Linux 4.9.199
[linux/fpc-iii.git] / include / rdma / ib_verbs.h
blob0638b8aeba34d6f85de7dce192e5506f1e176447
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <asm/uaccess.h>
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66 extern struct workqueue_struct *ib_comp_unbound_wq;
68 union ib_gid {
69 u8 raw[16];
70 struct {
71 __be64 subnet_prefix;
72 __be64 interface_id;
73 } global;
76 extern union ib_gid zgid;
78 enum ib_gid_type {
79 /* If link layer is Ethernet, this is RoCE V1 */
80 IB_GID_TYPE_IB = 0,
81 IB_GID_TYPE_ROCE = 0,
82 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
83 IB_GID_TYPE_SIZE
86 #define ROCE_V2_UDP_DPORT 4791
87 struct ib_gid_attr {
88 enum ib_gid_type gid_type;
89 struct net_device *ndev;
92 enum rdma_node_type {
93 /* IB values map to NodeInfo:NodeType. */
94 RDMA_NODE_IB_CA = 1,
95 RDMA_NODE_IB_SWITCH,
96 RDMA_NODE_IB_ROUTER,
97 RDMA_NODE_RNIC,
98 RDMA_NODE_USNIC,
99 RDMA_NODE_USNIC_UDP,
102 enum {
103 /* set the local administered indication */
104 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
107 enum rdma_transport_type {
108 RDMA_TRANSPORT_IB,
109 RDMA_TRANSPORT_IWARP,
110 RDMA_TRANSPORT_USNIC,
111 RDMA_TRANSPORT_USNIC_UDP
114 enum rdma_protocol_type {
115 RDMA_PROTOCOL_IB,
116 RDMA_PROTOCOL_IBOE,
117 RDMA_PROTOCOL_IWARP,
118 RDMA_PROTOCOL_USNIC_UDP
121 __attribute_const__ enum rdma_transport_type
122 rdma_node_get_transport(enum rdma_node_type node_type);
124 enum rdma_network_type {
125 RDMA_NETWORK_IB,
126 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
127 RDMA_NETWORK_IPV4,
128 RDMA_NETWORK_IPV6
131 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
133 if (network_type == RDMA_NETWORK_IPV4 ||
134 network_type == RDMA_NETWORK_IPV6)
135 return IB_GID_TYPE_ROCE_UDP_ENCAP;
137 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
138 return IB_GID_TYPE_IB;
141 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
142 union ib_gid *gid)
144 if (gid_type == IB_GID_TYPE_IB)
145 return RDMA_NETWORK_IB;
147 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
148 return RDMA_NETWORK_IPV4;
149 else
150 return RDMA_NETWORK_IPV6;
153 enum rdma_link_layer {
154 IB_LINK_LAYER_UNSPECIFIED,
155 IB_LINK_LAYER_INFINIBAND,
156 IB_LINK_LAYER_ETHERNET,
159 enum ib_device_cap_flags {
160 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
161 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
162 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
163 IB_DEVICE_RAW_MULTI = (1 << 3),
164 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
165 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
166 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
167 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
168 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
169 IB_DEVICE_INIT_TYPE = (1 << 9),
170 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
171 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
172 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
173 IB_DEVICE_SRQ_RESIZE = (1 << 13),
174 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
177 * This device supports a per-device lkey or stag that can be
178 * used without performing a memory registration for the local
179 * memory. Note that ULPs should never check this flag, but
180 * instead of use the local_dma_lkey flag in the ib_pd structure,
181 * which will always contain a usable lkey.
183 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
184 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
185 IB_DEVICE_MEM_WINDOW = (1 << 17),
187 * Devices should set IB_DEVICE_UD_IP_SUM if they support
188 * insertion of UDP and TCP checksum on outgoing UD IPoIB
189 * messages and can verify the validity of checksum for
190 * incoming messages. Setting this flag implies that the
191 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
193 IB_DEVICE_UD_IP_CSUM = (1 << 18),
194 IB_DEVICE_UD_TSO = (1 << 19),
195 IB_DEVICE_XRC = (1 << 20),
198 * This device supports the IB "base memory management extension",
199 * which includes support for fast registrations (IB_WR_REG_MR,
200 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
201 * also be set by any iWarp device which must support FRs to comply
202 * to the iWarp verbs spec. iWarp devices also support the
203 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
204 * stag.
206 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
207 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
208 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
209 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
210 IB_DEVICE_RC_IP_CSUM = (1 << 25),
211 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
213 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
214 * support execution of WQEs that involve synchronization
215 * of I/O operations with single completion queue managed
216 * by hardware.
218 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
219 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
220 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
221 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
222 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
223 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
224 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
227 enum ib_signature_prot_cap {
228 IB_PROT_T10DIF_TYPE_1 = 1,
229 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
230 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
233 enum ib_signature_guard_cap {
234 IB_GUARD_T10DIF_CRC = 1,
235 IB_GUARD_T10DIF_CSUM = 1 << 1,
238 enum ib_atomic_cap {
239 IB_ATOMIC_NONE,
240 IB_ATOMIC_HCA,
241 IB_ATOMIC_GLOB
244 enum ib_odp_general_cap_bits {
245 IB_ODP_SUPPORT = 1 << 0,
248 enum ib_odp_transport_cap_bits {
249 IB_ODP_SUPPORT_SEND = 1 << 0,
250 IB_ODP_SUPPORT_RECV = 1 << 1,
251 IB_ODP_SUPPORT_WRITE = 1 << 2,
252 IB_ODP_SUPPORT_READ = 1 << 3,
253 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
256 struct ib_odp_caps {
257 uint64_t general_caps;
258 struct {
259 uint32_t rc_odp_caps;
260 uint32_t uc_odp_caps;
261 uint32_t ud_odp_caps;
262 } per_transport_caps;
265 struct ib_rss_caps {
266 /* Corresponding bit will be set if qp type from
267 * 'enum ib_qp_type' is supported, e.g.
268 * supported_qpts |= 1 << IB_QPT_UD
270 u32 supported_qpts;
271 u32 max_rwq_indirection_tables;
272 u32 max_rwq_indirection_table_size;
275 enum ib_cq_creation_flags {
276 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
277 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
280 struct ib_cq_init_attr {
281 unsigned int cqe;
282 int comp_vector;
283 u32 flags;
286 struct ib_device_attr {
287 u64 fw_ver;
288 __be64 sys_image_guid;
289 u64 max_mr_size;
290 u64 page_size_cap;
291 u32 vendor_id;
292 u32 vendor_part_id;
293 u32 hw_ver;
294 int max_qp;
295 int max_qp_wr;
296 u64 device_cap_flags;
297 int max_sge;
298 int max_sge_rd;
299 int max_cq;
300 int max_cqe;
301 int max_mr;
302 int max_pd;
303 int max_qp_rd_atom;
304 int max_ee_rd_atom;
305 int max_res_rd_atom;
306 int max_qp_init_rd_atom;
307 int max_ee_init_rd_atom;
308 enum ib_atomic_cap atomic_cap;
309 enum ib_atomic_cap masked_atomic_cap;
310 int max_ee;
311 int max_rdd;
312 int max_mw;
313 int max_raw_ipv6_qp;
314 int max_raw_ethy_qp;
315 int max_mcast_grp;
316 int max_mcast_qp_attach;
317 int max_total_mcast_qp_attach;
318 int max_ah;
319 int max_fmr;
320 int max_map_per_fmr;
321 int max_srq;
322 int max_srq_wr;
323 int max_srq_sge;
324 unsigned int max_fast_reg_page_list_len;
325 u16 max_pkeys;
326 u8 local_ca_ack_delay;
327 int sig_prot_cap;
328 int sig_guard_cap;
329 struct ib_odp_caps odp_caps;
330 uint64_t timestamp_mask;
331 uint64_t hca_core_clock; /* in KHZ */
332 struct ib_rss_caps rss_caps;
333 u32 max_wq_type_rq;
336 enum ib_mtu {
337 IB_MTU_256 = 1,
338 IB_MTU_512 = 2,
339 IB_MTU_1024 = 3,
340 IB_MTU_2048 = 4,
341 IB_MTU_4096 = 5
344 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
346 switch (mtu) {
347 case IB_MTU_256: return 256;
348 case IB_MTU_512: return 512;
349 case IB_MTU_1024: return 1024;
350 case IB_MTU_2048: return 2048;
351 case IB_MTU_4096: return 4096;
352 default: return -1;
356 enum ib_port_state {
357 IB_PORT_NOP = 0,
358 IB_PORT_DOWN = 1,
359 IB_PORT_INIT = 2,
360 IB_PORT_ARMED = 3,
361 IB_PORT_ACTIVE = 4,
362 IB_PORT_ACTIVE_DEFER = 5
365 enum ib_port_cap_flags {
366 IB_PORT_SM = 1 << 1,
367 IB_PORT_NOTICE_SUP = 1 << 2,
368 IB_PORT_TRAP_SUP = 1 << 3,
369 IB_PORT_OPT_IPD_SUP = 1 << 4,
370 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
371 IB_PORT_SL_MAP_SUP = 1 << 6,
372 IB_PORT_MKEY_NVRAM = 1 << 7,
373 IB_PORT_PKEY_NVRAM = 1 << 8,
374 IB_PORT_LED_INFO_SUP = 1 << 9,
375 IB_PORT_SM_DISABLED = 1 << 10,
376 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
377 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
378 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
379 IB_PORT_CM_SUP = 1 << 16,
380 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
381 IB_PORT_REINIT_SUP = 1 << 18,
382 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
383 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
384 IB_PORT_DR_NOTICE_SUP = 1 << 21,
385 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
386 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
387 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
388 IB_PORT_CLIENT_REG_SUP = 1 << 25,
389 IB_PORT_IP_BASED_GIDS = 1 << 26,
392 enum ib_port_width {
393 IB_WIDTH_1X = 1,
394 IB_WIDTH_4X = 2,
395 IB_WIDTH_8X = 4,
396 IB_WIDTH_12X = 8
399 static inline int ib_width_enum_to_int(enum ib_port_width width)
401 switch (width) {
402 case IB_WIDTH_1X: return 1;
403 case IB_WIDTH_4X: return 4;
404 case IB_WIDTH_8X: return 8;
405 case IB_WIDTH_12X: return 12;
406 default: return -1;
410 enum ib_port_speed {
411 IB_SPEED_SDR = 1,
412 IB_SPEED_DDR = 2,
413 IB_SPEED_QDR = 4,
414 IB_SPEED_FDR10 = 8,
415 IB_SPEED_FDR = 16,
416 IB_SPEED_EDR = 32
420 * struct rdma_hw_stats
421 * @timestamp - Used by the core code to track when the last update was
422 * @lifespan - Used by the core code to determine how old the counters
423 * should be before being updated again. Stored in jiffies, defaults
424 * to 10 milliseconds, drivers can override the default be specifying
425 * their own value during their allocation routine.
426 * @name - Array of pointers to static names used for the counters in
427 * directory.
428 * @num_counters - How many hardware counters there are. If name is
429 * shorter than this number, a kernel oops will result. Driver authors
430 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
431 * in their code to prevent this.
432 * @value - Array of u64 counters that are accessed by the sysfs code and
433 * filled in by the drivers get_stats routine
435 struct rdma_hw_stats {
436 unsigned long timestamp;
437 unsigned long lifespan;
438 const char * const *names;
439 int num_counters;
440 u64 value[];
443 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
445 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
446 * for drivers.
447 * @names - Array of static const char *
448 * @num_counters - How many elements in array
449 * @lifespan - How many milliseconds between updates
451 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
452 const char * const *names, int num_counters,
453 unsigned long lifespan)
455 struct rdma_hw_stats *stats;
457 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
458 GFP_KERNEL);
459 if (!stats)
460 return NULL;
461 stats->names = names;
462 stats->num_counters = num_counters;
463 stats->lifespan = msecs_to_jiffies(lifespan);
465 return stats;
469 /* Define bits for the various functionality this port needs to be supported by
470 * the core.
