4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate_shared
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_inode
*nfsi
= NFS_I(dir
);
73 struct nfs_open_dir_context
*ctx
;
74 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
77 ctx
->attr_gencount
= nfsi
->attr_gencount
;
80 ctx
->cred
= get_rpccred(cred
);
81 spin_lock(&dir
->i_lock
);
82 list_add(&ctx
->list
, &nfsi
->open_files
);
83 spin_unlock(&dir
->i_lock
);
86 return ERR_PTR(-ENOMEM
);
89 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
91 spin_lock(&dir
->i_lock
);
93 spin_unlock(&dir
->i_lock
);
94 put_rpccred(ctx
->cred
);
102 nfs_opendir(struct inode
*inode
, struct file
*filp
)
105 struct nfs_open_dir_context
*ctx
;
106 struct rpc_cred
*cred
;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
110 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
112 cred
= rpc_lookup_cred();
114 return PTR_ERR(cred
);
115 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
120 filp
->private_data
= ctx
;
121 if (filp
->f_path
.dentry
== filp
->f_path
.mnt
->mnt_root
) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
126 __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
134 nfs_closedir(struct inode
*inode
, struct file
*filp
)
136 put_nfs_open_dir_context(file_inode(filp
), filp
->private_data
);
140 struct nfs_cache_array_entry
{
144 unsigned char d_type
;
147 struct nfs_cache_array
{
152 struct nfs_cache_array_entry array
[0];
155 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, int);
159 struct dir_context
*ctx
;
160 unsigned long page_index
;
163 loff_t current_index
;
164 decode_dirent_t decode
;
166 unsigned long timestamp
;
167 unsigned long gencount
;
168 unsigned int cache_entry_index
;
171 } nfs_readdir_descriptor_t
;
174 * The caller is responsible for calling nfs_readdir_release_array(page)
177 struct nfs_cache_array
*nfs_readdir_get_array(struct page
*page
)
181 return ERR_PTR(-EIO
);
184 return ERR_PTR(-ENOMEM
);
189 void nfs_readdir_release_array(struct page
*page
)
195 * we are freeing strings created by nfs_add_to_readdir_array()
198 void nfs_readdir_clear_array(struct page
*page
)
200 struct nfs_cache_array
*array
;
203 array
= kmap_atomic(page
);
204 if (atomic_dec_and_test(&array
->refcount
))
205 for (i
= 0; i
< array
->size
; i
++)
206 kfree(array
->array
[i
].string
.name
);
207 kunmap_atomic(array
);
210 static bool grab_page(struct page
*page
)
212 struct nfs_cache_array
*array
= kmap_atomic(page
);
213 bool res
= atomic_inc_not_zero(&array
->refcount
);
214 kunmap_atomic(array
);
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
224 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
227 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
228 if (string
->name
== NULL
)
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
234 kmemleak_not_leak(string
->name
);
235 string
->hash
= full_name_hash(NULL
, name
, len
);
240 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
242 struct nfs_cache_array
*array
= nfs_readdir_get_array(page
);
243 struct nfs_cache_array_entry
*cache_entry
;
247 return PTR_ERR(array
);
249 cache_entry
= &array
->array
[array
->size
];
251 /* Check that this entry lies within the page bounds */
253 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
256 cache_entry
->cookie
= entry
->prev_cookie
;
257 cache_entry
->ino
= entry
->ino
;
258 cache_entry
->d_type
= entry
->d_type
;
259 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
262 array
->last_cookie
= entry
->cookie
;
265 array
->eof_index
= array
->size
;
267 nfs_readdir_release_array(page
);
272 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
274 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
279 if (diff
>= array
->size
) {
280 if (array
->eof_index
>= 0)
285 index
= (unsigned int)diff
;
286 *desc
->dir_cookie
= array
->array
[index
].cookie
;
287 desc
->cache_entry_index
= index
;
295 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
297 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
300 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
308 int status
= -EAGAIN
;
310 for (i
= 0; i
< array
->size
; i
++) {
311 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
312 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
313 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
315 new_pos
= desc
->current_index
+ i
;
316 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
317 !nfs_readdir_inode_mapping_valid(nfsi
)) {
319 ctx
->attr_gencount
= nfsi
->attr_gencount
;
320 } else if (new_pos
< desc
->ctx
->pos
) {
322 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc
->file
, array
->array
[i
].string
.len
,
328 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
333 ctx
->dup_cookie
= *desc
->dir_cookie
;
336 desc
->ctx
->pos
= new_pos
;
337 desc
->cache_entry_index
= i
;
341 if (array
->eof_index
>= 0) {
342 status
= -EBADCOOKIE
;
343 if (*desc
->dir_cookie
== array
->last_cookie
)
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
353 struct nfs_cache_array
*array
;
356 array
= nfs_readdir_get_array(desc
->page
);
358 status
= PTR_ERR(array
);
362 if (*desc
->dir_cookie
== 0)
363 status
= nfs_readdir_search_for_pos(array
, desc
);
365 status
= nfs_readdir_search_for_cookie(array
, desc
);
367 if (status
== -EAGAIN
) {
368 desc
->last_cookie
= array
->last_cookie
;
369 desc
->current_index
+= array
->size
;
372 nfs_readdir_release_array(desc
->page
);
377 /* Fill a page with xdr information before transferring to the cache page */
379 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
380 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
382 struct nfs_open_dir_context
*ctx
= file
->private_data
;
383 struct rpc_cred
*cred
= ctx
->cred
;
384 unsigned long timestamp
, gencount
;
389 gencount
= nfs_inc_attr_generation_counter();
390 error
= NFS_PROTO(inode
)->readdir(file_dentry(file
), cred
, entry
->cookie
, pages
,
391 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error
== -ENOTSUPP
&& desc
->plus
) {
395 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
396 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
402 desc
->timestamp
= timestamp
;
403 desc
->gencount
= gencount
;
408 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
409 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
413 error
= desc
->decode(xdr
, entry
, desc
->plus
);
416 entry
->fattr
->time_start
= desc
->timestamp
;
417 entry
->fattr
->gencount
= desc
->gencount
;
421 /* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
425 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
428 struct nfs_inode
*nfsi
;
430 if (d_really_is_negative(dentry
))
433 inode
= d_inode(dentry
);
434 if (is_bad_inode(inode
) || NFS_STALE(inode
))
438 if (entry
->fattr
->fileid
!= nfsi
->fileid
)
440 if (entry
->fh
->size
&& nfs_compare_fh(entry
->fh
, &nfsi
->fh
) != 0)
446 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
448 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
458 * This function is called by the lookup code to request the use of
459 * readdirplus to accelerate any future lookups in the same
463 void nfs_advise_use_readdirplus(struct inode
*dir
)
465 set_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
);
469 * This function is mainly for use by nfs_getattr().
