;
1497 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1498 list_del_init(&p->mnt_expire);
1499 list_del_init(&p->mnt_list);
1500 ns = p->mnt_ns;
1501 if (ns) {
1502 ns->mounts--;
1503 __touch_mnt_namespace(ns);
1505 p->mnt_ns = NULL;
1506 if (how & UMOUNT_SYNC)
1507 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1509 disconnect = disconnect_mount(p, how);
1511 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1512 disconnect ? &unmounted : NULL);
1513 if (mnt_has_parent(p)) {
1514 mnt_add_count(p->mnt_parent, -1);
1515 if (!disconnect) {
1516 /* Don't forget about p */
1517 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1518 } else {
1519 umount_mnt(p);
1522 change_mnt_propagation(p, MS_PRIVATE);
1526 static void shrink_submounts(struct mount *mnt);
1528 static int do_umount(struct mount *mnt, int flags)
1530 struct super_block *sb = mnt->mnt.mnt_sb;
1531 int retval;
1533 retval = security_sb_umount(&mnt->mnt, flags);
1534 if (retval)
1535 return retval;
1538 * Allow userspace to request a mountpoint be expired rather than
1539 * unmounting unconditionally. Unmount only happens if:
1540 * (1) the mark is already set (the mark is cleared by mntput())
1541 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1543 if (flags & MNT_EXPIRE) {
1544 if (&mnt->mnt == current->fs->root.mnt ||
1545 flags & (MNT_FORCE | MNT_DETACH))
1546 return -EINVAL;
1549 * probably don't strictly need the lock here if we examined
1550 * all race cases, but it's a slowpath.
1552 lock_mount_hash();
1553 if (mnt_get_count(mnt) != 2) {
1554 unlock_mount_hash();
1555 return -EBUSY;
1557 unlock_mount_hash();
1559 if (!xchg(&mnt->mnt_expiry_mark, 1))
1560 return -EAGAIN;
1564 * If we may have to abort operations to get out of this
1565 * mount, and they will themselves hold resources we must
1566 * allow the fs to do things. In the Unix tradition of
1567 * 'Gee thats tricky lets do it in userspace' the umount_begin
1568 * might fail to complete on the first run through as other tasks
1569 * must return, and the like. Thats for the mount program to worry
1570 * about for the moment.
1573 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1574 sb->s_op->umount_begin(sb);
1578 * No sense to grab the lock for this test, but test itself looks
1579 * somewhat bogus. Suggestions for better replacement?
1580 * Ho-hum... In principle, we might treat that as umount + switch
1581 * to rootfs. GC would eventually take care of the old vfsmount.
1582 * Actually it makes sense, especially if rootfs would contain a
1583 * /reboot - static binary that would close all descriptors and
1584 * call reboot(9). Then init(8) could umount root and exec /reboot.
1586 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1588 * Special case for "unmounting" root ...
1589 * we just try to remount it readonly.
1591 if (!capable(CAP_SYS_ADMIN))
1592 return -EPERM;
1593 down_write(&sb->s_umount);
1594 if (!(sb->s_flags & MS_RDONLY))
1595 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1596 up_write(&sb->s_umount);
1597 return retval;
1600 namespace_lock();
1601 lock_mount_hash();
1603 /* Recheck MNT_LOCKED with the locks held */
1604 retval = -EINVAL;
1605 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1606 goto out;
1608 event++;
1609 if (flags & MNT_DETACH) {
1610 if (!list_empty(&mnt->mnt_list))
1611 umount_tree(mnt, UMOUNT_PROPAGATE);
1612 retval = 0;
1613 } else {
1614 shrink_submounts(mnt);
1615 retval = -EBUSY;
1616 if (!propagate_mount_busy(mnt, 2)) {
1617 if (!list_empty(&mnt->mnt_list))
1618 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1619 retval = 0;
1622 out:
1623 unlock_mount_hash();
1624 namespace_unlock();
1625 return retval;
1629 * __detach_mounts - lazily unmount all mounts on the specified dentry
1631 * During unlink, rmdir, and d_drop it is possible to loose the path
1632 * to an existing mountpoint, and wind up leaking the mount.
1633 * detach_mounts allows lazily unmounting those mounts instead of
1634 * leaking them.
1636 * The caller may hold dentry->d_inode->i_mutex.
1638 void __detach_mounts(struct dentry *dentry)
1640 struct mountpoint *mp;
1641 struct mount *mnt;
1643 namespace_lock();
1644 lock_mount_hash();
1645 mp = lookup_mountpoint(dentry);
1646 if (IS_ERR_OR_NULL(mp))
1647 goto out_unlock;
1649 event++;
1650 while (!hlist_empty(&mp->m_list)) {
1651 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1652 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1653 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1654 umount_mnt(mnt);
1656 else umount_tree(mnt, UMOUNT_CONNECTED);
1658 put_mountpoint(mp);
1659 out_unlock:
1660 unlock_mount_hash();
1661 namespace_unlock();
1665 * Is the caller allowed to modify his namespace?
1667 static inline bool may_mount(void)
1669 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1672 static inline bool may_mandlock(void)
1674 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1675 return false;
1676 #endif
1677 return capable(CAP_SYS_ADMIN);
1681 * Now umount can handle mount points as well as block devices.
1682 * This is important for filesystems which use unnamed block devices.
1684 * We now support a flag for forced unmount like the other 'big iron'
1685 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1688 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1690 struct path path;
1691 struct mount *mnt;
1692 int retval;
1693 int lookup_flags = 0;
1695 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1696 return -EINVAL;
1698 if (!may_mount())
1699 return -EPERM;
1701 if (!(flags & UMOUNT_NOFOLLOW))
1702 lookup_flags |= LOOKUP_FOLLOW;
1704 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1705 if (retval)
1706 goto out;
1707 mnt = real_mount(path.mnt);
1708 retval = -EINVAL;
1709 if (path.dentry != path.mnt->mnt_root)
1710 goto dput_and_out;
1711 if (!check_mnt(mnt))
1712 goto dput_and_out;
1713 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1714 goto dput_and_out;
1715 retval = -EPERM;
1716 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1717 goto dput_and_out;
1719 retval = do_umount(mnt, flags);
1720 dput_and_out:
1721 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1722 dput(path.dentry);
1723 mntput_no_expire(mnt);
1724 out:
1725 return retval;
1728 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1731 * The 2.0 compatible umount. No flags.
1733 SYSCALL_DEFINE1(oldumount, char __user *, name)
1735 return sys_umount(name, 0);
1738 #endif
1740 static bool is_mnt_ns_file(struct dentry *dentry)
1742 /* Is this a proxy for a mount namespace? */
1743 return dentry->d_op == &ns_dentry_operations &&
1744 dentry->d_fsdata == &mntns_operations;
1747 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1749 return container_of(ns, struct mnt_namespace, ns);
1752 static bool mnt_ns_loop(struct dentry *dentry)
1754 /* Could bind mounting the mount namespace inode cause a
1755 * mount namespace loop?