472 /* Management 0x00000FFF */
473 #define RDMA_CORE_CAP_IB_MAD 0x00000001
474 #define RDMA_CORE_CAP_IB_SMI 0x00000002
475 #define RDMA_CORE_CAP_IB_CM 0x00000004
476 #define RDMA_CORE_CAP_IW_CM 0x00000008
477 #define RDMA_CORE_CAP_IB_SA 0x00000010
478 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
480 /* Address format 0x000FF000 */
481 #define RDMA_CORE_CAP_AF_IB 0x00001000
482 #define RDMA_CORE_CAP_ETH_AH 0x00002000
484 /* Protocol 0xFFF00000 */
485 #define RDMA_CORE_CAP_PROT_IB 0x00100000
486 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
487 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
488 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
490 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
491 | RDMA_CORE_CAP_IB_MAD \
492 | RDMA_CORE_CAP_IB_SMI \
493 | RDMA_CORE_CAP_IB_CM \
494 | RDMA_CORE_CAP_IB_SA \
495 | RDMA_CORE_CAP_AF_IB)
496 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
497 | RDMA_CORE_CAP_IB_MAD \
498 | RDMA_CORE_CAP_IB_CM \
499 | RDMA_CORE_CAP_AF_IB \
500 | RDMA_CORE_CAP_ETH_AH)
501 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
502 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
503 | RDMA_CORE_CAP_IB_MAD \
504 | RDMA_CORE_CAP_IB_CM \
505 | RDMA_CORE_CAP_AF_IB \
506 | RDMA_CORE_CAP_ETH_AH)
507 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
508 | RDMA_CORE_CAP_IW_CM)
509 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
510 | RDMA_CORE_CAP_OPA_MAD)
512 struct ib_port_attr {
513 u64 subnet_prefix;
514 enum ib_port_state state;
515 enum ib_mtu max_mtu;
516 enum ib_mtu active_mtu;
517 int gid_tbl_len;
518 u32 port_cap_flags;
519 u32 max_msg_sz;
520 u32 bad_pkey_cntr;
521 u32 qkey_viol_cntr;
522 u16 pkey_tbl_len;
523 u16 lid;
524 u16 sm_lid;
525 u8 lmc;
526 u8 max_vl_num;
527 u8 sm_sl;
528 u8 subnet_timeout;
529 u8 init_type_reply;
530 u8 active_width;
531 u8 active_speed;
532 u8 phys_state;
533 bool grh_required;
536 enum ib_device_modify_flags {
537 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
538 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
541 #define IB_DEVICE_NODE_DESC_MAX 64
543 struct ib_device_modify {
544 u64 sys_image_guid;
545 char node_desc[IB_DEVICE_NODE_DESC_MAX];
548 enum ib_port_modify_flags {
549 IB_PORT_SHUTDOWN = 1,
550 IB_PORT_INIT_TYPE = (1<<2),
551 IB_PORT_RESET_QKEY_CNTR = (1<<3)
554 struct ib_port_modify {
555 u32 set_port_cap_mask;
556 u32 clr_port_cap_mask;
557 u8 init_type;
560 enum ib_event_type {
561 IB_EVENT_CQ_ERR,
562 IB_EVENT_QP_FATAL,
563 IB_EVENT_QP_REQ_ERR,
564 IB_EVENT_QP_ACCESS_ERR,
565 IB_EVENT_COMM_EST,
566 IB_EVENT_SQ_DRAINED,
567 IB_EVENT_PATH_MIG,
568 IB_EVENT_PATH_MIG_ERR,
569 IB_EVENT_DEVICE_FATAL,
570 IB_EVENT_PORT_ACTIVE,
571 IB_EVENT_PORT_ERR,
572 IB_EVENT_LID_CHANGE,
573 IB_EVENT_PKEY_CHANGE,
574 IB_EVENT_SM_CHANGE,
575 IB_EVENT_SRQ_ERR,
576 IB_EVENT_SRQ_LIMIT_REACHED,
577 IB_EVENT_QP_LAST_WQE_REACHED,
578 IB_EVENT_CLIENT_REREGISTER,
579 IB_EVENT_GID_CHANGE,
580 IB_EVENT_WQ_FATAL,
583 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
585 struct ib_event {
586 struct ib_device *device;
587 union {
588 struct ib_cq *cq;
589 struct ib_qp *qp;
590 struct ib_srq *srq;
591 struct ib_wq *wq;
592 u8 port_num;
593 } element;
594 enum ib_event_type event;
597 struct ib_event_handler {
598 struct ib_device *device;
599 void (*handler)(struct ib_event_handler *, struct ib_event *);
600 struct list_head list;
603 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
604 do { \
605 (_ptr)->device = _device; \
606 (_ptr)->handler = _handler; \
607 INIT_LIST_HEAD(&(_ptr)->list); \
608 } while (0)
610 struct ib_global_route {
611 union ib_gid dgid;
612 u32 flow_label;
613 u8 sgid_index;
614 u8 hop_limit;
615 u8 traffic_class;
618 struct ib_grh {
619 __be32 version_tclass_flow;
620 __be16 paylen;
621 u8 next_hdr;
622 u8 hop_limit;
623 union ib_gid sgid;
624 union ib_gid dgid;
627 union rdma_network_hdr {
628 struct ib_grh ibgrh;
629 struct {
630 /* The IB spec states that if it's IPv4, the header
631 * is located in the last 20 bytes of the header.
633 u8 reserved[20];
634 struct iphdr roce4grh;
638 enum {
639 IB_MULTICAST_QPN = 0xffffff
642 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
643 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
645 enum ib_ah_flags {
646 IB_AH_GRH = 1
649 enum ib_rate {
650 IB_RATE_PORT_CURRENT = 0,
651 IB_RATE_2_5_GBPS = 2,
652 IB_RATE_5_GBPS = 5,
653 IB_RATE_10_GBPS = 3,
654 IB_RATE_20_GBPS = 6,
655 IB_RATE_30_GBPS = 4,
656 IB_RATE_40_GBPS = 7,
657 IB_RATE_60_GBPS = 8,
658 IB_RATE_80_GBPS = 9,
659 IB_RATE_120_GBPS = 10,
660 IB_RATE_14_GBPS = 11,
661 IB_RATE_56_GBPS = 12,
662 IB_RATE_112_GBPS = 13,
663 IB_RATE_168_GBPS = 14,
664 IB_RATE_25_GBPS = 15,
665 IB_RATE_100_GBPS = 16,
666 IB_RATE_200_GBPS = 17,
667 IB_RATE_300_GBPS = 18
671 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
672 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
673 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
674 * @rate: rate to convert.
676 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
679 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
680 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
681 * @rate: rate to convert.
683 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
687 * enum ib_mr_type - memory region type
688 * @IB_MR_TYPE_MEM_REG: memory region that is used for
689 * normal registration
690 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
691 * signature operations (data-integrity
692 * capable regions)
693 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
694 * register any arbitrary sg lists (without
695 * the normal mr constraints - see
696 * ib_map_mr_sg)
698 enum ib_mr_type {
699 IB_MR_TYPE_MEM_REG,
700 IB_MR_TYPE_SIGNATURE,
701 IB_MR_TYPE_SG_GAPS,
705 * Signature types
706 * IB_SIG_TYPE_NONE: Unprotected.
707 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
709 enum ib_signature_type {
710 IB_SIG_TYPE_NONE,
711 IB_SIG_TYPE_T10_DIF,
715 * Signature T10-DIF block-guard types
716 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
717 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
719 enum ib_t10_dif_bg_type {
720 IB_T10DIF_CRC,
721 IB_T10DIF_CSUM
725 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
726 * domain.
727 * @bg_type: T10-DIF block guard type (CRC|CSUM)
728 * @pi_interval: protection information interval.
729 * @bg: seed of guard computation.
730 * @app_tag: application tag of guard block
731 * @ref_tag: initial guard block reference tag.
732 * @ref_remap: Indicate wethear the reftag increments each block
733 * @app_escape: Indicate to skip block check if apptag=0xffff
734 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
735 * @apptag_check_mask: check bitmask of application tag.
737 struct ib_t10_dif_domain {
738 enum ib_t10_dif_bg_type bg_type;
739 u16 pi_interval;
740 u16 bg;
741 u16 app_tag;
742 u32 ref_tag;
743 bool ref_remap;
744 bool app_escape;
745 bool ref_escape;
746 u16 apptag_check_mask;
750 * struct ib_sig_domain - Parameters for signature domain
751 * @sig_type: specific signauture type
752 * @sig: union of all signature domain attributes that may
753 * be used to set domain layout.
755 struct ib_sig_domain {
756 enum ib_signature_type sig_type;
757 union {
758 struct ib_t10_dif_domain dif;
759 } sig;
763 * struct ib_sig_attrs - Parameters for signature handover operation
764 * @check_mask: bitmask for signature byte check (8 bytes)
765 * @mem: memory domain layout desciptor.
766 * @wire: wire domain layout desciptor.
768 struct ib_sig_attrs {
769 u8 check_mask;
770 struct ib_sig_domain mem;
771 struct ib_sig_domain wire;
774 enum ib_sig_err_type {
775 IB_SIG_BAD_GUARD,
776 IB_SIG_BAD_REFTAG,
777 IB_SIG_BAD_APPTAG,
781 * struct ib_sig_err - signature error descriptor
783 struct ib_sig_err {
784 enum ib_sig_err_type err_type;
785 u32 expected;
786 u32 actual;
787 u64 sig_err_offset;
788 u32 key;
791 enum ib_mr_status_check {
792 IB_MR_CHECK_SIG_STATUS = 1,
796 * struct ib_mr_status - Memory region status container
798 * @fail_status: Bitmask of MR checks status. For each
799 * failed check a corresponding status bit is set.
800 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
801 * failure.
803 struct ib_mr_status {
804 u32 fail_status;
805 struct ib_sig_err sig_err;
809 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
810 * enum.
811 * @mult: multiple to convert.
813 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
815 struct ib_ah_attr {
816 struct ib_global_route grh;
817 u16 dlid;
818 u8 sl;
819 u8 src_path_bits;
820 u8 static_rate;
821 u8 ah_flags;
822 u8 port_num;
823 u8 dmac[ETH_ALEN];
826 enum ib_wc_status {
827 IB_WC_SUCCESS,
828 IB_WC_LOC_LEN_ERR,
829 IB_WC_LOC_QP_OP_ERR,
830 IB_WC_LOC_EEC_OP_ERR,
831 IB_WC_LOC_PROT_ERR,
832 IB_WC_WR_FLUSH_ERR,
833 IB_WC_MW_BIND_ERR,
834 IB_WC_BAD_RESP_ERR,
835 IB_WC_LOC_ACCESS_ERR,
836 IB_WC_REM_INV_REQ_ERR,
837 IB_WC_REM_ACCESS_ERR,
838 IB_WC_REM_OP_ERR,
839 IB_WC_RETRY_EXC_ERR,
840 IB_WC_RNR_RETRY_EXC_ERR,
841 IB_WC_LOC_RDD_VIOL_ERR,
842 IB_WC_REM_INV_RD_REQ_ERR,
843 IB_WC_REM_ABORT_ERR,
844 IB_WC_INV_EECN_ERR,
845 IB_WC_INV_EEC_STATE_ERR,
846 IB_WC_FATAL_ERR,
847 IB_WC_RESP_TIMEOUT_ERR,
848 IB_WC_GENERAL_ERR
851 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
853 enum ib_wc_opcode {
854 IB_WC_SEND,
855 IB_WC_RDMA_WRITE,
856 IB_WC_RDMA_READ,
857 IB_WC_COMP_SWAP,
858 IB_WC_FETCH_ADD,
859 IB_WC_LSO,
860 IB_WC_LOCAL_INV,
861 IB_WC_REG_MR,
862 IB_WC_MASKED_COMP_SWAP,
863 IB_WC_MASKED_FETCH_ADD,
865 * Set value of IB_WC_RECV so consumers can test if a completion is a
866 * receive by testing (opcode & IB_WC_RECV).