471 * If this is an 'ls -l', we want to force use of readdirplus.
472 * Do this by checking if there is an active file descriptor
473 * and calling nfs_advise_use_readdirplus, then forcing a
476 void nfs_force_use_readdirplus(struct inode
*dir
)
478 if (!list_empty(&NFS_I(dir
)->open_files
)) {
479 nfs_advise_use_readdirplus(dir
);
480 invalidate_mapping_pages(dir
->i_mapping
, 0, -1);
485 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
487 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
488 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
489 struct dentry
*dentry
;
490 struct dentry
*alias
;
491 struct inode
*dir
= d_inode(parent
);
495 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FILEID
))
497 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FSID
))
499 if (filename
.len
== 0)
501 /* Validate that the name doesn't contain any illegal '\0' */
502 if (strnlen(filename
.name
, filename
.len
) != filename
.len
)
505 if (strnchr(filename
.name
, filename
.len
, '/'))
507 if (filename
.name
[0] == '.') {
508 if (filename
.len
== 1)
510 if (filename
.len
== 2 && filename
.name
[1] == '.')
513 filename
.hash
= full_name_hash(parent
, filename
.name
, filename
.len
);
515 dentry
= d_lookup(parent
, &filename
);
518 dentry
= d_alloc_parallel(parent
, &filename
, &wq
);
522 if (!d_in_lookup(dentry
)) {
523 /* Is there a mountpoint here? If so, just exit */
524 if (!nfs_fsid_equal(&NFS_SB(dentry
->d_sb
)->fsid
,
525 &entry
->fattr
->fsid
))
527 if (nfs_same_file(dentry
, entry
)) {
528 if (!entry
->fh
->size
)
530 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
531 status
= nfs_refresh_inode(d_inode(dentry
), entry
->fattr
);
533 nfs_setsecurity(d_inode(dentry
), entry
->fattr
, entry
->label
);
536 d_invalidate(dentry
);
542 if (!entry
->fh
->size
) {
543 d_lookup_done(dentry
);
547 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
548 alias
= d_splice_alias(inode
, dentry
);
549 d_lookup_done(dentry
);
556 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
561 /* Perform conversion from xdr to cache array */
563 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
564 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
566 struct xdr_stream stream
;
568 struct page
*scratch
;
569 struct nfs_cache_array
*array
;
570 unsigned int count
= 0;
573 scratch
= alloc_page(GFP_KERNEL
);
580 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
581 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
584 status
= xdr_decode(desc
, entry
, &stream
);
586 if (status
== -EAGAIN
)
594 nfs_prime_dcache(file_dentry(desc
->file
), entry
);
596 status
= nfs_readdir_add_to_array(entry
, page
);
599 } while (!entry
->eof
);
602 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
603 array
= nfs_readdir_get_array(page
);
604 if (!IS_ERR(array
)) {
605 array
->eof_index
= array
->size
;
607 nfs_readdir_release_array(page
);
609 status
= PTR_ERR(array
);
617 void nfs_readdir_free_pages(struct page
**pages
, unsigned int npages
)
620 for (i
= 0; i
< npages
; i
++)
625 * nfs_readdir_large_page will allocate pages that must be freed with a call
626 * to nfs_readdir_free_pagearray
629 int nfs_readdir_alloc_pages(struct page
**pages
, unsigned int npages
)
633 for (i
= 0; i
< npages
; i
++) {
634 struct page
*page
= alloc_page(GFP_KERNEL
);
642 nfs_readdir_free_pages(pages
, i
);
647 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
649 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
650 struct nfs_entry entry
;
651 struct file
*file
= desc
->file
;
652 struct nfs_cache_array
*array
;
653 int status
= -ENOMEM
;
654 unsigned int array_size
= ARRAY_SIZE(pages
);
656 entry
.prev_cookie
= 0;
657 entry
.cookie
= desc
->last_cookie
;
659 entry
.fh
= nfs_alloc_fhandle();
660 entry
.fattr
= nfs_alloc_fattr();
661 entry
.server
= NFS_SERVER(inode
);
662 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
665 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
666 if (IS_ERR(entry
.label
)) {
667 status
= PTR_ERR(entry
.label
);
671 array
= nfs_readdir_get_array(page
);
673 status
= PTR_ERR(array
);
676 memset(array
, 0, sizeof(struct nfs_cache_array
));
677 atomic_set(&array
->refcount
, 1);
678 array
->eof_index
= -1;
680 status
= nfs_readdir_alloc_pages(pages
, array_size
);
682 goto out_release_array
;
685 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
690 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
692 if (status
== -ENOSPC
)
696 } while (array
->eof_index
< 0);
698 nfs_readdir_free_pages(pages
, array_size
);
700 nfs_readdir_release_array(page
);
702 nfs4_label_free(entry
.label
);
704 nfs_free_fattr(entry
.fattr
);
705 nfs_free_fhandle(entry
.fh
);
710 * Now we cache directories properly, by converting xdr information
711 * to an array that can be used for lookups later. This results in
712 * fewer cache pages, since we can store more information on each page.
713 * We only need to convert from xdr once so future lookups are much simpler
716 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
718 struct inode
*inode
= file_inode(desc
->file
);
721 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
724 SetPageUptodate(page
);
726 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
727 /* Should never happen */
728 nfs_zap_mapping(inode
, inode
->i_mapping
);
738 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
740 nfs_readdir_clear_array(desc
->page
);
741 put_page(desc
->page
);
746 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
751 page
= read_cache_page(desc
->file
->f_mapping
,
752 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
753 if (IS_ERR(page
) || grab_page(page
))
761 * Returns 0 if desc->dir_cookie was found on page desc->page_index
764 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
768 desc
->page
= get_cache_page(desc
);
769 if (IS_ERR(desc
->page
))
770 return PTR_ERR(desc
->page
);
772 res
= nfs_readdir_search_array(desc
);
774 cache_page_release(desc
);
778 /* Search for desc->dir_cookie from the beginning of the page cache */
780 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
784 if (desc
->page_index
== 0) {
785 desc
->current_index
= 0;
786 desc
->last_cookie
= 0;
789 res
= find_cache_page(desc
);
790 } while (res
== -EAGAIN
);
795 * Once we've found the start of the dirent within a page: fill 'er up...