1757 struct mnt_namespace *mnt_ns;
1758 if (!is_mnt_ns_file(dentry))
1759 return false;
1761 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1762 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1765 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1766 int flag)
1768 struct mount *res, *p, *q, *r, *parent;
1770 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1771 return ERR_PTR(-EINVAL);
1773 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1774 return ERR_PTR(-EINVAL);
1776 res = q = clone_mnt(mnt, dentry, flag);
1777 if (IS_ERR(q))
1778 return q;
1780 q->mnt_mountpoint = mnt->mnt_mountpoint;
1782 p = mnt;
1783 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1784 struct mount *s;
1785 if (!is_subdir(r->mnt_mountpoint, dentry))
1786 continue;
1788 for (s = r; s; s = next_mnt(s, r)) {
1789 if (!(flag & CL_COPY_UNBINDABLE) &&
1790 IS_MNT_UNBINDABLE(s)) {
1791 if (s->mnt.mnt_flags & MNT_LOCKED) {
1792 /* Both unbindable and locked. */
1793 q = ERR_PTR(-EPERM);
1794 goto out;
1795 } else {
1796 s = skip_mnt_tree(s);
1797 continue;
1800 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1801 is_mnt_ns_file(s->mnt.mnt_root)) {
1802 s = skip_mnt_tree(s);
1803 continue;
1805 while (p != s->mnt_parent) {
1806 p = p->mnt_parent;
1807 q = q->mnt_parent;
1809 p = s;
1810 parent = q;
1811 q = clone_mnt(p, p->mnt.mnt_root, flag);
1812 if (IS_ERR(q))
1813 goto out;
1814 lock_mount_hash();
1815 list_add_tail(&q->mnt_list, &res->mnt_list);
1816 attach_mnt(q, parent, p->mnt_mp);
1817 unlock_mount_hash();
1820 return res;
1821 out:
1822 if (res) {
1823 lock_mount_hash();
1824 umount_tree(res, UMOUNT_SYNC);
1825 unlock_mount_hash();
1827 return q;
1830 /* Caller should check returned pointer for errors */
1832 struct vfsmount *collect_mounts(struct path *path)
1834 struct mount *tree;
1835 namespace_lock();
1836 if (!check_mnt(real_mount(path->mnt)))
1837 tree = ERR_PTR(-EINVAL);
1838 else
1839 tree = copy_tree(real_mount(path->mnt), path->dentry,
1840 CL_COPY_ALL | CL_PRIVATE);
1841 namespace_unlock();
1842 if (IS_ERR(tree))
1843 return ERR_CAST(tree);
1844 return &tree->mnt;
1847 void drop_collected_mounts(struct vfsmount *mnt)
1849 namespace_lock();
1850 lock_mount_hash();
1851 umount_tree(real_mount(mnt), 0);
1852 unlock_mount_hash();
1853 namespace_unlock();
1857 * clone_private_mount - create a private clone of a path
1859 * This creates a new vfsmount, which will be the clone of @path. The new will
1860 * not be attached anywhere in the namespace and will be private (i.e. changes
1861 * to the originating mount won't be propagated into this).
1863 * Release with mntput().
1865 struct vfsmount *clone_private_mount(struct path *path)
1867 struct mount *old_mnt = real_mount(path->mnt);
1868 struct mount *new_mnt;
1870 if (IS_MNT_UNBINDABLE(old_mnt))
1871 return ERR_PTR(-EINVAL);
1873 down_read(&namespace_sem);
1874 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1875 up_read(&namespace_sem);
1876 if (IS_ERR(new_mnt))
1877 return ERR_CAST(new_mnt);
1879 return &new_mnt->mnt;
1881 EXPORT_SYMBOL_GPL(clone_private_mount);
1883 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1884 struct vfsmount *root)
1886 struct mount *mnt;
1887 int res = f(root, arg);
1888 if (res)
1889 return res;
1890 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1891 res = f(&mnt->mnt, arg);
1892 if (res)
1893 return res;
1895 return 0;
1898 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1900 struct mount *p;
1902 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1903 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1904 mnt_release_group_id(p);
1908 static int invent_group_ids(struct mount *mnt, bool recurse)
1910 struct mount *p;
1912 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1913 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1914 int err = mnt_alloc_group_id(p);
1915 if (err) {
1916 cleanup_group_ids(mnt, p);
1917 return err;
1922 return 0;
1925 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1927 unsigned int max = READ_ONCE(sysctl_mount_max);
1928 unsigned int mounts = 0, old, pending, sum;
1929 struct mount *p;
1931 for (p = mnt; p; p = next_mnt(p, mnt))
1932 mounts++;
1934 old = ns->mounts;
1935 pending = ns->pending_mounts;
1936 sum = old + pending;
1937 if ((old > sum) ||
1938 (pending > sum) ||
1939 (max < sum) ||
1940 (mounts > (max - sum)))
1941 return -ENOSPC;
1943 ns->pending_mounts = pending + mounts;
1944 return 0;
1948 * @source_mnt : mount tree to be attached
1949 * @nd : place the mount tree @source_mnt is attached
1950 * @parent_nd : if non-null, detach the source_mnt from its parent and
1951 * store the parent mount and mountpoint dentry.
1952 * (done when source_mnt is moved)
1954 * NOTE: in the table below explains the semantics when a source mount
1955 * of a given type is attached to a destination mount of a given type.
1956 * ---------------------------------------------------------------------------
1957 * | BIND MOUNT OPERATION |
1958 * |**************************************************************************
1959 * | source-->| shared | private | slave | unbindable |
1960 * | dest | | | | |
1961 * | | | | | | |
1962 * | v | | | | |
1963 * |**************************************************************************
1964 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1965 * | | | | | |
1966 * |non-shared| shared (+) | private | slave (*) | invalid |
1967 * ***************************************************************************
1968 * A bind operation clones the source mount and mounts the clone on the
1969 * destination mount.
1971 * (++) the cloned mount is propagated to all the mounts in the propagation
1972 * tree of the destination mount and the cloned mount is added to
1973 * the peer group of the source mount.
1974 * (+) the cloned mount is created under the destination mount and is marked
1975 * as shared. The cloned mount is added to the peer group of the source
1976 * mount.
1977 * (+++) the mount is propagated to all the mounts in the propagation tree
1978 * of the destination mount and the cloned mount is made slave
1979 * of the same master as that of the source mount. The cloned mount
1980 * is marked as 'shared and slave'.
1981 * (*) the cloned mount is made a slave of the same master as that of the
1982 * source mount.
1984 * ---------------------------------------------------------------------------
1985 * | MOVE MOUNT OPERATION |
1986 * |**************************************************************************
1987 * | source-->| shared | private | slave | unbindable |
1988 * | dest | | | | |
1989 * | | | | | | |
1990 * | v | | | | |
1991 * |**************************************************************************
1992 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1993 * | | | | | |
1994 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1995 * ***************************************************************************
1997 * (+) the mount is moved to the destination. And is then propagated to
1998 * all the mounts in the propagation tree of the destination mount.