868 IB_WC_RECV = 1 << 7,
869 IB_WC_RECV_RDMA_WITH_IMM
872 enum ib_wc_flags {
873 IB_WC_GRH = 1,
874 IB_WC_WITH_IMM = (1<<1),
875 IB_WC_WITH_INVALIDATE = (1<<2),
876 IB_WC_IP_CSUM_OK = (1<<3),
877 IB_WC_WITH_SMAC = (1<<4),
878 IB_WC_WITH_VLAN = (1<<5),
879 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
882 struct ib_wc {
883 union {
884 u64 wr_id;
885 struct ib_cqe *wr_cqe;
887 enum ib_wc_status status;
888 enum ib_wc_opcode opcode;
889 u32 vendor_err;
890 u32 byte_len;
891 struct ib_qp *qp;
892 union {
893 __be32 imm_data;
894 u32 invalidate_rkey;
895 } ex;
896 u32 src_qp;
897 int wc_flags;
898 u16 pkey_index;
899 u16 slid;
900 u8 sl;
901 u8 dlid_path_bits;
902 u8 port_num; /* valid only for DR SMPs on switches */
903 u8 smac[ETH_ALEN];
904 u16 vlan_id;
905 u8 network_hdr_type;
908 enum ib_cq_notify_flags {
909 IB_CQ_SOLICITED = 1 << 0,
910 IB_CQ_NEXT_COMP = 1 << 1,
911 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
912 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
915 enum ib_srq_type {
916 IB_SRQT_BASIC,
917 IB_SRQT_XRC
920 enum ib_srq_attr_mask {
921 IB_SRQ_MAX_WR = 1 << 0,
922 IB_SRQ_LIMIT = 1 << 1,
925 struct ib_srq_attr {
926 u32 max_wr;
927 u32 max_sge;
928 u32 srq_limit;
931 struct ib_srq_init_attr {
932 void (*event_handler)(struct ib_event *, void *);
933 void *srq_context;
934 struct ib_srq_attr attr;
935 enum ib_srq_type srq_type;
937 union {
938 struct {
939 struct ib_xrcd *xrcd;
940 struct ib_cq *cq;
941 } xrc;
942 } ext;
945 struct ib_qp_cap {
946 u32 max_send_wr;
947 u32 max_recv_wr;
948 u32 max_send_sge;
949 u32 max_recv_sge;
950 u32 max_inline_data;
953 * Maximum number of rdma_rw_ctx structures in flight at a time.
954 * ib_create_qp() will calculate the right amount of neededed WRs
955 * and MRs based on this.
957 u32 max_rdma_ctxs;
960 enum ib_sig_type {
961 IB_SIGNAL_ALL_WR,
962 IB_SIGNAL_REQ_WR
965 enum ib_qp_type {
967 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
968 * here (and in that order) since the MAD layer uses them as
969 * indices into a 2-entry table.
971 IB_QPT_SMI,
972 IB_QPT_GSI,
974 IB_QPT_RC,
975 IB_QPT_UC,
976 IB_QPT_UD,
977 IB_QPT_RAW_IPV6,
978 IB_QPT_RAW_ETHERTYPE,
979 IB_QPT_RAW_PACKET = 8,
980 IB_QPT_XRC_INI = 9,
981 IB_QPT_XRC_TGT,
982 IB_QPT_MAX,
983 /* Reserve a range for qp types internal to the low level driver.
984 * These qp types will not be visible at the IB core layer, so the
985 * IB_QPT_MAX usages should not be affected in the core layer
987 IB_QPT_RESERVED1 = 0x1000,
988 IB_QPT_RESERVED2,
989 IB_QPT_RESERVED3,
990 IB_QPT_RESERVED4,
991 IB_QPT_RESERVED5,
992 IB_QPT_RESERVED6,
993 IB_QPT_RESERVED7,
994 IB_QPT_RESERVED8,
995 IB_QPT_RESERVED9,
996 IB_QPT_RESERVED10,
999 enum ib_qp_create_flags {
1000 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1001 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1002 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1003 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1004 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1005 IB_QP_CREATE_NETIF_QP = 1 << 5,
1006 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1007 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
1008 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1009 /* reserve bits 26-31 for low level drivers' internal use */
1010 IB_QP_CREATE_RESERVED_START = 1 << 26,
1011 IB_QP_CREATE_RESERVED_END = 1 << 31,
1015 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1016 * callback to destroy the passed in QP.
1019 struct ib_qp_init_attr {
1020 void (*event_handler)(struct ib_event *, void *);
1021 void *qp_context;
1022 struct ib_cq *send_cq;
1023 struct ib_cq *recv_cq;
1024 struct ib_srq *srq;
1025 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1026 struct ib_qp_cap cap;
1027 enum ib_sig_type sq_sig_type;
1028 enum ib_qp_type qp_type;
1029 enum ib_qp_create_flags create_flags;
1032 * Only needed for special QP types, or when using the RW API.
1034 u8 port_num;
1035 struct ib_rwq_ind_table *rwq_ind_tbl;
1038 struct ib_qp_open_attr {
1039 void (*event_handler)(struct ib_event *, void *);
1040 void *qp_context;
1041 u32 qp_num;
1042 enum ib_qp_type qp_type;
1045 enum ib_rnr_timeout {
1046 IB_RNR_TIMER_655_36 = 0,
1047 IB_RNR_TIMER_000_01 = 1,
1048 IB_RNR_TIMER_000_02 = 2,
1049 IB_RNR_TIMER_000_03 = 3,
1050 IB_RNR_TIMER_000_04 = 4,
1051 IB_RNR_TIMER_000_06 = 5,
1052 IB_RNR_TIMER_000_08 = 6,
1053 IB_RNR_TIMER_000_12 = 7,
1054 IB_RNR_TIMER_000_16 = 8,
1055 IB_RNR_TIMER_000_24 = 9,
1056 IB_RNR_TIMER_000_32 = 10,
1057 IB_RNR_TIMER_000_48 = 11,
1058 IB_RNR_TIMER_000_64 = 12,
1059 IB_RNR_TIMER_000_96 = 13,
1060 IB_RNR_TIMER_001_28 = 14,
1061 IB_RNR_TIMER_001_92 = 15,
1062 IB_RNR_TIMER_002_56 = 16,
1063 IB_RNR_TIMER_003_84 = 17,
1064 IB_RNR_TIMER_005_12 = 18,
1065 IB_RNR_TIMER_007_68 = 19,
1066 IB_RNR_TIMER_010_24 = 20,
1067 IB_RNR_TIMER_015_36 = 21,
1068 IB_RNR_TIMER_020_48 = 22,
1069 IB_RNR_TIMER_030_72 = 23,
1070 IB_RNR_TIMER_040_96 = 24,
1071 IB_RNR_TIMER_061_44 = 25,
1072 IB_RNR_TIMER_081_92 = 26,
1073 IB_RNR_TIMER_122_88 = 27,
1074 IB_RNR_TIMER_163_84 = 28,
1075 IB_RNR_TIMER_245_76 = 29,
1076 IB_RNR_TIMER_327_68 = 30,
1077 IB_RNR_TIMER_491_52 = 31
1080 enum ib_qp_attr_mask {
1081 IB_QP_STATE = 1,
1082 IB_QP_CUR_STATE = (1<<1),
1083 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1084 IB_QP_ACCESS_FLAGS = (1<<3),
1085 IB_QP_PKEY_INDEX = (1<<4),
1086 IB_QP_PORT = (1<<5),
1087 IB_QP_QKEY = (1<<6),
1088 IB_QP_AV = (1<<7),
1089 IB_QP_PATH_MTU = (1<<8),
1090 IB_QP_TIMEOUT = (1<<9),
1091 IB_QP_RETRY_CNT = (1<<10),
1092 IB_QP_RNR_RETRY = (1<<11),
1093 IB_QP_RQ_PSN = (1<<12),
1094 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1095 IB_QP_ALT_PATH = (1<<14),
1096 IB_QP_MIN_RNR_TIMER = (1<<15),
1097 IB_QP_SQ_PSN = (1<<16),
1098 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1099 IB_QP_PATH_MIG_STATE = (1<<18),
1100 IB_QP_CAP = (1<<19),
1101 IB_QP_DEST_QPN = (1<<20),
1102 IB_QP_RESERVED1 = (1<<21),
1103 IB_QP_RESERVED2 = (1<<22),
1104 IB_QP_RESERVED3 = (1<<23),
1105 IB_QP_RESERVED4 = (1<<24),
1108 enum ib_qp_state {
1109 IB_QPS_RESET,
1110 IB_QPS_INIT,
1111 IB_QPS_RTR,
1112 IB_QPS_RTS,
1113 IB_QPS_SQD,
1114 IB_QPS_SQE,
1115 IB_QPS_ERR
1118 enum ib_mig_state {
1119 IB_MIG_MIGRATED,
1120 IB_MIG_REARM,
1121 IB_MIG_ARMED
1124 enum ib_mw_type {
1125 IB_MW_TYPE_1 = 1,
1126 IB_MW_TYPE_2 = 2
1129 struct ib_qp_attr {
1130 enum ib_qp_state qp_state;
1131 enum ib_qp_state cur_qp_state;
1132 enum ib_mtu path_mtu;
1133 enum ib_mig_state path_mig_state;
1134 u32 qkey;
1135 u32 rq_psn;
1136 u32 sq_psn;
1137 u32 dest_qp_num;
1138 int qp_access_flags;
1139 struct ib_qp_cap cap;
1140 struct ib_ah_attr ah_attr;
1141 struct ib_ah_attr alt_ah_attr;
1142 u16 pkey_index;
1143 u16 alt_pkey_index;
1144 u8 en_sqd_async_notify;
1145 u8 sq_draining;
1146 u8 max_rd_atomic;
1147 u8 max_dest_rd_atomic;
1148 u8 min_rnr_timer;
1149 u8 port_num;
1150 u8 timeout;
1151 u8 retry_cnt;
1152 u8 rnr_retry;
1153 u8 alt_port_num;
1154 u8 alt_timeout;
1157 enum ib_wr_opcode {
1158 IB_WR_RDMA_WRITE,
1159 IB_WR_RDMA_WRITE_WITH_IMM,
1160 IB_WR_SEND,
1161 IB_WR_SEND_WITH_IMM,
1162 IB_WR_RDMA_READ,
1163 IB_WR_ATOMIC_CMP_AND_SWP,
1164 IB_WR_ATOMIC_FETCH_AND_ADD,
1165 IB_WR_LSO,
1166 IB_WR_SEND_WITH_INV,
1167 IB_WR_RDMA_READ_WITH_INV,
1168 IB_WR_LOCAL_INV,
1169 IB_WR_REG_MR,
1170 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1171 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1172 IB_WR_REG_SIG_MR,
1173 /* reserve values for low level drivers' internal use.
1174 * These values will not be used at all in the ib core layer.
1176 IB_WR_RESERVED1 = 0xf0,
1177 IB_WR_RESERVED2,
1178 IB_WR_RESERVED3,
1179 IB_WR_RESERVED4,
1180 IB_WR_RESERVED5,
1181 IB_WR_RESERVED6,
1182 IB_WR_RESERVED7,
1183 IB_WR_RESERVED8,
1184 IB_WR_RESERVED9,
1185 IB_WR_RESERVED10,
1188 enum ib_send_flags {
1189 IB_SEND_FENCE = 1,
1190 IB_SEND_SIGNALED = (1<<1),
1191 IB_SEND_SOLICITED = (1<<2),
1192 IB_SEND_INLINE = (1<<3),
1193 IB_SEND_IP_CSUM = (1<<4),
1195 /* reserve bits 26-31 for low level drivers' internal use */
1196 IB_SEND_RESERVED_START = (1 << 26),
1197 IB_SEND_RESERVED_END = (1 << 31),
1200 struct ib_sge {
1201 u64 addr;
1202 u32 length;
1203 u32 lkey;
1206 struct ib_cqe {
1207 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1210 struct ib_send_wr {
1211 struct ib_send_wr *next;
1212 union {
1213 u64 wr_id;
1214 struct ib_cqe *wr_cqe;
1216 struct ib_sge *sg_list;
1217 int num_sge;
1218 enum ib_wr_opcode opcode;
1219 int send_flags;
1220 union {
1221 __be32 imm_data;
1222 u32 invalidate_rkey;
1223 } ex;
1226 struct ib_rdma_wr {
1227 struct ib_send_wr wr;
1228 u64 remote_addr;
1229 u32 rkey;
1232 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1234 return container_of(wr, struct ib_rdma_wr, wr);
1237 struct ib_atomic_wr {
1238 struct ib_send_wr wr;
1239 u64 remote_addr;
1240 u64 compare_add;
1241 u64 swap;
1242 u64 compare_add_mask;
1243 u64 swap_mask;
1244 u32 rkey;
1247 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1249 return container_of(wr, struct ib_atomic_wr, wr);
1252 struct ib_ud_wr {
1253 struct ib_send_wr wr;
1254 struct ib_ah *ah;
1255 void *header;
1256 int hlen;
1257 int mss;
1258 u32 remote_qpn;
1259 u32 remote_qkey;
1260 u16 pkey_index; /* valid for GSI only */
1261 u8 port_num; /* valid for DR SMPs on switch only */
1264 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1266 return container_of(wr, struct ib_ud_wr, wr);
1269 struct ib_reg_wr {
1270 struct ib_send_wr wr;
1271 struct ib_mr *mr;
1272 u32 key;
1273 int access;
1276 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1278 return container_of(wr, struct ib_reg_wr, wr);
1281 struct ib_sig_handover_wr {
1282 struct ib_send_wr wr;
1283 struct ib_sig_attrs *sig_attrs;
1284 struct ib_mr *sig_mr;
1285 int access_flags;
1286 struct ib_sge *prot;
1289 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1291 return container_of(wr, struct ib_sig_handover_wr, wr);
1294 struct ib_recv_wr {
1295 struct ib_recv_wr *next;
1296 union {
1297 u64 wr_id;
1298 struct ib_cqe *wr_cqe;
1300 struct ib_sge *sg_list;
1301 int num_sge;
1304 enum ib_access_flags {
1305 IB_ACCESS_LOCAL_WRITE = 1,
1306 IB_ACCESS_REMOTE_WRITE = (1<<1),
1307 IB_ACCESS_REMOTE_READ = (1<<2),
1308 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1309 IB_ACCESS_MW_BIND = (1<<4),
1310 IB_ZERO_BASED = (1<<5),
1311 IB_ACCESS_ON_DEMAND = (1<<6),
1315 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1316 * are hidden here instead of a uapi header!