798 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
800 struct file
*file
= desc
->file
;
803 struct nfs_cache_array
*array
= NULL
;
804 struct nfs_open_dir_context
*ctx
= file
->private_data
;
806 array
= nfs_readdir_get_array(desc
->page
);
808 res
= PTR_ERR(array
);
812 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
813 struct nfs_cache_array_entry
*ent
;
815 ent
= &array
->array
[i
];
816 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
817 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
822 if (i
< (array
->size
-1))
823 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
825 *desc
->dir_cookie
= array
->last_cookie
;
829 if (array
->eof_index
>= 0)
832 nfs_readdir_release_array(desc
->page
);
834 cache_page_release(desc
);
835 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
836 (unsigned long long)*desc
->dir_cookie
, res
);
841 * If we cannot find a cookie in our cache, we suspect that this is
842 * because it points to a deleted file, so we ask the server to return
843 * whatever it thinks is the next entry. We then feed this to filldir.
844 * If all goes well, we should then be able to find our way round the
845 * cache on the next call to readdir_search_pagecache();
847 * NOTE: we cannot add the anonymous page to the pagecache because
848 * the data it contains might not be page aligned. Besides,
849 * we should already have a complete representation of the
850 * directory in the page cache by the time we get here.
853 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
855 struct page
*page
= NULL
;
857 struct inode
*inode
= file_inode(desc
->file
);
858 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
860 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
861 (unsigned long long)*desc
->dir_cookie
);
863 page
= alloc_page(GFP_HIGHUSER
);
869 desc
->page_index
= 0;
870 desc
->last_cookie
= *desc
->dir_cookie
;
874 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
878 status
= nfs_do_filldir(desc
);
881 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
885 cache_page_release(desc
);
889 /* The file offset position represents the dirent entry number. A
890 last cookie cache takes care of the common case of reading the
893 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
895 struct dentry
*dentry
= file_dentry(file
);
896 struct inode
*inode
= d_inode(dentry
);
897 nfs_readdir_descriptor_t my_desc
,
899 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
902 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
903 file
, (long long)ctx
->pos
);
904 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
907 * ctx->pos points to the dirent entry number.
908 * *desc->dir_cookie has the cookie for the next entry. We have
909 * to either find the entry with the appropriate number or
910 * revalidate the cookie.
912 memset(desc
, 0, sizeof(*desc
));
916 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
917 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
918 desc
->plus
= nfs_use_readdirplus(inode
, ctx
) ? 1 : 0;
920 if (ctx
->pos
== 0 || nfs_attribute_cache_expired(inode
))
921 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
926 res
= readdir_search_pagecache(desc
);
928 if (res
== -EBADCOOKIE
) {
930 /* This means either end of directory */
931 if (*desc
->dir_cookie
&& desc
->eof
== 0) {
932 /* Or that the server has 'lost' a cookie */
933 res
= uncached_readdir(desc
);
939 if (res
== -ETOOSMALL
&& desc
->plus
) {
940 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
941 nfs_zap_caches(inode
);
942 desc
->page_index
= 0;
950 res
= nfs_do_filldir(desc
);
953 } while (!desc
->eof
);
957 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
961 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
963 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
965 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
966 filp
, offset
, whence
);
970 offset
+= filp
->f_pos
;
977 if (offset
!= filp
->f_pos
) {
978 filp
->f_pos
= offset
;
979 dir_ctx
->dir_cookie
= 0;
986 * All directory operations under NFS are synchronous, so fsync()
987 * is a dummy operation.
989 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
992 struct inode
*inode
= file_inode(filp
);
994 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
997 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
1003 * nfs_force_lookup_revalidate - Mark the directory as having changed
1004 * @dir - pointer to directory inode
1006 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1007 * full lookup on all child dentries of 'dir' whenever a change occurs
1008 * on the server that might have invalidated our dcache.
1010 * The caller should be holding dir->i_lock
1012 void nfs_force_lookup_revalidate(struct inode
*dir
)
1014 NFS_I(dir
)->cache_change_attribute
++;
1016 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
1019 * A check for whether or not the parent directory has changed.
1020 * In the case it has, we assume that the dentries are untrustworthy
1021 * and may need to be looked up again.
1022 * If rcu_walk prevents us from performing a full check, return 0.
1024 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
,
1029 if (IS_ROOT(dentry
))
1031 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
1033 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1035 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1037 ret
= nfs_revalidate_inode_rcu(NFS_SERVER(dir
), dir
);
1039 ret
= nfs_revalidate_inode(NFS_SERVER(dir
), dir
);
1042 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1048 * Use intent information to check whether or not we're going to do
1049 * an O_EXCL create using this path component.
1051 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
1053 if (NFS_PROTO(dir
)->version
== 2)
1055 return flags
& LOOKUP_EXCL
;
1059 * Inode and filehandle revalidation for lookups.
1061 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1062 * or if the intent information indicates that we're about to open this
1063 * particular file and the "nocto" mount flag is not set.
1067 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1069 struct nfs_server
*server
= NFS_SERVER(inode
);
1072 if (IS_AUTOMOUNT(inode
))
1074 /* VFS wants an on-the-wire revalidation */
1075 if (flags
& LOOKUP_REVAL
)
1077 /* This is an open(2) */
1078 if ((flags
& LOOKUP_OPEN
) && !(server
->flags
& NFS_MOUNT_NOCTO
) &&
1079 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
1082 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1084 if (flags
& LOOKUP_RCU
)
1086 ret
= __nfs_revalidate_inode(server
, inode
);
1093 * We judge how long we want to trust negative
1094 * dentries by looking at the parent inode mtime.
1096 * If parent mtime has changed, we revalidate, else we wait for a
1097 * period corresponding to the parent's attribute cache timeout value.
1099 * If LOOKUP_RCU prevents us from performing a full check, return 1
1100 * suggesting a reval is needed.
1103 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1106 /* Don't revalidate a negative dentry if we're creating a new file */
1107 if (flags
& LOOKUP_CREATE
)
1109 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1111 return !nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
);
1115 * This is called every time the dcache has a lookup hit,
1116 * and we should check whether we can really trust that
1119 * NOTE! The hit can be a negative hit too, don't assume
1122 * If the parent directory is seen to have changed, we throw out the
1123 * cached dentry and do a new lookup.