1999 * (+*) the mount is moved to the destination.
2000 * (+++) the mount is moved to the destination and is then propagated to
2001 * all the mounts belonging to the destination mount's propagation tree.
2002 * the mount is marked as 'shared and slave'.
2003 * (*) the mount continues to be a slave at the new location.
2005 * if the source mount is a tree, the operations explained above is
2006 * applied to each mount in the tree.
2007 * Must be called without spinlocks held, since this function can sleep
2008 * in allocations.
2010 static int attach_recursive_mnt(struct mount *source_mnt,
2011 struct mount *dest_mnt,
2012 struct mountpoint *dest_mp,
2013 struct path *parent_path)
2015 HLIST_HEAD(tree_list);
2016 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2017 struct mountpoint *smp;
2018 struct mount *child, *p;
2019 struct hlist_node *n;
2020 int err;
2022 /* Preallocate a mountpoint in case the new mounts need
2023 * to be tucked under other mounts.
2025 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2026 if (IS_ERR(smp))
2027 return PTR_ERR(smp);
2029 /* Is there space to add these mounts to the mount namespace? */
2030 if (!parent_path) {
2031 err = count_mounts(ns, source_mnt);
2032 if (err)
2033 goto out;
2036 if (IS_MNT_SHARED(dest_mnt)) {
2037 err = invent_group_ids(source_mnt, true);
2038 if (err)
2039 goto out;
2040 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2041 lock_mount_hash();
2042 if (err)
2043 goto out_cleanup_ids;
2044 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2045 set_mnt_shared(p);
2046 } else {
2047 lock_mount_hash();
2049 if (parent_path) {
2050 detach_mnt(source_mnt, parent_path);
2051 attach_mnt(source_mnt, dest_mnt, dest_mp);
2052 touch_mnt_namespace(source_mnt->mnt_ns);
2053 } else {
2054 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2055 commit_tree(source_mnt);
2058 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2059 struct mount *q;
2060 hlist_del_init(&child->mnt_hash);
2061 q = __lookup_mnt(&child->mnt_parent->mnt,
2062 child->mnt_mountpoint);
2063 if (q)
2064 mnt_change_mountpoint(child, smp, q);
2065 commit_tree(child);
2067 put_mountpoint(smp);
2068 unlock_mount_hash();
2070 return 0;
2072 out_cleanup_ids:
2073 while (!hlist_empty(&tree_list)) {
2074 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2075 child->mnt_parent->mnt_ns->pending_mounts = 0;
2076 umount_tree(child, UMOUNT_SYNC);
2078 unlock_mount_hash();
2079 cleanup_group_ids(source_mnt, NULL);
2080 out:
2081 ns->pending_mounts = 0;
2083 read_seqlock_excl(&mount_lock);
2084 put_mountpoint(smp);
2085 read_sequnlock_excl(&mount_lock);
2087 return err;
2090 static struct mountpoint *lock_mount(struct path *path)
2092 struct vfsmount *mnt;
2093 struct dentry *dentry = path->dentry;
2094 retry:
2095 inode_lock(dentry->d_inode);
2096 if (unlikely(cant_mount(dentry))) {
2097 inode_unlock(dentry->d_inode);
2098 return ERR_PTR(-ENOENT);
2100 namespace_lock();
2101 mnt = lookup_mnt(path);
2102 if (likely(!mnt)) {
2103 struct mountpoint *mp = get_mountpoint(dentry);
2104 if (IS_ERR(mp)) {
2105 namespace_unlock();
2106 inode_unlock(dentry->d_inode);
2107 return mp;
2109 return mp;
2111 namespace_unlock();
2112 inode_unlock(path->dentry->d_inode);
2113 path_put(path);
2114 path->mnt = mnt;
2115 dentry = path->dentry = dget(mnt->mnt_root);
2116 goto retry;
2119 static void unlock_mount(struct mountpoint *where)
2121 struct dentry *dentry = where->m_dentry;
2123 read_seqlock_excl(&mount_lock);
2124 put_mountpoint(where);
2125 read_sequnlock_excl(&mount_lock);
2127 namespace_unlock();
2128 inode_unlock(dentry->d_inode);
2131 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2133 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2134 return -EINVAL;
2136 if (d_is_dir(mp->m_dentry) !=
2137 d_is_dir(mnt->mnt.mnt_root))
2138 return -ENOTDIR;
2140 return attach_recursive_mnt(mnt, p, mp, NULL);
2144 * Sanity check the flags to change_mnt_propagation.
2147 static int flags_to_propagation_type(int flags)
2149 int type = flags & ~(MS_REC | MS_SILENT);
2151 /* Fail if any non-propagation flags are set */
2152 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2153 return 0;
2154 /* Only one propagation flag should be set */
2155 if (!is_power_of_2(type))
2156 return 0;
2157 return type;
2161 * recursively change the type of the mountpoint.
2163 static int do_change_type(struct path *path, int flag)
2165 struct mount *m;
2166 struct mount *mnt = real_mount(path->mnt);
2167 int recurse = flag & MS_REC;
2168 int type;
2169 int err = 0;
2171 if (path->dentry != path->mnt->mnt_root)
2172 return -EINVAL;
2174 type = flags_to_propagation_type(flag);
2175 if (!type)
2176 return -EINVAL;
2178 namespace_lock();
2179 if (type == MS_SHARED) {
2180 err = invent_group_ids(mnt, recurse);
2181 if (err)
2182 goto out_unlock;
2185 lock_mount_hash();
2186 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2187 change_mnt_propagation(m, type);
2188 unlock_mount_hash();
2190 out_unlock:
2191 namespace_unlock();
2192 return err;
2195 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2197 struct mount *child;
2198 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2199 if (!is_subdir(child->mnt_mountpoint, dentry))
2200 continue;
2202 if (child->mnt.mnt_flags & MNT_LOCKED)
2203 return true;
2205 return false;
2209 * do loopback mount.