1318 enum ib_mr_rereg_flags {
1319 IB_MR_REREG_TRANS = 1,
1320 IB_MR_REREG_PD = (1<<1),
1321 IB_MR_REREG_ACCESS = (1<<2),
1322 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1325 struct ib_fmr_attr {
1326 int max_pages;
1327 int max_maps;
1328 u8 page_shift;
1331 struct ib_umem;
1333 struct ib_ucontext {
1334 struct ib_device *device;
1335 struct list_head pd_list;
1336 struct list_head mr_list;
1337 struct list_head mw_list;
1338 struct list_head cq_list;
1339 struct list_head qp_list;
1340 struct list_head srq_list;
1341 struct list_head ah_list;
1342 struct list_head xrcd_list;
1343 struct list_head rule_list;
1344 struct list_head wq_list;
1345 struct list_head rwq_ind_tbl_list;
1346 int closing;
1348 struct pid *tgid;
1349 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1350 struct rb_root umem_tree;
1352 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1353 * mmu notifiers registration.
1355 struct rw_semaphore umem_rwsem;
1356 void (*invalidate_range)(struct ib_umem *umem,
1357 unsigned long start, unsigned long end);
1359 struct mmu_notifier mn;
1360 atomic_t notifier_count;
1361 /* A list of umems that don't have private mmu notifier counters yet. */
1362 struct list_head no_private_counters;
1363 int odp_mrs_count;
1364 #endif
1367 struct ib_uobject {
1368 u64 user_handle; /* handle given to us by userspace */
1369 struct ib_ucontext *context; /* associated user context */
1370 void *object; /* containing object */
1371 struct list_head list; /* link to context's list */
1372 int id; /* index into kernel idr */
1373 struct kref ref;
1374 struct rw_semaphore mutex; /* protects .live */
1375 struct rcu_head rcu; /* kfree_rcu() overhead */
1376 int live;
1379 struct ib_udata {
1380 const void __user *inbuf;
1381 void __user *outbuf;
1382 size_t inlen;
1383 size_t outlen;
1386 struct ib_pd {
1387 u32 local_dma_lkey;
1388 u32 flags;
1389 struct ib_device *device;
1390 struct ib_uobject *uobject;
1391 atomic_t usecnt; /* count all resources */
1393 u32 unsafe_global_rkey;
1396 * Implementation details of the RDMA core, don't use in drivers:
1398 struct ib_mr *__internal_mr;
1401 struct ib_xrcd {
1402 struct ib_device *device;
1403 atomic_t usecnt; /* count all exposed resources */
1404 struct inode *inode;
1406 struct mutex tgt_qp_mutex;
1407 struct list_head tgt_qp_list;
1410 struct ib_ah {
1411 struct ib_device *device;
1412 struct ib_pd *pd;
1413 struct ib_uobject *uobject;
1416 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1418 enum ib_poll_context {
1419 IB_POLL_DIRECT, /* caller context, no hw completions */
1420 IB_POLL_SOFTIRQ, /* poll from softirq context */
1421 IB_POLL_WORKQUEUE, /* poll from workqueue */
1422 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1425 struct ib_cq {
1426 struct ib_device *device;
1427 struct ib_uobject *uobject;
1428 ib_comp_handler comp_handler;
1429 void (*event_handler)(struct ib_event *, void *);
1430 void *cq_context;
1431 int cqe;
1432 atomic_t usecnt; /* count number of work queues */
1433 enum ib_poll_context poll_ctx;
1434 struct ib_wc *wc;
1435 union {
1436 struct irq_poll iop;
1437 struct work_struct work;
1439 struct workqueue_struct *comp_wq;
1442 struct ib_srq {
1443 struct ib_device *device;
1444 struct ib_pd *pd;
1445 struct ib_uobject *uobject;
1446 void (*event_handler)(struct ib_event *, void *);
1447 void *srq_context;
1448 enum ib_srq_type srq_type;
1449 atomic_t usecnt;
1451 union {
1452 struct {
1453 struct ib_xrcd *xrcd;
1454 struct ib_cq *cq;
1455 u32 srq_num;
1456 } xrc;
1457 } ext;
1460 enum ib_wq_type {
1461 IB_WQT_RQ
1464 enum ib_wq_state {
1465 IB_WQS_RESET,
1466 IB_WQS_RDY,
1467 IB_WQS_ERR
1470 struct ib_wq {
1471 struct ib_device *device;
1472 struct ib_uobject *uobject;
1473 void *wq_context;
1474 void (*event_handler)(struct ib_event *, void *);
1475 struct ib_pd *pd;
1476 struct ib_cq *cq;
1477 u32 wq_num;
1478 enum ib_wq_state state;
1479 enum ib_wq_type wq_type;
1480 atomic_t usecnt;
1483 struct ib_wq_init_attr {
1484 void *wq_context;
1485 enum ib_wq_type wq_type;
1486 u32 max_wr;
1487 u32 max_sge;
1488 struct ib_cq *cq;
1489 void (*event_handler)(struct ib_event *, void *);
1492 enum ib_wq_attr_mask {
1493 IB_WQ_STATE = 1 << 0,
1494 IB_WQ_CUR_STATE = 1 << 1,
1497 struct ib_wq_attr {
1498 enum ib_wq_state wq_state;
1499 enum ib_wq_state curr_wq_state;
1502 struct ib_rwq_ind_table {
1503 struct ib_device *device;
1504 struct ib_uobject *uobject;
1505 atomic_t usecnt;
1506 u32 ind_tbl_num;
1507 u32 log_ind_tbl_size;
1508 struct ib_wq **ind_tbl;
1511 struct ib_rwq_ind_table_init_attr {
1512 u32 log_ind_tbl_size;
1513 /* Each entry is a pointer to Receive Work Queue */
1514 struct ib_wq **ind_tbl;
1518 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1519 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1521 struct ib_qp {
1522 struct ib_device *device;
1523 struct ib_pd *pd;
1524 struct ib_cq *send_cq;
1525 struct ib_cq *recv_cq;
1526 spinlock_t mr_lock;
1527 int mrs_used;
1528 struct list_head rdma_mrs;
1529 struct list_head sig_mrs;
1530 struct ib_srq *srq;
1531 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1532 struct list_head xrcd_list;
1534 /* count times opened, mcast attaches, flow attaches */
1535 atomic_t usecnt;
1536 struct list_head open_list;
1537 struct ib_qp *real_qp;
1538 struct ib_uobject *uobject;
1539 void (*event_handler)(struct ib_event *, void *);
1540 void *qp_context;
1541 u32 qp_num;
1542 u32 max_write_sge;
1543 u32 max_read_sge;
1544 enum ib_qp_type qp_type;
1545 struct ib_rwq_ind_table *rwq_ind_tbl;
1548 struct ib_mr {
1549 struct ib_device *device;
1550 struct ib_pd *pd;
1551 u32 lkey;
1552 u32 rkey;
1553 u64 iova;
1554 u32 length;
1555 unsigned int page_size;
1556 bool need_inval;
1557 union {
1558 struct ib_uobject *uobject; /* user */
1559 struct list_head qp_entry; /* FR */
1563 struct ib_mw {
1564 struct ib_device *device;
1565 struct ib_pd *pd;
1566 struct ib_uobject *uobject;
1567 u32 rkey;
1568 enum ib_mw_type type;
1571 struct ib_fmr {
1572 struct ib_device *device;
1573 struct ib_pd *pd;
1574 struct list_head list;
1575 u32 lkey;
1576 u32 rkey;
1579 /* Supported steering options */
1580 enum ib_flow_attr_type {
1581 /* steering according to rule specifications */
1582 IB_FLOW_ATTR_NORMAL = 0x0,
1583 /* default unicast and multicast rule -
1584 * receive all Eth traffic which isn't steered to any QP
1586 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1587 /* default multicast rule -
1588 * receive all Eth multicast traffic which isn't steered to any QP
1590 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1591 /* sniffer rule - receive all port traffic */
1592 IB_FLOW_ATTR_SNIFFER = 0x3
1595 /* Supported steering header types */
1596 enum ib_flow_spec_type {
1597 /* L2 headers*/
1598 IB_FLOW_SPEC_ETH = 0x20,
1599 IB_FLOW_SPEC_IB = 0x22,
1600 /* L3 header*/
1601 IB_FLOW_SPEC_IPV4 = 0x30,
1602 IB_FLOW_SPEC_IPV6 = 0x31,
1603 /* L4 headers*/
1604 IB_FLOW_SPEC_TCP = 0x40,
1605 IB_FLOW_SPEC_UDP = 0x41
1607 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1608 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1610 /* Flow steering rule priority is set according to it's domain.
1611 * Lower domain value means higher priority.