1125 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1128 struct inode
*inode
;
1129 struct dentry
*parent
;
1130 struct nfs_fh
*fhandle
= NULL
;
1131 struct nfs_fattr
*fattr
= NULL
;
1132 struct nfs4_label
*label
= NULL
;
1135 if (flags
& LOOKUP_RCU
) {
1136 parent
= ACCESS_ONCE(dentry
->d_parent
);
1137 dir
= d_inode_rcu(parent
);
1141 parent
= dget_parent(dentry
);
1142 dir
= d_inode(parent
);
1144 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1145 inode
= d_inode(dentry
);
1148 if (nfs_neg_need_reval(dir
, dentry
, flags
)) {
1149 if (flags
& LOOKUP_RCU
)
1153 goto out_valid_noent
;
1156 if (is_bad_inode(inode
)) {
1157 if (flags
& LOOKUP_RCU
)
1159 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1164 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1165 goto out_set_verifier
;
1167 /* Force a full look up iff the parent directory has changed */
1168 if (!nfs_is_exclusive_create(dir
, flags
) &&
1169 nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
)) {
1170 error
= nfs_lookup_verify_inode(inode
, flags
);
1172 if (flags
& LOOKUP_RCU
)
1174 if (error
== -ESTALE
)
1175 goto out_zap_parent
;
1181 if (flags
& LOOKUP_RCU
)
1184 if (NFS_STALE(inode
))
1188 fhandle
= nfs_alloc_fhandle();
1189 fattr
= nfs_alloc_fattr();
1190 if (fhandle
== NULL
|| fattr
== NULL
)
1193 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1197 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1198 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1199 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1200 if (error
== -ESTALE
|| error
== -ENOENT
)
1204 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1206 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1209 nfs_setsecurity(inode
, fattr
, label
);
1211 nfs_free_fattr(fattr
);
1212 nfs_free_fhandle(fhandle
);
1213 nfs4_label_free(label
);
1216 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1218 /* Success: notify readdir to use READDIRPLUS */
1219 nfs_advise_use_readdirplus(dir
);
1221 if (flags
& LOOKUP_RCU
) {
1222 if (parent
!= ACCESS_ONCE(dentry
->d_parent
))
1226 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1230 nfs_zap_caches(dir
);
1232 WARN_ON(flags
& LOOKUP_RCU
);
1233 nfs_free_fattr(fattr
);
1234 nfs_free_fhandle(fhandle
);
1235 nfs4_label_free(label
);
1236 nfs_mark_for_revalidate(dir
);
1237 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1238 /* Purge readdir caches. */
1239 nfs_zap_caches(inode
);
1241 * We can't d_drop the root of a disconnected tree:
1242 * its d_hash is on the s_anon list and d_drop() would hide
1243 * it from shrink_dcache_for_unmount(), leading to busy
1244 * inodes on unmount and further oopses.
1246 if (IS_ROOT(dentry
))
1250 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1254 WARN_ON(flags
& LOOKUP_RCU
);
1255 nfs_free_fattr(fattr
);
1256 nfs_free_fhandle(fhandle
);
1257 nfs4_label_free(label
);
1259 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1260 __func__
, dentry
, error
);
1265 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1266 * when we don't really care about the dentry name. This is called when a
1267 * pathwalk ends on a dentry that was not found via a normal lookup in the
1268 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1270 * In this situation, we just want to verify that the inode itself is OK
1271 * since the dentry might have changed on the server.
1273 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1276 struct inode
*inode
= d_inode(dentry
);
1279 * I believe we can only get a negative dentry here in the case of a
1280 * procfs-style symlink. Just assume it's correct for now, but we may
1281 * eventually need to do something more here.
1284 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1289 if (is_bad_inode(inode
)) {
1290 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1295 error
= nfs_lookup_verify_inode(inode
, flags
);
1296 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1297 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1302 * This is called from dput() when d_count is going to 0.
1304 static int nfs_dentry_delete(const struct dentry
*dentry
)
1306 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1307 dentry
, dentry
->d_flags
);
1309 /* Unhash any dentry with a stale inode */
1310 if (d_really_is_positive(dentry
) && NFS_STALE(d_inode(dentry
)))
1313 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1314 /* Unhash it, so that ->d_iput() would be called */
1317 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
1318 /* Unhash it, so that ancestors of killed async unlink
1319 * files will be cleaned up during umount */
1326 /* Ensure that we revalidate inode->i_nlink */
1327 static void nfs_drop_nlink(struct inode
*inode
)
1329 spin_lock(&inode
->i_lock
);
1330 /* drop the inode if we're reasonably sure this is the last link */
1331 if (inode
->i_nlink
== 1)
1333 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATTR
;
1334 spin_unlock(&inode
->i_lock
);
1338 * Called when the dentry loses inode.
1339 * We use it to clean up silly-renamed files.
1341 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1343 if (S_ISDIR(inode
->i_mode
))
1344 /* drop any readdir cache as it could easily be old */
1345 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1347 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1348 nfs_complete_unlink(dentry
, inode
);
1349 nfs_drop_nlink(inode
);
1354 static void nfs_d_release(struct dentry
*dentry
)
1356 /* free cached devname value, if it survived that far */
1357 if (unlikely(dentry
->d_fsdata
)) {
1358 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1361 kfree(dentry
->d_fsdata
);
1365 const struct dentry_operations nfs_dentry_operations
= {
1366 .d_revalidate
= nfs_lookup_revalidate
,
1367 .d_weak_revalidate
= nfs_weak_revalidate
,
1368 .d_delete
= nfs_dentry_delete
,
1369 .d_iput
= nfs_dentry_iput
,
1370 .d_automount
= nfs_d_automount
,
1371 .d_release
= nfs_d_release
,
1373 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1375 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1378 struct inode
*inode
= NULL
;
1379 struct nfs_fh
*fhandle
= NULL
;
1380 struct nfs_fattr
*fattr
= NULL
;
1381 struct nfs4_label
*label
= NULL
;
1384 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1385 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1387 if (unlikely(dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
))
1388 return ERR_PTR(-ENAMETOOLONG
);
1391 * If we're doing an exclusive create, optimize away the lookup
1392 * but don't hash the dentry.