2211 static int do_loopback(struct path *path, const char *old_name,
2212 int recurse)
2214 struct path old_path;
2215 struct mount *mnt = NULL, *old, *parent;
2216 struct mountpoint *mp;
2217 int err;
2218 if (!old_name || !*old_name)
2219 return -EINVAL;
2220 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2221 if (err)
2222 return err;
2224 err = -EINVAL;
2225 if (mnt_ns_loop(old_path.dentry))
2226 goto out;
2228 mp = lock_mount(path);
2229 err = PTR_ERR(mp);
2230 if (IS_ERR(mp))
2231 goto out;
2233 old = real_mount(old_path.mnt);
2234 parent = real_mount(path->mnt);
2236 err = -EINVAL;
2237 if (IS_MNT_UNBINDABLE(old))
2238 goto out2;
2240 if (!check_mnt(parent))
2241 goto out2;
2243 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2244 goto out2;
2246 if (!recurse && has_locked_children(old, old_path.dentry))
2247 goto out2;
2249 if (recurse)
2250 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2251 else
2252 mnt = clone_mnt(old, old_path.dentry, 0);
2254 if (IS_ERR(mnt)) {
2255 err = PTR_ERR(mnt);
2256 goto out2;
2259 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2261 err = graft_tree(mnt, parent, mp);
2262 if (err) {
2263 lock_mount_hash();
2264 umount_tree(mnt, UMOUNT_SYNC);
2265 unlock_mount_hash();
2267 out2:
2268 unlock_mount(mp);
2269 out:
2270 path_put(&old_path);
2271 return err;
2274 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2276 int error = 0;
2277 int readonly_request = 0;
2279 if (ms_flags & MS_RDONLY)
2280 readonly_request = 1;
2281 if (readonly_request == __mnt_is_readonly(mnt))
2282 return 0;
2284 if (readonly_request)
2285 error = mnt_make_readonly(real_mount(mnt));
2286 else
2287 __mnt_unmake_readonly(real_mount(mnt));
2288 return error;
2292 * change filesystem flags. dir should be a physical root of filesystem.
2293 * If you've mounted a non-root directory somewhere and want to do remount
2294 * on it - tough luck.
2296 static int do_remount(struct path *path, int flags, int mnt_flags,
2297 void *data)
2299 int err;
2300 struct super_block *sb = path->mnt->mnt_sb;
2301 struct mount *mnt = real_mount(path->mnt);
2303 if (!check_mnt(mnt))
2304 return -EINVAL;
2306 if (path->dentry != path->mnt->mnt_root)
2307 return -EINVAL;
2309 /* Don't allow changing of locked mnt flags.
2311 * No locks need to be held here while testing the various
2312 * MNT_LOCK flags because those flags can never be cleared
2313 * once they are set.
2315 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2316 !(mnt_flags & MNT_READONLY)) {
2317 return -EPERM;
2319 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2320 !(mnt_flags & MNT_NODEV)) {
2321 return -EPERM;
2323 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2324 !(mnt_flags & MNT_NOSUID)) {
2325 return -EPERM;
2327 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2328 !(mnt_flags & MNT_NOEXEC)) {
2329 return -EPERM;
2331 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2332 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2333 return -EPERM;
2336 err = security_sb_remount(sb, data);
2337 if (err)
2338 return err;
2340 down_write(&sb->s_umount);
2341 if (flags & MS_BIND)
2342 err = change_mount_flags(path->mnt, flags);
2343 else if (!capable(CAP_SYS_ADMIN))
2344 err = -EPERM;
2345 else
2346 err = do_remount_sb(sb, flags, data, 0);
2347 if (!err) {
2348 lock_mount_hash();
2349 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2350 mnt->mnt.mnt_flags = mnt_flags;
2351 touch_mnt_namespace(mnt->mnt_ns);
2352 unlock_mount_hash();
2354 up_write(&sb->s_umount);
2355 return err;
2358 static inline int tree_contains_unbindable(struct mount *mnt)
2360 struct mount *p;
2361 for (p = mnt; p; p = next_mnt(p, mnt)) {
2362 if (IS_MNT_UNBINDABLE(p))
2363 return 1;
2365 return 0;
2368 static int do_move_mount(struct path *path, const char *old_name)
2370 struct path old_path, parent_path;
2371 struct mount *p;
2372 struct mount *old;
2373 struct mountpoint *mp;
2374 int err;
2375 if (!old_name || !*old_name)
2376 return -EINVAL;
2377 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2378 if (err)
2379 return err;
2381 mp = lock_mount(path);
2382 err = PTR_ERR(mp);
2383 if (IS_ERR(mp))
2384 goto out;
2386 old = real_mount(old_path.mnt);
2387 p = real_mount(path->mnt);
2389 err = -EINVAL;
2390 if (!check_mnt(p) || !check_mnt(old))
2391 goto out1;
2393 if (old->mnt.mnt_flags & MNT_LOCKED)
2394 goto out1;
2396 err = -EINVAL;
2397 if (old_path.dentry != old_path.mnt->mnt_root)
2398 goto out1;
2400 if (!mnt_has_parent(old))
2401 goto out1;
2403 if (d_is_dir(path->dentry) !=
2404 d_is_dir(old_path.dentry))
2405 goto out1;
2407 * Don't move a mount residing in a shared parent.
2409 if (IS_MNT_SHARED(old->mnt_parent))
2410 goto out1;
2412 * Don't move a mount tree containing unbindable mounts to a destination
2413 * mount which is shared.
2415 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2416 goto out1;
2417 err = -ELOOP;
2418 for (; mnt_has_parent(p); p = p->mnt_parent)
2419 if (p == old)
2420 goto out1;
2422 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2423 if (err)
2424 goto out1;
2426 /* if the mount is moved, it should no longer be expire
2427 * automatically */
2428 list_del_init(&old->mnt_expire);
2429 out1:
2430 unlock_mount(mp);
2431 out:
2432 if (!err)
2433 path_put(&parent_path);
2434 path_put(&old_path);
2435 return err;
2438 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2440 int err;
2441 const char *subtype = strchr(fstype, '.');
2442 if (subtype) {
2443 subtype++;
2444 err = -EINVAL;
2445 if (!subtype[0])
2446 goto err;
2447 } else
2448 subtype = "";
2450 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2451 err = -ENOMEM;
2452 if (!mnt->mnt_sb->s_subtype)
2453 goto err;
2454 return mnt;
2456 err:
2457 mntput(mnt);
2458 return ERR_PTR(err);
2462 * add a mount into a namespace's mount tree
2464 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2466 struct mountpoint *mp;
2467 struct mount *parent;
2468 int err;
2470 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2472 mp = lock_mount(path);
2473 if (IS_ERR(mp))
2474 return PTR_ERR(mp);
2476 parent = real_mount(path->mnt);
2477 err = -EINVAL;
2478 if (unlikely(!check_mnt(parent))) {
2479 /* that's acceptable only for automounts done in private ns */
2480 if (!(mnt_flags & MNT_SHRINKABLE))
2481 goto unlock;
2482 /* ... and for those we'd better have mountpoint still alive */
2483 if (!parent->mnt_ns)
2484 goto unlock;
2487 /* Refuse the same filesystem on the same mount point */
2488 err = -EBUSY;
2489 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2490 path->mnt->mnt_root == path->dentry)
2491 goto unlock;
2493 err = -EINVAL;
2494 if (d_is_symlink(newmnt->mnt.mnt_root))
2495 goto unlock;
2497 newmnt->mnt.mnt_flags = mnt_flags;
2498 err = graft_tree(newmnt, parent, mp);
2500 unlock:
2501 unlock_mount(mp);
2502 return err;
2505 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2508 * create a new mount for userspace and request it to be added into the
2509 * namespace's tree
2511 static int do_new_mount(struct path *path, const char *fstype, int flags,
2512 int mnt_flags, const char *name, void *data)
2514 struct file_system_type *type;
2515 struct vfsmount *mnt;
2516 int err;
2518 if (!fstype)
2519 return -EINVAL;
2521 type = get_fs_type(fstype);
2522 if (!type)
2523 return -ENODEV;
2525 mnt = vfs_kern_mount(type, flags, name, data);
2526 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2527 !mnt->mnt_sb->s_subtype)
2528 mnt = fs_set_subtype(mnt, fstype);
2530 put_filesystem(type);
2531 if (IS_ERR(mnt))
2532 return PTR_ERR(mnt);
2534 if (mount_too_revealing(mnt, &mnt_flags)) {
2535 mntput(mnt);
2536 return -EPERM;
2539 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2540 if (err)
2541 mntput(mnt);
2542 return err;
2545 int finish_automount(struct vfsmount *m, struct path *path)
2547 struct mount *mnt = real_mount(m);
2548 int err;
2549 /* The new mount record should have at least 2 refs to prevent it being
2550 * expired before we get a chance to add it
2552 BUG_ON(mnt_get_count(mnt) < 2);
2554 if (m->mnt_sb == path->mnt->mnt_sb &&
2555 m->mnt_root == path->dentry) {
2556 err = -ELOOP;
2557 goto fail;
2560 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2561 if (!err)
2562 return 0;
2563 fail:
2564 /* remove m from any expiration list it may be on */
2565 if (!list_empty(&mnt->mnt_expire)) {
2566 namespace_lock();
2567 list_del_init(&mnt->mnt_expire);
2568 namespace_unlock();
2570 mntput(m);
2571 mntput(m);
2572 return err;
2576 * mnt_set_expiry - Put a mount on an expiration list
2577 * @mnt: The mount to list.