1613 enum ib_flow_domain {
1614 IB_FLOW_DOMAIN_USER,
1615 IB_FLOW_DOMAIN_ETHTOOL,
1616 IB_FLOW_DOMAIN_RFS,
1617 IB_FLOW_DOMAIN_NIC,
1618 IB_FLOW_DOMAIN_NUM /* Must be last */
1621 enum ib_flow_flags {
1622 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1623 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1626 struct ib_flow_eth_filter {
1627 u8 dst_mac[6];
1628 u8 src_mac[6];
1629 __be16 ether_type;
1630 __be16 vlan_tag;
1631 /* Must be last */
1632 u8 real_sz[0];
1635 struct ib_flow_spec_eth {
1636 enum ib_flow_spec_type type;
1637 u16 size;
1638 struct ib_flow_eth_filter val;
1639 struct ib_flow_eth_filter mask;
1642 struct ib_flow_ib_filter {
1643 __be16 dlid;
1644 __u8 sl;
1645 /* Must be last */
1646 u8 real_sz[0];
1649 struct ib_flow_spec_ib {
1650 enum ib_flow_spec_type type;
1651 u16 size;
1652 struct ib_flow_ib_filter val;
1653 struct ib_flow_ib_filter mask;
1656 /* IPv4 header flags */
1657 enum ib_ipv4_flags {
1658 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1659 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1660 last have this flag set */
1663 struct ib_flow_ipv4_filter {
1664 __be32 src_ip;
1665 __be32 dst_ip;
1666 u8 proto;
1667 u8 tos;
1668 u8 ttl;
1669 u8 flags;
1670 /* Must be last */
1671 u8 real_sz[0];
1674 struct ib_flow_spec_ipv4 {
1675 enum ib_flow_spec_type type;
1676 u16 size;
1677 struct ib_flow_ipv4_filter val;
1678 struct ib_flow_ipv4_filter mask;
1681 struct ib_flow_ipv6_filter {
1682 u8 src_ip[16];
1683 u8 dst_ip[16];
1684 __be32 flow_label;
1685 u8 next_hdr;
1686 u8 traffic_class;
1687 u8 hop_limit;
1688 /* Must be last */
1689 u8 real_sz[0];
1692 struct ib_flow_spec_ipv6 {
1693 enum ib_flow_spec_type type;
1694 u16 size;
1695 struct ib_flow_ipv6_filter val;
1696 struct ib_flow_ipv6_filter mask;
1699 struct ib_flow_tcp_udp_filter {
1700 __be16 dst_port;
1701 __be16 src_port;
1702 /* Must be last */
1703 u8 real_sz[0];
1706 struct ib_flow_spec_tcp_udp {
1707 enum ib_flow_spec_type type;
1708 u16 size;
1709 struct ib_flow_tcp_udp_filter val;
1710 struct ib_flow_tcp_udp_filter mask;
1713 union ib_flow_spec {
1714 struct {
1715 enum ib_flow_spec_type type;
1716 u16 size;
1718 struct ib_flow_spec_eth eth;
1719 struct ib_flow_spec_ib ib;
1720 struct ib_flow_spec_ipv4 ipv4;
1721 struct ib_flow_spec_tcp_udp tcp_udp;
1722 struct ib_flow_spec_ipv6 ipv6;
1725 struct ib_flow_attr {
1726 enum ib_flow_attr_type type;
1727 u16 size;
1728 u16 priority;
1729 u32 flags;
1730 u8 num_of_specs;
1731 u8 port;
1732 /* Following are the optional layers according to user request
1733 * struct ib_flow_spec_xxx
1734 * struct ib_flow_spec_yyy
1738 struct ib_flow {
1739 struct ib_qp *qp;
1740 struct ib_uobject *uobject;
1743 struct ib_mad_hdr;
1744 struct ib_grh;
1746 enum ib_process_mad_flags {
1747 IB_MAD_IGNORE_MKEY = 1,
1748 IB_MAD_IGNORE_BKEY = 2,
1749 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1752 enum ib_mad_result {
1753 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1754 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1755 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1756 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1759 #define IB_DEVICE_NAME_MAX 64
1761 struct ib_cache {
1762 rwlock_t lock;
1763 struct ib_event_handler event_handler;
1764 struct ib_pkey_cache **pkey_cache;
1765 struct ib_gid_table **gid_cache;
1766 u8 *lmc_cache;
1769 struct ib_dma_mapping_ops {
1770 int (*mapping_error)(struct ib_device *dev,
1771 u64 dma_addr);
1772 u64 (*map_single)(struct ib_device *dev,
1773 void *ptr, size_t size,
1774 enum dma_data_direction direction);
1775 void (*unmap_single)(struct ib_device *dev,
1776 u64 addr, size_t size,
1777 enum dma_data_direction direction);
1778 u64 (*map_page)(struct ib_device *dev,
1779 struct page *page, unsigned long offset,
1780 size_t size,
1781 enum dma_data_direction direction);
1782 void (*unmap_page)(struct ib_device *dev,
1783 u64 addr, size_t size,
1784 enum dma_data_direction direction);
1785 int (*map_sg)(struct ib_device *dev,
1786 struct scatterlist *sg, int nents,
1787 enum dma_data_direction direction);
1788 void (*unmap_sg)(struct ib_device *dev,
1789 struct scatterlist *sg, int nents,
1790 enum dma_data_direction direction);
1791 int (*map_sg_attrs)(struct ib_device *dev,
1792 struct scatterlist *sg, int nents,
1793 enum dma_data_direction direction,
1794 unsigned long attrs);
1795 void (*unmap_sg_attrs)(struct ib_device *dev,
1796 struct scatterlist *sg, int nents,
1797 enum dma_data_direction direction,
1798 unsigned long attrs);
1799 void (*sync_single_for_cpu)(struct ib_device *dev,
1800 u64 dma_handle,
1801 size_t size,
1802 enum dma_data_direction dir);
1803 void (*sync_single_for_device)(struct ib_device *dev,
1804 u64 dma_handle,
1805 size_t size,
1806 enum dma_data_direction dir);
1807 void *(*alloc_coherent)(struct ib_device *dev,
1808 size_t size,
1809 u64 *dma_handle,
1810 gfp_t flag);
1811 void (*free_coherent)(struct ib_device *dev,
1812 size_t size, void *cpu_addr,
1813 u64 dma_handle);
1816 struct iw_cm_verbs;
1818 struct ib_port_immutable {
1819 int pkey_tbl_len;
1820 int gid_tbl_len;
1821 u32 core_cap_flags;
1822 u32 max_mad_size;
1825 struct ib_device {
1826 struct device *dma_device;
1828 char name[IB_DEVICE_NAME_MAX];
1830 struct list_head event_handler_list;
1831 spinlock_t event_handler_lock;
1833 spinlock_t client_data_lock;
1834 struct list_head core_list;
1835 /* Access to the client_data_list is protected by the client_data_lock
1836 * spinlock and the lists_rwsem read-write semaphore */
1837 struct list_head client_data_list;
1839 struct ib_cache cache;
1841 * port_immutable is indexed by port number
1843 struct ib_port_immutable *port_immutable;
1845 int num_comp_vectors;
1847 struct iw_cm_verbs *iwcm;
1850 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1851 * driver initialized data. The struct is kfree()'ed by the sysfs
1852 * core when the device is removed. A lifespan of -1 in the return
1853 * struct tells the core to set a default lifespan.
1855 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1856 u8 port_num);
1858 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1859 * @index - The index in the value array we wish to have updated, or
1860 * num_counters if we want all stats updated
1861 * Return codes -
1862 * < 0 - Error, no counters updated
1863 * index - Updated the single counter pointed to by index
1864 * num_counters - Updated all counters (will reset the timestamp
1865 * and prevent further calls for lifespan milliseconds)
1866 * Drivers are allowed to update all counters in leiu of just the
1867 * one given in index at their option
1869 int (*get_hw_stats)(struct ib_device *device,
1870 struct rdma_hw_stats *stats,
1871 u8 port, int index);
1872 int (*query_device)(struct ib_device *device,
1873 struct ib_device_attr *device_attr,
1874 struct ib_udata *udata);
1875 int (*query_port)(struct ib_device *device,
1876 u8 port_num,
1877 struct ib_port_attr *port_attr);
1878 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1879 u8 port_num);
1880 /* When calling get_netdev, the HW vendor's driver should return the
1881 * net device of device @device at port @port_num or NULL if such
1882 * a net device doesn't exist. The vendor driver should call dev_hold
1883 * on this net device. The HW vendor's device driver must guarantee
1884 * that this function returns NULL before the net device reaches
1885 * NETDEV_UNREGISTER_FINAL state.
1887 struct net_device *(*get_netdev)(struct ib_device *device,
1888 u8 port_num);
1889 int (*query_gid)(struct ib_device *device,
1890 u8 port_num, int index,
1891 union ib_gid *gid);
1892 /* When calling add_gid, the HW vendor's driver should
1893 * add the gid of device @device at gid index @index of
1894 * port @port_num to be @gid. Meta-info of that gid (for example,
1895 * the network device related to this gid is available
1896 * at @attr. @context allows the HW vendor driver to store extra
1897 * information together with a GID entry. The HW vendor may allocate
1898 * memory to contain this information and store it in @context when a
1899 * new GID entry is written to. Params are consistent until the next
1900 * call of add_gid or delete_gid. The function should return 0 on
1901 * success or error otherwise. The function could be called
1902 * concurrently for different ports. This function is only called
1903 * when roce_gid_table is used.
1905 int (*add_gid)(struct ib_device *device,
1906 u8 port_num,
1907 unsigned int index,
1908 const union ib_gid *gid,
1909 const struct ib_gid_attr *attr,
1910 void **context);
1911 /* When calling del_gid, the HW vendor's driver should delete the
1912 * gid of device @device at gid index @index of port @port_num.
1913 * Upon the deletion of a GID entry, the HW vendor must free any
1914 * allocated memory. The caller will clear @context afterwards.
1915 * This function is only called when roce_gid_table is used.
1917 int (*del_gid)(struct ib_device *device,
1918 u8 port_num,
1919 unsigned int index,
1920 void **context);
1921 int (*query_pkey)(struct ib_device *device,
1922 u8 port_num, u16 index, u16 *pkey);
1923 int (*modify_device)(struct ib_device *device,
1924 int device_modify_mask,
1925 struct ib_device_modify *device_modify);
1926 int (*modify_port)(struct ib_device *device,
1927 u8 port_num, int port_modify_mask,
1928 struct ib_port_modify *port_modify);
1929 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1930 struct ib_udata *udata);
1931 int (*dealloc_ucontext)(struct ib_ucontext *context);
1932 int (*mmap)(struct ib_ucontext *context,
1933 struct vm_area_struct *vma);
1934 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1935 struct ib_ucontext *context,
1936 struct ib_udata *udata);
1937 int (*dealloc_pd)(struct ib_pd *pd);
1938 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1939 struct ib_ah_attr *ah_attr);
1940 int (*modify_ah)(struct ib_ah *ah,
1941 struct ib_ah_attr *ah_attr);
1942 int (*query_ah)(struct ib_ah *ah,
1943 struct ib_ah_attr *ah_attr);
1944 int (*destroy_ah)(struct ib_ah *ah);
1945 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1946 struct ib_srq_init_attr *srq_init_attr,
1947 struct ib_udata *udata);
1948 int (*modify_srq)(struct ib_srq *srq,
1949 struct ib_srq_attr *srq_attr,
1950 enum ib_srq_attr_mask srq_attr_mask,
1951 struct ib_udata *udata);
1952 int (*query_srq)(struct ib_srq *srq,
1953 struct ib_srq_attr *srq_attr);
1954 int (*destroy_srq)(struct ib_srq *srq);
1955 int (*post_srq_recv)(struct ib_srq *srq,
1956 struct ib_recv_wr *recv_wr,
1957 struct ib_recv_wr **bad_recv_wr);
1958 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1959 struct ib_qp_init_attr *qp_init_attr,
1960 struct ib_udata *udata);
1961 int (*modify_qp)(struct ib_qp *qp,
1962 struct ib_qp_attr *qp_attr,
1963 int qp_attr_mask,
1964 struct ib_udata *udata);
1965 int (*query_qp)(struct ib_qp *qp,
1966 struct ib_qp_attr *qp_attr,
1967 int qp_attr_mask,
1968 struct ib_qp_init_attr *qp_init_attr);
1969 int (*destroy_qp)(struct ib_qp *qp);
1970 int (*post_send)(struct ib_qp *qp,
1971 struct ib_send_wr *send_wr,
1972 struct ib_send_wr **bad_send_wr);
1973 int (*post_recv)(struct ib_qp *qp,
1974 struct ib_recv_wr *recv_wr,
1975 struct ib_recv_wr **bad_recv_wr);
1976 struct ib_cq * (*create_cq)(struct ib_device *device,
1977 const struct ib_cq_init_attr *attr,
1978 struct ib_ucontext *context,
1979 struct ib_udata *udata);
1980 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1981 u16 cq_period);
1982 int (*destroy_cq)(struct ib_cq *cq);
1983 int (*resize_cq)(struct ib_cq *cq, int cqe,
1984 struct ib_udata *udata);
1985 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1986 struct ib_wc *wc);
1987 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1988 int (*req_notify_cq)(struct ib_cq *cq,
1989 enum ib_cq_notify_flags flags);
1990 int (*req_ncomp_notif)(struct ib_cq *cq,
1991 int wc_cnt);
1992 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1993 int mr_access_flags);
1994 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1995 u64 start, u64 length,
1996 u64 virt_addr,
1997 int mr_access_flags,
1998 struct ib_udata *udata);
1999 int (*rereg_user_mr)(struct ib_mr *mr,
2000 int flags,
2001 u64 start, u64 length,
2002 u64 virt_addr,
2003 int mr_access_flags,
2004 struct ib_pd *pd,
2005 struct ib_udata *udata);
2006 int (*dereg_mr)(struct ib_mr *mr);
2007 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2008 enum ib_mr_type mr_type,
2009 u32 max_num_sg);
2010 int (*map_mr_sg)(struct ib_mr *mr,
2011 struct scatterlist *sg,
2012 int sg_nents,
2013 unsigned int *sg_offset);
2014 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2015 enum ib_mw_type type,
2016 struct ib_udata *udata);
2017 int (*dealloc_mw)(struct ib_mw *mw);
2018 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2019 int mr_access_flags,
2020 struct ib_fmr_attr *fmr_attr);
2021 int (*map_phys_fmr)(struct ib_fmr *fmr,
2022 u64 *page_list, int list_len,
2023 u64 iova);
2024 int (*unmap_fmr)(struct list_head *fmr_list);
2025 int (*dealloc_fmr)(struct ib_fmr *fmr);
2026 int (*attach_mcast)(struct ib_qp *qp,
2027 union ib_gid *gid,
2028 u16 lid);
2029 int (*detach_mcast)(struct ib_qp *qp,
2030 union ib_gid *gid,
2031 u16 lid);
2032 int (*process_mad)(struct ib_device *device,
2033 int process_mad_flags,
2034 u8 port_num,
2035 const struct ib_wc *in_wc,
2036 const struct ib_grh *in_grh,
2037 const struct ib_mad_hdr *in_mad,
2038 size_t in_mad_size,
2039 struct ib_mad_hdr *out_mad,
2040 size_t *out_mad_size,
2041 u16 *out_mad_pkey_index);
2042 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2043 struct ib_ucontext *ucontext,
2044 struct ib_udata *udata);
2045 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2046 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2047 struct ib_flow_attr
2048 *flow_attr,
2049 int domain);
2050 int (*destroy_flow)(struct ib_flow *flow_id);
2051 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2052 struct ib_mr_status *mr_status);
2053 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2054 void (*drain_rq)(struct ib_qp *qp);
2055 void (*drain_sq)(struct ib_qp *qp);
2056 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2057 int state);
2058 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2059 struct ifla_vf_info *ivf);
2060 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2061 struct ifla_vf_stats *stats);
2062 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2063 int type);
2064 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2065 struct ib_wq_init_attr *init_attr,
2066 struct ib_udata *udata);
2067 int (*destroy_wq)(struct ib_wq *wq);
2068 int (*modify_wq)(struct ib_wq *wq,
2069 struct ib_wq_attr *attr,
2070 u32 wq_attr_mask,
2071 struct ib_udata *udata);
2072 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2073 struct ib_rwq_ind_table_init_attr *init_attr,
2074 struct ib_udata *udata);
2075 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2076 struct ib_dma_mapping_ops *dma_ops;
2078 struct module *owner;
2079 struct device dev;
2080 struct kobject *ports_parent;
2081 struct list_head port_list;
2083 enum {
2084 IB_DEV_UNINITIALIZED,
2085 IB_DEV_REGISTERED,
2086 IB_DEV_UNREGISTERED
2087 } reg_state;
2089 int uverbs_abi_ver;
2090 u64 uverbs_cmd_mask;
2091 u64 uverbs_ex_cmd_mask;
2093 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2094 __be64 node_guid;
2095 u32 local_dma_lkey;
2096 u16 is_switch:1;
2097 u8 node_type;
2098 u8 phys_port_cnt;
2099 struct ib_device_attr attrs;
2100 struct attribute_group *hw_stats_ag;
2101 struct rdma_hw_stats *hw_stats;
2104 * The following mandatory functions are used only at device
2105 * registration. Keep functions such as these at the end of this
2106 * structure to avoid cache line misses when accessing struct ib_device
2107 * in fast paths.