1394 if (nfs_is_exclusive_create(dir
, flags
))
1397 res
= ERR_PTR(-ENOMEM
);
1398 fhandle
= nfs_alloc_fhandle();
1399 fattr
= nfs_alloc_fattr();
1400 if (fhandle
== NULL
|| fattr
== NULL
)
1403 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1407 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1408 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1409 if (error
== -ENOENT
)
1412 res
= ERR_PTR(error
);
1415 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1416 res
= ERR_CAST(inode
);
1420 /* Success: notify readdir to use READDIRPLUS */
1421 nfs_advise_use_readdirplus(dir
);
1424 res
= d_splice_alias(inode
, dentry
);
1430 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1432 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1433 nfs4_label_free(label
);
1435 nfs_free_fattr(fattr
);
1436 nfs_free_fhandle(fhandle
);
1439 EXPORT_SYMBOL_GPL(nfs_lookup
);
1441 #if IS_ENABLED(CONFIG_NFS_V4)
1442 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1444 const struct dentry_operations nfs4_dentry_operations
= {
1445 .d_revalidate
= nfs4_lookup_revalidate
,
1446 .d_weak_revalidate
= nfs_weak_revalidate
,
1447 .d_delete
= nfs_dentry_delete
,
1448 .d_iput
= nfs_dentry_iput
,
1449 .d_automount
= nfs_d_automount
,
1450 .d_release
= nfs_d_release
,
1452 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1454 static fmode_t
flags_to_mode(int flags
)
1456 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1457 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1459 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1464 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
)
1466 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
));
1469 static int do_open(struct inode
*inode
, struct file
*filp
)
1471 nfs_fscache_open_file(inode
, filp
);
1475 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1476 struct dentry
*dentry
,
1477 struct file
*file
, unsigned open_flags
,
1482 err
= finish_open(file
, dentry
, do_open
, opened
);
1485 nfs_file_set_open_context(file
, ctx
);
1491 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1492 struct file
*file
, unsigned open_flags
,
1493 umode_t mode
, int *opened
)
1495 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1496 struct nfs_open_context
*ctx
;
1498 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1499 struct inode
*inode
;
1500 unsigned int lookup_flags
= 0;
1501 bool switched
= false;
1504 /* Expect a negative dentry */
1505 BUG_ON(d_inode(dentry
));
1507 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1508 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1510 err
= nfs_check_flags(open_flags
);
1514 /* NFS only supports OPEN on regular files */
1515 if ((open_flags
& O_DIRECTORY
)) {
1516 if (!d_in_lookup(dentry
)) {
1518 * Hashed negative dentry with O_DIRECTORY: dentry was
1519 * revalidated and is fine, no need to perform lookup
1524 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1528 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1529 return -ENAMETOOLONG
;
1531 if (open_flags
& O_CREAT
) {
1532 attr
.ia_valid
|= ATTR_MODE
;
1533 attr
.ia_mode
= mode
& ~current_umask();
1535 if (open_flags
& O_TRUNC
) {
1536 attr
.ia_valid
|= ATTR_SIZE
;
1540 if (!(open_flags
& O_CREAT
) && !d_in_lookup(dentry
)) {
1543 dentry
= d_alloc_parallel(dentry
->d_parent
,
1544 &dentry
->d_name
, &wq
);
1546 return PTR_ERR(dentry
);
1547 if (unlikely(!d_in_lookup(dentry
)))
1548 return finish_no_open(file
, dentry
);
1551 ctx
= create_nfs_open_context(dentry
, open_flags
);
1556 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1557 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1558 if (IS_ERR(inode
)) {
1559 err
= PTR_ERR(inode
);
1560 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1561 put_nfs_open_context(ctx
);
1565 d_add(dentry
, NULL
);
1566 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1572 if (!(open_flags
& O_NOFOLLOW
))
1582 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1583 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1584 put_nfs_open_context(ctx
);
1586 if (unlikely(switched
)) {
1587 d_lookup_done(dentry
);
1593 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1595 d_lookup_done(dentry
);
1602 return PTR_ERR(res
);
1603 return finish_no_open(file
, res
);
1605 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1607 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1609 struct inode
*inode
;
1612 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1614 if (d_mountpoint(dentry
))
1616 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1619 inode
= d_inode(dentry
);
1621 /* We can't create new files in nfs_open_revalidate(), so we
1622 * optimize away revalidation of negative dentries.
1624 if (inode
== NULL
) {
1625 struct dentry
*parent
;
1628 if (flags
& LOOKUP_RCU
) {
1629 parent
= ACCESS_ONCE(dentry
->d_parent
);
1630 dir
= d_inode_rcu(parent
);
1634 parent
= dget_parent(dentry
);
1635 dir
= d_inode(parent
);
1637 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1639 else if (flags
& LOOKUP_RCU
)
1641 if (!(flags
& LOOKUP_RCU
))
1643 else if (parent
!= ACCESS_ONCE(dentry
->d_parent
))
1648 /* NFS only supports OPEN on regular files */
1649 if (!S_ISREG(inode
->i_mode
))
1651 /* We cannot do exclusive creation on a positive dentry */
1652 if (flags
& LOOKUP_EXCL
)
1655 /* Let f_op->open() actually open (and revalidate) the file */
1662 return nfs_lookup_revalidate(dentry
, flags
);
1665 #endif /* CONFIG_NFSV4 */
1668 * Code common to create, mkdir, and mknod.
1670 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1671 struct nfs_fattr
*fattr
,
1672 struct nfs4_label
*label
)
1674 struct dentry
*parent
= dget_parent(dentry
);
1675 struct inode
*dir
= d_inode(parent
);
1676 struct inode
*inode
;
1677 int error
= -EACCES
;
1681 /* We may have been initialized further down */
1682 if (d_really_is_positive(dentry
))
1684 if (fhandle
->size
== 0) {
1685 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1689 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1690 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1691 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1692 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
, NULL
);
1696 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1697 error
= PTR_ERR(inode
);
1700 d_add(dentry
, inode
);
1705 nfs_mark_for_revalidate(dir
);
1709 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1712 * Following a failed create operation, we drop the dentry rather
1713 * than retain a negative dentry. This avoids a problem in the event
1714 * that the operation succeeded on the server, but an error in the
1715 * reply path made it appear to have failed.
1717 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1718 umode_t mode
, bool excl
)
1721 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1724 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1725 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1727 attr
.ia_mode
= mode
;
1728 attr
.ia_valid
= ATTR_MODE
;
1730 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1731 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1732 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1740 EXPORT_SYMBOL_GPL(nfs_create
);
1743 * See comments for nfs_proc_create regarding failed operations.