2578 * @expiry_list: The list to add the mount to.
2580 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2582 namespace_lock();
2584 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2586 namespace_unlock();
2588 EXPORT_SYMBOL(mnt_set_expiry);
2591 * process a list of expirable mountpoints with the intent of discarding any
2592 * mountpoints that aren't in use and haven't been touched since last we came
2593 * here
2595 void mark_mounts_for_expiry(struct list_head *mounts)
2597 struct mount *mnt, *next;
2598 LIST_HEAD(graveyard);
2600 if (list_empty(mounts))
2601 return;
2603 namespace_lock();
2604 lock_mount_hash();
2606 /* extract from the expiration list every vfsmount that matches the
2607 * following criteria:
2608 * - only referenced by its parent vfsmount
2609 * - still marked for expiry (marked on the last call here; marks are
2610 * cleared by mntput())
2612 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2613 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2614 propagate_mount_busy(mnt, 1))
2615 continue;
2616 list_move(&mnt->mnt_expire, &graveyard);
2618 while (!list_empty(&graveyard)) {
2619 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2620 touch_mnt_namespace(mnt->mnt_ns);
2621 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2623 unlock_mount_hash();
2624 namespace_unlock();
2627 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2630 * Ripoff of 'select_parent()'
2632 * search the list of submounts for a given mountpoint, and move any
2633 * shrinkable submounts to the 'graveyard' list.
2635 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2637 struct mount *this_parent = parent;
2638 struct list_head *next;
2639 int found = 0;
2641 repeat:
2642 next = this_parent->mnt_mounts.next;
2643 resume:
2644 while (next != &this_parent->mnt_mounts) {
2645 struct list_head *tmp = next;
2646 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2648 next = tmp->next;
2649 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2650 continue;
2652 * Descend a level if the d_mounts list is non-empty.
2654 if (!list_empty(&mnt->mnt_mounts)) {
2655 this_parent = mnt;
2656 goto repeat;
2659 if (!propagate_mount_busy(mnt, 1)) {
2660 list_move_tail(&mnt->mnt_expire, graveyard);
2661 found++;
2665 * All done at this level ... ascend and resume the search
2667 if (this_parent != parent) {
2668 next = this_parent->mnt_child.next;
2669 this_parent = this_parent->mnt_parent;
2670 goto resume;
2672 return found;
2676 * process a list of expirable mountpoints with the intent of discarding any
2677 * submounts of a specific parent mountpoint
2679 * mount_lock must be held for write
2681 static void shrink_submounts(struct mount *mnt)
2683 LIST_HEAD(graveyard);
2684 struct mount *m;
2686 /* extract submounts of 'mountpoint' from the expiration list */
2687 while (select_submounts(mnt, &graveyard)) {
2688 while (!list_empty(&graveyard)) {
2689 m = list_first_entry(&graveyard, struct mount,
2690 mnt_expire);
2691 touch_mnt_namespace(m->mnt_ns);
2692 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2698 * Some copy_from_user() implementations do not return the exact number of
2699 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2700 * Note that this function differs from copy_from_user() in that it will oops
2701 * on bad values of `to', rather than returning a short copy.
2703 static long exact_copy_from_user(void *to, const void __user * from,
2704 unsigned long n)
2706 char *t = to;
2707 const char __user *f = from;
2708 char c;
2710 if (!access_ok(VERIFY_READ, from, n))
2711 return n;
2713 while (n) {
2714 if (__get_user(c, f)) {
2715 memset(t, 0, n);
2716 break;
2718 *t++ = c;
2719 f++;
2720 n--;
2722 return n;
2725 void *copy_mount_options(const void __user * data)
2727 int i;
2728 unsigned long size;
2729 char *copy;
2731 if (!data)
2732 return NULL;
2734 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2735 if (!copy)
2736 return ERR_PTR(-ENOMEM);
2738 /* We only care that *some* data at the address the user
2739 * gave us is valid. Just in case, we'll zero
2740 * the remainder of the page.
2742 /* copy_from_user cannot cross TASK_SIZE ! */
2743 size = TASK_SIZE - (unsigned long)data;
2744 if (size > PAGE_SIZE)
2745 size = PAGE_SIZE;
2747 i = size - exact_copy_from_user(copy, data, size);
2748 if (!i) {
2749 kfree(copy);
2750 return ERR_PTR(-EFAULT);
2752 if (i != PAGE_SIZE)
2753 memset(copy + i, 0, PAGE_SIZE - i);
2754 return copy;
2757 char *copy_mount_string(const void __user *data)
2759 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2763 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2764 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2766 * data is a (void *) that can point to any structure up to
2767 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2768 * information (or be NULL).
2770 * Pre-0.97 versions of mount() didn't have a flags word.
2771 * When the flags word was introduced its top half was required
2772 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2773 * Therefore, if this magic number is present, it carries no information
2774 * and must be discarded.