2109 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2110 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2113 struct ib_client {
2114 char *name;
2115 void (*add) (struct ib_device *);
2116 void (*remove)(struct ib_device *, void *client_data);
2118 /* Returns the net_dev belonging to this ib_client and matching the
2119 * given parameters.
2120 * @dev: An RDMA device that the net_dev use for communication.
2121 * @port: A physical port number on the RDMA device.
2122 * @pkey: P_Key that the net_dev uses if applicable.
2123 * @gid: A GID that the net_dev uses to communicate.
2124 * @addr: An IP address the net_dev is configured with.
2125 * @client_data: The device's client data set by ib_set_client_data().
2127 * An ib_client that implements a net_dev on top of RDMA devices
2128 * (such as IP over IB) should implement this callback, allowing the
2129 * rdma_cm module to find the right net_dev for a given request.
2131 * The caller is responsible for calling dev_put on the returned
2132 * netdev. */
2133 struct net_device *(*get_net_dev_by_params)(
2134 struct ib_device *dev,
2135 u8 port,
2136 u16 pkey,
2137 const union ib_gid *gid,
2138 const struct sockaddr *addr,
2139 void *client_data);
2140 struct list_head list;
2143 struct ib_device *ib_alloc_device(size_t size);
2144 void ib_dealloc_device(struct ib_device *device);
2146 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2148 int ib_register_device(struct ib_device *device,
2149 int (*port_callback)(struct ib_device *,
2150 u8, struct kobject *));
2151 void ib_unregister_device(struct ib_device *device);
2153 int ib_register_client (struct ib_client *client);
2154 void ib_unregister_client(struct ib_client *client);
2156 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2157 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2158 void *data);
2160 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2162 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2165 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2167 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2170 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2171 size_t offset,
2172 size_t len)
2174 const void __user *p = udata->inbuf + offset;
2175 bool ret;
2176 u8 *buf;
2178 if (len > USHRT_MAX)
2179 return false;
2181 buf = memdup_user(p, len);
2182 if (IS_ERR(buf))
2183 return false;
2185 ret = !memchr_inv(buf, 0, len);
2186 kfree(buf);
2187 return ret;
2191 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2192 * contains all required attributes and no attributes not allowed for
2193 * the given QP state transition.
2194 * @cur_state: Current QP state
2195 * @next_state: Next QP state
2196 * @type: QP type
2197 * @mask: Mask of supplied QP attributes
2198 * @ll : link layer of port
2200 * This function is a helper function that a low-level driver's
2201 * modify_qp method can use to validate the consumer's input. It
2202 * checks that cur_state and next_state are valid QP states, that a
2203 * transition from cur_state to next_state is allowed by the IB spec,
2204 * and that the attribute mask supplied is allowed for the transition.
2206 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2207 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2208 enum rdma_link_layer ll);
2210 int ib_register_event_handler (struct ib_event_handler *event_handler);
2211 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2212 void ib_dispatch_event(struct ib_event *event);
2214 int ib_query_port(struct ib_device *device,
2215 u8 port_num, struct ib_port_attr *port_attr);
2217 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2218 u8 port_num);
2221 * rdma_cap_ib_switch - Check if the device is IB switch
2222 * @device: Device to check
2224 * Device driver is responsible for setting is_switch bit on
2225 * in ib_device structure at init time.
2227 * Return: true if the device is IB switch.
2229 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2231 return device->is_switch;
2235 * rdma_start_port - Return the first valid port number for the device
2236 * specified
2238 * @device: Device to be checked
2240 * Return start port number
2242 static inline u8 rdma_start_port(const struct ib_device *device)
2244 return rdma_cap_ib_switch(device) ? 0 : 1;
2248 * rdma_end_port - Return the last valid port number for the device
2249 * specified
2251 * @device: Device to be checked
2253 * Return last port number
2255 static inline u8 rdma_end_port(const struct ib_device *device)
2257 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2260 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2262 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2265 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2267 return device->port_immutable[port_num].core_cap_flags &
2268 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2271 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2273 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2276 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2278 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2281 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2283 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2286 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2288 return rdma_protocol_ib(device, port_num) ||
2289 rdma_protocol_roce(device, port_num);
2293 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2294 * Management Datagrams.
2295 * @device: Device to check
2296 * @port_num: Port number to check
2298 * Management Datagrams (MAD) are a required part of the InfiniBand
2299 * specification and are supported on all InfiniBand devices. A slightly
2300 * extended version are also supported on OPA interfaces.
2302 * Return: true if the port supports sending/receiving of MAD packets.
2304 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2306 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2310 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2311 * Management Datagrams.
2312 * @device: Device to check
2313 * @port_num: Port number to check
2315 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2316 * datagrams with their own versions. These OPA MADs share many but not all of
2317 * the characteristics of InfiniBand MADs.
2319 * OPA MADs differ in the following ways:
2321 * 1) MADs are variable size up to 2K
2322 * IBTA defined MADs remain fixed at 256 bytes
2323 * 2) OPA SMPs must carry valid PKeys
2324 * 3) OPA SMP packets are a different format
2326 * Return: true if the port supports OPA MAD packet formats.
2328 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2330 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2331 == RDMA_CORE_CAP_OPA_MAD;
2335 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2336 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2337 * @device: Device to check
2338 * @port_num: Port number to check
2340 * Each InfiniBand node is required to provide a Subnet Management Agent
2341 * that the subnet manager can access. Prior to the fabric being fully
2342 * configured by the subnet manager, the SMA is accessed via a well known
2343 * interface called the Subnet Management Interface (SMI). This interface
2344 * uses directed route packets to communicate with the SM to get around the
2345 * chicken and egg problem of the SM needing to know what's on the fabric
2346 * in order to configure the fabric, and needing to configure the fabric in
2347 * order to send packets to the devices on the fabric. These directed
2348 * route packets do not need the fabric fully configured in order to reach
2349 * their destination. The SMI is the only method allowed to send
2350 * directed route packets on an InfiniBand fabric.
2352 * Return: true if the port provides an SMI.
2354 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2356 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2360 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2361 * Communication Manager.
2362 * @device: Device to check
2363 * @port_num: Port number to check
2365 * The InfiniBand Communication Manager is one of many pre-defined General
2366 * Service Agents (GSA) that are accessed via the General Service
2367 * Interface (GSI). It's role is to facilitate establishment of connections
2368 * between nodes as well as other management related tasks for established
2369 * connections.
2371 * Return: true if the port supports an IB CM (this does not guarantee that
2372 * a CM is actually running however).
2374 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2376 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2380 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2381 * Communication Manager.
2382 * @device: Device to check
2383 * @port_num: Port number to check
2385 * Similar to above, but specific to iWARP connections which have a different
2386 * managment protocol than InfiniBand.
2388 * Return: true if the port supports an iWARP CM (this does not guarantee that
2389 * a CM is actually running however).
2391 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2393 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2397 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2398 * Subnet Administration.
2399 * @device: Device to check
2400 * @port_num: Port number to check
2402 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2403 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2404 * fabrics, devices should resolve routes to other hosts by contacting the
2405 * SA to query the proper route.
2407 * Return: true if the port should act as a client to the fabric Subnet
2408 * Administration interface. This does not imply that the SA service is
2409 * running locally.
2411 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2413 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2417 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2418 * Multicast.
2419 * @device: Device to check
2420 * @port_num: Port number to check
2422 * InfiniBand multicast registration is more complex than normal IPv4 or
2423 * IPv6 multicast registration. Each Host Channel Adapter must register
2424 * with the Subnet Manager when it wishes to join a multicast group. It
2425 * should do so only once regardless of how many queue pairs it subscribes
2426 * to this group. And it should leave the group only after all queue pairs
2427 * attached to the group have been detached.
2429 * Return: true if the port must undertake the additional adminstrative
2430 * overhead of registering/unregistering with the SM and tracking of the
2431 * total number of queue pairs attached to the multicast group.
2433 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2435 return rdma_cap_ib_sa(device, port_num);
2439 * rdma_cap_af_ib - Check if the port of device has the capability
2440 * Native Infiniband Address.
2441 * @device: Device to check
2442 * @port_num: Port number to check
2444 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2445 * GID. RoCE uses a different mechanism, but still generates a GID via
2446 * a prescribed mechanism and port specific data.
2448 * Return: true if the port uses a GID address to identify devices on the
2449 * network.
2451 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2453 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2457 * rdma_cap_eth_ah - Check if the port of device has the capability
2458 * Ethernet Address Handle.
2459 * @device: Device to check
2460 * @port_num: Port number to check
2462 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2463 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2464 * port. Normally, packet headers are generated by the sending host
2465 * adapter, but when sending connectionless datagrams, we must manually
2466 * inject the proper headers for the fabric we are communicating over.
2468 * Return: true if we are running as a RoCE port and must force the
2469 * addition of a Global Route Header built from our Ethernet Address
2470 * Handle into our header list for connectionless packets.
2472 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2474 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2478 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2480 * @device: Device
2481 * @port_num: Port number
2483 * This MAD size includes the MAD headers and MAD payload. No other headers
2484 * are included.
2486 * Return the max MAD size required by the Port. Will return 0 if the port
2487 * does not support MADs
2489 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2491 return device->port_immutable[port_num].max_mad_size;
2495 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2496 * @device: Device to check
2497 * @port_num: Port number to check
2499 * RoCE GID table mechanism manages the various GIDs for a device.