1746 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1751 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1752 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1754 attr
.ia_mode
= mode
;
1755 attr
.ia_valid
= ATTR_MODE
;
1757 trace_nfs_mknod_enter(dir
, dentry
);
1758 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1759 trace_nfs_mknod_exit(dir
, dentry
, status
);
1767 EXPORT_SYMBOL_GPL(nfs_mknod
);
1770 * See comments for nfs_proc_create regarding failed operations.
1772 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1777 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1778 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1780 attr
.ia_valid
= ATTR_MODE
;
1781 attr
.ia_mode
= mode
| S_IFDIR
;
1783 trace_nfs_mkdir_enter(dir
, dentry
);
1784 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1785 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1793 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1795 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1797 if (simple_positive(dentry
))
1801 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1805 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1806 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1808 trace_nfs_rmdir_enter(dir
, dentry
);
1809 if (d_really_is_positive(dentry
)) {
1810 down_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1811 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1812 /* Ensure the VFS deletes this inode */
1815 clear_nlink(d_inode(dentry
));
1818 nfs_dentry_handle_enoent(dentry
);
1820 up_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1822 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1823 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1827 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1830 * Remove a file after making sure there are no pending writes,
1831 * and after checking that the file has only one user.
1833 * We invalidate the attribute cache and free the inode prior to the operation
1834 * to avoid possible races if the server reuses the inode.
1836 static int nfs_safe_remove(struct dentry
*dentry
)
1838 struct inode
*dir
= d_inode(dentry
->d_parent
);
1839 struct inode
*inode
= d_inode(dentry
);
1842 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1844 /* If the dentry was sillyrenamed, we simply call d_delete() */
1845 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1850 trace_nfs_remove_enter(dir
, dentry
);
1851 if (inode
!= NULL
) {
1852 NFS_PROTO(inode
)->return_delegation(inode
);
1853 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1855 nfs_drop_nlink(inode
);
1857 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1858 if (error
== -ENOENT
)
1859 nfs_dentry_handle_enoent(dentry
);
1860 trace_nfs_remove_exit(dir
, dentry
, error
);
1865 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1866 * belongs to an active ".nfs..." file and we return -EBUSY.
1868 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1870 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1873 int need_rehash
= 0;
1875 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1876 dir
->i_ino
, dentry
);
1878 trace_nfs_unlink_enter(dir
, dentry
);
1879 spin_lock(&dentry
->d_lock
);
1880 if (d_count(dentry
) > 1) {
1881 spin_unlock(&dentry
->d_lock
);
1882 /* Start asynchronous writeout of the inode */
1883 write_inode_now(d_inode(dentry
), 0);
1884 error
= nfs_sillyrename(dir
, dentry
);
1887 if (!d_unhashed(dentry
)) {
1891 spin_unlock(&dentry
->d_lock
);
1892 error
= nfs_safe_remove(dentry
);
1893 if (!error
|| error
== -ENOENT
) {
1894 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1895 } else if (need_rehash
)
1898 trace_nfs_unlink_exit(dir
, dentry
, error
);
1901 EXPORT_SYMBOL_GPL(nfs_unlink
);
1904 * To create a symbolic link, most file systems instantiate a new inode,
1905 * add a page to it containing the path, then write it out to the disk
1906 * using prepare_write/commit_write.
1908 * Unfortunately the NFS client can't create the in-core inode first
1909 * because it needs a file handle to create an in-core inode (see
1910 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1911 * symlink request has completed on the server.
1913 * So instead we allocate a raw page, copy the symname into it, then do
1914 * the SYMLINK request with the page as the buffer. If it succeeds, we
1915 * now have a new file handle and can instantiate an in-core NFS inode
1916 * and move the raw page into its mapping.
1918 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1923 unsigned int pathlen
= strlen(symname
);
1926 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1927 dir
->i_ino
, dentry
, symname
);
1929 if (pathlen
> PAGE_SIZE
)
1930 return -ENAMETOOLONG
;
1932 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1933 attr
.ia_valid
= ATTR_MODE
;
1935 page
= alloc_page(GFP_USER
);
1939 kaddr
= page_address(page
);
1940 memcpy(kaddr
, symname
, pathlen
);
1941 if (pathlen
< PAGE_SIZE
)
1942 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1944 trace_nfs_symlink_enter(dir
, dentry
);
1945 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1946 trace_nfs_symlink_exit(dir
, dentry
, error
);
1948 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1949 dir
->i_sb
->s_id
, dir
->i_ino
,
1950 dentry
, symname
, error
);
1957 * No big deal if we can't add this page to the page cache here.
1958 * READLINK will get the missing page from the server if needed.
1960 if (!add_to_page_cache_lru(page
, d_inode(dentry
)->i_mapping
, 0,
1962 SetPageUptodate(page
);
1965 * add_to_page_cache_lru() grabs an extra page refcount.
1966 * Drop it here to avoid leaking this page later.
1974 EXPORT_SYMBOL_GPL(nfs_symlink
);
1977 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1979 struct inode
*inode
= d_inode(old_dentry
);
1982 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1983 old_dentry
, dentry
);
1985 trace_nfs_link_enter(inode
, dir
, dentry
);
1986 NFS_PROTO(inode
)->return_delegation(inode
);
1989 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1992 d_add(dentry
, inode
);
1994 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1997 EXPORT_SYMBOL_GPL(nfs_link
);
2001 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2002 * different file handle for the same inode after a rename (e.g. when
2003 * moving to a different directory). A fail-safe method to do so would
2004 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2005 * rename the old file using the sillyrename stuff. This way, the original
2006 * file in old_dir will go away when the last process iput()s the inode.
2010 * It actually works quite well. One needs to have the possibility for
2011 * at least one ".nfs..." file in each directory the file ever gets
2012 * moved or linked to which happens automagically with the new
2013 * implementation that only depends on the dcache stuff instead of
2014 * using the inode layer
2016 * Unfortunately, things are a little more complicated than indicated
2017 * above. For a cross-directory move, we want to make sure we can get
2018 * rid of the old inode after the operation. This means there must be
2019 * no pending writes (if it's a file), and the use count must be 1.
2020 * If these conditions are met, we can drop the dentries before doing
2023 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2024 struct inode
*new_dir
, struct dentry
*new_dentry
,
2027 struct inode
*old_inode
= d_inode(old_dentry
);
2028 struct inode
*new_inode
= d_inode(new_dentry
);
2029 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
2030 struct rpc_task
*task
;
2036 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2037 old_dentry
, new_dentry
,
2038 d_count(new_dentry
));
2040 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
2042 * For non-directories, check whether the target is busy and if so,
2043 * make a copy of the dentry and then do a silly-rename. If the
2044 * silly-rename succeeds, the copied dentry is hashed and becomes
2047 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
2049 * To prevent any new references to the target during the
2050 * rename, we unhash the dentry in advance.