2776 long do_mount(const char *dev_name, const char __user *dir_name,
2777 const char *type_page, unsigned long flags, void *data_page)
2779 struct path path;
2780 int retval = 0;
2781 int mnt_flags = 0;
2783 /* Discard magic */
2784 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2785 flags &= ~MS_MGC_MSK;
2787 /* Basic sanity checks */
2788 if (data_page)
2789 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2791 /* ... and get the mountpoint */
2792 retval = user_path(dir_name, &path);
2793 if (retval)
2794 return retval;
2796 retval = security_sb_mount(dev_name, &path,
2797 type_page, flags, data_page);
2798 if (!retval && !may_mount())
2799 retval = -EPERM;
2800 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2801 retval = -EPERM;
2802 if (retval)
2803 goto dput_out;
2805 /* Default to relatime unless overriden */
2806 if (!(flags & MS_NOATIME))
2807 mnt_flags |= MNT_RELATIME;
2809 /* Separate the per-mountpoint flags */
2810 if (flags & MS_NOSUID)
2811 mnt_flags |= MNT_NOSUID;
2812 if (flags & MS_NODEV)
2813 mnt_flags |= MNT_NODEV;
2814 if (flags & MS_NOEXEC)
2815 mnt_flags |= MNT_NOEXEC;
2816 if (flags & MS_NOATIME)
2817 mnt_flags |= MNT_NOATIME;
2818 if (flags & MS_NODIRATIME)
2819 mnt_flags |= MNT_NODIRATIME;
2820 if (flags & MS_STRICTATIME)
2821 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2822 if (flags & MS_RDONLY)
2823 mnt_flags |= MNT_READONLY;
2825 /* The default atime for remount is preservation */
2826 if ((flags & MS_REMOUNT) &&
2827 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2828 MS_STRICTATIME)) == 0)) {
2829 mnt_flags &= ~MNT_ATIME_MASK;
2830 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2833 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2834 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2835 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2837 if (flags & MS_REMOUNT)
2838 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2839 data_page);
2840 else if (flags & MS_BIND)
2841 retval = do_loopback(&path, dev_name, flags & MS_REC);
2842 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2843 retval = do_change_type(&path, flags);
2844 else if (flags & MS_MOVE)
2845 retval = do_move_mount(&path, dev_name);
2846 else
2847 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2848 dev_name, data_page);
2849 dput_out:
2850 path_put(&path);
2851 return retval;
2854 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2856 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2859 static void dec_mnt_namespaces(struct ucounts *ucounts)
2861 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2864 static void free_mnt_ns(struct mnt_namespace *ns)
2866 ns_free_inum(&ns->ns);
2867 dec_mnt_namespaces(ns->ucounts);
2868 put_user_ns(ns->user_ns);
2869 kfree(ns);
2873 * Assign a sequence number so we can detect when we attempt to bind
2874 * mount a reference to an older mount namespace into the current
2875 * mount namespace, preventing reference counting loops. A 64bit
2876 * number incrementing at 10Ghz will take 12,427 years to wrap which
2877 * is effectively never, so we can ignore the possibility.
2879 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2881 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2883 struct mnt_namespace *new_ns;
2884 struct ucounts *ucounts;
2885 int ret;
2887 ucounts = inc_mnt_namespaces(user_ns);
2888 if (!ucounts)
2889 return ERR_PTR(-ENOSPC);
2891 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2892 if (!new_ns) {
2893 dec_mnt_namespaces(ucounts);
2894 return ERR_PTR(-ENOMEM);
2896 ret = ns_alloc_inum(&new_ns->ns);
2897 if (ret) {
2898 kfree(new_ns);
2899 dec_mnt_namespaces(ucounts);
2900 return ERR_PTR(ret);
2902 new_ns->ns.ops = &mntns_operations;
2903 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2904 atomic_set(&new_ns->count, 1);
2905 new_ns->root = NULL;
2906 INIT_LIST_HEAD(&new_ns->list);
2907 init_waitqueue_head(&new_ns->poll);
2908 new_ns->event = 0;
2909 new_ns->user_ns = get_user_ns(user_ns);
2910 new_ns->ucounts = ucounts;
2911 new_ns->mounts = 0;
2912 new_ns->pending_mounts = 0;
2913 return new_ns;
2916 __latent_entropy
2917 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2918 struct user_namespace *user_ns, struct fs_struct *new_fs)
2920 struct mnt_namespace *new_ns;
2921 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2922 struct mount *p, *q;
2923 struct mount *old;
2924 struct mount *new;
2925 int copy_flags;
2927 BUG_ON(!ns);
2929 if (likely(!(flags & CLONE_NEWNS))) {
2930 get_mnt_ns(ns);
2931 return ns;
2934 old = ns->root;
2936 new_ns = alloc_mnt_ns(user_ns);
2937 if (IS_ERR(new_ns))
2938 return new_ns;
2940 namespace_lock();
2941 /* First pass: copy the tree topology */
2942 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2943 if (user_ns != ns->user_ns)
2944 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2945 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2946 if (IS_ERR(new)) {
2947 namespace_unlock();
2948 free_mnt_ns(new_ns);
2949 return ERR_CAST(new);
2951 new_ns->root = new;
2952 list_add_tail(&new_ns->list, &new->mnt_list);
2955 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2956 * as belonging to new namespace. We have already acquired a private
2957 * fs_struct, so tsk->fs->lock is not needed.