2501 * NOTE: if allocating the port's GID table has failed, this call will still
2502 * return true, but any RoCE GID table API will fail.
2504 * Return: true if the port uses RoCE GID table mechanism in order to manage
2505 * its GIDs.
2507 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2508 u8 port_num)
2510 return rdma_protocol_roce(device, port_num) &&
2511 device->add_gid && device->del_gid;
2515 * Check if the device supports READ W/ INVALIDATE.
2517 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2520 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2521 * has support for it yet.
2523 return rdma_protocol_iwarp(dev, port_num);
2526 int ib_query_gid(struct ib_device *device,
2527 u8 port_num, int index, union ib_gid *gid,
2528 struct ib_gid_attr *attr);
2530 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2531 int state);
2532 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2533 struct ifla_vf_info *info);
2534 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2535 struct ifla_vf_stats *stats);
2536 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2537 int type);
2539 int ib_query_pkey(struct ib_device *device,
2540 u8 port_num, u16 index, u16 *pkey);
2542 int ib_modify_device(struct ib_device *device,
2543 int device_modify_mask,
2544 struct ib_device_modify *device_modify);
2546 int ib_modify_port(struct ib_device *device,
2547 u8 port_num, int port_modify_mask,
2548 struct ib_port_modify *port_modify);
2550 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2551 enum ib_gid_type gid_type, struct net_device *ndev,
2552 u8 *port_num, u16 *index);
2554 int ib_find_pkey(struct ib_device *device,
2555 u8 port_num, u16 pkey, u16 *index);
2557 enum ib_pd_flags {
2559 * Create a memory registration for all memory in the system and place
2560 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2561 * ULPs to avoid the overhead of dynamic MRs.
2563 * This flag is generally considered unsafe and must only be used in
2564 * extremly trusted environments. Every use of it will log a warning
2565 * in the kernel log.
2567 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2570 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2571 const char *caller);
2572 #define ib_alloc_pd(device, flags) \
2573 __ib_alloc_pd((device), (flags), __func__)
2574 void ib_dealloc_pd(struct ib_pd *pd);
2577 * ib_create_ah - Creates an address handle for the given address vector.
2578 * @pd: The protection domain associated with the address handle.
2579 * @ah_attr: The attributes of the address vector.
2581 * The address handle is used to reference a local or global destination
2582 * in all UD QP post sends.
2584 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2587 * ib_init_ah_from_wc - Initializes address handle attributes from a
2588 * work completion.
2589 * @device: Device on which the received message arrived.
2590 * @port_num: Port on which the received message arrived.
2591 * @wc: Work completion associated with the received message.
2592 * @grh: References the received global route header. This parameter is
2593 * ignored unless the work completion indicates that the GRH is valid.
2594 * @ah_attr: Returned attributes that can be used when creating an address
2595 * handle for replying to the message.
2597 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2598 const struct ib_wc *wc, const struct ib_grh *grh,
2599 struct ib_ah_attr *ah_attr);
2602 * ib_create_ah_from_wc - Creates an address handle associated with the
2603 * sender of the specified work completion.
2604 * @pd: The protection domain associated with the address handle.
2605 * @wc: Work completion information associated with a received message.
2606 * @grh: References the received global route header. This parameter is
2607 * ignored unless the work completion indicates that the GRH is valid.
2608 * @port_num: The outbound port number to associate with the address.
2610 * The address handle is used to reference a local or global destination
2611 * in all UD QP post sends.
2613 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2614 const struct ib_grh *grh, u8 port_num);
2617 * ib_modify_ah - Modifies the address vector associated with an address
2618 * handle.
2619 * @ah: The address handle to modify.
2620 * @ah_attr: The new address vector attributes to associate with the
2621 * address handle.
2623 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2626 * ib_query_ah - Queries the address vector associated with an address
2627 * handle.
2628 * @ah: The address handle to query.
2629 * @ah_attr: The address vector attributes associated with the address
2630 * handle.
2632 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2635 * ib_destroy_ah - Destroys an address handle.
2636 * @ah: The address handle to destroy.
2638 int ib_destroy_ah(struct ib_ah *ah);
2641 * ib_create_srq - Creates a SRQ associated with the specified protection
2642 * domain.
2643 * @pd: The protection domain associated with the SRQ.
2644 * @srq_init_attr: A list of initial attributes required to create the
2645 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2646 * the actual capabilities of the created SRQ.
2648 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2649 * requested size of the SRQ, and set to the actual values allocated
2650 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2651 * will always be at least as large as the requested values.
2653 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2654 struct ib_srq_init_attr *srq_init_attr);
2657 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2658 * @srq: The SRQ to modify.
2659 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2660 * the current values of selected SRQ attributes are returned.
2661 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2662 * are being modified.
2664 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2665 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2666 * the number of receives queued drops below the limit.
2668 int ib_modify_srq(struct ib_srq *srq,
2669 struct ib_srq_attr *srq_attr,
2670 enum ib_srq_attr_mask srq_attr_mask);
2673 * ib_query_srq - Returns the attribute list and current values for the
2674 * specified SRQ.
2675 * @srq: The SRQ to query.
2676 * @srq_attr: The attributes of the specified SRQ.
2678 int ib_query_srq(struct ib_srq *srq,
2679 struct ib_srq_attr *srq_attr);
2682 * ib_destroy_srq - Destroys the specified SRQ.
2683 * @srq: The SRQ to destroy.
2685 int ib_destroy_srq(struct ib_srq *srq);
2688 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2689 * @srq: The SRQ to post the work request on.
2690 * @recv_wr: A list of work requests to post on the receive queue.
2691 * @bad_recv_wr: On an immediate failure, this parameter will reference
2692 * the work request that failed to be posted on the QP.
2694 static inline int ib_post_srq_recv(struct ib_srq *srq,
2695 struct ib_recv_wr *recv_wr,
2696 struct ib_recv_wr **bad_recv_wr)
2698 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2702 * ib_create_qp - Creates a QP associated with the specified protection
2703 * domain.
2704 * @pd: The protection domain associated with the QP.
2705 * @qp_init_attr: A list of initial attributes required to create the
2706 * QP. If QP creation succeeds, then the attributes are updated to
2707 * the actual capabilities of the created QP.
2709 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2710 struct ib_qp_init_attr *qp_init_attr);
2713 * ib_modify_qp - Modifies the attributes for the specified QP and then
2714 * transitions the QP to the given state.
2715 * @qp: The QP to modify.
2716 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2717 * the current values of selected QP attributes are returned.
2718 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2719 * are being modified.
2721 int ib_modify_qp(struct ib_qp *qp,
2722 struct ib_qp_attr *qp_attr,
2723 int qp_attr_mask);
2726 * ib_query_qp - Returns the attribute list and current values for the
2727 * specified QP.
2728 * @qp: The QP to query.
2729 * @qp_attr: The attributes of the specified QP.
2730 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2731 * @qp_init_attr: Additional attributes of the selected QP.
2733 * The qp_attr_mask may be used to limit the query to gathering only the
2734 * selected attributes.
2736 int ib_query_qp(struct ib_qp *qp,
2737 struct ib_qp_attr *qp_attr,
2738 int qp_attr_mask,
2739 struct ib_qp_init_attr *qp_init_attr);
2742 * ib_destroy_qp - Destroys the specified QP.
2743 * @qp: The QP to destroy.
2745 int ib_destroy_qp(struct ib_qp *qp);
2748 * ib_open_qp - Obtain a reference to an existing sharable QP.
2749 * @xrcd - XRC domain
2750 * @qp_open_attr: Attributes identifying the QP to open.
2752 * Returns a reference to a sharable QP.
2754 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2755 struct ib_qp_open_attr *qp_open_attr);
2758 * ib_close_qp - Release an external reference to a QP.
2759 * @qp: The QP handle to release
2761 * The opened QP handle is released by the caller. The underlying
2762 * shared QP is not destroyed until all internal references are released.
2764 int ib_close_qp(struct ib_qp *qp);
2767 * ib_post_send - Posts a list of work requests to the send queue of
2768 * the specified QP.
2769 * @qp: The QP to post the work request on.
2770 * @send_wr: A list of work requests to post on the send queue.
2771 * @bad_send_wr: On an immediate failure, this parameter will reference
2772 * the work request that failed to be posted on the QP.
2774 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2775 * error is returned, the QP state shall not be affected,
2776 * ib_post_send() will return an immediate error after queueing any
2777 * earlier work requests in the list.
2779 static inline int ib_post_send(struct ib_qp *qp,
2780 struct ib_send_wr *send_wr,
2781 struct ib_send_wr **bad_send_wr)
2783 return qp->device->post_send(qp, send_wr, bad_send_wr);
2787 * ib_post_recv - Posts a list of work requests to the receive queue of
2788 * the specified QP.
2789 * @qp: The QP to post the work request on.
2790 * @recv_wr: A list of work requests to post on the receive queue.
2791 * @bad_recv_wr: On an immediate failure, this parameter will reference
2792 * the work request that failed to be posted on the QP.
2794 static inline int ib_post_recv(struct ib_qp *qp,
2795 struct ib_recv_wr *recv_wr,
2796 struct ib_recv_wr **bad_recv_wr)
2798 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2801 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2802 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2803 void ib_free_cq(struct ib_cq *cq);
2804 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2807 * ib_create_cq - Creates a CQ on the specified device.
2808 * @device: The device on which to create the CQ.
2809 * @comp_handler: A user-specified callback that is invoked when a
2810 * completion event occurs on the CQ.
2811 * @event_handler: A user-specified callback that is invoked when an
2812 * asynchronous event not associated with a completion occurs on the CQ.
2813 * @cq_context: Context associated with the CQ returned to the user via
2814 * the associated completion and event handlers.
2815 * @cq_attr: The attributes the CQ should be created upon.
2817 * Users can examine the cq structure to determine the actual CQ size.
2819 struct ib_cq *ib_create_cq(struct ib_device *device,
2820 ib_comp_handler comp_handler,
2821 void (*event_handler)(struct ib_event *, void *),
2822 void *cq_context,
2823 const struct ib_cq_init_attr *cq_attr);
2826 * ib_resize_cq - Modifies the capacity of the CQ.
2827 * @cq: The CQ to resize.
2828 * @cqe: The minimum size of the CQ.
2830 * Users can examine the cq structure to determine the actual CQ size.
2832 int ib_resize_cq(struct ib_cq *cq, int cqe);
2835 * ib_modify_cq - Modifies moderation params of the CQ
2836 * @cq: The CQ to modify.
2837 * @cq_count: number of CQEs that will trigger an event
2838 * @cq_period: max period of time in usec before triggering an event
2841 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2844 * ib_destroy_cq - Destroys the specified CQ.
2845 * @cq: The CQ to destroy.
2847 int ib_destroy_cq(struct ib_cq *cq);
2850 * ib_poll_cq - poll a CQ for completion(s)
2851 * @cq:the CQ being polled
2852 * @num_entries:maximum number of completions to return
2853 * @wc:array of at least @num_entries &struct ib_wc where completions
2854 * will be returned
2856 * Poll a CQ for (possibly multiple) completions. If the return value
2857 * is < 0, an error occurred. If the return value is >= 0, it is the
2858 * number of completions returned. If the return value is
2859 * non-negative and < num_entries, then the CQ was emptied.
2861 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2862 struct ib_wc *wc)
2864 return cq->device->poll_cq(cq, num_entries, wc);
2868 * ib_peek_cq - Returns the number of unreaped completions currently
2869 * on the specified CQ.
2870 * @cq: The CQ to peek.
2871 * @wc_cnt: A minimum number of unreaped completions to check for.
2873 * If the number of unreaped completions is greater than or equal to wc_cnt,
2874 * this function returns wc_cnt, otherwise, it returns the actual number of
2875 * unreaped completions.
2877 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2880 * ib_req_notify_cq - Request completion notification on a CQ.
2881 * @cq: The CQ to generate an event for.
2882 * @flags:
2883 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2884 * to request an event on the next solicited event or next work
2885 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2886 * may also be |ed in to request a hint about missed events, as
2887 * described below.
2889 * Return Value:
2890 * < 0 means an error occurred while requesting notification
2891 * == 0 means notification was requested successfully, and if
2892 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2893 * were missed and it is safe to wait for another event. In
2894 * this case is it guaranteed that any work completions added
2895 * to the CQ since the last CQ poll will trigger a completion
2896 * notification event.