2052 if (!d_unhashed(new_dentry
)) {
2054 rehash
= new_dentry
;
2057 if (d_count(new_dentry
) > 2) {
2060 /* copy the target dentry's name */
2061 dentry
= d_alloc(new_dentry
->d_parent
,
2062 &new_dentry
->d_name
);
2066 /* silly-rename the existing target ... */
2067 err
= nfs_sillyrename(new_dir
, new_dentry
);
2071 new_dentry
= dentry
;
2077 NFS_PROTO(old_inode
)->return_delegation(old_inode
);
2078 if (new_inode
!= NULL
)
2079 NFS_PROTO(new_inode
)->return_delegation(new_inode
);
2081 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
2083 error
= PTR_ERR(task
);
2087 error
= rpc_wait_for_completion_task(task
);
2089 error
= task
->tk_status
;
2091 nfs_mark_for_revalidate(old_inode
);
2095 trace_nfs_rename_exit(old_dir
, old_dentry
,
2096 new_dir
, new_dentry
, error
);
2098 if (new_inode
!= NULL
)
2099 nfs_drop_nlink(new_inode
);
2100 d_move(old_dentry
, new_dentry
);
2101 nfs_set_verifier(old_dentry
,
2102 nfs_save_change_attribute(new_dir
));
2103 } else if (error
== -ENOENT
)
2104 nfs_dentry_handle_enoent(old_dentry
);
2106 /* new dentry created? */
2111 EXPORT_SYMBOL_GPL(nfs_rename
);
2113 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2114 static LIST_HEAD(nfs_access_lru_list
);
2115 static atomic_long_t nfs_access_nr_entries
;
2117 static unsigned long nfs_access_max_cachesize
= ULONG_MAX
;
2118 module_param(nfs_access_max_cachesize
, ulong
, 0644);
2119 MODULE_PARM_DESC(nfs_access_max_cachesize
, "NFS access maximum total cache length");
2121 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2123 put_rpccred(entry
->cred
);
2124 kfree_rcu(entry
, rcu_head
);
2125 smp_mb__before_atomic();
2126 atomic_long_dec(&nfs_access_nr_entries
);
2127 smp_mb__after_atomic();
2130 static void nfs_access_free_list(struct list_head
*head
)
2132 struct nfs_access_entry
*cache
;
2134 while (!list_empty(head
)) {
2135 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2136 list_del(&cache
->lru
);
2137 nfs_access_free_entry(cache
);
2141 static unsigned long
2142 nfs_do_access_cache_scan(unsigned int nr_to_scan
)
2145 struct nfs_inode
*nfsi
, *next
;
2146 struct nfs_access_entry
*cache
;
2149 spin_lock(&nfs_access_lru_lock
);
2150 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2151 struct inode
*inode
;
2153 if (nr_to_scan
-- == 0)
2155 inode
= &nfsi
->vfs_inode
;
2156 spin_lock(&inode
->i_lock
);
2157 if (list_empty(&nfsi
->access_cache_entry_lru
))
2158 goto remove_lru_entry
;
2159 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2160 struct nfs_access_entry
, lru
);
2161 list_move(&cache
->lru
, &head
);
2162 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2164 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2165 list_move_tail(&nfsi
->access_cache_inode_lru
,
2166 &nfs_access_lru_list
);
2169 list_del_init(&nfsi
->access_cache_inode_lru
);
2170 smp_mb__before_atomic();
2171 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2172 smp_mb__after_atomic();
2174 spin_unlock(&inode
->i_lock
);
2176 spin_unlock(&nfs_access_lru_lock
);
2177 nfs_access_free_list(&head
);
2182 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2184 int nr_to_scan
= sc
->nr_to_scan
;
2185 gfp_t gfp_mask
= sc
->gfp_mask
;
2187 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2189 return nfs_do_access_cache_scan(nr_to_scan
);
2194 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2196 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2200 nfs_access_cache_enforce_limit(void)
2202 long nr_entries
= atomic_long_read(&nfs_access_nr_entries
);
2204 unsigned int nr_to_scan
;
2206 if (nr_entries
< 0 || nr_entries
<= nfs_access_max_cachesize
)
2209 diff
= nr_entries
- nfs_access_max_cachesize
;
2210 if (diff
< nr_to_scan
)
2212 nfs_do_access_cache_scan(nr_to_scan
);
2215 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2217 struct rb_root
*root_node
= &nfsi
->access_cache
;
2219 struct nfs_access_entry
*entry
;
2221 /* Unhook entries from the cache */
2222 while ((n
= rb_first(root_node
)) != NULL
) {
2223 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2224 rb_erase(n
, root_node
);
2225 list_move(&entry
->lru
, head
);
2227 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2230 void nfs_access_zap_cache(struct inode
*inode
)
2234 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2236 /* Remove from global LRU init */
2237 spin_lock(&nfs_access_lru_lock
);
2238 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2239 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2241 spin_lock(&inode
->i_lock
);
2242 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2243 spin_unlock(&inode
->i_lock
);
2244 spin_unlock(&nfs_access_lru_lock
);
2245 nfs_access_free_list(&head
);
2247 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2249 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2251 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2252 struct nfs_access_entry
*entry
;
2255 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2257 if (cred
< entry
->cred
)
2259 else if (cred
> entry
->cred
)
2267 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
, bool may_block
)
2269 struct nfs_inode
*nfsi
= NFS_I(inode
);
2270 struct nfs_access_entry
*cache
;
2274 spin_lock(&inode
->i_lock
);
2276 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2278 cache
= nfs_access_search_rbtree(inode
, cred
);
2282 /* Found an entry, is our attribute cache valid? */
2283 if (!nfs_attribute_cache_expired(inode
) &&
2284 !(nfsi
->cache_validity
& NFS_INO_INVALID_ATTR
))
2291 spin_unlock(&inode
->i_lock
);
2292 err
= __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2295 spin_lock(&inode
->i_lock
);
2298 res
->jiffies
= cache
->jiffies
;
2299 res
->cred
= cache
->cred
;
2300 res
->mask
= cache
->mask
;
2301 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2304 spin_unlock(&inode
->i_lock
);
2307 spin_unlock(&inode
->i_lock
);
2308 nfs_access_zap_cache(inode
);
2312 static int nfs_access_get_cached_rcu(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2314 /* Only check the most recently returned cache entry,
2315 * but do it without locking.