2959 p = old;
2960 q = new;
2961 while (p) {
2962 q->mnt_ns = new_ns;
2963 new_ns->mounts++;
2964 if (new_fs) {
2965 if (&p->mnt == new_fs->root.mnt) {
2966 new_fs->root.mnt = mntget(&q->mnt);
2967 rootmnt = &p->mnt;
2969 if (&p->mnt == new_fs->pwd.mnt) {
2970 new_fs->pwd.mnt = mntget(&q->mnt);
2971 pwdmnt = &p->mnt;
2974 p = next_mnt(p, old);
2975 q = next_mnt(q, new);
2976 if (!q)
2977 break;
2978 while (p->mnt.mnt_root != q->mnt.mnt_root)
2979 p = next_mnt(p, old);
2981 namespace_unlock();
2983 if (rootmnt)
2984 mntput(rootmnt);
2985 if (pwdmnt)
2986 mntput(pwdmnt);
2988 return new_ns;
2992 * create_mnt_ns - creates a private namespace and adds a root filesystem
2993 * @mnt: pointer to the new root filesystem mountpoint
2995 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2997 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2998 if (!IS_ERR(new_ns)) {
2999 struct mount *mnt = real_mount(m);
3000 mnt->mnt_ns = new_ns;
3001 new_ns->root = mnt;
3002 new_ns->mounts++;
3003 list_add(&mnt->mnt_list, &new_ns->list);
3004 } else {
3005 mntput(m);
3007 return new_ns;
3010 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3012 struct mnt_namespace *ns;
3013 struct super_block *s;
3014 struct path path;
3015 int err;
3017 ns = create_mnt_ns(mnt);
3018 if (IS_ERR(ns))
3019 return ERR_CAST(ns);
3021 err = vfs_path_lookup(mnt->mnt_root, mnt,
3022 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3024 put_mnt_ns(ns);
3026 if (err)
3027 return ERR_PTR(err);
3029 /* trade a vfsmount reference for active sb one */
3030 s = path.mnt->mnt_sb;
3031 atomic_inc(&s->s_active);
3032 mntput(path.mnt);
3033 /* lock the sucker */
3034 down_write(&s->s_umount);
3035 /* ... and return the root of (sub)tree on it */
3036 return path.dentry;
3038 EXPORT_SYMBOL(mount_subtree);
3040 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3041 char __user *, type, unsigned long, flags, void __user *, data)
3043 int ret;
3044 char *kernel_type;
3045 char *kernel_dev;
3046 void *options;
3048 kernel_type = copy_mount_string(type);
3049 ret = PTR_ERR(kernel_type);
3050 if (IS_ERR(kernel_type))
3051 goto out_type;
3053 kernel_dev = copy_mount_string(dev_name);
3054 ret = PTR_ERR(kernel_dev);
3055 if (IS_ERR(kernel_dev))
3056 goto out_dev;
3058 options = copy_mount_options(data);
3059 ret = PTR_ERR(options);
3060 if (IS_ERR(options))
3061 goto out_data;
3063 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3065 kfree(options);
3066 out_data:
3067 kfree(kernel_dev);
3068 out_dev:
3069 kfree(kernel_type);
3070 out_type:
3071 return ret;
3075 * Return true if path is reachable from root
3077 * namespace_sem or mount_lock is held
3079 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3080 const struct path *root)
3082 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3083 dentry = mnt->mnt_mountpoint;
3084 mnt = mnt->mnt_parent;
3086 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3089 bool path_is_under(struct path *path1, struct path *path2)
3091 bool res;
3092 read_seqlock_excl(&mount_lock);
3093 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3094 read_sequnlock_excl(&mount_lock);
3095 return res;
3097 EXPORT_SYMBOL(path_is_under);
3100 * pivot_root Semantics:
3101 * Moves the root file system of the current process to the directory put_old,
3102 * makes new_root as the new root file system of the current process, and sets
3103 * root/cwd of all processes which had them on the current root to new_root.
3105 * Restrictions:
3106 * The new_root and put_old must be directories, and must not be on the
3107 * same file system as the current process root. The put_old must be
3108 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3109 * pointed to by put_old must yield the same directory as new_root. No other
3110 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3112 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3113 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3114 * in this situation.
3116 * Notes:
3117 * - we don't move root/cwd if they are not at the root (reason: if something
3118 * cared enough to change them, it's probably wrong to force them elsewhere)
3119 * - it's okay to pick a root that isn't the root of a file system, e.g.
3120 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3121 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3122 * first.
3124 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3125 const char __user *, put_old)
3127 struct path new, old, parent_path, root_parent, root;
3128 struct mount *new_mnt, *root_mnt, *old_mnt;
3129 struct mountpoint *old_mp, *root_mp;
3130 int error;
3132 if (!may_mount())
3133 return -EPERM;
3135 error = user_path_dir(new_root, &new);
3136 if (error)
3137 goto out0;
3139 error = user_path_dir(put_old, &old);
3140 if (error)
3141 goto out1;
3143 error = security_sb_pivotroot(&old, &new);
3144 if (error)
3145 goto out2;
3147 get_fs_root(current->fs, &root);
3148 old_mp = lock_mount(&old);
3149 error = PTR_ERR(old_mp);
3150 if (IS_ERR(old_mp))
3151 goto out3;
3153 error = -EINVAL;
3154 new_mnt = real_mount(new.mnt);
3155 root_mnt = real_mount(root.mnt);
3156 old_mnt = real_mount(old.mnt);
3157 if (IS_MNT_SHARED(old_mnt) ||
3158 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3159 IS_MNT_SHARED(root_mnt->mnt_parent))
3160 goto out4;
3161 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3162 goto out4;
3163 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3164 goto out4;
3165 error = -ENOENT;
3166 if (d_unlinked(new.dentry))
3167 goto out4;
3168 error = -EBUSY;
3169 if (new_mnt == root_mnt || old_mnt == root_mnt)
3170 goto out4; /* loop, on the same file system */
3171 error = -EINVAL;
3172 if (root.mnt->mnt_root != root.dentry)
3173 goto out4; /* not a mountpoint */
3174 if (!mnt_has_parent(root_mnt))
3175 goto out4; /* not attached */
3176 root_mp = root_mnt->mnt_mp;
3177 if (new.mnt->mnt_root != new.dentry)
3178 goto out4; /* not a mountpoint */
3179 if (!mnt_has_parent(new_mnt))
3180 goto out4; /* not attached */
3181 /* make sure we can reach put_old from new_root */
3182 if (!is_path_reachable(old_mnt, old.dentry, &new))
3183 goto out4;
3184 /* make certain new is below the root */
3185 if (!is_path_reachable(new_mnt, new.dentry, &root))
3186 goto out4;
3187 root_mp->m_count++; /* pin it so it won't go away */
3188 lock_mount_hash();
3189 detach_mnt(new_mnt, &parent_path);
3190 detach_mnt(root_mnt, &root_parent);
3191 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3192 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3193 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3195 /* mount old root on put_old */
3196 attach_mnt(root_mnt, old_mnt, old_mp);
3197 /* mount new_root on / */
3198 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3199 touch_mnt_namespace(current->nsproxy->mnt_ns);
3200 /* A moved mount should not expire automatically */
3201 list_del_init(&new_mnt->mnt_expire);
3202 put_mountpoint(root_mp);
3203 unlock_mount_hash();
3204 chroot_fs_refs(&root, &new);
3205 error = 0;
3206 out4:
3207 unlock_mount(old_mp);
3208 if (!error) {
3209 path_put(&root_parent);
3210 path_put(&parent_path);
3212 out3:
3213 path_put(&root);
3214 out2:
3215 path_put(&old);
3216 out1:
3217 path_put(&new);
3218 out0:
3219 return error;
3222 static void __init init_mount_tree(void)
3224 struct vfsmount *mnt;
3225 struct mnt_namespace *ns;
3226 struct path root;
3227 struct file_system_type *type;
3229 type = get_fs_type("rootfs");
3230 if (!type)