2897 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2898 * in. It means that the consumer must poll the CQ again to
2899 * make sure it is empty to avoid missing an event because of a
2900 * race between requesting notification and an entry being
2901 * added to the CQ. This return value means it is possible
2902 * (but not guaranteed) that a work completion has been added
2903 * to the CQ since the last poll without triggering a
2904 * completion notification event.
2906 static inline int ib_req_notify_cq(struct ib_cq *cq,
2907 enum ib_cq_notify_flags flags)
2909 return cq->device->req_notify_cq(cq, flags);
2913 * ib_req_ncomp_notif - Request completion notification when there are
2914 * at least the specified number of unreaped completions on the CQ.
2915 * @cq: The CQ to generate an event for.
2916 * @wc_cnt: The number of unreaped completions that should be on the
2917 * CQ before an event is generated.
2919 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2921 return cq->device->req_ncomp_notif ?
2922 cq->device->req_ncomp_notif(cq, wc_cnt) :
2923 -ENOSYS;
2927 * ib_dma_mapping_error - check a DMA addr for error
2928 * @dev: The device for which the dma_addr was created
2929 * @dma_addr: The DMA address to check
2931 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2933 if (dev->dma_ops)
2934 return dev->dma_ops->mapping_error(dev, dma_addr);
2935 return dma_mapping_error(dev->dma_device, dma_addr);
2939 * ib_dma_map_single - Map a kernel virtual address to DMA address
2940 * @dev: The device for which the dma_addr is to be created
2941 * @cpu_addr: The kernel virtual address
2942 * @size: The size of the region in bytes
2943 * @direction: The direction of the DMA
2945 static inline u64 ib_dma_map_single(struct ib_device *dev,
2946 void *cpu_addr, size_t size,
2947 enum dma_data_direction direction)
2949 if (dev->dma_ops)
2950 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2951 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2955 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2956 * @dev: The device for which the DMA address was created
2957 * @addr: The DMA address
2958 * @size: The size of the region in bytes
2959 * @direction: The direction of the DMA
2961 static inline void ib_dma_unmap_single(struct ib_device *dev,
2962 u64 addr, size_t size,
2963 enum dma_data_direction direction)
2965 if (dev->dma_ops)
2966 dev->dma_ops->unmap_single(dev, addr, size, direction);
2967 else
2968 dma_unmap_single(dev->dma_device, addr, size, direction);
2971 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2972 void *cpu_addr, size_t size,
2973 enum dma_data_direction direction,
2974 unsigned long dma_attrs)
2976 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2977 direction, dma_attrs);
2980 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2981 u64 addr, size_t size,
2982 enum dma_data_direction direction,
2983 unsigned long dma_attrs)
2985 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2986 direction, dma_attrs);
2990 * ib_dma_map_page - Map a physical page to DMA address
2991 * @dev: The device for which the dma_addr is to be created
2992 * @page: The page to be mapped
2993 * @offset: The offset within the page
2994 * @size: The size of the region in bytes
2995 * @direction: The direction of the DMA
2997 static inline u64 ib_dma_map_page(struct ib_device *dev,
2998 struct page *page,
2999 unsigned long offset,
3000 size_t size,
3001 enum dma_data_direction direction)
3003 if (dev->dma_ops)
3004 return dev->dma_ops->map_page(dev, page, offset, size, direction);
3005 return dma_map_page(dev->dma_device, page, offset, size, direction);
3009 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3010 * @dev: The device for which the DMA address was created
3011 * @addr: The DMA address
3012 * @size: The size of the region in bytes
3013 * @direction: The direction of the DMA
3015 static inline void ib_dma_unmap_page(struct ib_device *dev,
3016 u64 addr, size_t size,
3017 enum dma_data_direction direction)
3019 if (dev->dma_ops)
3020 dev->dma_ops->unmap_page(dev, addr, size, direction);
3021 else
3022 dma_unmap_page(dev->dma_device, addr, size, direction);
3026 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3027 * @dev: The device for which the DMA addresses are to be created
3028 * @sg: The array of scatter/gather entries
3029 * @nents: The number of scatter/gather entries
3030 * @direction: The direction of the DMA
3032 static inline int ib_dma_map_sg(struct ib_device *dev,
3033 struct scatterlist *sg, int nents,
3034 enum dma_data_direction direction)
3036 if (dev->dma_ops)
3037 return dev->dma_ops->map_sg(dev, sg, nents, direction);
3038 return dma_map_sg(dev->dma_device, sg, nents, direction);
3042 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3043 * @dev: The device for which the DMA addresses were created
3044 * @sg: The array of scatter/gather entries
3045 * @nents: The number of scatter/gather entries
3046 * @direction: The direction of the DMA
3048 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3049 struct scatterlist *sg, int nents,
3050 enum dma_data_direction direction)
3052 if (dev->dma_ops)
3053 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3054 else
3055 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3058 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3059 struct scatterlist *sg, int nents,
3060 enum dma_data_direction direction,
3061 unsigned long dma_attrs)
3063 if (dev->dma_ops)
3064 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3065 dma_attrs);
3066 else
3067 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3068 dma_attrs);
3071 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3072 struct scatterlist *sg, int nents,
3073 enum dma_data_direction direction,
3074 unsigned long dma_attrs)
3076 if (dev->dma_ops)
3077 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3078 dma_attrs);
3079 else
3080 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3081 dma_attrs);
3084 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3085 * @dev: The device for which the DMA addresses were created
3086 * @sg: The scatter/gather entry
3088 * Note: this function is obsolete. To do: change all occurrences of
3089 * ib_sg_dma_address() into sg_dma_address().
3091 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3092 struct scatterlist *sg)
3094 return sg_dma_address(sg);
3098 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3099 * @dev: The device for which the DMA addresses were created
3100 * @sg: The scatter/gather entry
3102 * Note: this function is obsolete. To do: change all occurrences of
3103 * ib_sg_dma_len() into sg_dma_len().
3105 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3106 struct scatterlist *sg)
3108 return sg_dma_len(sg);
3112 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3113 * @dev: The device for which the DMA address was created
3114 * @addr: The DMA address
3115 * @size: The size of the region in bytes
3116 * @dir: The direction of the DMA
3118 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3119 u64 addr,
3120 size_t size,
3121 enum dma_data_direction dir)
3123 if (dev->dma_ops)
3124 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3125 else
3126 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3130 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3131 * @dev: The device for which the DMA address was created
3132 * @addr: The DMA address
3133 * @size: The size of the region in bytes
3134 * @dir: The direction of the DMA
3136 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3137 u64 addr,
3138 size_t size,
3139 enum dma_data_direction dir)
3141 if (dev->dma_ops)
3142 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3143 else
3144 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3148 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3149 * @dev: The device for which the DMA address is requested
3150 * @size: The size of the region to allocate in bytes
3151 * @dma_handle: A pointer for returning the DMA address of the region
3152 * @flag: memory allocator flags
3154 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3155 size_t size,
3156 u64 *dma_handle,
3157 gfp_t flag)
3159 if (dev->dma_ops)
3160 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3161 else {
3162 dma_addr_t handle;
3163 void *ret;
3165 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3166 *dma_handle = handle;
3167 return ret;
3172 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3173 * @dev: The device for which the DMA addresses were allocated
3174 * @size: The size of the region
3175 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3176 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3178 static inline void ib_dma_free_coherent(struct ib_device *dev,
3179 size_t size, void *cpu_addr,
3180 u64 dma_handle)
3182 if (dev->dma_ops)
3183 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3184 else
3185 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3189 * ib_dereg_mr - Deregisters a memory region and removes it from the
3190 * HCA translation table.
3191 * @mr: The memory region to deregister.
3193 * This function can fail, if the memory region has memory windows bound to it.
3195 int ib_dereg_mr(struct ib_mr *mr);
3197 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3198 enum ib_mr_type mr_type,
3199 u32 max_num_sg);
3202 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3203 * R_Key and L_Key.
3204 * @mr - struct ib_mr pointer to be updated.
3205 * @newkey - new key to be used.
3207 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3209 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3210 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3214 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3215 * for calculating a new rkey for type 2 memory windows.
3216 * @rkey - the rkey to increment.
3218 static inline u32 ib_inc_rkey(u32 rkey)
3220 const u32 mask = 0x000000ff;
3221 return ((rkey + 1) & mask) | (rkey & ~mask);
3225 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3226 * @pd: The protection domain associated with the unmapped region.
3227 * @mr_access_flags: Specifies the memory access rights.
3228 * @fmr_attr: Attributes of the unmapped region.
3230 * A fast memory region must be mapped before it can be used as part of
3231 * a work request.
3233 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3234 int mr_access_flags,
3235 struct ib_fmr_attr *fmr_attr);
3238 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3239 * @fmr: The fast memory region to associate with the pages.
3240 * @page_list: An array of physical pages to map to the fast memory region.
3241 * @list_len: The number of pages in page_list.
3242 * @iova: The I/O virtual address to use with the mapped region.
3244 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3245 u64 *page_list, int list_len,
3246 u64 iova)
3248 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3252 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3253 * @fmr_list: A linked list of fast memory regions to unmap.
3255 int ib_unmap_fmr(struct list_head *fmr_list);
3258 * ib_dealloc_fmr - Deallocates a fast memory region.
3259 * @fmr: The fast memory region to deallocate.
3261 int ib_dealloc_fmr(struct ib_fmr *fmr);
3264 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3265 * @qp: QP to attach to the multicast group. The QP must be type
3266 * IB_QPT_UD.
3267 * @gid: Multicast group GID.
3268 * @lid: Multicast group LID in host byte order.
3270 * In order to send and receive multicast packets, subnet
3271 * administration must have created the multicast group and configured
3272 * the fabric appropriately. The port associated with the specified
3273 * QP must also be a member of the multicast group.
3275 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3278 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3279 * @qp: QP to detach from the multicast group.
3280 * @gid: Multicast group GID.
3281 * @lid: Multicast group LID in host byte order.
3283 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3286 * ib_alloc_xrcd - Allocates an XRC domain.
3287 * @device: The device on which to allocate the XRC domain.
3289 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3292 * ib_dealloc_xrcd - Deallocates an XRC domain.
3293 * @xrcd: The XRC domain to deallocate.
3295 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3297 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3298 struct ib_flow_attr *flow_attr, int domain);
3299 int ib_destroy_flow(struct ib_flow *flow_id);
3301 static inline int ib_check_mr_access(int flags)
3304 * Local write permission is required if remote write or
3305 * remote atomic permission is also requested.
3307 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3308 !(flags & IB_ACCESS_LOCAL_WRITE))
3309 return -EINVAL;
3311 return 0;
3314 static inline bool ib_access_writable(int access_flags)
3317 * We have writable memory backing the MR if any of the following
3318 * access flags are set. "Local write" and "remote write" obviously
3319 * require write access. "Remote atomic" can do things like fetch and
3320 * add, which will modify memory, and "MW bind" can change permissions
3321 * by binding a window.
3323 return access_flags &
3324 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3325 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3329 * ib_check_mr_status: lightweight check of MR status.
3330 * This routine may provide status checks on a selected
3331 * ib_mr. first use is for signature status check.
3333 * @mr: A memory region.
3334 * @check_mask: Bitmask of which checks to perform from
3335 * ib_mr_status_check enumeration.
3336 * @mr_status: The container of relevant status checks.
3337 * failed checks will be indicated in the status bitmask
3338 * and the relevant info shall be in the error item.
3340 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3341 struct ib_mr_status *mr_status);
3343 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3344 u16 pkey, const union ib_gid *gid,
3345 const struct sockaddr *addr);
3346 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3347 struct ib_wq_init_attr *init_attr);
3348 int ib_destroy_wq(struct ib_wq *wq);
3349 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3350 u32 wq_attr_mask);
3351 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3352 struct ib_rwq_ind_table_init_attr*
3353 wq_ind_table_init_attr);
3354 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3356 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3357 unsigned int *sg_offset, unsigned int page_size);
3359 static inline int
3360 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3361 unsigned int *sg_offset, unsigned int page_size)
3363 int n;
3365 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3366 mr->iova = 0;
3368 return n;
3371 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3372 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3374 void ib_drain_rq(struct ib_qp *qp);
3375 void ib_drain_sq(struct ib_qp *qp);
3376 void ib_drain_qp(struct ib_qp *qp);
3377 #endif /* IB_VERBS_H */