2317 struct nfs_inode
*nfsi
= NFS_I(inode
);
2318 struct nfs_access_entry
*cache
;
2320 struct list_head
*lh
;
2323 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2325 lh
= rcu_dereference(nfsi
->access_cache_entry_lru
.prev
);
2326 cache
= list_entry(lh
, struct nfs_access_entry
, lru
);
2327 if (lh
== &nfsi
->access_cache_entry_lru
||
2328 cred
!= cache
->cred
)
2332 err
= nfs_revalidate_inode_rcu(NFS_SERVER(inode
), inode
);
2335 res
->jiffies
= cache
->jiffies
;
2336 res
->cred
= cache
->cred
;
2337 res
->mask
= cache
->mask
;
2343 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2345 struct nfs_inode
*nfsi
= NFS_I(inode
);
2346 struct rb_root
*root_node
= &nfsi
->access_cache
;
2347 struct rb_node
**p
= &root_node
->rb_node
;
2348 struct rb_node
*parent
= NULL
;
2349 struct nfs_access_entry
*entry
;
2351 spin_lock(&inode
->i_lock
);
2352 while (*p
!= NULL
) {
2354 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2356 if (set
->cred
< entry
->cred
)
2357 p
= &parent
->rb_left
;
2358 else if (set
->cred
> entry
->cred
)
2359 p
= &parent
->rb_right
;
2363 rb_link_node(&set
->rb_node
, parent
, p
);
2364 rb_insert_color(&set
->rb_node
, root_node
);
2365 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2366 spin_unlock(&inode
->i_lock
);
2369 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2370 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2371 list_del(&entry
->lru
);
2372 spin_unlock(&inode
->i_lock
);
2373 nfs_access_free_entry(entry
);
2376 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2378 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2381 RB_CLEAR_NODE(&cache
->rb_node
);
2382 cache
->jiffies
= set
->jiffies
;
2383 cache
->cred
= get_rpccred(set
->cred
);
2384 cache
->mask
= set
->mask
;
2386 /* The above field assignments must be visible
2387 * before this item appears on the lru. We cannot easily
2388 * use rcu_assign_pointer, so just force the memory barrier.
2391 nfs_access_add_rbtree(inode
, cache
);
2393 /* Update accounting */
2394 smp_mb__before_atomic();
2395 atomic_long_inc(&nfs_access_nr_entries
);
2396 smp_mb__after_atomic();
2398 /* Add inode to global LRU list */
2399 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2400 spin_lock(&nfs_access_lru_lock
);
2401 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2402 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2403 &nfs_access_lru_list
);
2404 spin_unlock(&nfs_access_lru_lock
);
2406 nfs_access_cache_enforce_limit();
2408 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2410 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2413 if (access_result
& NFS4_ACCESS_READ
)
2414 entry
->mask
|= MAY_READ
;
2416 (NFS4_ACCESS_MODIFY
| NFS4_ACCESS_EXTEND
| NFS4_ACCESS_DELETE
))
2417 entry
->mask
|= MAY_WRITE
;
2418 if (access_result
& (NFS4_ACCESS_LOOKUP
|NFS4_ACCESS_EXECUTE
))
2419 entry
->mask
|= MAY_EXEC
;
2421 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2423 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2425 struct nfs_access_entry cache
;
2426 bool may_block
= (mask
& MAY_NOT_BLOCK
) == 0;
2429 trace_nfs_access_enter(inode
);
2431 status
= nfs_access_get_cached_rcu(inode
, cred
, &cache
);
2433 status
= nfs_access_get_cached(inode
, cred
, &cache
, may_block
);
2441 /* Be clever: ask server to check for all possible rights */
2442 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
2444 cache
.jiffies
= jiffies
;
2445 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2447 if (status
== -ESTALE
) {
2448 nfs_zap_caches(inode
);
2449 if (!S_ISDIR(inode
->i_mode
))
2450 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2454 nfs_access_add_cache(inode
, &cache
);
2456 if ((mask
& ~cache
.mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2459 trace_nfs_access_exit(inode
, status
);
2463 static int nfs_open_permission_mask(int openflags
)
2467 if (openflags
& __FMODE_EXEC
) {
2468 /* ONLY check exec rights */
2471 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2473 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2480 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2482 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2484 EXPORT_SYMBOL_GPL(nfs_may_open
);
2486 static int nfs_execute_ok(struct inode
*inode
, int mask
)
2488 struct nfs_server
*server
= NFS_SERVER(inode
);
2491 if (mask
& MAY_NOT_BLOCK
)
2492 ret
= nfs_revalidate_inode_rcu(server
, inode
);
2494 ret
= nfs_revalidate_inode(server
, inode
);
2495 if (ret
== 0 && !execute_ok(inode
))
2500 int nfs_permission(struct inode
*inode
, int mask
)
2502 struct rpc_cred
*cred
;
2505 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2507 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2509 /* Is this sys_access() ? */
2510 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2513 switch (inode
->i_mode
& S_IFMT
) {
2517 if ((mask
& MAY_OPEN
) &&
2518 nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
))
2523 * Optimize away all write operations, since the server
2524 * will check permissions when we perform the op.
2526 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2531 if (!NFS_PROTO(inode
)->access
)
2534 /* Always try fast lookups first */
2536 cred
= rpc_lookup_cred_nonblock();
2538 res
= nfs_do_access(inode
, cred
, mask
|MAY_NOT_BLOCK
);
2540 res
= PTR_ERR(cred
);
2542 if (res
== -ECHILD
&& !(mask
& MAY_NOT_BLOCK
)) {
2543 /* Fast lookup failed, try the slow way */
2544 cred
= rpc_lookup_cred();
2545 if (!IS_ERR(cred
)) {
2546 res
= nfs_do_access(inode
, cred
, mask
);
2549 res
= PTR_ERR(cred
);
2552 if (!res
&& (mask
& MAY_EXEC
))
2553 res
= nfs_execute_ok(inode
, mask
);
2555 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2556 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2559 if (mask
& MAY_NOT_BLOCK
)
2562 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2564 res
= generic_permission(inode
, mask
);
2567 EXPORT_SYMBOL_GPL(nfs_permission
);
2571 * version-control: t
2572 * kept-new-versions: 5