3231 panic("Can't find rootfs type");
3232 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3233 put_filesystem(type);
3234 if (IS_ERR(mnt))
3235 panic("Can't create rootfs");
3237 ns = create_mnt_ns(mnt);
3238 if (IS_ERR(ns))
3239 panic("Can't allocate initial namespace");
3241 init_task.nsproxy->mnt_ns = ns;
3242 get_mnt_ns(ns);
3244 root.mnt = mnt;
3245 root.dentry = mnt->mnt_root;
3246 mnt->mnt_flags |= MNT_LOCKED;
3248 set_fs_pwd(current->fs, &root);
3249 set_fs_root(current->fs, &root);
3252 void __init mnt_init(void)
3254 unsigned u;
3255 int err;
3257 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3258 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3260 mount_hashtable = alloc_large_system_hash("Mount-cache",
3261 sizeof(struct hlist_head),
3262 mhash_entries, 19,
3264 &m_hash_shift, &m_hash_mask, 0, 0);
3265 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3266 sizeof(struct hlist_head),
3267 mphash_entries, 19,
3269 &mp_hash_shift, &mp_hash_mask, 0, 0);
3271 if (!mount_hashtable || !mountpoint_hashtable)
3272 panic("Failed to allocate mount hash table\n");
3274 for (u = 0; u <= m_hash_mask; u++)
3275 INIT_HLIST_HEAD(&mount_hashtable[u]);
3276 for (u = 0; u <= mp_hash_mask; u++)
3277 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3279 kernfs_init();
3281 err = sysfs_init();
3282 if (err)
3283 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3284 __func__, err);
3285 fs_kobj = kobject_create_and_add("fs", NULL);
3286 if (!fs_kobj)
3287 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3288 init_rootfs();
3289 init_mount_tree();
3292 void put_mnt_ns(struct mnt_namespace *ns)
3294 if (!atomic_dec_and_test(&ns->count))
3295 return;
3296 drop_collected_mounts(&ns->root->mnt);
3297 free_mnt_ns(ns);
3300 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3302 struct vfsmount *mnt;
3303 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3304 if (!IS_ERR(mnt)) {
3306 * it is a longterm mount, don't release mnt until
3307 * we unmount before file sys is unregistered
3309 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3311 return mnt;
3313 EXPORT_SYMBOL_GPL(kern_mount_data);
3315 void kern_unmount(struct vfsmount *mnt)
3317 /* release long term mount so mount point can be released */
3318 if (!IS_ERR_OR_NULL(mnt)) {
3319 real_mount(mnt)->mnt_ns = NULL;
3320 synchronize_rcu(); /* yecchhh... */
3321 mntput(mnt);
3324 EXPORT_SYMBOL(kern_unmount);
3326 bool our_mnt(struct vfsmount *mnt)
3328 return check_mnt(real_mount(mnt));
3331 bool current_chrooted(void)
3333 /* Does the current process have a non-standard root */
3334 struct path ns_root;
3335 struct path fs_root;
3336 bool chrooted;
3338 /* Find the namespace root */
3339 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3340 ns_root.dentry = ns_root.mnt->mnt_root;
3341 path_get(&ns_root);
3342 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3345 get_fs_root(current->fs, &fs_root);
3347 chrooted = !path_equal(&fs_root, &ns_root);
3349 path_put(&fs_root);
3350 path_put(&ns_root);
3352 return chrooted;
3355 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3356 int *new_mnt_flags)
3358 int new_flags = *new_mnt_flags;
3359 struct mount *mnt;
3360 bool visible = false;
3362 down_read(&namespace_sem);
3363 list_for_each_entry(mnt, &ns->list, mnt_list) {
3364 struct mount *child;
3365 int mnt_flags;
3367 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3368 continue;
3370 /* This mount is not fully visible if it's root directory
3371 * is not the root directory of the filesystem.
3373 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3374 continue;
3376 /* A local view of the mount flags */
3377 mnt_flags = mnt->mnt.mnt_flags;
3379 /* Don't miss readonly hidden in the superblock flags */
3380 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3381 mnt_flags |= MNT_LOCK_READONLY;
3383 /* Verify the mount flags are equal to or more permissive
3384 * than the proposed new mount.
3386 if ((mnt_flags & MNT_LOCK_READONLY) &&
3387 !(new_flags & MNT_READONLY))
3388 continue;
3389 if ((mnt_flags & MNT_LOCK_ATIME) &&
3390 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3391 continue;
3393 /* This mount is not fully visible if there are any
3394 * locked child mounts that cover anything except for
3395 * empty directories.
3397 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3398 struct inode *inode = child->mnt_mountpoint->d_inode;
3399 /* Only worry about locked mounts */
3400 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3401 continue;
3402 /* Is the directory permanetly empty? */
3403 if (!is_empty_dir_inode(inode))
3404 goto next;
3406 /* Preserve the locked attributes */
3407 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3408 MNT_LOCK_ATIME);
3409 visible = true;
3410 goto found;
3411 next: ;
3413 found:
3414 up_read(&namespace_sem);
3415 return visible;
3418 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3420 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3421 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3422 unsigned long s_iflags;
3424 if (ns->user_ns == &init_user_ns)
3425 return false;
3427 /* Can this filesystem be too revealing? */
3428 s_iflags = mnt->mnt_sb->s_iflags;
3429 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3430 return false;
3432 if ((s_iflags & required_iflags) != required_iflags) {
3433 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3434 required_iflags);
3435 return true;
3438 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3441 bool mnt_may_suid(struct vfsmount *mnt)
3444 * Foreign mounts (accessed via fchdir or through /proc
3445 * symlinks) are always treated as if they are nosuid. This
3446 * prevents namespaces from trusting potentially unsafe
3447 * suid/sgid bits, file caps, or security labels that originate
3448 * in other namespaces.
3450 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3451 current_in_userns(mnt->mnt_sb->s_user_ns);
3454 static struct ns_common *mntns_get(struct task_struct *task)
3456 struct ns_common *ns = NULL;
3457 struct nsproxy *nsproxy;
3459 task_lock(task);
3460 nsproxy = task->nsproxy;
3461 if (nsproxy) {
3462 ns = &nsproxy->mnt_ns->ns;
3463 get_mnt_ns(to_mnt_ns(ns));
3465 task_unlock(task);
3467 return ns;
3470 static void mntns_put(struct ns_common *ns)
3472 put_mnt_ns(to_mnt_ns(ns));
3475 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3477 struct fs_struct *fs = current->fs;
3478 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3479 struct path root;
3481 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3482 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3483 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3484 return -EPERM;
3486 if (fs->users != 1)
3487 return -EINVAL;
3489 get_mnt_ns(mnt_ns);
3490 put_mnt_ns(nsproxy->mnt_ns);
3491 nsproxy->mnt_ns = mnt_ns;
3493 /* Find the root */
3494 root.mnt = &mnt_ns->root->mnt;
3495 root.dentry = mnt_ns->root->mnt.mnt_root;
3496 path_get(&root);
3497 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3500 /* Update the pwd and root */
3501 set_fs_pwd(fs, &root);
3502 set_fs_root(fs, &root);
3504 path_put(&root);
3505 return 0;
3508 static struct user_namespace *mntns_owner(struct ns_common *ns)
3510 return to_mnt_ns(ns)->user_ns;
3513 const struct proc_ns_operations mntns_operations = {
3514 .name = "mnt",
3515 .type = CLONE_NEWNS,
3516 .get = mntns_get,
3517 .put = mntns_put,
3518 .install = mntns_install,
3519 .owner = mntns_owner,